

May 13, 2015

VIA EMAIL: Tomas.Oberding@state.nm.us

Dr. Tomas Oberding, Hydrologist Environmental Bureau New Mexico Oil Conservation Division 1220 So. St. Francis Drive Santa Fe, New Mexico 87505 **APPROVED**; Conditionally Approved By OCD District 1 at 3:40 pm, May 20, 2015

Conditions of Approval
1. Ensure there are two sample points on SB-3 that are below regulated limits
2. Show location of composite samples on map
3. Investigate possibility of adding a liner in the SB-3, SE corner
4. Take ground water sample (last ground water sample was in 2008)

Re: 1RP-3593 – Paladin Energy Corp. State BT "C" No. 003 Tank Battery Spill Investigation and Remediation Report, Unit L (NW/4, SW/4), Section 35, Township 11 South, Range 33 East, Lea County, New Mexico

Dear Dr. Oberding:

Larson & Associates, Inc. (LAI), on behalf of Paladin Energy Corp. (Paladin), submits this report to the New Mexico Oil Conservation Division (OCD) to present the investigation and remediation of a crude oil and produced water spill at the State BT "C" No. 003 tank battery (Site). The vertical extent of release was determined. Paladin proposes to remove additional soil, to the extent feasible, in the area of borings SB-1 and SB-2 to reduce the concentration of total petroleum hydrocarbons (TPH). Excavating however is limited to about 1 foot below ground surface due to dense caliche. Paladin respectfully requests your approval. Please contact Mickey Horn with Paladin at (432) 522-2162 or me at (432) 687-0901.

Sincerely,

Larson & Associates, Inc.

Mark J. Larson, P.G. President/Sr. Project Manager <u>mark@laenvironmental.com</u>

cc: Kellie Jones – OCD District 1 Mickey Horn – Paladin Energy Corp.

Encl.

1RP-3593 SPILL INVESTIGATION REPORT STATE BT "C" NO. 003 TANK BATTERY LEA COUNTY, NEW MEXICO

LAI Project No. 15-0130-01

May 11, 2015

Prepared for: Paladin Energy Corp. 10290 Monroe Drive, Suite 301 Fort Worth, Texas 75229

Prepared by: Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, TX 79701

Mark J. Larson Certified Professional Geologist No. 10490

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
2.1	Background and Initial Response	
2.2	Setting	2
3.0	INVESTIGATION	3
3.1	Soil Samples	3
3.2	Soil Borings	3
3.3	Groundwater Sample	4
4.0	CONCLUSIONS	4
5.0	REMEDIATION PLAN	5

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Map
Figure 3	Site Map

List of Tables

Table 1	Composite Soil Sample Analytical Data Summary
Table 2	Boring Soil Sample Analytical Data Summary
Table 3	Groundwater Sample Analytical Data Summary

List of Appendices

Appendix A	OCD Correspondence
Appendix B	Laboratory Reports
Appendix C	Boring Logs
Appendix D	Photographs
Appendix E	Initial C-141

1RP-3593 Spill Investigation Report State BT "C" No. 003 Tank Battery Lea County, New Mexico May 11, 2015

1.0 EXECUTIVE SUMMARY

This report is submitted to the New Mexico Oil Conservation Division (OCD) District 1, in Hobbs, New Mexico, on behalf of Paladin Energy Corp (Paladin) to present the investigation and remediation of a crude oil and produced water spill at the State BT "C" No. 003 tank battery (Site) located in Lea County, New Mexico. The legal description is Unit L (NW/4, NW/4), Section 35, Township 11 South and Range 33 East. The geodetic position is 32° 19' 07.188" north and 103° 35' 20.946" west.

The release was discovered by an OCD inspector, on March 31, 2015. On April 1, 2015, OCD issued a letter to Paladin that required corrective action to be completed by June 5, 2015. On April 2, 2015, Paladin initiated corrective action that included excavating oil contaminated soil that was disposed at the Gandy Marley land fill located west of Tatum, New Mexico. OCD issued remediation project (RP) number 1RP-3593 for the release. Groundwater occurs at about 42 feet bgs.

On April 7, 2015, personnel from Larson & Associates, Inc. (LAI) collected two 5-part composite samples (TBC-A and TBC-B) from the bottom of the excavations. Permian Basin Environmental Lab (PBELAB), located in Midland, Texas, analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX), total petroleum hydrocarbons (TPH) and chloride by methods SW-846-8021B, SW-846-8015 and 300, respectively. Benzene and BTEX were below the OCD recommended remediation action levels (RRAL) of 10 and 50 milligrams per kilogram (mg/Kg), respectively. TPH exceeded the RRAL (100 mg/Kg) in composite samples TBC-A (1,432.14 mg/Kg) and TBC-B (12,900.58 mg/Kg). Chloride was 350 mg/Kg (TBC-A) and 971 mg/Kg (TBC-B).

On April 21, 2015, Scarborough Drilling Co., located in Lamesa, Texas, drilled 3 air rotary borings (SB-1, SB-2 and SB-3) and collected a soil sample every 5 feet using a jam tube sampler. The borings were drilled to approximately 35 feet below ground surface (bgs).

Benzene was below the method reporting limits and BTEX below the RRAL (50 mg/Kg) in the sample exhibiting the highest headspace reading above 100 parts per million (ppm) from each boring. The laboratory reported TPH above the RRAL (100 mg/Kg) in samples from borings SB-1 (0 and 5 feet bgs), SB-2 (0 feet bgs) and SB-3 (1, 5, 10 and 15 feet bgs). Chloride decreased below 250 mg/Kg in soil samples below 10 feet bgs (SB-1).

Groundwater was encountered at about 40 feet bgs in a boring drilled southeast of the facility. A sample was collected and reported BTEX below the laboratory reporting limit (RL) and chloride at 40.4 milligrams per liter (mg/L).

Paladin proposes to excavate soil to the extent feasible from the vicinity of borings SB-1 and SB-2. However, at location SB-3 caliche prevented excavating below about 1 foot bgs. The soil will be disposed at the Gandy Marley landfill. The excavations will be backfilled with clean soil acquired from the Gandy Marley facility. The firewall will be reconstructed following remediation. A report will be submitted to the OCD after remediation that will include photographs and final C-141. Paladin respectfully requests your approval of this remediation plan.

1RP-3593 Spill Investigation Report State BT "C" No. 003 Tank Battery Lea County, New Mexico May 11, 2015

2.0 INTRODUCTION

Larson & Associates, Inc. (LAI) submits this report to the New Mexico Oil Conservation Division (OCD) on behalf of Paladin Energy Corp (Paladin) to present the investigation and remediation of a crude oil and produced water spill at the State BT "C" No. 003 tank battery (Site). The Site is located in Unit L (NW/4, SW/4), Section 35, Township 11 South, Range 33 east, in Lea County, New Mexico. The geodetic position is north 33° 19' 07.188" and west 103° 35' 20.946". Figure 1 presents a location and topographic map. Figure 2 presents an aerial map.

2.1 Background and Initial Response

On March 31, 2015, an inspector with OCD District 1, in Hobbs, New Mexico, discovered the spill. On April 1, 2015, OCD issued a letter of violation to Paladin requiring, among other things, filing form C-141 and performing corrective action by June 5, 2015.

The spill occurred from failure of a pressure relief (pop-off) valve at the free water knockout that release about 15 barrels (bbl) of oil and 40 bbl of water. The spill was contained inside the firewall. Paladin recovered about 7 bbl of fluid (oil and water). On April 2, 2015, Paladin initiated corrective actions that included excavating visually contaminated soil. The contaminated soil was hauled to the Gandy Marley landfill (NM1-19-0) located west of Tatum, New Mexico. The initial C-141 was submitted to the OCD on April 6, 2015. OCD issued remediation project (RP) number 1RP-3593. Appendix A presents the OCD correspondence.

2.2 Setting

The Site is located about 18 miles west of Tatum, New Mexico. The surface elevation is approximately 4,245 feet above mean sea level (MSL) and slopes gently to the southeast. The soil is designated "Portales-Stegall" loams, 0 to 3 percent slopes (PS). The typical profile consists of "A" horizon consisting of about 9 inches of loam and "Bt" horizon consisting of about 17 inches of clay loam. Below the "Bt" horizon is cemented material consisting of broken to indurated caliche. The main uses are livestock grazing and wildlife habitat. No surface water features are located within 1,000 horizontal feet of the Site.

According to the *Geologic Map of New Mexico* and the *Geologic Atlas of Texas, Hobbs Sheet* the surface geology is the Tertiary-age Ogallala formation. The Ogallala formation is comprised of fluvial sand, silt, clay and localized gravel, with indistinct to massive crossbeds. The Ogallala formation consists mainly of unconsolidated to poorly consolidated, very fine to medium-grained quartz sand and gravel, with minor amount of silt and clay. The caliche comprising the lower part of the Portales-Stegall loams forms a hard, erosion resistant, pedogenic calcrete that is between about 9 and 21 feet thick. The Ogallala formation is underlain by clay, silty clay, shale and sandstone of the Chile formation (Triassic) and is about 300 feet thick.

Groundwater occurs in the Ogallala formation. The Chinle formation is the lower confining boundary for groundwater in the Ogallala formation. The regional groundwater flow direction is from northwest to southeast. The nearest fresh water well (No. L01327) is located in Unit M (SW/4), SW/4), Section 35,

1RP-3593 Spill Investigation Report State BT "C" No 003 Tank Battery Lea County, New Mexico May 11, 2015

Township 11 South and Range 33 East. The well is located about 750 feet southwest of the Site. According to the New Mexico Office of the State Engineer (OSE) the well was drilled to about 115 feet below ground surface (bgs) and used for livestock. LAI personnel recorded groundwater in this well at about 42 feet bgs.

3.0 INVESTIGATION

3.1 Soil Samples

On April 7, 2015, LAI personnel collected two (2) 5-spot composite samples (TBC-A and TBC-B) from the areas that were excavated to about 1 foot bgs. The samples were collected using a stainless steel hand trowel and placed in clean 4-ounce glass jars. The samples were hand delivered under preservation and chain of custody to Permian Basin Environmental Lab (PBELAB), a National Environmental Laboratory Accreditation Programs (NELAP) accredited laboratory, located in Midland, Texas. The laboratory analyzed the samples for benzene, toluene, ethyl benzene, xylenes (BTEX) by method SW-846-8021B, total petroleum hydrocarbon (TPH) including gasoline (C6 – C12), diesel (>C12 – C28) and oil (>C28 – C35) range hydrocarbons by method SW-846-8015 and chloride by method 300. Table 1 presents an analytical data summary. Appendix B presents the laboratory report.

3.2 Soil Borings

On April 21, 2015, LAI contracted Scarborough Drilling Company (SDC), Lamesa, Texas, to collect soil samples from 3 air rotary drilled borings (SB-1, SB-2 and SB-3). Boring SB-1 was drilled northwest of the tanks and northeast of the free water knockout. Boring SB-2 was drilled southwest of the tank and southeast of the free water knockout. Boring SB-3 was drilled near the southeast corner of the tank battery. The borings were drilled to about 35 feet bgs and soil samples were collected every 5 feet (0, 5, 10, 15, 20, etc.) with a jam tube sampler. The samples were collected in 4 ounce glass jars and submitted under preservation and chain of custody to PBELAB, in Midland, Texas. The borings were plugged with bentonite chips. A duplicate sample was collected for headspace analysis using 8 ounce glass jars that were filled about 2/3rds full and sealed with a layer of aluminum foil. A calibrated photoionization detector (PID) was used to measure the concentration of organic vapor in the sample headspace. The highest PID readings were 264 ppm (SB-1, 5 feet), 153 ppm (SB-2, 5 feet) and 223 ppm (SB-3, 5 feet). These samples were analyzed by the laboratory for BTEX by method SW-846-8021B. Samples were also analyzed for TPH, including gasoline (C6 - C12), diesel (>C12 - C28) and oil (>C28 -C35) range hydrocarbons by method SW-846-8015 and chloride by method 300. Table 2 presents an analytical data summary. Figure 3 presents the soil boring locations. Appendix B presents the laboratory report. Appendix C presents the boring logs. Appendix D presents photographs.

Remediation action levels were calculated for benzene, BTEX and TPH based on the following criteria established by the OCD (*Guidelines for Remediation of Leaks, Spills and Releases, August 13,* 1993):

Criteria	Result	Score
Depth-to-Groundwater	<50 feet	20
Wellhead Protection Area	No	0
Distance to Surface Water Body	>1000 Horizontal Feet	0

1RP-3593 Spill Investigation Report State BT "C" No 003 Tank Battery Lea County, New Mexico May 11, 2015

	Total Score:	20
--	--------------	----

The recommended remediation action level (RRAL) for benzene, BTEX and TPH is 10, 50 and 100 mg/kg, respectively. Benzene was below the method reporting limit in sample with the highest headspace concentration, greater than 100 ppm, from borings SB-1, SB-2 and SB-3. BTEX concentrations in these samples ranged from 0.3902 mg/Kg to 0.6 mg/Kg and were below the RRAL (50 mg/Kg). TPH exceeded the RRAL (100 mg/Kg) in the following samples:

- SB-1, 0' (10,200 mg/Kg)
- SB-2, 0' (2,050 mg/Kg)
- SB-3, 1' (756 mg/Kg)
- SB-3, 10' (177 mg/Kg)

- SB-1, 5' (3,580 mg/Kg)
- *SB-2, 10' (443 mg/Kg)
- SB-3, 5' (860 mg/Kg)
- SB-3, 15' (298 mg/Kg)

*Sample may be cross contaminated from surface soil.

TPH decreased below the method reporting limit or RRAL in samples below 5 feet (SB-1), 10 feet (SB-2) and 15 feet (SB-3). Chloride decreased below 250 mg/Kg in samples below 10 feet (SB-1), 5 feet (SB-2) and 1 foot (SB-3). Appendix E presents the initial C-141.

3.3 Groundwater Sample

On April 21, 2015, a boring was drilled about 100 feet southeast (down gradient) of the tank battery and encountered groundwater at about 40 feet bgs. A sample was collected with a clean disposable PVC bailer. PBELAB analyzed the samples for BTEX (SW-846-8021B) and chloride (300.0). BTEX was below the method reporting limit and chloride was 40.4 milligrams per liter (mg/L). Table 3 presents the groundwater analytical data summary. Figure 3 presents the groundwater sample location. Appendix B presents the laboratory report.

4.0 CONCLUSIONS

The following conclusions are based on the investigation results:

- Benzene was less than the method reporting limit in the soil sample with the highest headspace concentration greater than 100 ppm from each boring;
- BTEX was below the RRAL in the soil sample with the highest headspace concentration greater than 100 ppm from each boring;
- TPH was above the RRAL in samples from 0 to 5 feet (SB-1 and SB-2) and 1 to 15 feet (SB-3);
- TPH decreased below the reporting limit or RRAL in soil samples below 5 feet (SB-1), 10 feet (SB-2) and 15 feet (SB-3);
- Chloride decreased below 250 mg/Kg in soil samples from borings SB-1 (10 feet), SB-2 (5 feet) and 1 foot (SB-3);

1RP-3593 Spill Investigation Report State BT "C" No 003 Tank Battery Lea County, New Mexico May 11, 2015

5.0 REMEDIATION PLAN

Paladin proposes to excavate soil to the extent feasible from the vicinity of borings SB-1 and SB-2. Caliche is present at about 1 foot bgs and prevented excavating soil below about 1 foot bgs in the vicinity of boring SB-3. The soil will be disposed at the Gandy Marley landfill. The excavations will be backfilled with clean soil acquired from the Gandy Marley facility. The firewall will be reconstructed following remediation. A report will be submitted to the OCD after remediation that will include photographs and final C-141. Paladin respectfully requests your approval of this remediation plan.

FIGURES

Figure 1 - Topographic Map

TABLES

Table 1

Soil Sample Analytical Data Summary Paladin Energy Paertnes, LLC, State BT "C" No. 003 Tank Battery Lea County, New Mexico

18P-3593

					1RP-3593					Page 1 of 1
Sample	Depth	Type	Collection	Benzene	втех	C6 - C12	>C12 - C28 >C28 - C35	>C28 - C35	НД	Chloride
	(Feet)		Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
OCD RRAL:				10	50				100	
TBC - A	1.5	Composite 4/7/2015	4/7/2015	0.00326	0.40436	208.67	1,104.2	119.27	1,432.14	350
TBC - B	1.5	Composite	Composite 4/7/2015	0.00122	0.21352	963.78	10,922	1,014.80	12,900.58	971

Notes: Laboratory analysis performed by Permian Basin Environmental Lab, Midland, Texas.

BTEX performed by laboratory method SW-8021B

TPH performed by laboratory method SW-846-8015

Chloride performed by laboratory method 300.0

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

Bold and highlighted indicates that analyte was detected above the OCD recommended remediation action level (RRAL)

Table 2 Soil Boring Analytical Data Summary Paladin Energy Paertnes, LLC, State BT "C" No. 003 Tank Battery Lea County, New Mexico

1RP-3593

Chloride (mg/Kg) 83.30 72.20 47.70 <1.22 6.55 4.54 8.78 52.4 44.5 65.4 82.3 96.1 122 75 67 44 103 125 480 440 363 420 397 280 (mg/Kg) 10,200 3,580 <26.3 <26.6 2,050 <29.8 <30.5 98.6 <27.2 443 TPH 100 35 756 298 860 177 35 ł ł ł ł ł ł ł >C28 - C35 (mg/Kg) <27.5 <26.6 <26.9 <29.8 <27.5 <26.0 <30.5 <26.3 <28.4 <25.5 <27.2 70.5 39.4 833 305 106 ł ł ł ł ł ł ł >C12 - C28 (mg/Kg) <26.6 <29.8 <30.5 9080 2780 <26.3 1,870 98.6 <27.2 35.1 399 270 685 177 683 35 ł ł ł ł ł ł ł C6 - C12 (mg/Kg) <27.5 <26.3 <26.6 <26.9 <28.4 13.50 <29.8 <27.5 <30.5 72.50 <27.2 <32.1 28.7 296 493 137 ł ł ł ł ł ł ł H (mg/Kg) 0.04555 0.3902 BTEX 0.6 50 ł ł ł ł ł ł ł ł ł ł ł ł ł ł ł ł ł 1 1 ł <0.00130 <0.00114 Benzene <0.00111 (mg/Kg) 9 ł ł ł ł ł 1 ł ł ł ł ÷ ł ł ł ł ł ł ł ł ł 4/21/2015 Collection Date Depth (Feet) 0 5 110 115 20 25 25 30 35 35 0 5 110 115 20 25 25 30 35 35 1 5 110 15 20 25 30 35 Sample **OCD RRAL:** SB-1 SB-2 SB-3

Table 2 Soil Boring Analytical Data Summary Paladin Energy Paertnes, LLC, State BT "C" No. 003 Tank Battery Lea County, New Mexico 1RP-3593

Bold and highlighted indicates that analyte was detected above the OCD recommended remediation action level (RRAL) Notes: Laboratory analysis performed by Permian Basin Environmental Lab, Midland, Texas. Bold indicates that analyte was detected above the method concentration limit mg/Kg: milligrams per kilogram equivalent to parts per million (ppm) TPH performed by laboratory method SW-846-8015 BTEX performed by laboratory method SW-8021B Chloride performed by laboratory method 300.0 Depth in feet below ground surface (bgs)

Lea County, New Mexico

1RP-3593

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chlorides
WQCC Limit:		0.01	0.8	0.75	0.62	250
TMW-1	11/18/2008	<0.00100	<0.00100	<0.00100	<0.00300	40.4
	_	- - - -		ŀ		

Notes: Analysis performed by Permian Basin Environmental Lab (PBELAB), Midland, Texas Analysis performed by EPA method SW-846-8021B (BTEX) and 300.0 (chloride)

All values reported in milligrams per liter (mg/L) equivelent to parts per million (ppm) Bold indicates analyte was detected above reporting limit (RL) but below the regulatory limit

APPENDIX A

OCD Correspondence

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin Cabinet Secretary

Brett F. Woods, Ph.D. Deputy Cabinet Secretary David Catanach, Director Oil Conservation Division

Response Required - Deadline Enclosed

Field Inspection Program "Preserving the Integrity of Our Environment"

01-Apr-15

PALADIN ENERGY CORP

10290 MONROE DRIVE SUITE 301 DALLAS TX 75229

LETTER OF VIOLATION - Inspection

Dear Operator:

The following inspection(s) indicate that the well, equipment, location or operational status of the well(s) failed to meet standards of the New Mexico Oil Conservation Division as described in the detail section below. To comply with standards imposed by Rules and Regulations of the Division, corrective action must be taken immediately and the situation brought into compliance. The detail section indicates preliminary findings and/or probable nature of the violation. This determination is based on an inspection of your well or facility by an inspector employed by the Oil Conservation Division on the date(s) indicated.

Please notify the proper district office of the Division, in writing, of the date corrective actions are scheduled to be made so that arrangements can be made to reinspect the well and/or facility.

		INSPI	ECTION DETAI	L SECTION		
STATE BT Inspection Date 03/31/2015	Type Inspection Routine/Perio	•	Violation? hitaker Yes	L-35-11S-33E *Significant Non-Compliance? No	30-025-01017-00- Corrective Action Due By: 6/5/2015	00 Inspection No. iMAW 1 509048809
	Violations Absent Well Iden Surface Leaks/Sp	ification Signs (Rule 103) lls				
Comments	on Inspection:	No well sign at wellhead (R INSTALL WELL SIGN AT REMEDIATION PLAN AT OFFICE. SEE ATTACHEE	`WELLHEAD. NEE TACHED. FILE W	ED TO FILE C141 TO	REPORT SPILL, WI	rh Fe
STATE BT	D No.003			P-35-11S-33E *Significant	30-025-01021-00-	00
Inspection Date	Type Inspection	Inspector	Violation?		Corrective Action Due By:	Inspection No.
•	Type Inspection Routine/Perio	-		Non-Compliance? No	Action Due By:	Inspection No. iMAW1509049587

STATE BT	I No.001 Type Inspection	Inspector	Violation?	D-2-12S-33E *Significant Non-Compliance?	30-025-01028-00 Corrective Action Due By:	-00 Inspection No.
03/31/2015	Routine/Periodic	Mark Whitaker	Yes	No	5/8/2015	iMAW1509048450
	Violations					
	Absent Well Identification Signs (Rule 103)				
Comments of	on Inspection: No well sign (Rule 19.15.16.8). NEI	ED TO INST	ALL WELL SIGN.		

In the event that a satisfactory response is not received to this letter of direction by the "Corrective Action Due By:" date shown above, further enforcement will occur. Such enforcement may include this office applying to the Division for an order summoning you to a hearing before a Divison Examiner in Santa Fe to show cause why you should not be ordered to permanently plug and abandon this well.

Mark WEitaken Compliance Officer Sincerely,

Hobbs OCD District Office

Note: Information in Detail Section comes directly from field inspector data entries - not all blanks will contain data. *Significant Non-Compliance events are reported directly to the EPA, Region VI, Dallas, Texas.

APPENDIX B

Laboratory Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Paladin Tank Battery Project Number: 15-0130-01 Location: New Mexico

Lab Order Number: 5D08013

NELAP/TCEQ # T104704156-13-3

Report Date: 04/10/15

Project: Paladin Tank Battery Project Number: 15-0130-01 Project Manager: Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TBC-A	5D08013-01	Soil	04/07/15 12:50	04-08-2015 09:25
TBC-B	5D08013-02	Soil	04/07/15 12:55	04-08-2015 09:25

TBC-A

5D08013-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	nvironmen	ıtal Lab, I	 .				
Organics by GC									
Benzene	0.00326	0.00114	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Toluene	0.130	0.00227	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Ethylbenzene	0.0290	0.00114	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Xylene (p/m)	0.182	0.00227	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Xylene (o)	0.0601	0.00114	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.2 %	75-1	25	P5D1002	04/09/15	04/09/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		76.7 %	75-1	25	P5D1002	04/09/15	04/09/15	EPA 8021B	
C6-C12	208.67	28.409	mg/kg dry	1	P5D0905	04/09/15	04/09/15	TX 1005	
>C12-C28	1104.2	28.409	mg/kg dry	1	P5D0905	04/09/15	04/09/15	TX 1005	
>C28-C35	119.27	28.409	mg/kg dry	1	P5D0905	04/09/15	04/09/15	TX 1005	
Surrogate: 1-Chlorooctane		107 %	70-1	30	P5D0905	04/09/15	04/09/15	TX 1005	
Surrogate: o-Terphenyl		117 %	70-1	30	P5D0905	04/09/15	04/09/15	TX 1005	
Total Hydrocarbon nC6-nC35	1432.2	28.409	mg/kg dry	1	[CALC]	04/09/15	04/09/15	[CALC]	
General Chemistry Parameters by EPA /	Standard Method	ls							
Chloride	350	5.68	mg/kg dry	5	P5D1006	04/10/15	04/10/15	EPA 300.0	
% Moisture	12.0	0.1	%	1	P5D0901	04/09/15	04/09/15	% calculation	

Г

Project: Paladin Tank Battery Project Number: 15-0130-01 Project Manager: Mark Larson

٦

TBC-B

5D08013-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironmer	ıtal Lab, I	P.				
Organics by GC									
Benzene	0.00122	0.00116	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Toluene	0.0493	0.00233	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Ethylbenzene	0.0229	0.00116	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Xylene (p/m)	0.105	0.00233	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Xylene (o)	0.0351	0.00116	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		96.8 %	75-1	25	P5D1002	04/09/15	04/09/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		67.4 %	75-1	25	P5D1002	04/09/15	04/09/15	EPA 8021B	S-GC
C6-C12	963.78	145.35	mg/kg dry	5	P5D0905	04/09/15	04/09/15	TX 1005	
>C12-C28	10922	145.35	mg/kg dry	5	P5D0905	04/09/15	04/09/15	TX 1005	
>C28-C35	1014.8	145.35	mg/kg dry	5	P5D0905	04/09/15	04/09/15	TX 1005	
Surrogate: 1-Chlorooctane		115 %	70-1	30	P5D0905	04/09/15	04/09/15	TX 1005	
Surrogate: o-Terphenyl		99.2 %	70-1	30	P5D0905	04/09/15	04/09/15	TX 1005	
Total Hydrocarbon nC6-nC35	12900	145.35	mg/kg dry	5	[CALC]	04/09/15	04/09/15	[CALC]	
General Chemistry Parameters by EP	A / Standard Method	ls							
Chloride	971	5.81	mg/kg dry	5	P5D1006	04/10/15	04/10/15	EPA 300.0	
% Moisture	14.0	0.1	%	1	P5D0901	04/09/15	04/09/15	% calculation	

Project: Paladin Tank Battery Project Number: 15-0130-01 Project Manager: Mark Larson

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Amalyta	Result	Reporting Limit	Unita	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Natas
Analyte	Kesult	Limit	Units	Level	Result	70KEU	Limits	KPD	Limit	Notes
Batch P5D0905 - TX 1005										
Blank (P5D0905-BLK1)				Prepared &	& Analyzed	: 04/09/15				
C6-C12	ND	25.000	mg/kg wet							
>C12-C28	ND	25.000	"							
>C28-C35	ND	25.000	"							
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	66.0		"	50.0		132	70-130			S- G
LCS (P5D0905-BS1)				Prepared &	& Analyzed	: 04/09/15				
C6-C12	956	25.000	mg/kg wet	1000		95.6	75-125			
>C12-C28	1060	25.000	"	1000		106	75-125			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	57.8		"	50.0		116	70-130			
LCS Dup (P5D0905-BSD1)				Prepared &	& Analyzed	: 04/09/15				
C6-C12	918	25.000	mg/kg wet	1000		91.8	75-125	4.07	20	
>C12-C28	1020	25.000	"	1000		102	75-125	3.73	20	
Surrogate: 1-Chlorooctane	125		"	100		125	70-130			
Surrogate: o-Terphenyl	55.5		"	50.0		111	70-130			
Duplicate (P5D0905-DUP1)	Sou	rce: 5D08017	7-03	Prepared:	04/09/15 A	nalyzed: 04	/10/15			
C6-C12	ND	25.253	mg/kg dry		ND				20	
>C12-C28	ND	25.253	"		ND				20	
>C28-C35	ND	25.253	"		ND				20	
Surrogate: 1-Chlorooctane	116		"	101		115	70-130			
Surrogate: o-Terphenyl	67.8		"	50.5		134	70-130			S-G
Batch P5D1002 - General Preparation	(GC)									
Blank (P5D1002-BLK1)	<u> </u>			Prepared 8	k Analyzed	: 04/09/15				
Benzene	ND	0.00100	mg/kg wet		<u> </u>					
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0604		"	0.0600		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.0560		"	0.0600		93.3	75-125			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Paladin Tank Battery Project Number: 15-0130-01 Project Manager: Mark Larson

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5D1002 - General Preparation (GC)										
LCS (P5D1002-BS1)				Prepared &	Analyzed:	04/09/15				
Benzene	0.0965	0.00100	mg/kg wet	0.100		96.5	70-130			
Toluene	0.102	0.00200	"	0.100		102	70-130			
Ethylbenzene	0.116	0.00100	"	0.100		116	70-130			
Xylene (p/m)	0.231	0.00200	"	0.200		116	70-130			
Xylene (o)	0.115	0.00100	"	0.100		115	70-130			
Surrogate: 4-Bromofluorobenzene	0.0646		"	0.0600		108	75-125			
Surrogate: 1,4-Difluorobenzene	0.0557		"	0.0600		92.8	75-125			
LCS Dup (P5D1002-BSD1)				Prepared &	Analyzed:	04/09/15				
Benzene	0.105	0.00100	mg/kg wet	0.100		105	70-130	8.05	20	
Toluene	0.111	0.00200	"	0.100		111	70-130	8.75	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	70-130	5.98	20	
Xylene (p/m)	0.239	0.00200	"	0.200		120	70-130	3.40	20	
Xylene (o)	0.115	0.00100	"	0.100		115	70-130	0.461	20	
Surrogate: 1,4-Difluorobenzene	0.0589		"	0.0600		98.1	75-125			
Surrogate: 4-Bromofluorobenzene	0.0648		"	0.0600		108	75-125			
Duplicate (P5D1002-DUP1)	Sou	irce: 5D02001	-03	Prepared &	Analyzed:	04/09/15				
Benzene	7.03	0.115	mg/kg dry		6.90			2.00	20	
Toluene	35.5	0.230	"		34.0			4.42	20	
Ethylbenzene	23.5	0.115	"		23.4			0.402	20	
Xylene (p/m)	43.5	0.230	"		44.1			1.38	20	
Xylene (o)	16.4	0.115	"		16.6			1.18	20	
Surrogate: 4-Bromofluorobenzene	0.0695		"	0.0690		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.0751		"	0.0690		109	75-125			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5D0901 - *** DEFAULT PREP ***										
Blank (P5D0901-BLK1)				Prepared &	Analyzed:	04/09/15				
% Moisture	ND	0.1	%							
Duplicate (P5D0901-DUP1)	Sour	·ce: 5D07008-	01	Prepared &	Analyzed:	04/09/15				
% Moisture	5.0	0.1	%		6.0			18.2	20	
Duplicate (P5D0901-DUP2)	Sour	·ce: 5D08012-	04	Prepared &	Analyzed:	04/09/15				
% Moisture	8.0	0.1	%	*	8.0			0.00	20	
Duplicate (P5D0901-DUP3)	Sour	·ce: 5D08017-	03	Prepared &	Analyzed:	04/09/15				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Batch P5D1006 - *** DEFAULT PREP ***										
Blank (P5D1006-BLK1)				Prepared &	Analyzed:	04/10/15				
Chloride	ND	1.00	mg/kg wet							
LCS (P5D1006-BS1)				Prepared &	Analyzed:	04/10/15				
Chloride	102	1.00	mg/kg wet	100		102	80-120			
LCS Dup (P5D1006-BSD1)				Prepared &	Analyzed:	04/10/15				
Chloride	98.2	1.00	mg/kg wet			98.2	80-120	3.54	20	
Duplicate (P5D1006-DUP1)	Sour	·ce: 5D08013-	01	Prepared &	Analyzed:	04/10/15				
Chloride	396	5.68	mg/kg dry		350			12.3	20	
Matrix Spike (P5D1006-MS1)	Som	·ce: 5D08013-	01	Prepared &	Analyzed	04/10/15				
Matrix Spike (F5D1000-MIS1)	Soul				2 I mary 20a.					

Notes and Definitions

S-GC	Surrogate recovery of	utside of control limits	The data was accept	ted based on valid recove	ry of the remaining surrogate.

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

Sun Barron

Date: 4/10/2015

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

					-	
CARRIER BILL #	OTHER D				•	
CUSTODY SEALS - D BROKEN D INTACT D NOT USED	2 DAY	RECEIVED RY (Signature)		DATE/TIME	(Signature)	RELINQUISHED BY:(Signature)
RECEIVING TEMP: 5,0 THERM # LAI	NORMAL X	RECEIVED BY: (Signature)	m	DATE/TIME	(Signature)	RELINQUISHED BY:(Signature)
LABORATORY USE ONLY:	TURN AROUND TIME	\mathcal{I}_{\square}	ړ ه در له	DATE/TIME	(Signature)	RELINQUISHED BY(Signature)
						TOTAL
						·
				-		
			-			
				-		
				-		
				-		
		X	4	12:55	20	TBC-IS
		X	S	417115 12:50	01 4	TBC-A
2000 2000 2000 2000	100 00 00 00 00 100 00 00 00 100 00 00 100 00 100 1		Matrix	Date Time	Lab #	Field Sample I.D.
2 + 1 × 1			<u>.</u>	(1/1/
1 1 <td>02 22 20 20 20 20 20 20 20 20 20 20 20 2</td> <td>NaOH (</td> <td>J </td> <td>SICK</td> <td>B</td> <td>TIME ZONE: Time zone/State:</td>	02 22 20 20 20 20 20 20 20 20 20 20 20 2	NaOH (J 	SICK	B	TIME ZONE: Time zone/State:
CIS VILLE			• •	OT=OTHER	A=AIR	I TES
<u> </u>	\mathbb{N}	PRESERVATION		P=PAINT SL=SLUDGE	S=SOL	
1						Data Reported to:
Palady Tank Battery	PROJECT LOCATION OR NAME:	432-687-0901		<i>L</i> i •	Environmental Consultants	Environme
6 pogol	PO #	Midland. TX 79701			nt a line	
OF	DATE: 418/2015	7 NI Mariantella cr. or	70		0	
CHAIN-OF-CUSTO						

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Location:

Lab Order Number: 5D22006

NELAP/TCEQ # T104704156-13-3

Report Date: 05/06/15

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 0'	5D22006-01	Soil	04/21/15 10:16	04-22-2015 10:21
SB-1 5'	5D22006-02	Soil	04/21/15 10:30	04-22-2015 10:21
SB-1 10'	5D22006-03	Soil	04/21/15 10:38	04-22-2015 10:21
SB-1 15'	5D22006-04	Soil	04/21/15 10:42	04-22-2015 10:21
SB-1 20'	5D22006-05	Soil	04/21/15 10:48	04-22-2015 10:21
SB-1 25'	5D22006-06	Soil	04/21/15 10:55	04-22-2015 10:21
SB-1 30'	5D22006-07	Soil	04/21/15 11:00	04-22-2015 10:21
SB-1 35'	5D22006-08	Soil	04/21/15 11:07	04-22-2015 10:21
SB-2 0'	5D22006-09	Soil	04/21/15 11:20	04-22-2015 10:21
SB-2 5'	5D22006-10	Soil	04/21/15 12:22	04-22-2015 10:21
SB-2 10'	5D22006-11	Soil	04/21/15 12:28	04-22-2015 10:21
SB-2 15'	5D22006-12	Soil	04/21/15 12:55	04-22-2015 10:21
SB-2 20'	5D22006-13	Soil	04/21/15 13:02	04-22-2015 10:21
SB-2 25'	5D22006-14	Soil	04/21/15 13:07	04-22-2015 10:21
SB-2 30'	5D22006-15	Soil	04/21/15 13:14	04-22-2015 10:21
SB-2 35'	5D22006-16	Soil	04/21/15 13:20	04-22-2015 10:21
SB-3 1'	5D22006-17	Soil	04/21/15 13:32	04-22-2015 10:21
SB-3 5'	5D22006-18	Soil	04/21/15 13:40	04-22-2015 10:21
SB-3 10'	5D22006-19	Soil	04/21/15 13:47	04-22-2015 10:21
SB-3 15'	5D22006-20	Soil	04/21/15 13:54	04-22-2015 10:21
SB-3 20'	5D22006-21	Soil	04/21/15 13:58	04-22-2015 10:21
SB-3 25'	5D22006-22	Soil	04/21/15 14:09	04-22-2015 10:21
SB-3 30'	5D22006-23	Soil	04/21/15 14:15	04-22-2015 10:21
SB-3 35'	5D22006-24	Soil	04/21/15 14:20	04-22-2015 10:21

SB-1 0'

		5D22	006-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EP.	A / Standard Metho	ds							
Chloride	420	1.08	mg/kg dry	1	P5D3006	04/29/15	04/30/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 8	015M							
C6-C12	296	134	mg/kg dry	5	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	9080	134	mg/kg dry	5	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	833	134	mg/kg dry	5	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		74.8 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		82.3 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	10200	134	mg/kg dry	5	[CALC]	04/24/15	04/27/15	calc	

Г

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-1 5'

5D22006-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	nvironme	ntal Lab, 1	L .P.		-		
Organics by GC									
Benzene	ND	0.00111	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Toluene	0.0579	0.00222	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Ethylbenzene	0.0665	0.00111	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Xylene (p/m)	0.324	0.00222	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Xylene (o)	0.105	0.00111	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		83.2 %	75-1	25	P5D2704	04/24/15	04/24/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		113 %	75-1	25	P5D2704	04/24/15	04/24/15	EPA 8021B	
General Chemistry Parameters by E	PA / Standard Method	ls							
Chloride	397	1.11	mg/kg dry	1	P5D3006	04/29/15	04/30/15	EPA 300.0	
% Moisture	10.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C	C35 by EPA Method 8	015M							
C6-C12	493	27.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	2780	27.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	305	27.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		105 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		88.9 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	3580	27.8	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-1 10'

5D22006-03 (Soil)

		Denertine							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmen	tal Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Method	S							
Chloride	280	1.10	mg/kg dry	1	P5D3006	04/29/15	04/30/15	EPA 300.0	
% Moisture	9.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	35.1	27.5	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		75.1 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		89.0 %	70-1.	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	35.1	27.5	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	
SB-1 15'

5D22006-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironme	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	122	1.05	mg/kg dry	1	P5D3006	04/29/15	04/30/15	EPA 300.0	
% Moisture	5.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		74.5 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		87.8 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

SB-1 20'

5D22006-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmei	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	s							
Chloride	74.9	1.06	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	6.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	26.6	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		67.6 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	S-GC
Surrogate: o-Terphenyl		78.3 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

SB-1 25'

5D22006-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ital Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Method	S							
Chloride	67.4	1.08	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	35.0	26.9	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		77.2 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		92.0 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	35.0	26.9	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-1 30' 5D22006-07 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Permi	an Basin E	nvironme	ntal Lab, I	L.P.							
General Chemistry Parameter	ers by EPA / Standard Methods											
Chloride	43.5	1.41	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0				

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-1 35' 5D22006-08 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Perm	ian Basin E	nvironme	ntal Lab, I	L.P.							
General Chemistry Parameter	ers by EPA / Standard Methods	5										
Chloride	103	1.08	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0				

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

SB-2 0'

5D22006-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmen	tal Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Method	S							
Chloride	125	1.35	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	26.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	72.5	33.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	1870	33.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	106	33.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		83.5 %	70-1.	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		100 %	70-1.	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	2050	33.8	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

Г

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-2 5'

5D22006-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin E	nvironmer	ntal Lab, I	L.P.				
Organics by GC									
Benzene	ND	0.00114	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Toluene	0.0134	0.00227	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Ethylbenzene	0.00333	0.00114	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Xylene (p/m)	0.0245	0.00227	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Xylene (o)	0.00432	0.00114	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		103 %	75-1	25	P5D2704	04/24/15	04/24/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		92.7 %	75-1	25	P5D2704	04/24/15	04/24/15	EPA 8021B	
General Chemistry Parameters by E									
Chloride	480	1.14	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	12.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-0	C35 by EPA Method 80)15M							
C6-C12	ND	28.4	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	98.6	28.4	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	28.4	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		82.2 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		96.8 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	98.6	28.4	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

SB-2 10'

5D22006-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmen	tal Lab,	L.P.				
General Chemistry Parameters by EP.	A / Standard Method	S							
Chloride	83.3	1.02	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	2.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	43.5	25.5	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	399	25.5	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		78.1 %	70-1.	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		92.3 %	70-1.	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	443	25.5	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

SB-2 15'

5D22006-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Cnvironmer	ital Lab, I	L.P.				
General Chemistry Parameters by EPA / S	Standard Method	S							
Chloride	6.55	1.19	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	16.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	29.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C12-C28	ND	29.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
>C28-C35	ND	29.8	mg/kg dry	1	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		72.4 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		85.9 %	70-1	30	P5D2702	04/24/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	29.8	mg/kg dry	1	[CALC]	04/24/15	04/27/15	calc	

SB-2 20'

5D22006-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmer	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA / S	Standard Method	s							
Chloride	72.2	1.09	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	8.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	27.2	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	ND	27.2	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	27.2	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		70.6 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		83.3 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.2	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-2 25' 5D22006-14 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Perm	ian Basin E	nvironme	ntal Lab, I	P .							
General Chemistry Parameter	ers by EPA / Standard Method	S										
Chloride	4.54	1.09	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0				

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

			B-2 30')06-15 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironme	ntal Lab, l	L.P.				
General Chemistry Paramet	ters by EPA / Standard Method	s							
Chloride	440	1.18	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

	SB-2 35' 5D22006-16 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
	Permi	an Basin E	nvironme	ntal Lab, I	L.P.								
General Chemistry Paramet	ters by EPA / Standard Methods												
Chloride	47.7	1.08	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0					

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

SB-3 1'

5D22006-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin E	Environmen	ıtal Lab,	L.P.				
General Chemistry Parameters by EPA /	Standard Methods	6							
Chloride	363	1.28	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	22.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 I	oy EPA Method 801	15M							
C6-C12	ND	32.1	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	685	32.1	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	70.5	32.1	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		63.9 %	70-1.	30	P5D3003	04/27/15	04/27/15	TPH 8015M	S-GC
Surrogate: o-Terphenyl		86.6 %	70-1.	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	756	32.1	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

Г

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-3 5'

5D22006-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	1ian Basin F	nvironme	ntal Lab, 1	L .P.				
Organics by GC									
Benzene	ND	0.00130	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Toluene	0.0240	0.00260	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Ethylbenzene	0.0483	0.00130	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Xylene (p/m)	0.276	0.00260	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Xylene (0)	0.0419	0.00130	mg/kg dry	1	P5D2704	04/24/15	04/24/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		80.8 %	75-1	25	P5D2704	04/24/15	04/24/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	75-1	25	P5D2704	04/24/15	04/24/15	EPA 8021B	
General Chemistry Parameters by El	PA / Standard Method	ls							
Chloride	8.78	1.30	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	23.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
<u>Total Petroleum Hydrocarbons C6-C</u>	35 by EPA Method 8	015M							
C6-C12	137	32.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	683	32.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	39.4	32.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		79.0 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		88.8 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	860	32.5	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

SB-3 10'

5D22006-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	tal Lab,	L.P.				
General Chemistry Parameters by EP	A / Standard Method	s							
Chloride	52.4	1.10	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	9.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	35 by EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	177	27.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		68.1 %	70-1.	30	P5D3003	04/27/15	04/27/15	TPH 8015M	S-GC
Surrogate: o-Terphenyl		80.5 %	70-1.	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	177	27.5	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

SB-3 15'

5D22006-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Environmen	ital Lab,	L.P.				
General Chemistry Parameters by EP.	A / Standard Method	8							
Chloride	44.5	1.04	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	4.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	28.7	26.0	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	270	26.0	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		74.4 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		87.5 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	298	26.0	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

SB-3 20'

5D22006-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin F	Environmer	ntal Lab,	L.P.				
General Chemistry Parameters by EPA / St	andard Method	ls							
Chloride	ND	1.22	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0	
% Moisture	18.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80)15M							
C6-C12	ND	30.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	ND	30.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	30.5	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		70.2 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		82.7 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.5	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-3 25' 5D22006-22 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Perm	ian Basin E	nvironme	ntal Lab, I	P .							
General Chemistry Parame	ters by EPA / Standard Method	S										
Chloride	65.4	1.08	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0				

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-3 30' 5D22006-23 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Permi	an Basin E	nvironme	ntal Lab, I	P .							
General Chemistry Parameters by EPA / Standard Methods												
Chloride	82.3	1.08	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0				

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

7.0

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Paladiin/State BT "C" Battery Project Number: 15-0130-01 Project Manager: Mark Larson

SB-3 35' 5D22006-24 (Soil)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Perm	ian Basin E	nvironme	ntal Lab, I	P.							
General Chemistry Paramet	ters by EPA / Standard Method	S										
Chloride	96.1	1.10	mg/kg dry	1	P5E0503	04/30/15	05/05/15	EPA 300.0				

%

1

P5D2705

04/27/15

04/27/15

% calculation

0.1

Organics by GC - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
~		Lunu	Onits	Levei	Result	/orcee	Linins	KI D	Linin	THORES
Batch P5D2704 - General Preparatio	n (GC)									
Blank (P5D2704-BLK1)				Prepared &	Analyzed:	04/24/15				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.0503		"	0.0600		83.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.0663		"	0.0600		110	75-125			
LCS (P5D2704-BS1)				Prepared &	Analyzed:	04/24/15				
Benzene	0.100	0.00100	mg/kg wet	0.100		100	70-130			
Toluene	0.111	0.00200	"	0.100		111	70-130			
Ethylbenzene	0.117	0.00100	"	0.100		117	70-130			
Xylene (p/m)	0.231	0.00200	"	0.200		115	70-130			
Xylene (o)	0.110	0.00100	"	0.100		110	70-130			
Surrogate: 1,4-Difluorobenzene	0.0595		"	0.0600		99.2	75-125			
Surrogate: 4-Bromofluorobenzene	0.0680		"	0.0600		113	75-125			
LCS Dup (P5D2704-BSD1)				Prepared &	Analyzed:	04/24/15				
Benzene	0.0986	0.00100	mg/kg wet	0.100		98.6	70-130	1.60	20	
Toluene	0.111	0.00200	"	0.100		111	70-130	0.0720	20	
Ethylbenzene	0.115	0.00100	"	0.100		115	70-130	1.63	20	
Xylene (p/m)	0.224	0.00200	"	0.200		112	70-130	2.83	20	
Xylene (o)	0.109	0.00100	"	0.100		109	70-130	1.57	20	
Surrogate: 1,4-Difluorobenzene	0.0613		"	0.0600		102	75-125			
Surrogate: 4-Bromofluorobenzene	0.0673		"	0.0600		112	75-125			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
Batch P5D2705 - *** DEFAULT PREP ***										
Blank (P5D2705-BLK1)				Prepared &	Analyze	ed: 04/27/15				
% Moisture	ND	0.1	%							
Duplicate (P5D2705-DUP1)	Sour	ce: 5D24002-	-01	Prepared &	Analyze	ed: 04/27/15				
% Moisture	10.0	0.1	%		11.0			9.52	20	
Duplicate (P5D2705-DUP2)	Sour	ce: 5D24003-	-01	Prepared &	Analyze	ed: 04/27/15				
% Moisture	2.0	0.1	%	-	2.0			0.00	20	
Batch P5D3006 - *** DEFAULT PREP ***										
Blank (P5D3006-BLK1)				Prepared: 0	4/29/15	Analyzed: 04	/30/15			
Chloride	ND	1.00	mg/kg wet							
LCS (P5D3006-BS1)				Prepared: 0	4/29/15	Analyzed: 04	/30/15			
Chloride	105	1.00	mg/kg wet	100		105	80-120			
LCS Dup (P5D3006-BSD1)				Prepared: 0	4/29/15	Analyzed: 04	/30/15			
Chloride	105	1.00	mg/kg wet	100		105	80-120	0.334	20	
Duplicate (P5D3006-DUP1)	Sour	ce: 5D22004-	-39	Prepared: 0	4/29/15	Analyzed: 04	/30/15			
Chloride	3310	27.5	mg/kg dry	*	3140	•		5.33	20	
Duplicate (P5D3006-DUP2)	Sour	ce: 5D24001-	-01	Prepared: 0	4/29/15	Analyzed: 04	/30/15			
Chloride	3470	61.0	mg/kg dry		3490			0.544	20	
Matrix Spike (P5D3006-MS1)	Sour	ce: 5D22004-	.39	Prepared: 0	4/29/15	Analyzed: 04	/30/15			
Chloride	6020	27.5	mg/kg dry	2750	3140	105	80-120			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5E0503 - *** DEFAULT PREP ***										
Blank (P5E0503-BLK1)				Prepared: 04	4/30/15	Analyzed: 05	/05/15			
Chloride	ND	1.00	mg/kg wet							
LCS (P5E0503-BS1)				Prepared: 04	4/30/15	Analyzed: 05	/05/15			
Chloride	107	1.00	mg/kg wet	100		107	80-120			
LCS Dup (P5E0503-BSD1)				Prepared: 04	4/30/15	Analyzed: 05	/05/15			
Chloride	108	1.00	mg/kg wet	100		108	80-120	0.539	20	
Duplicate (P5E0503-DUP1)	Sour	ce: 5D22006	-05	Prepared: 04	4/30/15	Analyzed: 05	/05/15			
Chloride	77.2	1.06	mg/kg dry		74.9			3.02	20	
Duplicate (P5E0503-DUP2)	Source: 5D22006-15		Prepared: 04	4/30/15	Analyzed: 05	/05/15				
Chloride	444	1.18	mg/kg dry		440			0.862	20	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

	D. L	Reporting	TT '4	Spike	Source	WDEC	%REC	DDD	RPD	N. (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5D2702 - TX 1005										
Duplicate (P5D2702-DUP1)	Sour	rce: 5D22000	6-12	Prepared: (04/24/15 A	nalyzed: 04	/27/15			
C6-C12	ND	29.8	mg/kg dry		ND				20	
>C12-C28	29.9	29.8	"		ND				20	
Surrogate: 1-Chlorooctane	92.0		"	119		77.3	70-130			
Surrogate: o-Terphenyl	53.9		"	59.5		90.5	70-130			
Batch P5D3003 - TX 1005										
Blank (P5D3003-BLK1)				Prepared &	Analyzed:	04/27/15				
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	65.6		"	100		65.6	70-130			S-G
Surrogate: o-Terphenyl	38.6		"	50.0		77.2	70-130			
LCS (P5D3003-BS1)				Prepared &	Analyzed:	04/27/15				
C6-C12	894	25.0	mg/kg wet	1000		89.4	75-125			
>C12-C28	1080	25.0	"	1000		108	75-125			
Surrogate: 1-Chlorooctane	88.6		"	100		88.6	70-130			
Surrogate: o-Terphenyl	43.8		"	50.0		87.6	70-130			
LCS Dup (P5D3003-BSD1)				Prepared &	Analyzed:	04/27/15				
C6-C12	986	25.0	mg/kg wet	1000		98.6	75-125	9.85	20	
>C12-C28	1150	25.0	"	1000		115	75-125	6.17	20	
Surrogate: 1-Chlorooctane	87.7		"	100		87.7	70-130			
Surrogate: o-Terphenyl	40.7		"	50.0		81.5	70-130			
Duplicate (P5D3003-DUP1)	Sou	rce: 5D27003	3-01	Prepared: (04/27/15 A	nalyzed: 04	/28/15			
C6-C12	2740	439	mg/kg dry		2900			5.86	20	
>C12-C28	22400	439	"		23700			5.82	20	
Surrogate: 1-Chlorooctane	147		"	175		83.7	70-130			
Surrogate: o-Terphenyl	91.1		"	87.7		104	70-130			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Notes and Definitions

S-GC	Surrogate recovery of	utside of control limits	The data was accept	ted based on valid recove	ry of the remaining surrogate.

- Analyte DETECTED DET
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- Sample results reported on a dry weight basis dry
- Relative Percent Difference RPD
- LCS Laboratory Control Spike
- Matrix Spike MS

Report Approved By:

Dup Duplicate

Sun Barron

Date:

5/6/2015

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

			Α.				10-001-0		
		-		5		2		L'ANNA A	
		9)	RECEIVED BY: (Signature)	RECE	DATE/TIME	-	(Signature)	RELINQUISHED BY:(Signature)	
CUSTODY SEALS - D BROKEN D INTACT D NOT USED		(e	RECEIVED BY: (Signature)	RECE	DATE/TIME		(Signature)	RELINQUISHED BY:(Signature)	
LABORATORY USE ONLY:	TURN AROUND TIME		IVED PT: (Signature)	RECEIVED	1/22/15	~	(Agnature)	RESPECT	
			1						
				-	13-14		1-1-5	53-2,30	
~			· _	\$ -	£9:67		14	SB-2,25	
		1	~	~ _	13:02		1-13	53-2,20	
~		((<	-	12:55		12	58-2,15	
<		く て	7	-	12:28			56-2,10'	
		र र र	1	5	12:22		-10	58-2,51	
<		(~	<u>د</u>	11:20		5	56-2,0	
			2	د -	17:07		201	58-1, 35	
<			1	-	11:00		9	56-1, 30	
		 	~	<u>-</u>	10:55		100	515-1, 25	
		- 	~	S 	10:48		207	58-1,20'	
~		<u>ا</u>	2	S -	10: 12		P L	58-1,15'	
		ł	7	د 	10:38		202	SB-1, 10'	
		{ { {	/	S _	05:20		4	56-1,5	
		て て て	~	-	D:16	51/12/12	-01	56-1,0'	
	8082 RS 202 RG	87107 10 10 87107 10 10 10 10 10 10 10 10 10 10 10 10 10 1	HCI HNO ₃ H ₂ SO ₄ ICE UNPR	Matrix # of C	Time	Date	Lab #	Field Sample I.D.	
2 + 1 × 2 ×		C 18 C		onta				LIN/NL	
AC P3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	c;}	NaOH	iners				TIME ZONE: Time zone/State:	
CLAR TAK		_		<u></u>	THER		A=AIR	Ves V No	
0000 0000		2	PRESERVATION		P=PAINT SI =SLUDGE		S=SOIL W=WATER		1.11
0	LAI PROJECT #: 15-	LAIP		× .				Data Reported to:	
Koladin State BT "c"/	PROJECT LOCATION OR NAME:		432-687-0901				tal Consulto	Environmental Consultants	
200		200	SU/ N. Marienteld, Ste.	1 /06			~~~	D arson	
5 PAGE 1 OF 2	4-21-2015		-						

CHAIN_OF_CI ISTODY

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Location: New Mexico

Lab Order Number: 5D22008

NELAP/TCEQ # T104704156-13-3

Report Date: 05/08/15

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710 Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson Fax: (432) 687-0456

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TMW-1	5D22008-01	Water	04/21/15 08:25	04-22-2015 10:21

TMW-1

		5D2200	8-01 (Wa	ter)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perr	nian Basin Er	ivironme	ntal Lab, l	L .P.				
Organics by GC									
Benzene	ND	0.00100	mg/L	1	P5E0511	05/01/15	05/04/15	EPA 8021B	
Toluene	ND	0.00100	mg/L	1	P5E0511	05/01/15	05/04/15	EPA 8021B	
Ethylbenzene	ND	0.00100	mg/L	1	P5E0511	05/01/15	05/04/15	EPA 8021B	
Xylene (p/m)	ND	0.00200	mg/L	1	P5E0511	05/01/15	05/04/15	EPA 8021B	
Xylene (o)	ND	0.00100	mg/L	1	P5E0511	05/01/15	05/04/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		83.8 %	80-	120	P5E0511	05/01/15	05/04/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		96.5 %	80-	120	P5E0511	05/01/15	05/04/15	EPA 8021B	
General Chemistry Parameters by EPA / Sta	andard Metho	ds							
Chloride	40.4	5.00	mg/L	10	P5E0808	05/07/15	05/08/15	EPA 300.0	

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5E0511 - General Preparation (GC)										
Blank (P5E0511-BLK1)				Prepared: (05/01/15 A	nalyzed: 05	6/04/15			
Benzene	ND	0.00100	mg/L							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	52.4		ug/l	60.0		87.3	80-120			
Surrogate: 1,4-Difluorobenzene	63.6		"	60.0		106	80-120			
LCS (P5E0511-BS1)				Prepared: (05/01/15 A	nalyzed: 05	5/04/15			
Benzene	0.0924	0.00100	mg/L	0.100		92.4	80-120			
Toluene	0.101	0.00100	"	0.100		101	80-120			
Ethylbenzene	0.114	0.00100	"	0.100		114	80-120			
Xylene (p/m)	0.227	0.00200	"	0.200		114	80-120			
Xylene (o)	0.112	0.00100	"	0.100		112	80-120			
Surrogate: 4-Bromofluorobenzene	62.6		ug/l	60.0		104	80-120			
Surrogate: 1,4-Difluorobenzene	55.9		"	60.0		93.1	80-120			
Duplicate (P5E0511-DUP1)	Sou	ırce: 5D22010-	-01	Prepared: (05/01/15 A	nalyzed: 05	6/04/15			
Benzene	0.00187	0.00100	mg/L		0.00227			19.3	20	
Toluene	ND	0.00100	"		ND				20	
Ethylbenzene	ND	0.00100	"		ND				20	
Xylene (p/m)	ND	0.00200	"		ND				20	
Xylene (o)	ND	0.00100	"		ND				20	
Surrogate: 4-Bromofluorobenzene	60.3		ug/l	60.0		101	80-120			
Surrogate: 1,4-Difluorobenzene	49.4		"	60.0		82.4	80-120			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5E0808 - *** DEFAULT PREP ***										
Blank (P5E0808-BLK1)				Prepared: 0	05/07/15 A	nalyzed: 05	5/08/15			
Chloride	ND	0.500	mg/L							
LCS (P5E0808-BS1)				Prepared: 0	05/07/15 A	nalyzed: 05	5/08/15			
Chloride	10.3	0.500	mg/L	10.0		103	80-120			
LCS Dup (P5E0808-BSD1)				Prepared: 0	05/07/15 A	nalyzed: 05	5/08/15			
Chloride	10.3	0.500	mg/L	10.0		103	80-120	0.475	20	
Duplicate (P5E0808-DUP1)	Sour	ce: 5D22008-	01	Prepared: 0	05/07/15 A	nalyzed: 05	5/08/15			
Chloride	38.4	5.00	mg/L		40.4			5.20	20	
Matrix Spike (P5E0808-MS1)	Sour	ce: 5D22008-	01	Prepared: 0	05/07/15 A	nalyzed: 05	5/08/15			
Chloride	147	5.00	mg/L	100	40.4	107	80-120			

Notes and Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

un Barron

Report Approved By:

Date: 5/8/2015

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

- SHAND DELIVERED			б	Cnv. Lab	U ruch	てきろう
CARRIER BILL #	2 DAY	RECEIVED BY: (Signature)		DATE/TIME	:(Signature)	
CUSTODY SEALS _ DEPOKEN DINTACT DWC		RECEIVED BY: (Signature)		DATE/TIME	:(Signature)	RELINQUISHED BY:(Signature)
LABORATORY USE ONLY:	TURN AROUND TIME	RECEIVEDASK: (Signature)	0:2/	LATE/TIME	Brs(Signature)	RELATION
			-			
					-	
۲ ۲						
K		3 1 1	٤	21/15 08:25	10-	- Mw-1
2010 1030 1030 1030 1030 1030 1030 1030		# of Co HCI HNO ₃ H ₂ SO ₄ U ICE UNPRE 875 787 787 787 787 787 787 787 787 787	Matrix	Date Time	Lab [.] #	Field Sample I.D.
	0/ 20 00 00 00 00 00 00 00 00 00 00 00 00					MIN NM
	100 100 100 100 100 100 100 100 100 100		· · · · · · · · · · · · · · · · · · ·	01=01HER	SPR	
2000 0000	\searrow	PRESERVATION			S=SOIL W=WATER	TRRP report?
20 -	۳ آ					Data Reported to:
Valadin/State	ECT LOCATI	432-687-0901 PI		ਤੋ: '	Environmental Consultants	I SSOCIC
LABWORK ORDER #	PO #	200			~~ \	
2015 PAGE 1	DATE: 4-21-2	> >)	
CHAIN-OF-CUSTODY						

APPENDIX C

Boring Logs
			E		RECORD				-			DE1/15/26	4
EOLOGIC	DEDTU			DESCRIPTION USCS	GRAPHIC LOG		PID RE			MP		REMARKS BACKGROUND	-
UNIT		DESCRIPTION LITHOL		ESCR US	SAPHI	2 4	<u>6 8 10</u>		MBEI	READ	DEPTH	PID READING	
		Stop : 11:07 Caliche, Sand, Fill Mater	ial	GW	0 0 0 0 0 0 0 0 0 0 0 0 0	┥┼		+++	Z				_
	1											27.4 PPM	1
		Silty Clay, 7.5YR7/8, Bla Hydrocarbon stain odor soft,		CL	/ //		NI					-	┥
	3											-	┥
								N			5	-	-
	5				┝┰──┤					_	5	26.4 PPM	-1
								$ \Lambda $				-	_
								X				-	
							М					-	
							ΥΠ						
						И					10	- 15 PPM	
	10					Í				╈			1
				Caliche								-	-
		Caliche, 7.5YR7/11,			┝┰──┤							-	-
		Pink, Sandy, Very fine grained qu Indurated hard	uartz sand,									-	-
													_
	15										15	11.5 PPM	_1
												-	
												_	
					\Box								
												-	1
											20	4.4 PPM	
	20	Sand, 5YR4/6, Yellowish	red,			•				+			-1
		Very fine grained quartz sand, Po Round, Loose to poorly cem										-	+
												-	-
				Sand								-	4
												-	
	25										25	32.7 PPM	1
								 RER • Pa	ladin	 Sta	te B	BT "C"/15-0130-01	- '
		JS AUGER SAMPLER	WATER TAE		OF BORING) OCATION			METER :			5"		_
	DISTURBED S	L	PENETROM					1:				of Tanks	-
w.	ATER TABLE (NO RECOVE	-	NUMBER :			CONTR/			MJL SDI		-
Aarson & Ssociates, Environmental Consul	nc.	DRILL DATE : 4 - 21 - 2015			NUMBER : 38 - 1			METHO			DR		-

					BORING	RECORD									
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LI Start : 10:1		DESCRIPTION USCS	GRAPHIC LOG	2 4		READ	15	6 18	_ I	DEPTH T	REMARKS BACKGROUND PID READING	
			Stop : 11:0			5	<mark>│</mark> ,	\square	$\parallel \mid$		\square	Ī			4
	26														-
	30					•							30	4.4 PPM	- 11:
		Very fir	lstone, 5YR5/6, Y ne gralned, Sand d, Moderately, W	, Poorly sorted,										-	
	35												35	- 2.6 PPM	- - 11
	40		TP: 35'												
														-	
			EST	L LABORAT	ORY TEST L METER (TO VERY	NS/ SQ. FT)	HOI LOC LAI	LE D CATI GEC	iame on :_ Dlog	IST	R _		 5" NV MJ		-
Aarson & ssociates, Environmental Consult	Inc. tants	\sim	DRILL DATE : 4 - 2	1 - 2015		NUMBER : SB - 1			IG CO IG MI				<u>SE</u>		

			BORING			_
GEOLOGIC UNIT	DEPTH	DESCRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	PID READING SAMPLE REMARKS PPM X 8 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 BACKGROUND PID READING PID READING PID READING PID READING	-
UNIT		Start : 11:20 Stop : 13:20	DES	GRAF		
	1	Gravel/sand, FIII, Hydrocarbon odor	GW		22.1 PPM -	1
	 	Silty Clay, 7.5YR7/8, Black, Hydrocarbon staln, Slightly odor	CL		5 15.3 PPM	 1
	8				10 112 PPM	— — — 1 —
		Caliche, 7.1YR7/1, Pink, Sandy, Very fine grained quartz sand, Indurated, Very hard, Slow drilling	Caliche		15 57 PPM	 1
	20	Sand, 5YR5/6, Yellowish red, Very fine grained quartz sand, Poorly sorted, Round, Moist, Loose to slightly consolidated	SP		20 15 PPM 25 53.9 PPM	
sī		IETRATION TEST	ORY TEST L	OF BORING) OCATION	JOB NUMBER : Paladin State BT "C"/15-0130-01 HOLE DIAMETER : 5" LOCATION : SW of Tanks	1
	ATER TABLE (·	VERY	NUMBER :	LAI GEOLOGIST :MJL DRILLING CONTRACTOR : <u>SDI</u>	_

						RECORD											
					NO	ы		PI	D R	EAD	NG		SA			REMARKS	
GEOLOGIC UNIT	DEPTH	DES	CRIPTION LITHOL	.OGIC	DESCRIPTION USCS	GRAPHIC LOG		F		х <u>в</u>				VERV	H	BACKGROUNE PID READING	
UNIT			Start : 11:20 Stop : 13:20		DES	GRAF					16				DEPT	SOIL :	PPM
	26							Y	/							-	-
																	_
								/									
	29 ———														30	2.0 PPM	
	30						{						\vdash	+			1
																	4
		Very fir	lstone, 5YR5/6, Yellowisl ne grained, Sand, Poorly	sorted,	Sand												
		Roun	d, Moderately, Well cem	ented	stone												-
																	-
	35														35	18.0 PPM	1
			TP: 35'														
																	-
																	_
																	_
	40																
	40															-	
																	-
																	-
	45															-	
																	_
																	4
																	-
	50																-
MO [E CONTINU	L JOUS AUGER S	SAMPLER	WATER TAE			JC	ЪΒΙ	NUN	иц ИВЕГ	₹ <u>.</u> Р	ala	din	Sta	ite E	L BT "C"/15 - 0130-0	1
		ENETRATION T		LABORATO							TER				5"		_
	IDISTURBE	D SAMPLE	+	PENETROM)N :_						/ of Tanks	_
w	ATER TABL	E(24 HRS)	NR	NO RECOVE							IST :				MJ		—
Aarson &	nc.	\sim	DRILL DATE : 4 - 21 - 201	5		NUMBER : B - 2					NTR THC				DR		les)

					RECORD		ріп	REA		lG	ļ	SAMI	기도		REMARKS	
GEOLOGIC UNIT	DEPTH	Sta	DN LITHOLOGIC rt : 13:32 p : 14:20	DESCRIPTION USCS	GRAPHIC LOG	2 4		PM 2	X <u>1</u> !					1		м
	1	E>	cavated soll			•							1	-	16 PPM	1
	-	Grained, Sandy, Ve	che, 7.5YR7/4, ry fine grained, Quartz sand, hard, Hydrocarbon odor													_
	5	7.5YR7/3,	-ight gray, Below 10'							7			5		223 PPM	1
								*					10		130 PPM	 1
		7.6YR7/	1, Pink, Below 15'	Caliche												-
	15												15	5	29 PPM	
	20					•							20)	13 PPM	
	22 25		R5/6, Yellowish red, quartz sand, Poorly sorted, Clay	SP		•							25		7.9 PPM	 1
s: u			WATER TAE L LABORATOF + PENETROM NR NO RECOVE	RY TEST L ETER (TOI	OCATION	́нс LO		DIAN FION	ИЕТ I :	<u>Pa</u> ER			5"	E of Ta	C"/15-0130-01 anks	_ _ _
Aarson &		DRILL C	ATE :	BORING	NUMBER :					NTR/	٩СТ	OR	<u>SE</u> DF			_

				E	BORING	RECORD										
					DESCRIPTION USCS	ÐÖ		PID F	READ	ING		SAN			REMARKS	
GEOLOGIC	DEPTH	DES	CRIPTION LITHOLO	OGIC	RIPT SCS	GRAPHIC LOG		PPN	ΛX	<u>15</u>		NUMBER PID READING	ERY	_	BACKGROUND PID READING	
UNIT			Start : 13:32		ESCI U:	RAPI	2 4	68	10 12	14 16	18	JMBF REA	SOV	틾	SOIL:PF	м
			Stop : 14:20				++	++	++	++	\vdash	Z	虚	삑		4
	26					**. •									_	
																┥
																4
																4
	30	Sand Very fine g	Istone, 5YR5/6, Yellowish rained, Quartz sand, Poor Poorly cemented	red, 1y sorted,										30	2.0 PPM	1
	00		Foony cemented													
						·										-
																4
	35													35	2.0 PPM	1
	55		TP: 35'													
																+
																-
																_
	40															
																-
																-
																4
	45														_	
																1
	_															+
																4
	50															
										LL R · P	L alao	din S	L Stat	 e E	3T "C"/15-0130-01	\dashv
		OUS AUGER S		WATER TAE		OF BORING)				TER				5"		
	IDISTURBED		+	PENETROM			LO	CATI	ON :_						of Tanks	_
w/	ATER TABLE	(24 HRS)	NR	NO RECOVE						IST :						_
Aarson & ssociates, T	nc.		DRILL DATE : 4 - 21 - 2015		BORING N	UMBER : B - 3				ONTR ETHC				SDI DR		

APPENDIX D

Photographs

Facility Sign

Excavation near Southeast Corner (SB-3) Viewing North, April 7, 2015

Excavation near Southeast Corner (SB-3) Viewing West April 7, 2015

South Side of Facility Viewing West from Southeast Corner, April 7, 2015

South Side of Facility Viewing East, April 7, 2015

Spill in Vicinity of Boring SB-1 Viewing North, April 7, 2015

Excavation near Southeast Corner of Facility (SB-3) Viewing North, April 21, 2015

Spill near Boring SB-2 (foreground) Viewing North, April 21, 2015

North Side of Facility Viewing West, April 21, 2015

Spill near Boring SB-1 (foreground) Viewing Southeast, April 21, 2015

APPENDIX E

Initial C-141

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

API No. 30-025-01017-00-00

Santa Fe, NM 87505

Release Notification and Corrective Action

	OPERATOR	Initial Report	Final Report
Name of Company: Paladin Energy Corp	Contact: Mickey Horn		
Address: 10290 Monroe Dr., Ste 301, Fort Worth, TX 75229	Telephone No. (214) 352-7273	······································	
Facility Name: State BT "C" No. 003	Facility Type: Tank Battery		

Surface Owner: State of New Mexico Mineral Owner: State of New Mexico

TT-lat	1	1			ATION OF REL	LICANSE.		
Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
L	35	11S	33E	1,980	South	660	West	Lea

Latitude 33° 19' 04" Longitude 103° 34' 12"

INAL	UKE	OF	KE.	LEA	SE	
		TV	lume	ofRe	ADDA	15 66

Type of Release Crude oil/produced water		Volume of Release 15 bbl oil and 40 bbl water	Volume Recovered 7 bbl (total fluid)
Source of Release Valve failure at free water knockout		Date and Hour of Occurrence 03/15/2015	Date and Hour of Discovery 03/16/2015
Was Immediate Notice Given?	D Not Required	If YES, To Whom?	
By Whom?		Date and Hour	
Was a Watercourse Reached?		If YES, Volume Impacting the W	atercourse.
If a Watercourse was Impacted, Describe Fully.*	RECEIV By OCD; Dr.	ED . Oberding at 1:05 pm, A	pr 07, 2015

Describe Cause of Problem and Remedial Action Taken.* Pop-off relief valve failed at free water knockout causing liquids to spill onto ground. Spill is limited to area inside firewall and no liquid escaped firewall. A vacuum truck was used to pick up free liquid. Backhoe and roust-a-bout crew to pick up oily soil for disposal at OCD approved facility.

Describe Area Affected and Cleanup Action Taken. Area affected by spill is inside firewall and did not affect area outside of firewall. Composite soil samples will be collected and analyzed following removal of oily soil and reported to OCD to determine if further remediation is required. Note: Composite samples are not accepted.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Signature: Malle Horn	OIL CONSERVATIO	N DIVISION
Signature: 110 mg 46m	Hydrologist	
Printed Name: Mickey Horn	Approved by Environmental Speciality	- PLO
Title: Operations Manager	Approval Date: 04/07/2015 Expirate	HT DEte: 07/07/2015
E-mail Address: paladinmid@suddenlink.net	Conditions of Approval:	Attached
Date: April 6, 2015 Phone: (432) 522-2162	Site samples required. Delineate and	1RP-3593 164070
Attach Additional Sheets If Necessary	remediate area as per NMOCD guides.	1010/0

nTO1509747584

pTO1509747792