

May 13, 2015

VIA EMAIL: Tomas.Oberding@state.nm.us

Dr. Tomas Oberding, Hydrologist Environmental Bureau New Mexico Oil Conservation Division 1220 So. St. Francis Drive Santa Fe, New Mexico 87505

APPROVED : Conditionally Approved

By OCD District 1 at 3:37 pm, May 20, 2015

Conditions of approval:

- 1. Drop two additional soil borings
- 2. Show location of soil boring and

composite samples on map

3. Take a ground water sample

Re: 1RP-3594 – Paladin Energy Corp. State BT "D" Well No. 003 Spill Investigation and Remediation Report, Unit P (SE/4, SE/4), Section 35, Township 11 South, Range 33 East, Lea County, New Mexico

Dear Dr. Oberding:

Larson & Associates, Inc. (LAI), on behalf of Paladin Energy Corp. (Paladin), submits this report to the New Mexico Oil Conservation Division (OCD) to present the investigation and remediation of a produced water spill at the State BT "D" Well No. 003 (Site). The vertical extent of release was determined and remediation was performed. Paladin proposes to fill the excavation with clean soil and seed the remediation area. Paladin respectfully requests your approval. Please contact Mickey Horn with Paladin at (432) 522-2162 or me at (432) 687-0901. Sincerely,

Larson & Associates, Inc.

Mark J. Larson, P.G. President/Sr. Project Manager mark@laenvironmental.com

cc: Kellie Jones – OCD District 1 Mickey Horn – Paladin Energy Corp.

Encl.

1RP-3594 SPILL INVESTIGATION REPORT STATE BT "D" WELL NO. 003 LEA COUNTY, NEW MEXICO

LAI Project No. 15-0130-02

May 11, 2015

Prepared for: Paladin Energy Corp. 10290 Monroe Drive, Suite 301 Fort Worth, Texas 75229

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205

Midland, TX 79701

Mark J. Larson

Certified Professional Geologist No. 10490

Table of Contents

1.0	EXECUTIVE SUMMARY	.1
2.0	INTRODUCTION	. 2
2.1	Background and Initial Response	. 2
2.2	Setting	. 2
3.0	INVESTIGATION	. 3
3.1	Soil Samples	. 3
3.2	Soil Borings	. 3
4.0	CONCLUSIONS	.4
5.0	RECOMMENDATION	.4

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Map

List of Tables

Table 1	Composite Soil Sample Analytical Data Summary
Table 2	Boring Soil Sample Analytical Data Summary

List of Appendices

Appendix A	OCD Correspondence
Appendix B	Laboratory Reports
Appendix C	Boring Log
Appendix D	Photographs
Appendix E	Initial C-141

1RP-3594 Spill Investigation Report State BT "D" Well No. 003 Lea County, New Mexico May 11, 2015

1.0 EXECUTIVE SUMMARY

This report is submitted to the New Mexico Oil Conservation Division (OCD) District 1, in Hobbs, New Mexico, on behalf of Paladin Energy Corp (Paladin) to present the investigation and remediation of a produced water spill at the State BT "D" Well No. 003 (Site) located in Lea County, New Mexico. The legal description is Unit P (SE/4, SE/4), Section 35, Township 11 South and Range 33 East. The geodetic position is 32° 19′ 00.340″ north and 103° 34′ 41.390″ west.

The release was discovered by an OCD inspector, on March 31, 2015. On April 1, 2015, OCD issued a letter to Paladin that required corrective action to be completed by May 29, 2015. On April 2, 2015, Paladin initiated corrective action that included excavating soil south and east of the well for disposal at the Gandy Marley land fill located west of Tatum, New Mexico. OCD issued remediation project (RP) number 1RP-3594 for the release. Groundwater occurs at about 42 feet bgs.

On April 7, 2015, personnel from Larson & Associates, Inc. (LAI) collected a 5-part composite sample (Comp A) from the bottom of the excavations. Permian Basin Environmental Lab (PBELAB), located in Midland, Texas, analyzed the sample for benzene, toluene, ethylbenzene, xylene (BTEX), total petroleum hydrocarbons (TPH) and chloride by methods SW-846-8021B, SW-846-8015 and 300, respectively. Benzene was below the method reporting limit of 0.00109 milligrams per kilogram (mg/Kg). TPH was 2,729.68 mg/Kg and exceeded the OCD recommended remediation action level (RRAL) of 100 mg/Kg. Chloride was 10,200 mg/Kg.

On April 21, 2015, Scarborough Drilling Co., located in Lamesa, Texas, drilled an air rotary boring (SB-1) near the center of the excavation. Soil samples were collected every 5 feet to about 35 feet bgs using a jam tube sampler.

Benzene and BTEX were below the method reporting limits in the sample from 15 feet bgs which exhibited a headspace reading of 119.4 parts per million (ppm). TPH was below the RRAL (100 mg/Kg) in all samples. Chloride was reported at 3,270 mg/Kg at 1 foot bgs and 169 mg/Kg at 5 feet bgs.

Due to caliche at about 1 foot bgs which prevented further excavation with a backhoe Paladin respectfully requests approval from OCD to fill the excavation with clean soil. A report will be submitted to the OCD after remediation that will include photographs and final C-141.

1RP-3594 Spill Investigation Report State BT "D" Well No. 003 Lea County, New Mexico May 11, 2015

2.0 INTRODUCTION

Larson & Associates, Inc. (LAI) submits this report to the New Mexico Oil Conservation Division (OCD) on behalf of Paladin Energy Corp (Paladin) to present the investigation and remediation of a produced water spill at the State BT "D" Well No. 003 (Site). The Site is located in Unit P (SE/4, SE/4), Section 35, Township 11 South, Range 33 east, in Lea County, New Mexico. The geodetic position is north 33° 19' 00.340" and west 103° 34' 41.390". Figure 1 presents a location and topographic map. Figure 2 presents an aerial map.

2.1 Background and Initial Response

On March 31, 2015, an inspector with OCD District 1, in Hobbs, New Mexico, discovered the spill. On April 1, 2015, OCD issued a letter of violation to Paladin requiring, among other things, filing form C-141 and performing corrective action by May 29, 2015.

The spill occurred from failure of a stuffing box that release about 4 barrels (bbl) of oil and 2 bbl of water. The spill followed the surface topography and flowed about 40 feet south and east of the well. No fluid was recovered. On April 2, 2015, Paladin initiated corrective actions that included excavating visually contaminated soil. The contaminated soil was hauled to the Gandy Marley landfill (NM1-19-0) located west of Tatum, New Mexico. The initial C-141 was submitted to the OCD on April 6, 2015. OCD issued remediation project (RP) number 1RP-3594. Appendix A presents the OCD correspondence.

2.2 Setting

The Site is located about 17 miles west of Tatum, New Mexico. The surface elevation is approximately 4,237 feet above mean sea level (MSL) and slopes gently to the southeast. The soil is designated "Kimbrough-Lea" complex, 0 to 3 percent slopes (KU). The typical profile consists of "A" horizon consisting of about 6 inches of gravelly loam and "Bkm" horizon consisting of about 10 inches of cemented material of broken to indurated caliche. The main uses are livestock grazing and wildlife habitat. No surface water features are located within 1,000 horizontal feet of the Site.

According to the *Geologic Map of New Mexico* and the *Geologic Atlas of Texas, Hobbs Sheet* the surface geology is the Tertiary-age Ogallala formation. The Ogallala formation is comprised of fluvial sand, silt, clay and localized gravel, with indistinct to massive crossbeds. The Ogallala formation consists mainly of unconsolidated to poorly consolidated, very fine to medium-grained quartz sand and gravel, with minor amount of silt and clay. The caliche comprising the lower part of the Portales-Stegall loams forms a hard, erosion resistant, pedogenic calcrete that is between about 9 and 21 feet thick. The Ogallala formation is underlain by clay, silty clay, shale and sandstone of the Chile formation (Triassic) and is about 300 feet thick.

Groundwater occurs in the Ogallala formation. The Chinle formation is the lower confining boundary for groundwater in the Ogallala formation. The regional groundwater flow direction is from northwest to southeast. The nearest fresh water well (No. L01327) is located in Unit M (SW/4), SW/4), Section 35, Township 11 South and Range 33 East. The well is located about 3,400 feet southwest of the Site. According to the New Mexico Office of the State Engineer (OSE) the well was drilled to about 115 feet

below ground surface (bgs) and used for livestock. LAI personnel recorded groundwater in this well at about 42 feet bgs.

3.0 INVESTIGATION

3.1 Soil Samples

On April 7, 2015, LAI personnel collected a 5-spot composite sample (Comp A) from the area located south and east of the well where soil was excavated to about 1 foot bgs. The sample was collected using a stainless steel hand trowel and placed in a clean 4-ounce glass jar. The sample was hand delivered under preservation and chain of custody to Permian Basin Environmental Lab (PBELAB), a National Environmental Laboratory Accreditation Programs (NELAP) accredited laboratory, located in Midland, Texas. The laboratory analyzed the samples for benzene, toluene, ethyl benzene, xylenes (BTEX) by method SW-846-8021B, total petroleum hydrocarbon (TPH) including gasoline (C6 – C12), diesel (>C12 – C28) and oil (>C28 – C35) range hydrocarbons by method SW-846-8015 and chloride by method 300. Table 1 presents an analytical data summary. Appendix B presents the laboratory report.

3.2 Soil Borings

On April 21, 2015, LAI contracted Scarborough Drilling Company (SDC), Lamesa, Texas, to collect soil samples from an air rotary drilled boring (SB-1) near the center of the excavation. The boring was drilled to about 35 feet bgs and soil samples were collected every 5 feet (0, 5, 10, 15, 20, etc.) with a jam tube sampler. The samples were collected in 4 ounce glass jars and submitted under preservation and chain of custody to PBELAB, in Midland, Texas. The boring was plugged with bentonite chips. A duplicate sample was collected for headspace analysis using 8 ounce glass jars that were filled about 2/3rds full and sealed with a layer of aluminum foil. A calibrated photoionization detector (PID) was used to measure the concentration of organic vapor in the sample headspace. The highest PID reading was 119.4 ppm at 15 feet bgs. This sample was analyzed by the laboratory for BTEX by method SW-846-8021B. This and samples from 1, 5, 10 and 20 feet analyzed for TPH, including gasoline (C6 – C12), diesel (>C12 – C28) and oil (>C28 – C35) range hydrocarbons by method SW-846-8015. All samples were analyzed for chloride by method 300. Table 2 presents an analytical data summary. Appendix B presents the laboratory report. Appendix C presents the boring logs. Appendix D presents photographs.

Remediation action levels were calculated for benzene, BTEX and TPH based on the following criteria established by the OCD (*Guidelines for Remediation of Leaks, Spills and Releases, August 13,* 1993):

Criteria	Result	Score
Depth-to-Groundwater	<50 feet	20
Wellhead Protection Area	No	0
Distance to Surface Water Body	>1000 Horizontal Feet	0
	Total Score:	20

The recommended remediation action level (RRAL) for benzene, BTEX and TPH is 10, 50 and 100 mg/kg, respectively. Benzene and BTEX were below the method reporting limit in the sample from 15 feet bgs. All samples were below the method reporting limit for TPH. Chloride was less than 250 mg/Kg below

1RP-3594 Spill Investigation Report State BT "D" Well No 003 Lea County, New Mexico May 11, 2015

about 2 feet bgs. Appendix E presents the initial C-141.

4.0 CONCLUSIONS

The following conclusions are based on the investigation results:

- Benzene and BTEX were less than the method reporting limit in the soil sample with the highest headspace concentration greater than 100 ppm in the sample from 15 feet bgs;
- TPH was less than the method reporting limit in all samples from boring SB-1;
- Chloride decreased below 250 mg/Kg in soil from boring SB-1 at about 2 feet bgs;

5.0 **RECDOMMENDATION**

Paladin excavated soil from the spill area to the extent feasible using a backhoe. Caliche is present at about 1 foot bgs and prevented excavating soil below about 1 foot bgs. Paladin respectfully requests approval to backfill the excavation with clean soil. A report will be submitted to the OCD after remediation that will include photographs and final C-141.

FIGURES

Figure 1 - Topographic Map

TABLES

Table 1 Soil Sample Analytical Data Summary

Paladin Energy Corp., State BT "D" Well No. 003

Lea County, New Mexico 1RP-3594

					1RP-3594	t				Page 1 of 3
Sample	Depth (Feet)	Type	Collection Date	Benzene (mg/Kg)	(mg/Kg)	C6 - C12 (سو/لام)	C6 - C12 - C12 - C28 - C28 - C35 (mg/kg) (mg/kg) (mg/kg)	>C28 - C35 (سو/لام)	TPH (mg/Ka)	Chloride (mø/Kø)
OCD RRAL:			2	10	50 50	19,19,1	19,19,1	19,119,111	100	19.1.191
Comp A	1.5	Composite 4/7/20	4/7/2015	215 <0.00109	0.1597	445	2,132	152.68	2,729.68	10,200

Notes: Laboratory analysis performed by Permian Basin Environmental Lab, Midland, Texas.

BTEX performed by laboratory method SW-8021B

TPH performed by laboratory method SW-846-8015

Chloride performed by laboratory method 300.0

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

Bold and highlighted indicates that analyte was detected above the OCD recommended remediation action level (RRAL)

Table 2Soil Boring Analytical Data SummaryPaladin Energy Corp., State BT "D" Well No. 003Lea County, New Mexico1RP-3594

Sample	Depth	Collection	DID	Benzene	втех	C6 - C12	>C12 - C28	>C28 - C35	ТРН	Chloride
	(Feet)	Date	(ppm)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
OCD RRAL:				10	50				100	
SB-1	1	4/20/2015	0.0	1	1	<36.8	<36.8	<36.8	<36.8	3,270
	ъ	4/20/2015	0.0	1	ł	<35.2	<35.2	<35.2	<35.2	169
	10	4/20/2015	0.0	1	ł	<30.9	<30.9	<30.9	<30.9	18
	15	4/20/2015	119.4	<0.00122	<0.0414.8	<30.5	<30.5	<30.5	<30.5	107
	20	4/20/2015	38.0	1	ł	<26.9	<26.9	<26.9	<26.9	22.4
	25	4/20/2015	6.0	1	ł	1	1	ł	ł	<1.37
	30	4/20/2015	2.4	1	ł	1	1	ł	ł	1.54
	35	4/20/2015	0.8	1	1	ł	1	1	ł	67.9

Notes: Laboratory analysis performed by Permian Basin Environmental Lab, Midland, Texas.

BTEX performed by laboratory method SW-8021B

TPH performed by laboratory method SW-846-8015

Chloride performed by laboratory method 300.0

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

Bold indicates that analyte was detected above the method concentration limit

APPENDIX A

OCD Correspondence

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin Cabinet Secretary

Brett F. Woods, Ph.D. Deputy Cabinet Secretary David Catanach, Director Oil Conservation Division

Response Required - Deadline Enclosed

Field Inspection Program "Preserving the Integrity of Our Environment"

01-Apr-15

PALADIN ENERGY CORP

10290 MONROE DRIVE SUITE 301 DALLAS TX 75229

LETTER OF VIOLATION - Inspection

Dear Operator:

The following inspection(s) indicate that the well, equipment, location or operational status of the well(s) failed to meet standards of the New Mexico Oil Conservation Division as described in the detail section below. To comply with standards imposed by Rules and Regulations of the Division, corrective action must be taken immediately and the situation brought into compliance. The detail section indicates preliminary findings and/or probable nature of the violation. This determination is based on an inspection of your well or facility by an inspector employed by the Oil Conservation Division on the date(s) indicated.

Please notify the proper district office of the Division, in writing, of the date corrective actions are scheduled to be made so that arrangements can be made to reinspect the well and/or facility.

		INSPI	ECTION DETAI	L SECTION		
STATE BT Inspection Date 03/31/2015	Type Inspection Routine/Perio	•	Violation? hitaker Yes	L-35-11S-33E *Significant Non-Compliance? No	30-025-01017-00- Corrective Action Due By: 6/5/2015	00 Inspection No. iMAW 1509048809
	Violations Absent Well Iden Surface Leaks/Sp	ification Signs (Rule 103) lls				
Comments	on Inspection:	No well sign at wellhead (R INSTALL WELL SIGN AT REMEDIATION PLAN AT OFFICE. SEE ATTACHEE	`WELLHEAD. NEE TACHED. FILE W	ED TO FILE C141 TO	REPORT SPILL, WI	rh Fe
STATE BT	D No.003			P-35-11S-33E *Significant	30-025-01021-00-	00
Inspection Date	Type Inspection	Inspector	Violation?		Corrective Action Due By:	Inspection No.
•	Type Inspection Routine/Perio	-		Non-Compliance? No	Action Due By:	Inspection No. iMAW1509049587

STATE BT	I No.001 Type Inspection	Inspector	Violation?	D-2-12S-33E *Significant Non-Compliance?	30-025-01028-00 Corrective Action Due By:	-00 Inspection No.
03/31/2015	Routine/Periodic	Mark Whitaker	Yes	No	5/8/2015	iMAW1509048450
	Violations					
	Absent Well Identification Signs (Rule 103)				
Comments of	on Inspection: No well sign (Rule 19.15.16.8). NEI	ED TO INST	ALL WELL SIGN.		

In the event that a satisfactory response is not received to this letter of direction by the "Corrective Action Due By:" date shown above, further enforcement will occur. Such enforcement may include this office applying to the Division for an order summoning you to a hearing before a Divison Examiner in Santa Fe to show cause why you should not be ordered to permanently plug and abandon this well.

Mark WEitaken Compliance Officer Sincerely,

Hobbs OCD District Office

Note: Information in Detail Section comes directly from field inspector data entries - not all blanks will contain data. *Significant Non-Compliance events are reported directly to the EPA, Region VI, Dallas, Texas.

APPENDIX B

Laboratory Reports

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Paladin Well Leak Project Number: 15-0130-02 Location: New Mexico

Lab Order Number: 5D08014

NELAP/TCEQ # T104704156-13-3

Report Date: 04/10/15

ProjectPaladin Well LeakProject Number:15-0130-02Project Manager:Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
COMP-A	5D08014-01	Soil	04/07/15 13:40	04-08-2015 09:25

COMP-A

5D08014-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Down	ian Dasin E	nvinonmo	tal Lab 1	D				
Permian Basin Environmental Lab, L.P. Organics by GC Benzene ND 0.00109 mg/kg dry 1 PSD1002 04/09/15 EPA 8021B Toluene 0.000561 0.00217 mg/kg dry 1 PSD1002 04/09/15 EPA 8021B Ethylbenzene 0.0166 0.00109 mg/kg dry 1 PSD1002 04/09/15 EPA 8021B Xylene (p/m) 0.101 0.00217 mg/kg dry 1 PSD1002 04/09/15 EPA 8021B Surrogate: 4-Bromofluorobenzene 97.7% 75-125 PSD1002 04/09/15 EPA 8021B Surrogate: 1.4-Difluorobenzene 97.7% 75-125 PSD1002 04/09/15 TX 1005 Surrogate: 1.4-Difluorobenzene 1.4-Difluorobenzene									
Organics by GC									
Benzene	ND	0.00109	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Toluene	0.00561	0.00217	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Ethylbenzene	0.0166	0.00109	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Xylene (p/m)	0.101	0.00217	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Xylene (0)	0.0365	0.00109	mg/kg dry	1	P5D1002	04/09/15	04/09/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		97.7 %	75-1	25	P5D1002	04/09/15	04/09/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.1 %	75-1	25	P5D1002	04/09/15	04/09/15	EPA 8021B	
C6-C12	445.00	27.174	mg/kg dry	1	P5D0905	04/09/15	04/09/15	TX 1005	
>C12-C28	2132.0	27.174	mg/kg dry	1	P5D0905	04/09/15	04/09/15	TX 1005	
>C28-C35	152.68	27.174	mg/kg dry	1	P5D0905	04/09/15	04/09/15	TX 1005	
Surrogate: 1-Chlorooctane		127 %	70-1	30	P5D0905	04/09/15	04/09/15	TX 1005	
Surrogate: o-Terphenyl		129 %	70-1	30	P5D0905	04/09/15	04/09/15	TX 1005	
Total Hydrocarbon nC6-nC35	2729.7	27.174	mg/kg dry	1	[CALC]	04/09/15	04/09/15	[CALC]	
General Chemistry Parameters by EPA	/ Standard Method	ls							
Chloride	10200	27.2	mg/kg dry	25	P5D1006	04/10/15	04/10/15	EPA 300.0	
% Moisture	8.0	0.1	%	1	P5D0901	04/09/15	04/09/15	% calculation	

Project: Paladin Well Leak Project Number: 15-0130-02 Project Manager: Mark Larson

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5D0905 - TX 1005										
Blank (P5D0905-BLK1)				Prepared &	Analyzed	: 04/09/15				
C6-C12	ND	25.000	mg/kg wet							
>C12-C28	ND	25.000	"							
>C28-C35	ND	25.000	"							
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	66.0		"	50.0		132	70-130			S-G
LCS (P5D0905-BS1)				Prepared &	Analyzed	: 04/09/15				
C6-C12	956	25.000	mg/kg wet	1000		95.6	75-125			
>C12-C28	1060	25.000	"	1000		106	75-125			
Surrogate: 1-Chlorooctane	129		"	100		129	70-130			
Surrogate: o-Terphenyl	57.8		"	50.0		116	70-130			
LCS Dup (P5D0905-BSD1)				Prepared &	Analyzed	: 04/09/15				
C6-C12	918	25.000	mg/kg wet	1000		91.8	75-125	4.07	20	
>C12-C28	1020	25.000	"	1000		102	75-125	3.73	20	
Surrogate: 1-Chlorooctane	125		"	100		125	70-130			
Surrogate: o-Terphenyl	55.5		"	50.0		111	70-130			
Duplicate (P5D0905-DUP1)	Sou	rce: 5D08017	7-03	Prepared: (04/09/15 A	nalyzed: 04	4/10/15			
C6-C12	ND	25.253	mg/kg dry		ND				20	
>C12-C28	ND	25.253	"		ND				20	
>C28-C35	ND	25.253	"		ND				20	
Surrogate: 1-Chlorooctane	116		"	101		115	70-130			
Surrogate: o-Terphenyl	67.8		"	50.5		134	70-130			S-G
Batch P5D1002 - General Preparation	(GC)									
Blank (P5D1002-BLK1)				Prepared &	a Analyzed	: 04/09/15				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0604		"	0.0600		101	75-125			
Surrogate: 1,4-Difluorobenzene	0.0560		"	0.0600		93.3	75-125			

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Project: Paladin Well Leak Project Number: 15-0130-02 Project Manager: Mark Larson

Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5D1002 - General Preparation (GC)										
LCS (P5D1002-BS1)				Prepared &	Analyzed:	04/09/15				
Benzene	0.0965	0.00100	mg/kg wet	0.100		96.5	70-130			
Toluene	0.102	0.00200	"	0.100		102	70-130			
Ethylbenzene	0.116	0.00100	"	0.100		116	70-130			
Xylene (p/m)	0.231	0.00200	"	0.200		116	70-130			
Xylene (o)	0.115	0.00100	"	0.100		115	70-130			
Surrogate: 1,4-Difluorobenzene	0.0557		"	0.0600		92.8	75-125			
Surrogate: 4-Bromofluorobenzene	0.0646		"	0.0600		108	75-125			
LCS Dup (P5D1002-BSD1)				Prepared &	Analyzed:	04/09/15				
Benzene	0.105	0.00100	mg/kg wet	0.100		105	70-130	8.05	20	
Toluene	0.111	0.00200	"	0.100		111	70-130	8.75	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	70-130	5.98	20	
Xylene (p/m)	0.239	0.00200	"	0.200		120	70-130	3.40	20	
Xylene (o)	0.115	0.00100	"	0.100		115	70-130	0.461	20	
Surrogate: 1,4-Difluorobenzene	0.0589		"	0.0600		98.1	75-125			
Surrogate: 4-Bromofluorobenzene	0.0648		"	0.0600		108	75-125			
Duplicate (P5D1002-DUP1)	Sou	rce: 5D02001	-03	Prepared &	Analyzed:	04/09/15				
Benzene	7.03	0.115	mg/kg dry		6.90			2.00	20	
Toluene	35.5	0.230	"		34.0			4.42	20	
Ethylbenzene	23.5	0.115	"		23.4			0.402	20	
Xylene (p/m)	43.5	0.230	"		44.1			1.38	20	
Xylene (o)	16.4	0.115	"		16.6			1.18	20	
Surrogate: 1,4-Difluorobenzene	0.0751		"	0.0690		109	75-125			
Surrogate: 4-Bromofluorobenzene	0.0695		"	0.0690		101	75-125			

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5D0901 - *** DEFAULT PREP ***										
Blank (P5D0901-BLK1)				Prepared &	Analyzed:	04/09/15				
% Moisture	ND	0.1	%							
Duplicate (P5D0901-DUP1)	Sour	ce: 5D07008-	01	Prepared &	Analyzed:	04/09/15				
% Moisture	5.0	0.1	%		6.0			18.2	20	
Duplicate (P5D0901-DUP2)	Sour	-ce: 5D08012-	04	Prepared &	Analyzed:	04/09/15				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Duplicate (P5D0901-DUP3)	Sour	ce: 5D08017-	03	Prepared &	Analyzed:	04/09/15				
% Moisture	1.0	0.1	%		1.0			0.00	20	
Batch P5D1006 - *** DEFAULT PREP ***										
Blank (P5D1006-BLK1)				Prepared &	Analyzed:	04/10/15				
Chloride	ND	1.00	mg/kg wet							
LCS (P5D1006-BS1)				Prepared &	Analyzed:	04/10/15				
Chloride	102	1.00	mg/kg wet	100		102	80-120			
L CS D (DED100(DSD1)				Prepared &	Analyzed:	04/10/15				
LCS Dup (PSD1000-BSD1)					,		80-120	3.54	20	
LCS Dup (P5D1006-BSD1) Chloride	98.2	1.00	mg/kg wet	100		98.2	80-120	5.54	20	
		1.00 •ce: 5D08013-	0 0	100 Prepared &	Analyzed:		80-120	5.54	20	
Chloride		ce: 5D08013-	0 0		Analyzed: 350		30-120	12.3	20	
Chloride Duplicate (P5D1006-DUP1)	Sou 396	ce: 5D08013-	01 mg/kg dry		350	04/10/15			-	

Notes and Definitions

S-GC	Surrogate recovery	outside of control limits	The data was accept	ted based on valid recover	ry of the remaining surrogate.

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike

Report Approved By:

Dup Duplicate

Sun Barron

Date: 4/10/2015

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

PERMIAN BASIN ENVIRONMENTAL LAB, LP 10014 SCR 1213 Midland, TX 79706

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Location:

Lab Order Number: 5D22007

NELAP/TCEQ # T104704156-13-3

Report Date: 05/08/15

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 1'	5D22007-01	Soil	04/21/15 13:35	04-22-2015 10:21
SB-1 5'	5D22007-02	Soil	04/21/15 13:50	04-22-2015 10:21
SB-1 10'	5D22007-03	Soil	04/21/15 13:58	04-22-2015 10:21
SB-1 15'	5D22007-04	Soil	04/21/15 14:05	04-22-2015 10:21
SB-1 20'	5D22007-05	Soil	04/21/15 14:10	04-22-2015 10:21
SB-1 25'	5D22007-06	Soil	04/21/15 14:25	04-22-2015 10:21
SB-1 30'	5D22007-07	Soil	04/21/15 14:35	04-22-2015 10:21
SB-1 35'	5D22007-08	Soil	04/21/15 14:43	04-22-2015 10:21

SB-1 1' 5D22007-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						1			
	Pern	iian Basin F	Invironme	ital Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	s							
Chloride	3270	14.7	mg/kg dry	10	P5E0502	04/30/15	05/05/15	EPA 300.0	
% Moisture	32.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 8()15M							
C6-C12	ND	36.8	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	ND	36.8	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	36.8	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		76.6 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: o-Terphenyl		89.8 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	36.8	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

SB-1 5'

5D22007-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Environme	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	s							
Chloride	169	1.41	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0	
% Moisture	29.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	35.2	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	ND	35.2	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	35.2	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		68.0 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	S-GC
Surrogate: o-Terphenyl		79.8 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	35.2	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

SB-1 10'

5D22007-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Cnvironmer	ntal Lab,	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	S							
Chloride	18.0	1.23	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0	
% Moisture	19.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	30.9	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C12-C28	ND	30.9	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
>C28-C35	ND	30.9	mg/kg dry	1	P5D3003	04/27/15	04/27/15	TPH 8015M	
Surrogate: 1-Chlorooctane		67.0 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	S-GC
Surrogate: o-Terphenyl		78.8 %	70-1	30	P5D3003	04/27/15	04/27/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.9	mg/kg dry	1	[CALC]	04/27/15	04/27/15	calc	

Г

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

SB-1 15'

5D22007-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin E	Invironme	ntal Lab, l	L.P.				
Organics by GC									
Benzene	ND	0.00122	mg/kg dry	1	P5D3008	04/27/15	04/27/15	EPA 8021B	
Toluene	ND	0.00244	mg/kg dry	1	P5D3008	04/27/15	04/27/15	EPA 8021B	
Ethylbenzene	ND	0.00122	mg/kg dry	1	P5D3008	04/27/15	04/27/15	EPA 8021B	
Xylene (p/m)	ND	0.00244	mg/kg dry	1	P5D3008	04/27/15	04/27/15	EPA 8021B	
Xylene (o)	ND	0.00122	mg/kg dry	1	P5D3008	04/27/15	04/27/15	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		79.0 %	75-1	25	P5D3008	04/27/15	04/27/15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		125 %	75-1	25	P5D3008	04/27/15	04/27/15	EPA 8021B	
General Chemistry Parameters by EPA	Standard Metho	ds							
Chloride	107	1.22	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0	
% Moisture	18.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 8	015M							
C6-C12	ND	30.5	mg/kg dry	1	P5E0513	04/28/15	05/07/15	TPH 8015M	
>C12-C28	ND	30.5	mg/kg dry	1	P5E0513	04/28/15	05/07/15	TPH 8015M	
>C28-C35	ND	30.5	mg/kg dry	1	P5E0513	04/28/15	05/07/15	TPH 8015M	
Surrogate: 1-Chlorooctane		86.3 %	70-1	30	P5E0513	04/28/15	05/07/15	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-1	30	P5E0513	04/28/15	05/07/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	30.5	mg/kg dry	1	[CALC]	04/28/15	05/07/15	calc	

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

SB-1 20'

5D22007-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	Invironmer	ntal Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	22.4	1.08	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0	
% Moisture	7.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 b	y EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P5D3003	04/27/15	04/28/15	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P5D3003	04/27/15	04/28/15	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P5D3003	04/27/15	04/28/15	TPH 8015M	
Surrogate: 1-Chlorooctane		77.8 %	70-1	30	P5D3003	04/27/15	04/28/15	TPH 8015M	
Surrogate: o-Terphenyl		88.4 %	70-1	30	P5D3003	04/27/15	04/28/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	04/27/15	04/28/15	calc	

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson Fax: (432) 687-0456

SB-1 25'

5D22007-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
Permian Basin Environmental Lab, L.P.												
General Chemistry Parameters b	General Chemistry Parameters by EPA / Standard Methods											
Chloride	ND	1.37	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0				
% Moisture	27.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation				

% Moisture

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

1

P5D2705

04/27/15

04/27/15

% calculation

Fax: (432) 687-0456

SB-1 30' 5D22007-07 (Soil)											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	Permi	ian Basin E	nvironme	ntal Lab, I	L.P.						
General Chemistry Paramete	ers by EPA / Standard Methods	5									
Chloride	1.54	1.35	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0			

%

0.1

26.0

Project: Paladin/State BT "D" Well #003 Battery Project Number: 15-0130-02 Project Manager: Mark Larson

SB-1 35'

5D22007-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin F	nvironmer	ntal Lab, 1	L.P.				
General Chemistry Parameters by EPA / S	tandard Method	s							
Chloride	67.9	1.06	mg/kg dry	1	P5E0502	04/30/15	05/05/15	EPA 300.0	
% Moisture	6.0	0.1	%	1	P5D2705	04/27/15	04/27/15	% calculation	
Total Petroleum Hydrocarbons C6-C35 by	EPA Method 80	15M							
C6-C12	ND	26.6	mg/kg dry	1	P5D3003	04/27/15	04/28/15	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P5D3003	04/27/15	04/28/15	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P5D3003	04/27/15	04/28/15	TPH 8015M	
Surrogate: 1-Chlorooctane		77.6 %	70-1	30	P5D3003	04/27/15	04/28/15	TPH 8015M	
Surrogate: o-Terphenyl		90.0 %	70-1	30	P5D3003	04/27/15	04/28/15	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	04/27/15	04/28/15	calc	
Organics by GC - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P5D3008 - General Preparation	n (GC)									
Blank (P5D3008-BLK1)				Prepared &	Analyzed:	04/27/15				
Benzene	ND	0.00100	mg/kg wet							
Toluene	ND	0.00200	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 4-Bromofluorobenzene	0.0713		"	0.0600		119	75-125			
Surrogate: 1,4-Difluorobenzene	0.0513		"	0.0600		85.5	75-125			
LCS (P5D3008-BS1)				Prepared &	Analyzed:	04/27/15				
Benzene	0.0935	0.00100	mg/kg wet	0.100		93.5	70-130			
Toluene	0.103	0.00200	"	0.100		103	70-130			
Ethylbenzene	0.112	0.00100	"	0.100		112	70-130			
Xylene (p/m)	0.227	0.00200	"	0.200		113	70-130			
Xylene (o)	0.119	0.00100	"	0.100		119	70-130			
Surrogate: 4-Bromofluorobenzene	0.0723		"	0.0600		120	75-125			
Surrogate: 1,4-Difluorobenzene	0.0476		"	0.0600		79.4	75-125			
LCS Dup (P5D3008-BSD1)				Prepared &	Analyzed:	04/27/15				
Benzene	0.0938	0.00100	mg/kg wet	0.100		93.8	70-130	0.320	20	
Toluene	0.104	0.00200	"	0.100		104	70-130	0.397	20	
Ethylbenzene	0.117	0.00100	"	0.100		117	70-130	4.43	20	
Xylene (p/m)	0.233	0.00200	"	0.200		117	70-130	2.83	20	
Xylene (o)	0.114	0.00100	"	0.100		114	70-130	3.96	20	
Surrogate: 1,4-Difluorobenzene	0.0524		"	0.0600		87.3	75-125			
Surrogate: 4-Bromofluorobenzene	0.0707		"	0.0600		118	75-125			

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Linin	emits	Lever	rtesuit	/mee	Linits	Iu D	Linit	110105
Batch P5D2705 - *** DEFAULT PREP ***										
Blank (P5D2705-BLK1)				Prepared &	Analyzed	: 04/27/15				
% Moisture	ND	0.1	%							
Duplicate (P5D2705-DUP1)	Sou	rce: 5D24002-	-01	Prepared &	Analyzed	: 04/27/15				
% Moisture	10.0	0.1	%		11.0			9.52	20	
Duplicate (P5D2705-DUP2)	Sou	rce: 5D24003-	-01	Prepared &	. Analyzed	: 04/27/15				
% Moisture	2.0	0.1	%	_	2.0			0.00	20	
Batch P5E0502 - *** DEFAULT PREP ***										
				D 1 (4/20/15		105/15			
Blank (P5E0502-BLK1) Chloride	ND	1.00	mg/kg wet	Prepared: (04/30/15 A	analyzed: 05	05/15			
Chioride	ND	1.00	mg/kg wet							
LCS (P5E0502-BS1)				Prepared: (04/30/15 A	analyzed: 05	5/05/15			
Chloride	105	1.00	mg/kg wet	100		105	80-120			
LCS Dup (P5E0502-BSD1)				Prepared: (04/30/15 A	Analyzed: 05	05/15			
Chloride	106	1.00	mg/kg wet	100		106	80-120	1.20	20	
Duplicate (P5E0502-DUP1)	Sou	rce: 5D22007-	-01	Prepared: (04/30/15 A	Analyzed: 05	5/05/15			
Chloride	3320	14.7	mg/kg dry	1	3270			1.72	20	
Duplicate (P5E0502-DUP2)	Sou	rce: 5D27006-	-03	Prepared ()4/30/15 A	Analyzed: 05	05/15			
Chloride	36.9		mg/kg dry	- repured. (41.2			11.0	20	
	~									
Matrix Spike (P5E0502-MS1)		rce: 5D22007-	-	1		Analyzed: 05				
Chloride	4200	14.7	mg/kg dry	1100	3270	84.4	80-120			

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P5D3003 - TX 1005										
Blank (P5D3003-BLK1)				Prepared &	Analyzed:	04/27/15				
C6-C12	ND	25.0	mg/kg wet	Treparea a	e i maryzea.	04/2//15				
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	65.6		"	100		65.6	70-130			S-GC
Surrogate: o-Terphenyl	38.6		"	50.0		77.2	70-130			
LCS (P5D3003-BS1)				Prepared &	Analyzed:	04/27/15				
C6-C12	894	25.0	mg/kg wet	1000		89.4	75-125			
>C12-C28	1080	25.0	"	1000		108	75-125			
Surrogate: 1-Chlorooctane	88.6		"	100		88.6	70-130			
Surrogate: o-Terphenyl	43.8		"	50.0		87.6	70-130			
LCS Dup (P5D3003-BSD1)				Prepared &	Analyzed:	04/27/15				
C6-C12	986	25.0	mg/kg wet	1000		98.6	75-125	9.85	20	
>C12-C28	1150	25.0	"	1000		115	75-125	6.17	20	
Surrogate: 1-Chlorooctane	87.7		"	100		87.7	70-130			
Surrogate: o-Terphenyl	40.7		"	50.0		81.5	70-130			
Duplicate (P5D3003-DUP1)	Source: 5D27003-01			Prepared: (04/27/15 A	nalyzed: 04	/28/15			
C6-C12	2740	439	mg/kg dry		2900			5.86	20	
>C12-C28	22400	439	"		23700			5.82	20	
Surrogate: 1-Chlorooctane	147		"	175		83.7	70-130			
Surrogate: o-Terphenyl	91.1		"	87.7		104	70-130			

Notes and Definitions

S-GC	Surrogate recovery outside of control limits	The data was accepted based on v	alid recovery of the remaining surrogate.

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Sun Barron

Report Approved By:

Date: 5/8/2015

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

APPENDIX C

Boring Logs

			BORING				
GEOLOGIC UNIT	DEPTH	DESCRIPTION LITHOLOGIC Start : 13:35 Stop : 14:43	DESCRIPTION USCS	GRAPHIC LOG	PID READING	NUMBER PID READING RECOVERY DEPTH	REMARKS BACKGROUND PID READING
	1	Excavated soll, Excavated to 1' logs				1	0.0 PPM
	5	Caliche, 7.5YR7/1,				5	
	10	Pink, Sandy, Very fine grained, Quartz sand, Indurated, Hard, Moist, @ 5' and dry below	Caliche			10	- 0.0 PPM -
						15	
	20	Sand, 5YR5/6, Yellowish red, Very fine grained quartz sand, Poorly sorted, Dry	SP			20	- 38.0 PPM -
		US AUGER SAMPLER			JOB NUMBER : Pa	adin/15-013	- 6.0 PPM 30-02
			ABLE (TIME ORY TEST L	OF BORING) OCATION	HOLE DIAMETER :	5"	
	DISTURBED		METER (TO		LOCATION :		uth of Well 003
w.	ATER TABLE (
Aarson &		DRILL DATE : 4 - 20 - 2015	BORING I	NUMBER :	DRILLING CONTRA DRILLING METHOE	CTOR <u>SD</u>	

					BORING	RECORD										
					NO	90	PID READING					SAMPLE			REMARKS	
GEOLOGIC	DEPTH	DES	CRIPTION LITHO	LOGIC	DESCRIPTION USCS	GRAPHIC LOG	РРМ Х <u>20</u>					NUMBER PID READING RECOVERY DEPTH				
UNIT			Start : 13:32		IS SCI	APF	2 4	68	10 12	14 16	18	MBE		E	BACKGROUND PID READING SOIL:PPM 2.6 PPM 	РМ
			Stop : 14:20			5								비		_
	26														_	-
																_
					SP	· · · · ·								30	2.6 PPM	1
	30											\vdash	╀			-
	_															_
																٦
	33															+
		Sand Very fine g	lstone, 5YR4/6, Yellowi rained, Quartz sand, P	oorly sorted,	Sand Stone											_
	35		Moderately cemented	t de la constante de la consta	exerte									35	0.8 PPM	
	00		TP: 35'													
																-
																-
	40														-	-
																4
																1
																4
	45														_	
																+
																_
	50															_
	IE CONTINU	IOUS AUGER S		WATER TAE	BLE (TIME	OF BORING)									30-02	_
ST	andard pe	ENETRATION T	est L	LABORATO	RY TEST LO	DCATION			AME					5"		-
	DISTURBE		+	PENETROM		S/SQ.FT)). NC					Soi MJI	uth of Well 003	-
<u> </u>	ATER TABLE	E (24 HRS)	NR DRILL DATE :	NO RECOVI					LOG G CC			·TO				-
Aarson &	nc.	\sim	4 - 20 - 20	15		B 1			G CC G ME					DR		

APPENDIX D

Photographs

1RP-3594 Spill Investigation Report State BT "D" Well No. 003 Lea County, New Mexico

Well Sign

Excavation South of Well Viewing North, April 7, 2015

1RP-3594 Spill Investigation Report State BT "D" Well No. 003 Lea County, New Mexico

Excavation South of Well Viewing Northeast, April 7, 2015

Excavation South of Well Viewing West, April 21, 2015

APPENDIX E

Initial C-141

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action Initial Report Final Report **OPERATOR** Contact: Mickey Horn Name of Company: Paladin Energy Corp Telephone No. (214) 352-7273 Address: 10290 Monroe Dr., Ste. 301, Fort Worth, TX 75229 Facility Name: State BT "D" No. 003 Facility Type: Well (Producer) API No. 30-025-01021-00-00 Mineral Owner: State of New Mexico Surface Owner: State of New Mexico LOCATION OF RELEASE Feet from the East/West Line County North/South Line Feet from the Township Range Unit Letter Section West Lea 660 660 South 33E P 35 115 103° 35' 03" Latitude 33° 19' 14"0 Longitude NATURE OF RELEASE Volume Recovered Volume of Release 4 bbl oil Type of Release: Crude oil/produced water 0 bbl and 2 bbl water Date and Hour of Occurrence Date and Hour of Discovery Source of Release: Stuffing box leak 03/16/2015 03/15/2015 If YES, To Whom? Was Immediate Notice Given? 🗌 Yes 🖾 No 🗋 Not Required Date and Hour By Whom? If YES, Volume Impacting the Watercourse. Was a Watercourse Reached? TYes No If a Watercourse was Impacted, Describe Fully.* RECEIVED By OCD; Dr. Oberding at 1:19 pm, Apr 07, 2015 Describe Cause of Problem and Remedial Action Taken. Leak at stuffing box flowed around and away from wellhead. Backhoe and roust-a-bout crew to pick up oily soil for disposal at OCD approved facility. Describe Area Affected and Cleanup Action Taken.* Area affected by spill is around and south of wellhead. Composite soil sample will be collected and analyzed after oily soil is removed and results will be reported to OCD to determine if further remediation is required. Note: Composite samples are not accepted. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Hydrologist Signature Approved by Environmental Printed Name: Mickey Hom Expiration Date: 07/07/2015 Approval Date: 04/07/201 Title: Operations Manager Conditions of Approval: E-mail Address: paladinmid@suddenlink.net Attached Site samples required. Delineate and Phone: (432) 522-2162 164070 1RP-3594 April 6, 2015 Date: remediate area as per NMOCD guides. Attach Additional Sheets If Necessary

nTO1509748369

pTO1509748502