

July 31, 2017

Ms. Olivia Yu Environmental Specialist New Mexico Oil Conservation Division Hobbs District 1 Office 1625 French Drive Hobbs, New Mexico 88240

Re: Release Characterization Report and Proposed Remediation Work Plan Yates State #2 Tank Battery NMOCD Case No. 1R-4587 Lea County, New Mexico

SUBMITTED VIA EMAIL Olivia.Yu@state.nm.us

INFORMATION ONLY

Dear Ms. Yu:

Enviro Clean Cardinal, LLC (ECC) has been retained by RAM Energy Resources (RAM) to conduct a release characterization at RAM's Yates State #2 Tank Battery (Site) located in Unit H, Section 16, Township 12 South, Range 38 East of Lea County, New Mexico (geographical coordinates 33.2793N, 103.0945W) and to prepare a proposed work plan to remediate the Site. The Site is approximately two miles west of the New Mexico/Texas state line and 13 miles east-northeast of Tatum, New Mexico. The Site location and topographical features are shown on the attached **Figure 1**. The Yates State #2 wellhead and tank battery are collocated on the Site as shown on the photograph below and **Figure 2** (photographs taken from southeast corner and east side of tank battery, respectively).

This **Release Characterization Report** and **Proposed Remediation Work Plan** discuss the details of the produced fluids release, ECC's delineation of the chloride and hydrocarbon impacts to Site soils, presents the laboratory analytical results for the soil samples collected, the applicable regulatory levels used for screening these results, and provides a proposed strategy to remediate Site soils to levels acceptable to the New Mexico Oil Conservation Division (NMOCD). RAM's objective is to obtain NMOCD approval to implement this proposed remediation work plan.

Y:\Projects\RamEnergy\RAMRNM0002_YatesState2\03_Report\FNL\20170731_YatesRelChRpt-RemWP TXT.docx

Property Ownership

The Site surface is owned by 07-Ranch Limited Partnership located in Plains, Texas. RAM's *Surface Damage Agreement and Release* document for access to the lease lists Mr. Tommy Burris as a representative of 07-Ranch Limited Partnership.

The mineral ownership of the Site is the State of New Mexico and is managed by the New Mexico State Land Office (NMSLO).

Site Characteristics

The Site is located within the Gladiola Oil Field at an elevation of approximately 3,835 feet above mean sea level. The land surface slopes slightly towards the southeast and the Sulphur Springs Draw. Land use in the area is primarily for livestock grazing coupled with significant oilfield development. The area is semiarid with an annual precipitation of 17.05 inches and a net annual average precipitation/evaporation loss of approximately 73 inches. Watercourses in the area are dry except during infrequent flows following major precipitation events.

The United States Department of Agriculture, Natural Resources Conservation Service, Soil Survey for Lea County, New Mexico indicates that the soils surrounding the production pad site are classified as "Kh" (Kimbrough-Lea complex), and these soils are primarily a petrocalcic calciustoll. This indicates a loamy, mixed thermic soil that is well drained and is derived from calcareous alluvium and/or eolian deposits of sedimentary rocks.

The United States Geological Survey indicates that the surface or near-surface geologic unit is Quaternary-aged sand deposits "Qsu" that are described as windblown deposits, sand sheets and dunes, undivided. Underlying these recent deposits are the Neogene-age Ogallala Formation which is comprised of alluvial and eolian deposits and petrocalcic soils of the southern High Plains.

Site Hydrogeology

As stated above, the Site is located on Quaternary-aged sand deposits that overlay the Neogeneaged Ogallala Formation. Locally the uppermost groundwater saturations occur within these formations. An online search of the New Mexico Water Rights Reporting System, as provided by the New Mexico Office of State Engineer (NMOSE) (http://nmwrrs.ose.state.nm.us/nmwrrs/watercolumn.html), produced a Water Column Report showing 7 water well records that fell within a 2,000-meter search radius of the Site. These wells had a minimum depth to groundwater of 25 feet, a maximum depth to groundwater of 50 feet, and an average depth to groundwater of 38 feet below ground level (BGL). The ChevronTexaco Lea County Depth to Ground Water trend maps (Wayne Johnson, March 9, 2005) indicate that the depth to groundwater at the Site is less than 25 feet BGL with two wells posted in Section 16 with depth to groundwater levels of 22 and 24 feet BGL.

Previous Release

A previous release occurred at this Site in March 2012 under a different operator, Chaparral Energy LLC. This earlier release, NMOCD Case No. 1RP-2781, was closed in July 2013 (Earth Technologies of New Mexico Inc., Closure Report, Chaparral Energy LLC, Yates State #2 Leak, March 22, 2012). This incident involved the release of approximately 5 net barrels (bbls) of produced water outside and north of the containment berm, affecting approximately 1,200 square feet of the Site. At that time the NMOCD approved a chloride cleanup level of 1,500 mg/kg for the Site soils. The remedial response was to remove the affected soils exceeding 1,500 mg/kg chlorides, as determined by field titration screening methodologies, installing a geo-synthetic

bentonite liner, and backfilling the Site. This area of past remediation lies north of the tank battery up to the wellhead.

Description of Current Release

The current release was discovered by the surface landowner, Mr. Tommy Burris, on the morning of January 27, 2017. Approximately 37 bbls of produced water were released from a water storage tank located inside the secondary containment berm. Approximately 1 bbl of water was released outside the berm.

Initial Response Actions

Initial response actions consisted of source elimination by shutting in production and closing tank valves. A majority of the release was contained within the berm of the tanks, and only a small amount flowed out onto the Site pad. The pad site and tank battery secondary containment are secured by barbed wire fencing and a locked gate. The release was verbally reported to the NMOCD on January 27, 2017, the date of the release. RAM's *Release Notification and Corrective Action Form*, C-141, was submitted to the NMOCD on February 7, 2017, and states 37 bbls of produced water were released from a water tank of which 36 bbls were retained within the earthen secondary containment berm and 1 bbl flowed outside the berm. Approximately 37 bbls of fluid were reportedly recovered by vacuum truck. A copy of this C-141 and the NMOCD's response is provided in **Attachment A**.

In response to the C-141 filing, the NMOCD required RAM to submit a release characterization work plan on or before March 7, 2017. RAM submitted this work plan to the NMOCD on March 6, 2017. The NMOCD approved the release characterization plan on March 10, 2017, with the following conditions:

- 1. The maximum limit of permissible chloride levels for soils in release areas, where depth to groundwater is < 50 feet, is 250 mg/kg.
- 2. Complete vertical delineation within soils means obtaining 250 mg/kg chlorides and maintaining this level for an additional 10 feet below.
- 3. Establish a baseline sample point outside of release area.
- 4. As the minerals are owned by the State of New Mexico, like approval from Amber Groves (State Land Office) is required.
- 5. Inform NMOCD and NMSLO of soil sampling witnessing opportunities.

RAM began field implementation of the release characterization work plan on April 11, 2017. These field activities and the results of this assessment follow.

Applicable Regulatory Levels

The NMOCD has established *Recommended Remediation Action Levels* (RRAL) for soils contaminated with petroleum hydrocarbons through a site ranking process provided in their document titled *Guidelines for Remediation of Leaks, Spills and Releases,* dated August 1993. The ranking criteria is based on numeric scores to determine the appropriate soil remediation action level for relative threats to public health, fresh water, and the environment. The following three site characteristics are evaluated as part of this ranking process:

- <u>Depth to groundwater</u> (Vertical distance from ground surface to seasonal high water level)
 - If less than 50 feet BGL = 20 points \leftarrow
 - If 50 to 99 feet BGL = 10 points
 - If greater than 100 feet = 0 points
- <u>Wellhead Protection Areas</u> (All water sources including private and domestic sources. Sources are defined as wells, springs or other sources of fresh water extraction)
 - If less than 1,000 feet from a water source, or less than 200 feet from a private domestic water source = 20 points ←
 - If greater than 1,000 feet from a water source, or greater than 200 feet from a private domestic water source = 0 points
- Distance to Nearest Surface Water Body
 - If less than 200 horizontal feet = 20 points
 - If 200 to 1,000 horizontal feet = 10 points
 - o If greater than 1,000 horizontal feet = 0 points ←

The NMOSE Water Column Report and ChevronTexaco Lea County Depth to Ground Water trend map collectively indicate that the depth to groundwater near the Site should range between 22 and 50 feet BGL. So, for the depth to water element of the NMOCD site assessment criteria the Site would be assigned <u>20 points</u>. The NMOSE's water well records show that four water sources exist less than 1,000 feet from the Site, and three water sources exist less than 200 feet of the Site. So, for the wellhead protection areas element of the NMOCD site assessment criteria the Site would be assigned <u>20 points</u>. The nearest surface water body is greater than 1,000 feet. So, for the surface water body element of the NMOCD site assessment criteria the Site would be assigned <u>20 points</u>. The nearest surface water body is greater than 1,000 feet. So, for the surface water body element of the NMOCD site assessment criteria the Site would be assigned <u>0 points</u>. Therefore, the Site would have a total score of <u>40 points</u>.

Based upon the NMOCD's RRAL ranking criteria, the most protective hydrocarbon cleanup levels are assigned to sites with a total ranking score greater than 19. So, the soil RRALs for this Site are as follows:

- Benzene = 10 ppm,
- Total benzene, toluene, ethylbenzene and toluene (collectively BTEX) = 50 ppm, and
- Total petroleum hydrocarbons (TPH) = 100 ppm.

In addition to these hydrocarbon clean-up values for soil, the NMOCD has developed an assessment level for chloride impacts to soil of 250 mg/kg. This assessment level relies indirectly upon the New Mexico Water Quality Control Commission's (WQCC's) Standards for groundwaters having a TDS concentration of 10,000 mg/L or less found in 20.6.2.3103 NMAC. The WQCC Standard for chloride in groundwater of 250 ppm. Based upon the high solubility of chloride, the NMOCD assumes that all chloride salts could leach to groundwater and have set the chloride assessment level in soils at 250 mg/kg. Therefore, lateral and vertical delineation of chloride in soils to 250 mg/kg is required at sites under NMOCD jurisdiction. Based upon site conditions the NMOCD may use this assessment level also as a clean-up level, although higher cleanup levels can be approved by NMOCD when appropriate. The NMOCD has already stated that the soil cleanup level of 250 mg/kg will be used for this Site.

Boring Installations and Soil Sample Collection

On April 11, 2017 and June 7, 2017, ECC installed a total of eight borings at the Site utilizing both hand-auger and air rotary drilling methodologies to characterize the horizontal and vertical extents

of chloride, TPH and BTEX impacts to Site soils. The locations of these borings are shown on the attached **Figure 2**.

On April 11, 2017, four borings, HA-1 through HA-4, were drilled/sampled inside the tank battery's earthen-berm secondary containment to a depth of 1 foot BGL where a resistant caliche layer was encountered. Discrete soil samples were collected from these hand-auger borings on ½-foot depth intervals and submitted to the analytical laboratory, XENCO Laboratories, Midland, Texas, for BTEX analysis by EPA Method 8021B, TPH analysis by EPA Method SW8015 Modified, and chloride analyses by EPA Method 300.

Also on April 11, 2017, three borings, WSB-1, ESB-2 and SSB-3, were drilled/sampled directly outside of the secondary containment berm (within 10 to 15 feet) on the west, east, and south sides of the tank battery, respectively. It should be noted that a boring was not installed outside the containment berm on the north side because of the presence of an existing permeability liner that was placed as part of 2012-13 remediation event described above. Samples were collected every 5-feet to a depth of 25 feet for field and laboratory analyses. Sampled intervals from the deep borings were described using the Unified Soil Classification System, Munsell color, and observed physical characteristics, such as grain size distribution, grain shape, and other diagnostic features, as applicable. Soil samples were field screened using a conductivity pen for chlorides, and a photoionization detector (PID) for hydrocarbons. Discrete soil samples were collected from these borings at the following intervals for field screening with a chloride meter and an organic vapor meter (OVM): 0, 5, 10, 15, 20 and 25 feet BGL. A representative aliquot of the surface soil sample (from 0-foot) was collected and submitted to the laboratory for BTEX, TPH and chloride analyses. Representative aliquots of soil from the remaining depth (from 5, 10, 15, 20 and 25 feet BGL) were submitted to the laboratory for chloride analyses only.

On April 18, 2017, a background sample (BG-1) was collected using a hand auger of the native soils outside the pad site at a location approximately 30 feet south of the southwest corner of the containment berm. This sample was submitted for chloride analyses only.

On June 7, 2017, a boring was drilled/sampled at the previous HA-2 location inside the northeast corner of the secondary containment berm using air-rotary methods. This boring was drilled to a depth of 20 feet BGL to better delineate deeper vertical impacts within the secondary containment area. Discrete soil samples were collected from the HA-2 location at depths of 3, 5, 7, 10, 15 and 20 feet BGL and submitted to the analytical laboratory for chloride analyses. On this same date, soil samples were re-collected at the SSB-3 boring location from the depths of 0 and 5 feet to resolve inconsistencies in the analytical results observed during the first round of sampling (i.e., samples taken at 0 and 5 feet appear to have been switched). The data generated from the second round of soil sampling at the SSB-3 location will be utilized for comparison to the regulatory screening levels and proposed remediation.

Lithologic descriptions and field screening results from the deeper borings WSB-1, ESB-2, SSB-3, and HA-2 are included in **Attachment B**. Laboratory analytical results are shown on **Tables 1** and **2**, and graphically presented on **Figure 2**. Laboratory reports and chain-of-custody documentation are included in **Attachment C**.

Laboratory Analytical Results and Regulatory Screening

The laboratory analytical results obtained from the soil samples collected at the Site were screened against the RRALs (organic analyses) and the chloride assessment and remediation level described above. These site-specific screening levels are as follows:

- Benzene 10 mg/kg
- BTEX 50 mg/kg
- TPH 100 mg/kg
- Chlorides 250 mg/kg

Referring to **Table 1** and **Figure 2**, laboratory analyses indicate that soil samples collected from inside of the containment berm exceed the regulatory levels for TPH (except HA-2) and chloride. Exceedances are shown in red bolded text. Soil samples collected from the upper 3 feet of the soil horizon at boring locations HA-1, HA-2, HA-3 and HA-4 appear to contain the greatest concentrations of TPH and chloride. Deeper chloride impacts are indicated in the HA-2 boring at depths of 10 and 15 feet. All soil samples analyzed for BTEX were below the RRAL of 10 mg/kg for benzene and 50 mg/kg for BTEX with concentrations ranging from less than the method detection limit to 0.00929 mg/kg in HA-3, 0.5 to 1.0 feet BGL. These results are consistent with a produced water release that lacks significant petroleum hydrocarbons. As BTEX was not detected in any of the soil samples taken from inside the containment berm at concentrations that exceed the RRALs, these results are not shown on **Figure 2**.

Again, referring to **Table 2** and **Figure 2**, laboratory analyses indicate that soil samples collected from outside of the containment berm on the west and east sides exceed the regulatory level for chloride. Soil samples from the WSB-1 boring location exceed the regulatory level for chloride at the surface, but only slightly exceed this level at depths of 20 and 25 feet BGL. Soil samples from the ESB-2 boring location exceed the regulatory level for chloride at the surface, but only slightly exceed the regulatory level for chloride at the surface, but only slightly exceed the regulatory level for chloride at the surface, but only slightly exceed the regulatory level for chloride at the surface, but only slightly exceed the regulatory level for chloride. None of soil samples taken from the SSB-3 boring exceed the regulatory level for chloride. Chloride delineation concentrations met the 10-foot separation requirement in the WSB-1 boring at 5 feet BGL (54.9 mg/kg), in the ESB-2 boring at 15 feet BGL (90.2 mg/kg), and in the HA-2 boring at 5 feet BGL (42.5 mg/kg). TPH and BTEX concentrations were not detected at levels that exceed the regulatory levels in any of the soil samples collected from outside of the containment area.

Proposed Soil Remediation

The constituent that is the driver for soil remediation is chloride. Since chloride cannot be reduced using degradation processes, the proposed remedial option is the excavation of impacted media coupled with off-site disposal. ECC recommends the removal and replacement of Site soils that exceed the RRALs and the chloride cleanup level. The proposed remediation areas are shown on **Figure 3**.

ECC proposes that the upper 3 feet of soil within the secondary containment area be excavated from the inside toe of the berm to the bases of the existing tanks and ancillary equipment. A "pedestal" of soil will be left in place beneath the tanks and equipment in a manner that will provide stability. The areal extent of this remediation area measures 2,327 square feet. An estimated volume of 259 cubic yards (in-situ) is expected to be removed. A synthetic liner will then be installed at the base of the excavation. The excavation will then be backfilled with clean fill from an acceptable source and compacted to existing grade.

ECC also proposes removal of the upper 1 foot of soil from an area on the east side of the tank battery outside of the containment area. The areal extent of this remediation area measures 647 square feet. An estimated volume of 24 cubic yards (in-situ) is expected to be removed. The excavation will then be backfilled with clean fill from an acceptable source and compacted to existing grade.

ECC hopes the NMOCD will find this Release Characterization Report and Proposed Remediation Work Plan responsive to their C-141 response, and will approve the remediation work proposed herein. If you have questions regarding this document, please do not hesitate to contact Mr. Matt Patterson at RAM at 918-947-6301, or myself at 918-210-8128.

Sincerely, Enviro Clean Cardinal, LLC

George H. (Buddy) Richardson, P.G. Manager Hydrogeology

Attachments: Table 1 - Summary of Laboratory Analytical Results, Soil Samples Inside Berm Table 2 - Summary of Laboratory Analytical Results, Soil Samples Outside Berm Figure 1 - Site Location and Topographic Features Figure 2 - Soil Sample Locations with Related Data Figure 3 - Proposed Limits of Excavation Attachment A - Form C-141 Attachment B - Boring Records Attachment C - Laboratory Analytical Reports

ATTACHMENTS

TABLES

Table 1 : Summary of Laboratory Analytical Results for Soil Samples Collected Inside BermRAM Energy Resources, Yates State #2, NMOCD # 1R-4587Lea County, New Mexico

			-	
	Sample ID:	BG-1 0-6"	HA-1 0-6"	HA-1 6-12"
Parameters	Sample Date:	18-Apr-17	11-Apr-17	11-Apr-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units			
Benzene	mg/kg		< 0.00500	<0.00150
Toluene	mg/kg		<0.00667	<0.00200
Ethylbenzene	mg/kg		<0.00667	<0.00200
m,p-Xylenes	mg/kg		<0.00667	<0.00200
o-Xylene	mg/kg		<0.0100	<0.00301
Xylenes, Total	mg/kg		<0.00667	<0.00200
Total BTEX	mg/kg		<0.00500	<0.00150
Total Petroleum Hydrocarbons (TPH)	Units			
C6 - C10	mg/kg		<15.0	<15.0
C10 - C28	mg/kg		1,900	872
C28 - C35	mg/kg		354	122
Total TPH	mg/kg		2,250	994
General Chemistry	Units			
Chloride	mg/kg	<4.94	11,100	4,170
Field Measurements	Units			
Chloride	mg/kg		7,526	3,098

	Commits ID:						Vatas #0.114.0.71	Vata - #0 114 0 401	V-1 #0 11A 0 451	Vata - #0.114.0.001
	Sample ID:	BG-1 0-6"	HA-2 0-6"	HA-2 6-12"	Yates #2 HA-2 3'	Yates #2 HA-2 5'	Yates #2 HA-2 7'	Yates #2 HA-2 10	Yates #2 HA-2 15	Yates #2 HA-2 20'
Parameters	Sample Date:	18-Apr-17	11-Apr-17	11-Apr-17	7-Jun-17	7-Jun-17	7-Jun-17	7-Jun-17	7-Jun-17	7-Jun-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units									
Benzene	mg/kg		<0.00152	<0.00258						
Toluene			<0.00132	<0.00230						
Ethylbenzene	mg/kg		<0.00203	<0.00344						
	mg/kg									
m,p-Xylenes	mg/kg		<0.00203	<0.00344						
o-Xylene	mg/kg		<0.00304	<0.00515						
Xylenes, Total	mg/kg		<0.00203	<0.00344						
Total BTEX	mg/kg		< 0.00152	<0.00258						
Total Petroleum Hydrocarbons (TPH)	Units									
C6 - C10	mg/kg		<15.0	<14.9						
C10 - C28	mg/kg		<15.0	<14.9						
C28 - C35	mg/kg		<15.0	<14.9						
Total TPH	mg/kg		<15.0	<14.9						
General Chemistry	Units									
Chloride	mg/kg	<4.94	23,000	15,900	1,970	42.5	93.8	255	689	98.0
Field Measurements	Units									
Chloride	mg/kg		>10,000	9,032						

Notes:

1. mg/kg : milligrams per kilogram.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. Blue shaded block denotes sample results greater than the laboratory RL.

4. --- : Not Analyzed.

Table 1 : Summary of Laboratory Analytical Results for Soil Samples Collected Inside BermRAM Energy Resources, Yates State #2, NMOCD # 1R-4587Lea County, New Mexico

	Sample ID:	BG-1 0-6"	HA-3 0-6"	HA-3 6-9"
Parameters	Sample Date:	18-Apr-17	11-Apr-17	11-Apr-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units			
Benzene	mg/kg		<0.00152	0.00199
Toluene	mg/kg		<0.00202	<0.00199
Ethylbenzene	mg/kg		<0.00202	0.00360
m,p-Xylenes	mg/kg		<0.00202	0.00370
o-Xylene	mg/kg		<0.00303	<0.00299
Xylenes, Total	mg/kg		<0.00202	0.00370
Total BTEX	mg/kg		<0.00152	0.00929
Total Petroleum Hydrocarbons (TPH)	Units			
C6 - C10	mg/kg		84.7	<74.9
C10 - C28	mg/kg		6,220	1,640
C28 - C35	mg/kg		1,180	151
Total TPH	mg/kg		7,480	1,790
General Chemistry	Units			
Chloride	mg/kg	<4.94	4,540	2,200
Field Measurements	Units			
Chloride	mg/kg		4,045	1,872

	Sample ID:	BG-1 0-6"	HA-4 0-6"	HA-4 6-12"
Parameters	Sample Date:	18-Apr-17	11-Apr-17	11-Apr-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units			
Benzene	mg/kg		<0.00148	0.0892
Toluene	mg/kg		<0.00198	0.147
Ethylbenzene	mg/kg		<0.00198	0.0984
m,p-Xylenes	mg/kg		<0.00198	0.373
o-Xylene	mg/kg		<0.00296	0.178
Xylenes, Total	mg/kg		<0.00198	0.551
Total BTEX	mg/kg		<0.00148	0.886
Total Petroleum Hydrocarbons (TPH)	Units			
C6 - C10	mg/kg		<74.9	1,640
C10 - C28	mg/kg		1,520	14,100
C28 - C35	mg/kg		142	1,980
Total TPH	mg/kg		1,660	17,700
General Chemistry	Units			
Chloride	mg/kg	<4.94	8,840	3,490
Field Measurements	Units			
Chloride	mg/kg		6,715	1,716

Notes:

1. mg/kg : milligrams per kilogram.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. Blue shaded block denotes sample results greater than the laboratory RL.

4. --- : Not Analyzed.

Table 2 : Summary of Laboratory Analytical Results for Soil Samples Collected Outside of BermRAM Energy Resources, Yates State #2, NMOCD # 1R-4587Lea County, New Mexico

	Sample ID:	BG-1 0-6"	WSB-1 0'	WSB-1 5'	WSB-1 10'	WSB-1 15'	WSB-1 20'	WSB-1 25'
Parameters	Sample Date:	18-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units							
Benzene	mg/kg		<0.00150					
Toluene	mg/kg		<0.00200					
Ethylbenzene	mg/kg		<0.00200					
m,p-Xylenes	mg/kg		<0.00200					
o-Xylene	mg/kg		<0.00301					
Xylenes, Total	mg/kg		<0.00200					
Total BTEX	mg/kg		<0.00150					
Total Petroleum Hydrocarbons (TPH)	Units							
C6 - C10	mg/kg		<15.0					
C10 - C28	mg/kg		41.9					
C28 - C35	mg/kg		18.7					
Total TPH	mg/kg		60.6					
General Chemistry	Units							
Chloride	mg/kg	<4.94	1,000	54.9	41.8	112	269	373
Field Measurements	Units							
Chloride	mg/kg		916	42	60.5	99.1	276	277

						1		
	Sample ID:	BG-1 0-6"	ESB-2 0'	ESB-2 5'	ESB-2 10'	ESB-2 15'	ESB-2 20'	ESB-2 25'
Parameters	Sample Date:	18-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units							
Benzene	mg/kg		< 0.00149					
Toluene	mg/kg		<0.00199					
Ethylbenzene	mg/kg		<0.00199					
m,p-Xylenes	mg/kg		<0.00199					
o-Xylene	mg/kg		<0.00299					
Xylenes, Total	mg/kg		<0.00199					
Total BTEX	mg/kg		<0.00149					
Total Petroleum Hydrocarbons (TPH)	Units							
C6 - C10	mg/kg		<15.0					
C10 - C28	mg/kg		26.2					
C28 - C35	mg/kg		<15.0					
Total TPH	mg/kg		26.2					
General Chemistry	Units							
Chloride	mg/kg	<4.94	3,390	157	325	90.2	6.05	238
Field Measurements	Units							
Chloride	mg/kg		2,641	202	268	77.1	37.6	213

Notes:

1. mg/kg : milligrams per kilogram.

2. < : Analyte not detected at the laboratory reporting limit (RL).

3. Blue shaded block denotes sample results greater than the laboratory RL.

4. --- : Not Analyzed.

Table 2 : Summary of Laboratory Analytical Results for Soil Samples Collected Outside of Berm RAM Energy Resources, Yates State #2, NMOCD # 1R-4587 Lea County, New Mexico

	Sample ID:	BG-1 0-6"	SSB-3 0'	Yates #2 SSB-3 0'	SSB-3 5'	Yates #2 SSB-3 5'	SSB-3 10'	SSB-3 15'	SSB-3 20'	SSB-3 25'
Parameters	Sample Date:	18-Apr-17	11-Apr-17	7-Jun-17	11-Apr-17	7-Jun-17	11-Apr-17	11-Apr-17	11-Apr-17	11-Apr-17
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)	Units								-	
Benzene	mg/kg		<0.00150							
Toluene	mg/kg		<0.00200							
Ethylbenzene	mg/kg		<0.00200							
m,p-Xylenes	mg/kg		<0.00200							
o-Xylene	mg/kg		<0.00299							
Xylenes, Total	mg/kg		<0.00200							
Total BTEX	mg/kg		<0.00150							
Total Petroleum Hydrocarbons (TPH)	Units									
C6 - C10	mg/kg		<15.0							
C10 - C28	mg/kg		29.3							
C28 - C35	mg/kg		<15.0							
Total TPH	mg/kg		29.3							
General Chemistry	Units									
Chloride	mg/kg	<4.94	628	67.5	2,100	<4.97	31.8	29.5	6.52	102
Field Measurements	Units									
Chloride	mg/kg		559		70.3		49.0		26.4	127

Notes:

mg/kg : milligrams per kilogram.
< : Analyte not detected at the laboratory reporting limit (RL).

3. Blue shaded block denotes sample results greater than the laboratory RL.

4. --- : Not Analyzed.

FIGURES

2017–3:37pm 13, ٦ 5 D:\Projects\RamEnergy\RAMRNMD002_YatesState2\D4_CAD\F01_T0P0.dwg

11.2	A SALE		20.	1.2						-	1ª	1		N. C.	1412	1-1	The R	2
a an		12	12.5	100	4		1	3572	-	SAM			ТРН			110	1	2.3
PT 201203		95 (MR)	1000	1 mar 14	100	2.35	ar -	100	-				(mg/kg)		0.011	10.00	10.0	100
Contraction of the second		11.2	1-1- 1- 2 L	100	10.0		5			Yates #2 HA-		1,970			C 1. 43)	1313		100
Lines, South States	and the Part		1000	ALC: NO		1 Sam.	1.1.4	2 11		Yates #2 HA-		42.5		1000	10.00	13.2	- A.	-46.0
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and?	2.51	Real Property lies	- 2. P	·	1.	1.2	1.1.1		Yates #2 HA-		93.8		0.40	1.00	1.12	100	Sec. Sec.
Carlon - A	C And and	Carlo Carlo	Contract of the last	2.4.		See.	3.			Yates #2 HA-	and the second se	255	-	1.1.1.4	-100 C	1.11	75 W	1.20
A STATE OF THE STA	1000	0.5.8	1000		-	Becch				Yates #2 HA- Yates #2 HA-		689 98.0			-	6.294	1000	1000
and a			SAMPLE	CHLORIDES	ТРН	3			-		SAMPLE	CHLOR	100	ГРН	-16			141
and the second s		10	4/11/2017	(mg/kg)	(mg/kg)				1000	1000	4/11/2017	(mg/	/kg) (m	g/kg)		1930		
A Contraction	2.500	24	HA-1 0-6"	11,100	2,250	7				HA	A-2 0-6"	23,0		15.0				N.S.
		15	HA-1 6-12"	4,170	994	-	Re's				A-2 6-12"	15,9		14.9				144
SAMPLE 4/11/2017	CHLORIDES (mg/kg)	(mg/kg)		VSB-1	1	5	1		-	T		ESB-2	5	1	SAMPL 4/11/20	17 (r	LORIDES mg/kg)	TPH (mg/kg)
WSB-1 0'	1,000	60.6	•	100	COLOR.	. A	1000	1			100	ESD-2			ESB-2 0'		3,390	26.2
WSB-1 5'	54.9		and the second data	-	Sec. Pro	100	N	- 4	1	1.1					ESB-2 5'		157	
WSB-1 10'	41.8			100.000		1000	· ·	100	10 M	100					ESB-2 10'		325	
WSB-1 15'	112			100-1		HA-4	24		55m						ESB-2 15'		90.2	-
WSB-1 20'	269					0			-	HA-3			1.00	-	ESB-2 20'		6.05	
WSB-1 25'	373					F		-	-	-	Mr. Sec.	1000	Sec. 10.	100	ESB-2 25'	In Street	238	-
	6.3	-	Participa -						12		11-1				-			
ACCOUNT AND A DOWN		and the second se	SAMPLE 4/11/2017		TPH mg/kg)	2.00	in the second	18.1	atha.		SAMPLE 1/11/2017	CHLORIDES (mg/kg)	i TPH (mg/kg)	13	1000	8 A 8	111-1	2.77
Mart In St. Towner, Name	1011040	HI HI	A-4 0-6"		1,660	-10246	1000		2.200	HA-3 0-6		4,540	7,480	- X	2002	125	01225	
100000000000000000000000000000000000000	613 TO 10	-	A-4 6-12"		17,700	2.23	Ca. [3	SSB-3	600	HA-3 6-9		2,200	1,790	1200	1997	22257	23.5	Sec.
52.00		1	132	Sec. You	200			330-3		52					Sec.		P	
SA	AMPLE	HLORIDES	ТРН	BG-1	201	1.1	1000		and the second se	IPLE	CHLORIDES	TPH	450	100	Sec. 3	111	3.532	24.92
and the second sec	18/2017	(mg/kg)	(mg/kg)		C	and a	Berg	- Car		/2017	(mg/kg)	(mg/kg)	Ch. pt	No. and	The start of L	and the	- low	10.00
BG-1 0-6"		<4.94		The state	1 3	11150	TO TR	120	SSB-3 0' SSB-3 5'		628	29.3	AT AF	ST.	425 2.4	241	1 TE	147
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		15 4	a line my	SAMP	IE	CHLORIDES	TPH	Color and	SSB-3 5		31.8	-	10-00	N.A.E.	(24) 443	and the second	See. 1	266
1	and the	MPP-	1712	6/7/20		(mg/kg)	(mg/kg)	100	SSB-3 15'		29.5	-	2000	125	S. 34 2 . 3	1000	in and	125
The second	North C	Par an	State and a	Yates #2 SSB-3	0'	67.5		E.	SSB-3 20'		6.52	-	a fac	2-21	FART	CET M	100	19.53
- Wanter A star	all and	1000	3487.22	Yates #2 SSB-3	5'	<4.97		200	SSB-3 25'		102		Delt's	1 400 7	125.00.80	21.5	ACT 24	10
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	COLORA	a training	No. of Lot of Lo	and the second s	- Martin		1-60	2000	1422	ENP.W.	a gate that	a she	100	150	Carta -	State of	1 they	7623
a degrad for	"Sarri	130 mg	+ Rient	Anna	Same -	1. 6. 6.	and the	100	14.3	34.20	100000	1000	2000	20 83	State of the	SSP 13	6115	11
DURCE: AERIAL PHOTOGRAPH DATED SE	DTEMBED 30 2014	and a	and the second	A 40 1 1 1 1 1	1000	A DECKS	20.00	-	100.00	and the second s	10.00	1000	100	1 11	1.	(DADTION)	100	1000
GOOGLE EARTH PRO SCREEN CA	APTURE																	

	LEGEND
● ^{HA-1}	LOCATION OF SOIL BORING SAMPLE
SSB-3	LOCATION OF HAND AUGERED SAMPLE
● ^{BG-1}	LOCATION OF BACKGROUND SOIL SAMPLE

				1150
	E LOCATION ED DATA	IS WITH		
			PROJECT NUMBER	FIGURE NUMBER
MNM\GHR				
GHR	SCALE	1"= 20'	RAMRNM0002	2
SKG	DATE	7/13/2017		

ATTACHMENT A

FORM C-141

District I 1625 N. French Dr., Hobbs, NM 88240 <u>District II</u> 811 S. First St., Artesia, NM 88210 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rela	ase Notifi	catio	n and Co	orrective A	ction	5		
			INCIC		catio.	OPERAT			Initial Report	🔲 Final Re	epor
Name of Co	mpany I	RAM ENER	RGY LLC			Contact	Matt Patt				- <u>p</u>
Address		kelly Drive,	Suite 600), Tulsa, OK 74	4135	Telephone N	No. (918) 63	8-7054			
Facility Na	ne Yates	State #2 Ta	nk Batter	у		Facility Typ	e Wellsite	location			
Surface Ow	ner Tom l	Burris (575) 370-330	9 Mineral	Owner			AF	PI No. 30-025-	30255	
				LOC	ATIO	N OF REI	LEASE				
Unit Letter	Section	Township	Range	Feet from the	North	/South Line	Feet from the	East/West I	ine County		
RECEIV	ED ¹⁶	128	38E	2310 titude	N	orth Longitud	330	East	Lea	A. 2000	
y OCD Dr	Oberdin	g at 2:20	pm, Fe	b 07, 2017	ГURE	OF RELI	17.				
Type of Rele		ltwater				Volume of			ume Recovered		
Source of Re		ater tank	-			Date and H If YES, To		ce 1/27/17 Date	e and Hour of Dis	scovery 1/27/17 a.	<u>m.</u>
Was Immedi	ale inotice G		Yes 🗌	No 🗌 Not R	Required						
By Whom?	Tom	1 Burris				Date and H					
Was a Water				•		If YES, Vo	lume Impacting	the Watercour	se.		
			Yes 🗴	No			•				
If a Watercon	urse was Imp	pacted, Descr	ibe Fully.*	k							
,											
N/A											
Describe Cau	ise of Proble	em and Reme	dial Actio	n Taken *		ide-sta	-	4			
Debenice cut											
	nel error.	12									
Describe Are	a Affected a	ind Cleanup	Action Tak	ten.*							
	ntained wit pill inside o		e. 1 bbl w	ater outside dil	ke area.	Vacuum true	ck picked up liq	uid. Waiting	; on OCD for in	struction on	
regulations a	ll operators a	are required t	o report ar	nd/or file certain	release 1	notifications an	knowledge and und perform correct	ctive actions f	or releases which	may endanger	
should their	operations ha	ave failed to	adequately	investigate and	remedia	te contaminati	arked as "Final R on that pose a the e the operator of	eat to ground	water, surface w	ater, human healt	h
federal, state					roport		e me operator or		tor compnance		
							OIL CON	SERVAT	ON DIVISIO	NC	
Signature:	Or	an			~		Hydroid	ogist		- Contraction	
	~ .	-				Approved by	Environmental S	pecialist:	- Total		
Printed Nam	e: Connie	e Swan					00/07/0	171		111	
Title:	Regul	atory Admi	nistrator			Approval Dat	te: 02/07/20	Expire Expire	ation Date:	///	
E-mail Addr	ess: csswa	an@swande	rlandok.c	om		Conditions of	f Approval:		Attacher		
	2/1/2017			(918) 621-65	33	See a	ttached Co	4	Attached	1R-458	37
Attach Addi	tional Shee	ets If Necess	sary						Ta	O17038525	546
									<u>.</u>		_
									In T	017038527	′11

Operator/Responsible Party,

The OCD has received the form C-141 you provided on __02/07/2017____ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number __1R-__4587_____ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before __03/07/2017__. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

ATTACHMENT B

BORING RECORDS

						(MVC	SOIL	GAS				C ^ 1			
GEOLOG. UNIT	DEPTH (FEET)	LITHOLOGIC DESCRIPTION	L SOIL CATION	LOG	•	PPM X <u>2.0</u> 2 4 6 8 10 12 14 16 18						SAMPLE 알				REMARK
	<u>(1 LL1)</u>	Start: 09:58 Stop: 10:38	I UNIFIED SOIL CLASSIFICATION	GRAPHIC L	2	4 6				<u>4 16</u>	18	NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: AIR:
	0—	GROUND SURFACE: CALICHE-GRAVEL SILTY SAND: LIGHT BROWN, 7.5YR 6/3, SIEVE	SM			$\left \right $	_	+	+	+	+	1	0 2.1	1.0		o
	1.0 — — —	NO. 40, 60, 120 & 200 (APPROX. 25% EACH), SUBANGULAR-SUBROUND, CALCAREOUS, CHLORIDE 916 ppm NOT SAMPLED: APPROX. 2 FOOT CLAY LAYER, PER WHITE DRILLING											2.1	NS	2.0	
	5 6.0	SAND: WHITE, 10YR 8/1, INDURATED WELL GRADED SANDS, 10% FINES, ANGULAR-SUBROUN CALCITIC, CHLORIDE 42 ppm NOT SAMPLED:	D, SW									2	0.2	1.0 NS	6.0	5
	 10	SAND: PINK, 7.5YR 7/4, INDURATED, SIEVE NO.	SP				\ \					3	13.7	1.0	<u>10.0</u> 11.0	10
	11.0— — —	40, 60 & 200 (30% EACH), CLEAN SAND, SUBROUND-ROUND, NO FINES, CALCITIC, CHLORIDE 60.5 ppm NOT SAMPLED:												NS		
	15 16.0— —	SILTY SAND: PINK 7.5YR 7/3, INDURATED, SIEVE NO. 60 & 120 (45% EACH), 10% FINES, SAND-SILT, CALCAREOUS, SUBROUNDED-WELL ROUNDED, CHLORIDE 99.1 ppm NOT SAMPLED:	SM			/						4	10.3	1.0 NS	15.0 16.0	15
	20 21.0	SILTY SAND: LIGHT BROWN 7.5YR 6/4, SIEVE NO. 60 & 120 (45% EACH), 10% FINES, CALCAREOUS, SAND-SILT, SUBROUNDED-WELL	SM		$\left\{ \right.$							5	2	5.0 NS	20.0	20
	 24.0 —	ROUNDED, CHLORIDE 276 ppm NOT SAMPLED: SAND: LIGHT BROWN, 7.5YR 6/4, SLIGHTLY MOIST,	SP									6	11.8	1.0	24.0	
	25 	SIEVE NO. 40 (90%), NO FINES, CLEAN SAND, CALCAREOUS, SUBROUND-ROUND, CHLORIDE 277 pp TOTAL DEPTH: 25.0 FEET														25
	30 —			-												30
	- - - 35															35
	AIR RETU	—	BLE (TIME OF	BORING)		JO	BI								SOU. MOO	RCES
-	WAILK 1				+	DA	ATE	DRIL	NUN		4/1	1/201		-1		
		County Road 123 • Midland, Texas 79706 • 4				DF	RILLI	ING ED E ED E	-	HOD	WHI	ROTAI TE DRI HUCKA	LLING			

			_			0	vмs	oil ga	s			SAM	1PLE		REMARKS
GEOLOG. UNIT	DEPTH (FEET)	LITHOLOGIC DESCRIPTION	L SOIL CATION	LOG	2			(<u>2.(</u> 10 12		6 18		1			
		Start: 11:35 Stop: 12:14	I UNIFIED SOIL CLASSIFICATION	GRAPHIC							NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: AIR:
	o—	GROUND SURFACE: CALICHE-GRAVEL						\square							0
	1.0 — — —	SAND: LIGHT BROWN, 7.5YR 6/4, SIEVE NO. 40, 60, 120 & 200 (20% EACH), 10% FINES, WELL GRADED, CLEAN SAND, GRAVEL-SAND-SILT MIX, CALCAREOUS, CHLORIDE 2,641ppm NOT SAMPLED:									1	9.2	NS	1.0	U
	5 —	SAND: WHITE, 10YR 8/1, INDURATED SIEVE NO.	SP					++			2	10.1	/ 1.0	5.0	5
	6.0 — — —	60 & 120 (45% EACH), 10% FINES, SUBROUND-WELL ROUND CALCAREOUS, CHLORIDE 202 ppm NOT SAMPLED:										10.1	NS	6.0	
	10 —	SAND: PINK, 7.5YR 7/4, INDURATED SIEVE NO.	SP								3		1.0	10.0	10
	11.0 — —	60 & 120 (45% EACH), POORLY GRADED FINE-LITTLE OR NO FINES, V. FINE SAND, CLEAN SAND, SUBROUND-ROUND, CALCAREOUS, CHLORIDE 268 ppm NOT SAMPLED:										8.5	NS	11.0	
														15.0	15
	16.0 — — —	SAND: PINK, 7.5YR 7/4, TOP 4" CLEAN SAND, POORLY GRADED, SIEVE NO. 60 & 120 (45% EACH), LITTLE OR NO FINES, SAME AS ABOVE, CHLORIDE 77.1 ppm SAND: WHITE, 10YR 8/1, LOWER 8" INDURATED, CLEAN SAND, CALCAREOUS	SP			+					4	11.4	4.0	16.0	15
	20—		SH					\square			5			20.0	20
	21.0 — — 24.0 —	SILTY SAND: LIGHT BROWN, 7.5YR 6/4, SIEVE NO. 40 & 60 (45% EACH), 10% FINES, SAND WITH FINES, CALCAREOUS, SUBROUND-ROUND, CHLORIDE 37.6 ppm NOT SAMPLED: SAND: LIGHT BROWN, 7.5YR 6/4, SLIGHTLY MOIS	SM ST, SP								6	6.5	1.0 NS 1.0	21.0 24.0 25.0	
	25 — – –	SIEVE NO. 40 & 60 (45% EACH), <5% FINES, POORLY GRADED, CLEAN SANDS, CALCAREOUS, SUBROUND-ROUND, CHLORIDE 213 ppm TOTAL DEPTH: 25.0 FEET												2010	25
	30 —										-				30
	_														- •
	_														
	_														
	- 35														35
		IRNS SAMPLES WATER TA	ABLE (TIME OF	BORING)		JOE	<u>3 N</u>							50U) 100	RCES
	WATER T	ABLE (24 HOURS) NS: NOT SAMI	PLED			BOF	RINC	ς Νι	ЛМВ	ER	E	SB	-2		
		ENVIRO CLEAN CARDINAL				DA DR DR	TE D ILLIN ILLE(ORILLE IG ME D BY D BY	D	4/) <u>Aif</u> WH	11/201 ROTA ITE DRI HUCKA	7 RY LLING	~		

						ov	'M SO	IL GAS	5			SAN	IPLE		REMARKS
GEOLOG. UNIT	DEPTH (FEET)	LITHOLOGIC DESCRIPTION	L SOIL CATION	LOG	24	PF	мх	<u>2.0</u> 0 12		5 18		-			
		Start: 13:11 Stop: 13:41	I UNIFIED SOIL CLASSIFICATION	GRAPHIC 1							NUMBER	OVM READING	RECOVERY	DEPTH	BACKGROUND OVM READING: SOIL: AIR:
	0—	GROUND SURFACE: NATIVE GRASSES SILTY, GRAVELLY SAND: BROWN, 7.5YR 5/4,	GM				+		$\left \right $	_	1		1.0		o
	1.0 — — —	SCHE, GRAVEL, SIEVE NO. 4, 10, 40, 60, & 120 (20% EACH) AND FINES, GRAVEL WITH FINES, WELL SORTED, ANGULAR-ROUNDED, CALCAREOUS, CHLORIDE 559 ppm NOT SAMPLED:										5.6	NS	5.0	
	5 — 6.0 — —	SAND: V. PALE BROWN, 10YR 8/3, INDURATED, SIEVE NO. 60 & 120 (45% EACH), LITTLE FINES, CLEAN SAND, SUBROUND-ROUND, CALCAREOUS, CHLORIDE 70.3 ppm NOT SAMPLED:	SP			\					2	6.3	1.0 NS	6.0	5
														10.0	10
	11.0 — 	SAND: PINK, 7.5YR 7/4, SIEVE NO. 60 & 120 (45% EACH), NO FINES-LITTLE FINES, INDURATED, CLEAN SAND, SUBROUND-ROUND, CALCAREOUS, CHLORIDE 49.0 ppm NOT SAMPLED:	SP			Ì					3	11.6	1.0 NS	11.0	10
		SAND: PINK, 7.5YR 7/4, SIEVE NO. 60 & 120 (45% EACH), LITLE FINES, INDURATED, CLEAN	SP								4	11.5	1.0	15.0 16.0	15
	 20	SAND, SUBROUND-ROUND, CALCAREOUS, CHLORIDE 55.7 ppm NOT SAMPLED:	SM								5			20.0	20
	21.0 — 	SILTY SAND: LIGHT BROWN, 7.57R 6/4, SIEVE NO. 60 & 120 (45% EACH), 10% FINES, SAND WITH FINES, SUBROUND-ROUND, CALCAREOUS, CHLORIDE 26.4 ppm NOT SAMPLED:										12.6	1.0 NS	21.0	
	24.0— 25— —	SAND: LIGHT BROWN, 7.5YR 6/4, SLIGHTLY MOIST, SIEVE NO. 40 & 60 (45% EACH), <5% FINES, POORLY GRADED CLEAN S.S., SUBROUND-ROUND, CALCAREOUS, CHLORIDE 127 ppm TOTAL DEPTH: 25.0 FEET	SP			1					6	9.3	1.0	25.0	25
	 30										-				30
	- 35 AIR RETU	IRNS SAMPLES WATER TA	BLE (TIME OF	BORING)					 M 1 /NU			Y .	RES	50U) 100	RCES 35
	WATER T	ABLE (24 HOURS) NS: NOT SAME	PLED					NU				<u>:Ам.</u> ' <u>SB</u> -			02
		ENVIRO CLEAN CARDINAL				DRII DRII	LLING	RILLEC MET BY	HOD	AIR	1/201 ROTAI TE DRI HUCKA	7 RY LLING			

					BORING	RECORD											
		Start:	10:00		NO	ő		PID	RE/	۱D	١G	S	AMP	LE		REMARI	٢S
GEOLOGIC UNIT	DEPTH	Finish:	10:35 CRIPTION LI		DESCRIPTION USCS	GRAPHIC LOG	PPI		(16 1		PID READING	RECOVERY		CKGRC D READ	
	0	DLO			DÜ	GR/									LI SOU	:	PF
	0		l Sand, Loose dish Yellow, 7 Gravel 20-4		GP							1			'	0:00 0:10	-
		Mildly	Consolidated White	d Silty Sand,	SM							3		L l	4	0:12	-
	5		rained Indura Pale Brown,		SP							4			6	0:12	
	-		ained Indurat Pale Brown, 7												8	0.10	- - -
	10	Sa	nterbedded Ir ind, Very Pale , 7/4, Caliche												<u>0</u> 1	0:21	
	15—		e Grained Sar 4, w/ Caliche Not Sample	Nodules (5cm)										1	<u>5</u> 1	0:25	
	20	Indu	ırated F. Grai Pink, 7.5YR		SP							5			<u>eo</u> 1	0:30	-
	 25																
	30																
	_																
	35																_
	_																
	40—																_
	_																
	_																_
		OUS AUGER S		WATER TAI	BLE (TIME	OF BORING)	' I						155-	<u>01</u>			
		NETRATION T	EST	L LABORATO			HOLE DIAMETER : LOCATION :_ Ram Yates St #2 NN								NM		
						NS/ SQ. FT)							Sulli				
arson & Friend	TER TABLE	: (24 HRS)	DRILL DATE : 6-7-	NR NO RECOV	BORING	NUMBER : tes #2 1A-2		ILLI	NG	00	NTR	ACT		Sca		ough D	Drilling

ATTACHMENT C

LABORATORY ANALYTICAL REPORTS

Analytical Report 550773

for Enviroclean- Midland

Project Manager: BILL GREEN

RAMRNM002

08-MAY-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

08-MAY-17

Project Manager: **BILL GREEN Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): 550773 RAMRNM002 Project Address: Yates State #2

BILL GREEN:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 550773. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 550773 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 550773

Enviroclean- Midland, Midland, TX

RAMRNM002

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
WSB-1	S	04-11-17 09:58	N/A	550773-001
WSB-1	S	04-11-17 10:10	- 5 ft	550773-002
WSB-1	S	04-11-17 10:13	- 10 ft	550773-003
WSB-1	S	04-11-17 10:16	- 15 ft	550773-004
WSB-1	S	04-11-17 10:22	- 20 ft	550773-005
WSB-1	S	04-11-17 10:38	- 25 ft	550773-006
ESB-2	S	04-11-17 11:35	N/A	550773-007
ESB-2	S	04-11-17 11:44	- 5 ft	550773-008
ESB-2	S	04-11-17 11:47	- 10 ft	550773-009
ESB-2	S	04-11-17 11:50	- 15 ft	550773-010
ESB-2	S	04-11-17 11:56	- 20 ft	550773-011
ESB-2	S	04-11-17 12:14	- 25 ft	550773-012
SSB-3	S	04-11-17 13:11	N/A	550773-013
SSB-3	S	04-11-17 13:25	- 5 ft	550773-014
SSB-3	S	04-11-17 13:28	- 10 ft	550773-015
SSB-3	S	04-11-17 13:31	- 15 ft	550773-016
SSB-3	S	04-11-17 13:34	- 20 ft	550773-017
SSB-3	S	04-11-17 13:41	- 25 ft	550773-018
HA-1	S	04-11-17 14:39	0 - 6 In	550773-019
HA-1	S	04-11-17 14:44	6 - 12 In	550773-020
HA-2	S	04-11-17 14:50	0 - 6 In	550773-021
HA-2	S	04-11-17 14:55	6 - 12 In	550773-022
HA-3	S	04-11-17 15:00	0 - 6 In	550773-023
HA-3	S	04-11-17 15:04	6 - 9 In	550773-024
HA-4	S	04-11-17 15:08	0 - 6 In	550773-025
HA-4	S	04-11-17 15:12	6 - 12 In	550773-026

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: RAMRNM002

Project ID: Work Order Number(s): 550773 Report Date: 08-*MAY-17* Date Received: 04/12/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3015080 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3015083 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3015178 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 550773

Enviroclean- Midland, Midland, TX Project Name: RAMRNM002

Date Received in Lab:Wed Apr-12-17 09:23 amReport Date:08-MAY-17Project Manager:Kelsey Brooks

	Lab Id:	550773-0	001	550773-0	02	550773-0	03	550773-0	04	550773-0	005	550773-0	06
An alusia Demonste I	Field Id:	WSB-	1	WSB-1		WSB-1		WSB-1		WSB-1	L	WSB-1	
Analysis Requested	Depth:			5 ft		10 ft		15 ft		20 ft		25 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Apr-11-17	09:58	Apr-11-17 1	0:10	Apr-11-17	10:13	Apr-11-17	10:16	Apr-11-17	10:22	Apr-11-17 1	10:38
BTEX by EPA 8021B	Extracted:	Apr-14-17	10:30										
	Analyzed:	Apr-14-17	14:06										
	Units/RL:	mg/kg	RL										
Benzene		ND	0.00150										
Toluene		ND	0.00200										
Ethylbenzene		ND	0.00200										
m,p-Xylenes		ND	0.00200										
o-Xylene		ND	0.00301										
Total Xylenes		ND	0.00200										
Total BTEX		ND	0.00150										
Inorganic Anions by EPA 300	Extracted:	Apr-17-17	13:00	Apr-17-17 1	3:00	Apr-17-17 1	3:00	Apr-17-17	3:00	May-06-17	13:00	May-06-17	13:00
	Analyzed:	Apr-17-17	14:08	Apr-17-17 1	4:33	Apr-17-17 1	4:41	Apr-17-17	4:49	May-06-17	18:31	May-06-17	18:54
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1000	4.90	54.9	4.98	41.8	4.99	112	4.90	269	4.97	373	4.95
TPH by SW8015 Mod	Extracted:	Apr-13-17	17:00										
	Analyzed:	Apr-14-17	03:16										
	Units/RL:	mg/kg	RL										
C6-C10 Gasoline Range Hydrocarbons		ND	15.0										
C10-C28 Diesel Range Organics		41.9	15.0										
C28-C35 Oil Range Hydrocarbons		18.7	15.0										
Total TPH		60.6	15.0										

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 550773

Enviroclean- Midland, Midland, TX Project Name: RAMRNM002

Date Received in Lab:Wed Apr-12-17 09:23 amReport Date:08-MAY-17Project Manager:Kelsey Brooks

	Lab Id:	550773-0	007	550773-0	08	550773-0	09	550773-0	010	550773-0	11	550773-0	12
	Field Id:	ESB-2		ESB-2		ESB-2		ESB-2		ESB-2		ESB-2	
Analysis Requested	Depth:			5 ft		10 ft		15 ft		20 ft		25 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Apr-11-17	11:35	Apr-11-17 1	1:44	Apr-11-17	11:47	Apr-11-17	11:50	Apr-11-17 1	1:56	Apr-11-17 1	2:14
BTEX by EPA 8021B	Extracted:	Apr-14-17	10:30										
	Analyzed:	Apr-14-17	14:27										
	Units/RL:	mg/kg	RL										
Benzene		ND	0.00149										
Toluene		ND	0.00199										
Ethylbenzene		ND	0.00199										
m,p-Xylenes		ND	0.00199										
o-Xylene		ND	0.00299										
Total Xylenes		ND	0.00199										
Total BTEX		ND	0.00149										
Inorganic Anions by EPA 300	Extracted:	Apr-17-17	13:00	Apr-17-17 1	3:00	Apr-17-17 1	13:00	Apr-17-17	13:00	Apr-17-17 1	3:00	Apr-20-17 1	3:00
	Analyzed:	Apr-17-17	14:57	Apr-17-17 1	5:21	Apr-17-17 1	15:29	Apr-17-17	15:37	Apr-17-17 1	6:02	Apr-20-17 1	7:27
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		3390	24.5	157	4.95	325	4.97	90.2	4.89	6.05	4.94	238	5.00
TPH by SW8015 Mod	Extracted:	Apr-13-17	17:00										
	Analyzed:	Apr-14-17	03:35										
	Units/RL:	mg/kg	RL										
C6-C10 Gasoline Range Hydrocarbons	·	ND	15.0										
C10-C28 Diesel Range Organics		26.2	15.0										
C28-C35 Oil Range Hydrocarbons		ND	15.0										
Total TPH		26.2	15.0										

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 550773

Enviroclean- Midland, Midland, TX Project Name: RAMRNM002

Date Received in Lab:Wed Apr-12-17 09:23 amReport Date:08-MAY-17Project Manager:Kelsey Brooks

	Lab Id:	550773-0	013	550773-0	14	550773-0	015	550773-0	016	550773-0	17	550773-0	018
	Field Id:	SSB-3	3	SSB-3		SSB-3		SSB-3		SSB-3		SSB-3	
Analysis Requested	Depth:			5 ft		10 ft		15 ft		20 ft		25 ft	
	Matrix:	SOIL	,	SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Apr-11-17	13:11	Apr-11-17 1	3:25	Apr-11-17	13:28	Apr-11-17	13:31	Apr-11-17	13:34	Apr-11-17	13:41
BTEX by EPA 8021B	Extracted:	Apr-15-17	08:00		-								
	Analyzed:	Apr-15-17	17:28										
	Units/RL:	mg/kg	RL										
Benzene		ND	0.00150										
Toluene		ND	0.00200										
Ethylbenzene		ND	0.00200										
m,p-Xylenes		ND	0.00200										
o-Xylene		ND	0.00299										
Total Xylenes		ND	0.00200										
Total BTEX		ND	0.00150										
Inorganic Anions by EPA 300	Extracted:	Apr-17-17	13:00	Apr-17-17 1	3:00	Apr-17-17	13:00	Apr-17-17	13:00	Apr-17-17 1	3:00	May-06-17	13:00
	Analyzed:	Apr-17-17	15:46	Apr-17-17 1	5:54	Apr-17-17	16:26	Apr-17-17	16:34	Apr-17-17 1	6:58	May-06-17	19:01
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		628	4.88	2100	24.9	31.8	4.94	29.5	4.93	6.52	4.88	102	4.94
TPH by SW8015 Mod	Extracted:	Apr-13-17	17:00										
	Analyzed:	Apr-14-17	03:55										
	Units/RL:	mg/kg	RL										
C6-C10 Gasoline Range Hydrocarbons		ND	15.0										
C10-C28 Diesel Range Organics		29.3	15.0										
C28-C35 Oil Range Hydrocarbons		ND	15.0										
Total TPH		29.3	15.0										

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 550773

Enviroclean- Midland, Midland, TX Project Name: RAMRNM002

Date Received in Lab:Wed Apr-12-17 09:23 amReport Date:08-MAY-17Project Manager:Kelsey Brooks

	Lab Id:	550773-0	019	550773-0)20	550773-0	021	550773-0)22	550773-	023	550773-	024						
Analysis Requested	Field Id:	HA-1		HA-1		HA-2		HA-2		HA-3		HA-3	3						
malysis Requesieu	Depth:	0-6 Ir	ı	6-12 I	n	0-6 Ir	l I	6-12 I	n	0-6 In		6-9 II	1						
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	-						
	Sampled:	Apr-11-17	14:39	Apr-11-17 14:44		Apr-11-17 14:50		Apr-11-17	14:55	Apr-11-17 15:00		Apr-11-17	15:04						
BTEX by EPA 8021B	Extracted:	Apr-17-17	07:30	Apr-15-17	08:00	Apr-15-17 08:00		Apr-17-17 07:30		Apr-14-17	10:30	Apr-14-17	10:30						
	Analyzed:	Apr-17-17	10:06	Apr-15-17	18:01	Apr-15-17	18:17	Apr-17-17	10:23	Apr-14-17	17:33	Apr-14-17	18:06						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL						
Benzene		ND	0.00500	ND	0.00150	ND	0.00152	ND	0.00258	ND	0.00152	0.00199	0.00149						
Toluene		ND	0.00667	ND	0.00200	ND	0.00203	ND	0.00344	ND	0.00202	ND	0.00199						
Ethylbenzene		ND	0.00667	ND	0.00200	ND	0.00203	ND	0.00344	ND	0.00202	0.00360	0.00199						
m,p-Xylenes		ND	0.00667	ND	0.00200	ND	0.00203	ND	0.00344	ND	0.00202	0.00370	0.00199						
o-Xylene		ND	0.0100	ND	0.00301	ND	0.00304	ND	0.00515	ND	0.00303	ND	0.00299						
Total Xylenes		ND	0.00667	ND	0.00200	ND	0.00203	ND	0.00344	ND	0.00202	0.00370	0.00199						
Total BTEX		ND	0.00500	ND	0.00150	ND	0.00152	ND	0.00258	ND	0.00152	0.00929	0.00149						
Inorganic Anions by EPA 300	Extracted:	Apr-17-17	13:00	Apr-17-17 13:00		Apr-17-17 16:50		Apr-17-17 16:50		Apr-17-17 16:50		Apr-17-17	16:50						
	Analyzed:	Apr-17-17	17:06	Apr-17-17	17:15	Apr-17-17	18:27	Apr-17-17	18:36	Apr-17-17	18:44	Apr-17-17	18:52						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL						
Chloride		11100	97.1	4170	24.9	23000	243	15900	246	4540	49.2	2200	24.8						
TPH by SW8015 Mod	Extracted:	Apr-13-17	17:00	Apr-13-17	17:00	Apr-13-17	17:00	Apr-13-17	Apr-13-17 17:00		Apr-13-17 17:00		Apr-13-17 17:00		Apr-13-17 17:00		17:00	Apr-13-17	17:00
	Analyzed:	Apr-14-17	07:19	Apr-14-17	04:34	Apr-14-17	04:54	Apr-14-17	05:14	Apr-14-17	05:35	Apr-14-17	05:57						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL						
C6-C10 Gasoline Range Hydrocarbons		ND	15.0	ND	15.0	ND	15.0	ND	14.9	84.7	74.8	ND	74.9						
C10-C28 Diesel Range Organics		1900	15.0	872	15.0	ND	15.0	ND	14.9	6220	74.8	1640	74.9						
C28-C35 Oil Range Hydrocarbons		354	15.0	122	15.0	ND	15.0	ND	14.9	1180	74.8	151	74.9						
Total TPH		2250	15.0	994	15.0	ND	15.0	ND	14.9	7480	74.8	1790	74.9						

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 550773

Enviroclean- Midland, Midland, TX Project Name: RAMRNM002

Date Received in Lab:Wed Apr-12-17 09:23 amReport Date:08-MAY-17Project Manager:Kelsey Brooks

	Lab Id:	550773-0	125	550773-0	126		
Analysis Requested	Field Id:	HA-4		HA-4			
	Depth:	0-6 In	l	6-12 I	n		
	Matrix:	SOIL		SOIL			
	Sampled:	Apr-11-17	15:08	Apr-11-17	15:12		
BTEX by EPA 8021B	Extracted:	Apr-14-17	10:30	Apr-14-17	10:30		
	Analyzed:	Apr-14-17	17:49	Apr-14-17	18:22		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		ND	0.00148	0.0892	0.00150		
Toluene		ND	0.00198	0.147	0.00200		
Ethylbenzene		ND	0.00198	0.0984	0.00200		
m,p-Xylenes		ND	0.00198	0.373	0.00200		
o-Xylene		ND	0.00296	0.178	0.00299		
Total Xylenes		ND	0.00198	0.551	0.00200		
Total BTEX		ND	0.00148	0.886	0.00150		
Inorganic Anions by EPA 300	Extracted:	Apr-17-17	16:50	Apr-17-17	16:50		
	Analyzed:	Apr-17-17	19:16	Apr-17-17	19:24		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		8840	48.9	3490	24.3		
TPH by SW8015 Mod	Extracted:	Apr-13-17	17:00	Apr-13-17	17:00		
	Analyzed:	Apr-14-17	06:19	Apr-14-17	06:59		
	Units/RL:	mg/kg	RL	mg/kg	RL		
C6-C10 Gasoline Range Hydrocarbons		ND	74.9	1640	74.9		
C10-C28 Diesel Range Organics		1520	74.9	14100	74.9		
C28-C35 Oil Range Hydrocarbons		142	74.9	1980	74.9		
Total TPH		1660	74.9	17700	74.9		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Project Name: RAMRNM002

Lab Batch #		Sample: 550773-001 / SMP	Batc							
Units:	mg/kg	Date Analyzed: 04/14/17 03:16	SU	RROGATE R	ECOVERY S	STUDY				
	TPH	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooctar	ne		111	99.8	111	70-135				
o-Terphenyl			55.7	49.9	112	70-135				
Lab Batch #	: 3015031	Sample: 550773-007 / SMP	Batc	h: 1 Matrix	: Soil	·				
Units:	mg/kg	Date Analyzed: 04/14/17 03:35	SU	RROGATE R	ECOVERY S	STUDY				
	TPH I	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctar	22	Analytes	06.0	00.8		70.125				
	le		96.0	99.8	96	70-135				
o-Terphenyl Lab Batch #	. 2015021	Sample: 550773-013 / SMP	49.7 Bate	49.9 h: 1 Matrix	100	70-135				
		-								
Units:	mg/kg	Date Analyzed: 04/14/17 03:55	st	RROGATE R	ECOVERY S	STUDY				
	TPH	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooctar	ne		94.3	99.7	95	70-135				
o-Terphenyl			47.1	49.9	94	70-135				
Lab Batch #	: 3015031	Sample: 550773-020 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 04:34	SURROGATE RECOVERY STUDY							
	TPH I	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooctar	ne		94.0	99.7	94	70-135				
o-Terphenyl			47.9	49.9	96	70-135				
Lab Batch #		Sample: 550773-021 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 04:54	SU	RROGATE R	ECOVERY S	STUDY				
	TPH by SW8015 Mod			True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chloroocta	Chlorooctane			99.8	92	70-135				
o-Terphenyl			48.3	49.9	97	70-135				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

	ders : 55077: #: 3015031	Sample: 550773-022 / SMP	Batc	Project ID h: 1 Matrix						
Units:	mg/kg	Date Analyzed: 04/14/17 05:14	SU	RROGATE R	ECOVERY S	STUDY				
	TPH I	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chloroocta	ane		95.6	99.6	96	70-135				
o-Terphenyl			50.0	49.8	100	70-135				
Lab Batch	#: 3015031	Sample: 550773-023 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 05:35	SU	RROGATE R	ECOVERY S	STUDY				
	TPH I	oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chloroocta	200	Anarytes	110	99.7		70-135				
o-Terphenyl			51.0		110					
Lab Batch		Sample: 550773-024 / SMP	51.0 Bate	49.9 h: 1 Matrix	102	70-135				
Lab Batch i Units:		Date Analyzed: 04/14/17 05:57								
Units:	mg/kg	Date Analyzed: 04/14/17 05.57	SU	RROGATE R	ECOVERYS	STUDY				
	TPH	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chloroocta	ane		86.4	99.9	86	70-135				
o-Terphenyl			44.5	50.0	89	70-135				
Lab Batch	#: 3015031	Sample: 550773-025 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 06:19	SURROGATE RECOVERY STUDY							
	TPH	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chloroocta			88.2	99.8	88	70-135				
o-Terphenyl			46.9	49.9	94	70-135				
	#: 3015031	Sample: 550773-026 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 06:59	SU	RROGATE R	ECOVERY S	STUDY				
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage			
	Analytes				[D]					
1-Chloroocta	Chlorooctane			99.8	91	70-135				
o-Terphenyl			56.2	49.9	113	70-135				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

Lab Batch #:	ers: 550773 : 3015031	Sample: 550773-019 / SMP	Batcl	Project ID h: 1 Matrix						
U nits:	mg/kg	Date Analyzed: 04/14/17 07:19	SU	RROGATE R	ECOVERY S	STUDY				
	TPH I	oy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooctan	ne		94.9	99.9	95	70-135				
o-Terphenyl			39.8	50.0	80	70-135				
Lab Batch #:	3015080	Sample: 550773-001 / SMP	Batcl	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 14:06	SU	RROGATE R	ECOVERY S	STUDY				
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1.4 D:flee h		Analytes	0.0211	0.0200		00.120				
1,4-Difluorobo			0.0311	0.0300	104	80-120				
4-Bromofluor Lab Batch #:		Same 550772 007 / SMD	0.0255	0.0300	85	80-120				
		Sample: 550773-007 / SMP	Batcl		-					
Units:	mg/kg	Date Analyzed: 04/14/17 14:27	SU	RROGATE R	ECOVERY S	STUDY				
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluorob	enzene		0.0281	0.0300	94	80-120				
4-Bromofluor	obenzene		0.0250	0.0300	83	80-120				
Lab Batch #:	: 3015080	Sample: 550773-023 / SMP	Batcl	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 17:33	SURROGATE RECOVERY STUDY							
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorob	enzene		0.0323	0.0300	108	80-120				
4-Bromofluor			0.0251	0.0300	84	80-120				
Lab Batch #:	: 3015080	Sample: 550773-025 / SMP	Batcl							
Units:	mg/kg	Date Analyzed: 04/14/17 17:49		RROGATE R		STUDY				
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
14 Difluorch	-			0.0200		90.120				
	I-Difluorobenzene			0.0300	115	80-120				
4-DIOINOIIUOľ	obelizene		0.0326	0.0300	109	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

	rders : 55077: #: 3015080	Sample: 550773-024 / SMP	Batch	Project ID 1: 1 Matrix			
Units:	mg/kg	Date Analyzed: 04/14/17 18:06	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0302	0.0300	101	80-120	
4-Bromoflu	iorobenzene		0.0276	0.0300	92	80-120	
Lab Batch	#: 3015080	Sample: 550773-026 / SMP	Batch	n: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/14/17 18:22	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
145.0	1	Analytes					
1,4-Difluor			0.0349	0.0300	116	80-120	
	iorobenzene	G	0.0320	0.0300	107	80-120	
	#: 3015083	Sample: 550773-013 / SMP	Batch				
Units:	mg/kg	Date Analyzed: 04/15/17 17:28	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes		[1]	[D]	/01	
1,4-Difluor	obenzene		0.0346	0.0300	115	80-120	
4-Bromoflu	iorobenzene		0.0310	0.0300	103	80-120	
Lab Batch	#: 3015083	Sample: 550773-020 / SMP	Batch	n: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/15/17 18:01	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	Anarytes	0.0344	0.0300	115	80-120	
1	iorobenzene		0.0344	0.0300	113	80-120	
	#: 3015083	Sample: 550773-021 / SMP	Batch			80-120	
Units:	mg/kg	Date Analyzed: 04/15/17 18:17					
omis:	mg/ Kg	Date Analyzeu. 04/13/17/10.17	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
140'0		Analytes	0.0346	0.0700		00.470	
,	-Difluorobenzene			0.0300	115	80-120	
4-Bromoflu	iorobenzene		0.0346	0.0300	115	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

	rders : 55077 #: 3015178	3, Sample: 550773-019 / SMP	Batch	Project ID 1 Matrix			
Units:	mg/kg	Date Analyzed: 04/17/17 10:06	SUF	ROGATE R	RECOVERY	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0357	0.0300	119	80-120	
4-Bromoflu	orobenzene		0.0323	0.0300	108	80-120	
Lab Batch	#: 3015178	Sample: 550773-022 / SMP	Batch	1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/17/17 10:23	SUF	RROGATE R	RECOVERY	STUDY	
	BTEX	A polytos	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4.5.4	1	Analytes					
1,4-Difluor			0.0282	0.0300	94	80-120	
	orobenzene		0.0276	0.0300	92	80-120	
	#: 3015031	Sample: 723140-1-BLK / BL			: Solid		
Units:	mg/kg	Date Analyzed: 04/14/17 02:18	SUF	ROGATE R	RECOVERY	STUDY	
	TPH I	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		95.4	100	95	70-135	
o-Terpheny	1		50.6	50.0	101	70-135	
Lab Batch	#: 3015080	Sample: 723176-1-BLK / BL	K Batch	1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/14/17 13:02	SUF	RROGATE R	RECOVERY	STUDY	
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluor	obenzene		0.0348	0.0300	116	80-120	
· ·	orobenzene		0.0326	0.0300	109	80-120	
	#: 3015083	Sample: 723183-1-BLK / BL			: Solid	00 120	
Units:	mg/kg	Date Analyzed: 04/15/17 17:12			RECOVERY	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluor		4 Annualy (C.5	0.0360	0.0300	120	80-120	
·	orobenzene		0.0324	0.0300	120	00-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

Units:	#: 3015178	Sample: 723245-1-BLK / B								
Units:	mg/kg	Date Analyzed: 04/17/17 09:34	SU	RROGATE R	ECOVERY S	STUDY				
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluor	obenzene		0.0351	0.0300	117	80-120				
4-Bromoflu	orobenzene		0.0303	0.0300	101	80-120				
Lab Batch	#: 3015031	Sample: 723140-1-BKS / B	KS Bate	h: 1 Matrix	: Solid					
Units:	mg/kg	Date Analyzed: 04/14/17 02:38	SU	RROGATE R	ECOVERY S	STUDY				
		oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooc		Anaryus	94.6	100	95	70-135				
o-Terpheny			46.2	50.0	93	70-135				
	#: 3015080	Sample: 723176-1-BKS / B			-	70-155				
Units:	mg/kg	Date Analyzed: 04/14/17 11:40								
Units:	iiig/kg	Date Analyzed: 04/14/17 11.40	SU	RROGATE R	ECOVERY S	STUDY				
	BTEX	5 by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluor	obenzene		0.0339	0.0300	113	80-120				
4-Bromoflu	orobenzene		0.0287	0.0300	96	80-120				
Lab Batch	#: 3015083	Sample: 723183-1-BKS / B	KS Bate	h: 1 Matrix	: Solid					
Units:	mg/kg	Date Analyzed: 04/15/17 15:50	SURROGATE RECOVERY STUDY							
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluor		Anaryus	0.0306	0.0300	102	80-120				
· ·	orobenzene		0.0384	0.0300	95	80-120				
	#: 3015178	Sample: 723245-1-BKS / B			Solid 95	00-120				
Units:	mg/kg	Date Analyzed: 04/17/17 07:22		RROGATE R		STUDY				
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluor	l-Difluorobenzene			0.0300	115	80-120				
	orobenzene		0.0252	0.0300	84	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

	#: 3015031	Sample: 723140-1-BSD / BS					
Units:	mg/kg	Date Analyzed: 04/14/17 02:57	SU	RROGATE R	ECOVERY S	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooc	tane		125	100	125	70-135	
o-Terpheny	1		62.3	50.0	125	70-135	
Lab Batch	#: 3015080	Sample: 723176-1-BSD / BS	SD Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/14/17 11:56	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
140.0	1	Analytes	0.0000	0.0000		00.100	
1,4-Difluor			0.0323	0.0300	108	80-120	
	#: 3015083	0	0.0291	0.0300	97	80-120	
		Sample: 723183-1-BSD / BS					
Units:	mg/kg	Date Analyzed: 04/15/17 16:06	SU	RROGATE R	ECOVERY	STUDY	
	втеу	K by EPA 8021B	Amount Found	True Amount	Recovery	Control Limits	Flags
		Analytes	[A]	[B]	%R [D]	%R	
1,4-Difluor	obenzene		0.0320	0.0300	107	80-120	
4-Bromoflu	orobenzene		0.0301	0.0300	100	80-120	
Lab Batch	#: 3015178	Sample: 723245-1-BSD / BS	SD Bate	h: 1 Matrix	: Solid	<u> </u>	
Units:	mg/kg	Date Analyzed: 04/17/17 07:39	SU	RROGATE R	ECOVERY S	STUDY	
	втеу	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	1 mary tes	0.0281	0.0300	94	80-120	
·	orobenzene		0.0315	0.0300	105	80-120	
	#: 3015031	Sample: 550773-001 S / MS				00 120	
Units:	mg/kg	Date Analyzed: 04/14/17 09:50		RROGATE R		STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooc	tane		118	99.6	118	70-135	
o-Terpheny	1		57.5	49.8	115	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

	r ders : 550773 #: 3015080	3, Sample: 550692-001 S / MS	Batch	Project ID 1: 1 Matrix						
U nits:	mg/kg	Date Analyzed: 04/14/17 12:13	SU	RROGATE R	ECOVERY S	STUDY				
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluor	obenzene		0.0281	0.0300	94	80-120				
4-Bromoflu	orobenzene		0.0290	0.0300	97	80-120				
Lab Batch	#: 3015083	Sample: 550773-013 S / MS	Batch	n: 1 Matrix	: Soil					
U nits:	mg/kg	Date Analyzed: 04/15/17 16:23	SU	RROGATE R	ECOVERY S	STUDY				
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluor		Anarytes	0.0202	0.0200		00.120				
,	orobenzene		0.0303	0.0300	101	80-120				
		Samely 5508(0,001,S / MS	0.0345	0.0300	115	80-120				
	#: 3015178	Sample: 550869-001 S / MS	Batch		-					
U nits:	mg/kg	Date Analyzed: 04/17/17 08:28	SU	RROGATE R	ECOVERY S	STUDY				
		5 by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage			
		Analytes			[D]					
1,4-Difluor	obenzene		0.0356	0.0300	119	80-120				
4-Bromoflu	orobenzene		0.0346	0.0300	115	80-120				
Lab Batch	#: 3015031	Sample: 550773-001 SD / MS	D Batch	n: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 04/14/17 14:21	SURROGATE RECOVERY STUDY							
		oy SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooc	tane	-	97.5	99.8	98	70-135				
o-Terpheny	ſ		43.6	49.9	87	70-135				
	#: 3015080	Sample: 550692-001 SD / MS								
Units:	mg/kg	Date Analyzed: 04/14/17 20:16	SU	RROGATE R	ECOVERY S	STUDY				
		C by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
140'0	Analytes		0.0312	0.0200		00.100				
	-Difluorobenzene			0.0300	104	80-120				
4-Bromoflu	lorobenzene		0.0299	0.0300	100	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

	orders : 55077		Project ID:							
Lab Batch Units:	h #: 3015083 mg/kg	Sample: 550773-013 SD / M Date Analyzed: 04/15/17 16:39	MSD Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY							
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluo	robenzene		0.0328	0.0300	109	80-120				
4-Bromofl	uorobenzene		0.0354	0.0300	118	80-120				
Lab Batcl	h #: 3015178	Sample: 550869-001 SD / M	ASD Batel	h: 1 Matrix:	Soil	<u>, </u>				
Units:	mg/kg	Date Analyzed: 04/17/17 08:45	SU	RROGATE RI	ECOVERY S	STUDY				
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1 4 Diffue	noh on zon o	Anarytes	0.0240	0.0200		00.120	L			
1,4-Difluo			0.0349	0.0300	116	80-120	ļ			
4-Bromofl	uorobenzene		0.0292	0.0300	97	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: RAMRNM002

Work Order #: 550773							Proj	ject ID:			
Analyst: ALJ	Da	ate Prepar	red: 04/14/202	17			Date A	nalyzed: (04/14/2017		
Lab Batch ID: 3015080 Sample: 723176-1-E	BKS	Batc	h #: 1					Matrix:	Solid		
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00151	0.101	0.112	111	0.100	0.114	114	2	70-130	35	
Toluene	<0.00202	0.101	0.123	122	0.100	0.127	127	3	70-130	35	
Ethylbenzene	<0.00202	0.101	0.120	119	0.100	0.128	128	6	71-129	35	
m,p-Xylenes	<0.00202	0.202	0.235	116	0.201	0.248	123	5	70-135	35	
o-Xylene	< 0.00302	0.101	0.120	119	0.100	0.129	129	7	71-133	35	
Analyst: ALJ	Da	Date Prepared: 04/15/2017 Date Analyzed: 04/15/2017									
Lab Batch ID: 3015083 Sample: 723183-1-E	KS Batch #: 1 Matrix: Solid										
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00150	0.100	0.0981	98	0.0998	0.0908	91	8	70-130	35	
Toluene	<0.00200	0.100	0.103	103	0.0998	0.0946	95	9	70-130	35	
Ethylbenzene	<0.00200	0.100	0.103	103	0.0998	0.0915	92	12	71-129	35	
m,p-Xylenes	<0.00200	0.200	0.202	101	0.200	0.180	90	12	70-135	35	
o-Xylene	< 0.00301	0.100	0.106	106	0.0998	0.0961	96	10	71-133	35	

Project Name: RAMRNM002

Work Order #: 550773								Pro	ject ID:						
Analyst: ALJ		D	ate Prepar	red: 04/17/20	17			Date A	nalyzed: (04/17/2017					
Lab Batch ID: 3015178	Sample: 723245-1-1	BKS	Batc	h #: 1					Matrix: S	Solid					
Units: mg/kg			BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY				
BTEX by E	PA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]							
Benzene		< 0.00150	0.100	0.0887	89	0.101	0.0946	94	6	70-130	35				
Toluene		< 0.00200	0.100	0.106	106	0.101	0.102	101	4	70-130	35				
Ethylbenzene		< 0.00200	0.100	0.104	104	0.101	0.100	99	4	71-129	35				
m,p-Xylenes		< 0.00200	0.200	0.206	103	0.202	0.196	97	5	70-135	35				
o-Xylene		< 0.00301	0.100	0.122	122	0.101	0.100	99	20	71-133	35				
Analyst: MGO		D	ate Prepar	red: 04/17/20	17			Date A	nalyzed: (04/17/2017	ł				
Lab Batch ID: 3015173	Sample: 723207-1-1	BKS	Batc	h #: 1					Matrix: S	Solid					
Units: mg/kg			BLAN	K /BLANK	SPIKE / I	BLANK S	ANK SPIKE DUPLICATE RECOVERY STUDY								
Inorganic Anion Analytes	s by EPA 300	Sample Result Added Spike Spike Added Spike Dup. RPD Limits Limits									Control Limits %RPD	Flag			
Chloride		<4.97	249	253	102	249	250	100	1	90-110	20				

Project Name: RAMRNM002

Work Order #: 550773							Pro	ject ID:			
Analyst: MGO	D	ate Prepar	ed: 04/17/20	17			Date A	nalyzed:	04/17/2017		
Lab Batch ID: 3015179 Sample: 723217-1-E	BKS	Batch	n#: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	ŊŶ	
Inorganic Anions by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<4.91	246	246	100	246	248	101	1	90-110	20	
Analyst: MGO	D	ate Prepar	ed: 04/20/20	17			Date A	nalyzed:	04/20/2017		
Lab Batch ID: 3015441 Sample: 723387-1-H	BKS	Batch	n#: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<4.97	249	272	109	249	270	108	1	90-110	20	
Analyst: MGO	D	ate Prepar	ed: 05/06/20	17	1	1	Date A	nalyzed:	05/06/2017	1	I
Lab Batch ID: 3016700 Sample: 724187-1-E	BKS	Batch	n #: 1					Matrix:	Solid		
Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
				Blank	Cuilto	Blank	Blk. Spk		Control	Control	
Inorganic Anions by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Spike %R [D]	Spike Added [E]	Spike Duplicate Result [F]	Dup. %R [G]	RPD %	Limits %R	Limits %RPD	Flag

Project Name: RAMRNM002

Work Order	# : 550773							Pro	ject ID:			
Analyst:	ARM	D	ate Prepar	ed: 04/13/201	7			Date A	nalyzed: (04/14/2017		
Lab Batch ID:	: 3015031 Sample: 723140-1-	BKS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK S	SPIKE /]	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUE	ΟY	
	TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	rtes		[B]	[C]	[D]	[E]	Result [F]	[G]				
C6-C10 G	asoline Range Hydrocarbons	<15.0	1000	938	94	1000	988	99	5	70-135	35	
C10-C28 I	Diesel Range Organics	<15.0	1000	946	95	1000	1060	106	11	70-135	35	

Form 3 - MS Recoveries

Project Name: RAMRNM002

Work Order #: 550773					
Lab Batch #: 3015173		Proj	ect ID:		
Date Analyzed: 04/17/2017	Date Prepared: 04/17/2017	A	Analyst: M	IGO	
QC- Sample ID: 550773-001 S	Batch #: 1]	Matrix: S	oil	
Reporting Units: mg/kg	MATRIX / MA	ATRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Spike Result Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A] [B]				
Chloride	1000 245	1230	94	90-110	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Project Name: RAMRNM002

Work Order # : 550773						Project II):				
Lab Batch ID: 3015080	QC- Sample ID:	550692	-001 S	Ba	tch #:	1 Matrix	c: Soil				
Date Analyzed: 04/14/2017	Date Prepared:	04/14/2	017	An	alyst: A	٨LJ					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]	Kesut [F]	[G]	/0	701	70KI D	
Benzene	< 0.00151	0.101	0.0803	80	0.100	0.0817	82	2	70-130	35	
Toluene	<0.00201	0.101	0.0875	87	0.100	0.0816	82	7	70-130	35	
Ethylbenzene	<0.00201	0.101	0.0750	74	0.100	0.0731	73	3	71-129	35	
m,p-Xylenes	< 0.00201	0.201	0.151	75	0.200	0.146	73	3	70-135	35	
o-Xylene	< 0.00302	0.101	0.0844	84	0.100	0.0801	80	5	71-133	35	
Lab Batch ID: 3015083	QC- Sample ID:	550773	-013 S	Ba	tch #:	1 Matrix	c: Soil				
Date Analyzed: 04/15/2017	Date Prepared:	04/15/2	017	An	alyst: A	٨LJ					
Reporting Units: mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00151	0.101	0.0903	89	0.100	0.0757	76	18	70-130	35	
Toluene	< 0.00202	0.101	0.0830	82	0.100	0.0829	83	0	70-130	35	
Ethylbenzene	<0.00202	0.101	0.0776	77	0.100	0.0820	82	6	71-129	35	
m,p-Xylenes	<0.00202	0.202	0.149	74	0.201	0.159	79	6	70-135	35	
o-Xylene	< 0.00302	0.101	0.0834	83	0.100	0.0941	94	12	71-133	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: RAMRNM002

Work Order # :	550773						Project II) :				
Lab Batch ID:	3015178	QC- Sample ID:	550869	001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/17/2017	Date Prepared:	04/17/2	017	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
]	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene		<0.00270	0.180	0.0844	47	0.183	0.0827	45	2	70-130	35	X
Toluene		< 0.00360	0.180	0.0664	37	0.183	0.0598	33	10	70-130	35	X
Ethylbenzene		< 0.00360	0.180	0.0482	27	0.183	0.0542	30	12	71-129	35	X
m,p-Xylenes		< 0.00360	0.360	0.0856	24	0.366	0.0872	24	2	70-135	35	X
o-Xylene		< 0.00540	0.180	0.0498	28	0.183	0.0494	27	1	71-133	35	X
Lab Batch ID:	3015173	QC- Sample ID:	550773	011 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/17/2017	Date Prepared:	04/17/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		6.05	247	251	99	247	244	96	3	90-110	20	
Lab Batch ID:	3015179	QC- Sample ID:	550795	001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed:	04/17/2017	Date Prepared:	04/17/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Turan	agenia Amiang by EDA 200	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
TUDL	ganic Anions by EPA 300	Result	-						%	%R		
Inor	Analytes		Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: RAMRNM002

Work Order # :	550773						Project II) :				
Lab Batch ID:	3015179	QC- Sample ID:	550864	-002 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/17/2017	Date Prepared:	04/17/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		61.4	245	304	99	245	310	101	2	90-110	20	
Lab Batch ID:	3015441	QC- Sample ID:	551283	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/20/2017	Date Prepared:	04/20/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]	[C]	%K [D]	E]	Kesuit [F]	%K [G]	70	%K	%KPD	
Chloride		<4.86	243	306	126	243	306	126	0	90-110	20	Х
Lab Batch ID:	3016700	QC- Sample ID:	552429	-006 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	05/06/2017	Date Prepared:	05/06/2	017	An	alyst: N	MGO					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inor	ganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride		933	245	1140	84	245	1140	84	0	90-110	20	Х

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: RAMRNM002

Work Order # :	550773						Project II):				
Lab Batch ID:	3015031 Q	C- Sample ID:	550773	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/14/2017	Date Prepared:	04/13/2	017	An	alyst: A	ARM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
]	TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C10 Gasoline	e Range Hydrocarbons	<14.9	996	1060	106	998	993	99	7	70-135	35	
C10-C28 Diesel	Range Organics	41.9	996	1060	102	998	1070	103	1	70-135	35	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Enviro Clean / Midland Texas	Project Name/Number: DIAMONIM 0002	Analytical Information
2405 E. County Rd. 123 Midland, TX 79706	Project Location: Vatcs State #2	
Email: bill.green@eccgrp.com Phone No: wendy.north@eccgrp.com 432.301.0209	Invoice To: ap@eccgrp.com Enviro Clean	
Project Contact: William Green	Oklahoma City, OK 73172-1090 PO Number:	1.5-11
Sampler's Name: KI'M WWW WATH I Kuha		o TP
and a strength and a	Collection Preservative Used	exico les Meta
No. Field ID / Point of Collection	Date Date Time Matrix # of bottle HCI NaOH/Zn Acetate HNO3 H2SO4 NaOH NaHSO4 MEOH ICE	Texas T New Me BTEX Chlorid PAH Glycol RCRA T VOCs SVOCs HD/c
1 WISB-I	N HHH 95851	XXX
2 WSB-1	514-1171 1010 S 1 X	· · · · ·
3 WSB-1	X 101 HILL 10 13 S 1 1 101 X	
* WSB-1	154-11-11 1016 51	X
5 WSB-1	201 11-11 1022 S 1 X	
• WSB-1	2541HT 1038 5 1	
7 ESB-2	X 1 1 2 281 1414 X	XXX
° ESB-2	SI 4-11-11 INHY S 1 X	
1	INT SI	
10 ESB-2	151 HHH 1150 S 1 X	
" ESB-2	S 1	
	25 4117 1214 S 1 X	
Turnaround Time (Business days)	Data Deliverable Information	Notes:
Same Day TAT	Level II Std QC Level IV (Full Data Pkg /r	rg /raw data)
Next Day EMERGENCY	Level III Std QC+ Forms TRRP Level IV	
2 Day EMERGENCY Contract TAT	Level 3 (CLP Forms)	
3 Day EMERGENCY	TRRP Checklist	
TAT Starts Day received by Lab, if received by 3:00 pm	pm	FED-EX / UPS: Tracking #
Relinquished by Sampler / / SAMPLE CUSTODY	TIME: Received BY:	Date Time: Received by Tu
Relinquished by Under	17.00	Date Time: Received By:
Relinquished by:		Preserved where applicable OrNoe

CHAIN OF CUSTOPY Project Location: Project Location: <th>Project Name/Number: TAMING NUM DO 2 Project Location: Vat SS Kut HT2 Invice To: al@eccipp.com Enviro Caan P O Box 72:090 Otabiona Chy, OK 73172:1090 Po Number: Po Number: Po Number: Po Number: Po Number: Po Number: Preservative Used Otabiona Chy, OK 73172:1090 Otabiona Chy, OK 73172:1090 Preservative Used Otabiona Chy, OK 73172:1090 Preservative Used Preservative Used Otabiona Chy, OK 73172:1090 Preservative Used Valuet 1930 Valuet 193</th>	Project Name/Number: TAMING NUM DO 2 Project Location: Vat SS Kut HT2 Invice To: al@eccipp.com Enviro Caan P O Box 72:090 Otabiona Chy, OK 73172:1090 Po Number: Po Number: Po Number: Po Number: Po Number: Po Number: Preservative Used Otabiona Chy, OK 73172:1090 Otabiona Chy, OK 73172:1090 Preservative Used Otabiona Chy, OK 73172:1090 Preservative Used Preservative Used Otabiona Chy, OK 73172:1090 Preservative Used Valuet 1930 Valuet 193
Image: Normation Image: Nacelate Image: Nacelate Preservative Used Image: Nacelate HN03 Image: Nacelate HN04 Image: Nacelate HI	CUSTODY
	Date Time:

Page 30 of 32

Final 1.002

3 KHUCKUDA	Relinquished by: []	Relinquisted by Sampler:	TAT Starts Day received	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	Turnaround Time (Business days)	12 (11	10	9	8	7	σ	5	4	3	2 44-4	+ HA-H	No. Field ID / P		Sampler's Name: Ky m laci	Project Contact: William	Email: bill.green@eccgrp.com wendy.north@eccgrp.com khuckaba@eccgrp.com	2405 E. County Rd. 123 Midland, TX 79706	Enviro Clean / Midland Texas		ENVIRO
	(SAMPLE USIOUT MUST BE DOCUMENT ED BELOW BACH TIME SAMPLES CRAINEE POSSESSION, INCLUDING COS	TAT Starts Day received by Lab, if received by 3:00 pm		Contract TAT	7 Day TAT	S Day TAT	ness days)													Field ID / Point of Collection	7.1	erty Huckaba	William Green	432.301.0209		Texas		SERVICES, LLC
4-12-17	-	Date Time:	om																10-12" 4	0-6" 4-1-17	Sample Depth	0		P	In In	פ	P		
17:23 3	17-10 1 Rec	IA TA R					Ø										_		41117		Date	Collection		Oklahoma City, OK 73172-1090 PO Number:	Enviro Clean P O Box 721090	Project Location:	Project Name/Number:		
3 VV	1 Received By	Received By		TRRP	Level	Level	Level II Std QC												1512	802	Time			City, OK 7	ap@e 21090	ation:	e/Number		
KO	1 K	5	TIME CAS	TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	II Std QC	Data D		-									51	S	Matrix # of bottle	_		3172-109	ap@ecbgrp.com 90	Vates	RAN		
MAL	N N				ms)	Forms		Data Deliverable Information													HCI			0		50			
UC	0	NOE POSSE						formation	X	-									-		NaOH/Zn Acetate HNO3	Prese				the :	RNM 0002		
4 Custody Seal #	2 Relinquished By	Relinquished By				TRRP Level IV	Level IV (-	4	111											H2SO4 NaOH	Preservative Used				14	002		
pal #	hed By:	ned By				velIV	Level IV (Full Data Pi		-												NaHSO4 MEOH	sed							
							Pkg /raw data)		-	-									×	X	ICE Texas T	PH	- TX	100	5				
Droco			INERV				data)												X	×	New Me	xico	TP	H - 8	015M				
hind wh	Date Time:	Date Time:											_	1					X	X	BTEX	_						Ana	
oro an	me:	me:	E	-	-	-	-			_	-	_	-			_	-		X	X	Chlorid	es						Analytical Information	
Procession where applicable			FED-EX / UPS: Tracking #					Notes:		-		_				_		-	-	-	PAH							al Info	
4	2 T	Recei	UPS: T					S.							1		/		1		RCRA	leta	Is					ormat	000
	ived B	ivedB	racking																		VOCs							ion	1
Onlice	-	1 de	#																		SVOCs	_							ç
1	-	De la								_											401	d				_			V
Temp: D.3 IRIU.IT	5 D.P.	he																			Field Comments	11009	A=Air	W = Wipe O = Other	SW = Surface water SL = Sludge OW = Ocean Water	DW = Drinking Water WW = Waste Water P = Product/Oil	S = Soil/Sed/Solid GW = Ground Water	Matrix Codes	

Client: Enviroclean- Midland

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC

Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 04/12/2017 09:23:00 AM Temperature Measuring device used : R8 Work Order #: 550773 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? .4 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica WAMER Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 04/12/2017

Date: 04/12/2017

Analytical Report 551226

for Enviroclean- Midland

Project Manager: BILL GREEN

RAMRNM0002

24-APR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

24-APR-17

Project Manager: **BILL GREEN Enviroclean- Midland** 2405 ECR 123 Midland, TX 79706

Reference: XENCO Report No(s): **551226 RAMRNM0002** Project Address: Yates State #2

BILL GREEN:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 551226. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 551226 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

BG-1

Sample Cross Reference 551226

Enviroclean- Midland, Midland, TX

RAMRNM0002

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	04-18-17 13:54	0 - 6 In	551226-001

CASE NARRATIVE

Client Name: Enviroclean- Midland Project Name: RAMRNM0002

Project ID: Work Order Number(s): 551226 Report Date:24-APR-17Date Received:04/19/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Project Id:Contact:BILL GREENProject Location:Yates State #2

Certificate of Analysis Summary 551226

Enviroclean- Midland, Midland, TX Project Name: RAMRNM0002

Date Received in Lab:Wed Apr-19-17 08:00 amReport Date:24-APR-17Project Manager:Kelsey Brooks

	Lab Id:	551226-001			
Analysis Requested	Field Id:	BG-1			
Analysis Kequestea	Depth:	0-6 In			
	Matrix:	SOIL			
	Sampled:	Apr-18-17 13:54			
Inorganic Anions by EPA 300	Extracted:	Apr-20-17 13:00			
	Analyzed:	Apr-20-17 16:06			
	Units/RL:	mg/kg RL			
Chloride		ND 4.94			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Project Name: RAMRNM0002

Work Order #: 551226							Proj	ject ID:			
Analyst: MGO	D	ate Prepar	red: 04/20/201	17			Date A	nalyzed: (04/20/2017		
Lab Batch ID: 3015441 Sample: 723387-1-B	KS	Batcl	h #: 1		Matrix: Solid						
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
Inorganic Anions by EPA 300	Blank Sample Result [A]		Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<4.97	249	272	109	249	270	108	1	90-110	20	

Project Name: RAMRNM0002

V	Vork Order # :	551226						Project II):				
L	ab Batch ID:	3015441	QC- Sample ID:	551283	-001 S	Ba	tch #:	1 Matrix	k: Soil				
D	ate Analyzed:	04/20/2017	Date Prepared:	04/20/2	017	An	alyst: N	MGO					
R	Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	Inor	ganic Anions by EPA 300	Parent Sample	Spike	Spiked Sample Result	Sample	-	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
		Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
	Chloride		<4.86	243	306	126	243	306	126	0	90-110	20	X

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $RPD = 200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

Relinquished by:	1 all with the		TAT Starts Day received by Lab, if received by 3:00 pm	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY 7 Day TAT	Same Day TAT	Turnaround Time (Business days)	12	11	10	6	8	7	Ø	Ch	4	ω	Ν	1 BG-1	No. Field ID / Point of Collection		Sampler's Name: Kim how with Kaha	am Green	Email: bill green@eccgip.com Phone No: wendy north@eccgip.com 432.301.0209	35 E. County Rd. 123 Iland, TX 79706	Enviro Clean / Midland Texas		ENVIRO CLEAN
Date Time: Date Time:	4-19-17 8:00	IN MUST BE DOCUMENTE	0 pm																	0-6" 4-1817	Sample Depth Date	Collection	PO Number:		5	rigeri Location.	Project N.		
Received By:	1 6 Day	D BELOW EACH TIME S	5	TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Dat												13:54 S	Time Matrix		er:	Oklahoma City, OK 73172-1090	lean	A4	Project Name/Number: R		
Reling 4 Custo	A MUL Reling	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY		list	Forms)			Data Deliverable Information		2+	1/1										# of bottle HCI NaOH/Zn Acetate HNO3 H2SO4	Preservative Used		1090	20m	Vates State #2	RAMKNM0002		CHAIN OF CUSTODY
Relinquished By: 4 Custody Seal #	Relinquished By:	INCLUDING COURIER DEI				TRRP Level IV	Level IV (Full Data Pkg /raw data)			+										×	NaOH NaHSO4 MEOH ICE Texas T		TX 1	005		1			STODY
Date Time: Preserved where applicable	Date Time:		FED.				lata)													×	New Me BTEX Chlorid PAH		трн	- 80	15M			Analytical	
Received By:	Received By: 2		FED-EX / UPS: Tracking #					Notes:										/			Glycol RCRA M VOCs SVOCs	Aetals						Analytical Information	coc of
Temp: Ci Ci IR ID:R-8					Ŧ																Field Comments	7EE199	O = Other A = Air	OW = Ocean Water W = Wipe	SW = Surface water SL = Sludge	DW = Drinking Water WW = Waste Water P = Product/Oil	S = Soil/Sed/Solid GW = Ground Water	Matrix Codes	No. MIUUTUS

Final 1.000

Client: Enviroclean- Midland

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 04/19/2017 08:00:00 AM Temperature Measuring device used : R8 Work Order #: 551226 Comments Sample Receipt Checklist -9.7 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A N/A #6 Custody Seals intact on sample bottles? #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica WAMER Jessica Kramer Checklist reviewed by: Kelsey Brooks

Date: 04/19/2017

Date: 04/19/2017

Project Id:17-155-01Contact:Mark LarsonProject Location:NM

Certificate of Analysis Summary 555003

Larson and Associates, Inc., Midland, TX Project Name: Enviroclean/RAM Yates State #2

Date Received in Lab:Thu Jun-08-17 11:09 amReport Date:13-JUN-17Project Manager:Liz Givens

	Lab Id:	555003-0	002	555003-0	03	555003-0	04	555003-0	05	555003-0	06	555003-0	07
Analysis Requested	Field Id:	Yates #2 HA	Yates #2 HA-2 3'		Yates #2 HA-2 5'		Yates #2 HA-2 7'		-2 10'	Yates #2 HA	-2 15'	Yates #2 HA-2 20'	
Anulysis Kequesieu	Depth:												
	Matrix:	SOIL		SOIL	SOIL		SOIL			SOIL		SOIL	
	Sampled:	Jun-07-17 10:10		Jun-07-17 10:12		Jun-07-17 10:15		Jun-07-17 10:21		Jun-07-17 10:25		Jun-07-17 10:30	
Chloride by EPA 300	Extracted:	Jun-12-17 15:50		Jun-12-17 15:50		Jun-12-17 1	5:50	Jun-12-17 1	5:50	Jun-12-17 15:50		Jun-12-17 15:50	
	Analyzed:	Jun-12-17	17:28	Jun-12-17 1	7:05	Jun-12-17 1	7:36	Jun-12-17 1	7:43	Jun-12-17 1	7:51	Jun-12-17 1	8:14
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1970	24.8	42.5	4.93	93.8	4.88	255	4.88	689	4.93	98.0	4.97

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brand Rotinson

Brandi Ritcherson Project Manager

Project Id:17-133-01Contact:Mark LarsonProject Location:NM

Certificate of Analysis Summary 555003

Larson and Associates, Inc., Midland, TX Project Name: Enviroclean/RAM Yates State #2

Date Received in Lab:Thu Jun-08-17 11:09 amReport Date:13-JUN-17Project Manager:Liz Givens

	Lab Id:	555003-008		555003-0	09		
Analysis Requested	Field Id:	Yates #2 SSB-3 0'		Yates #2 SSI	8-3 5'		
Anulysis Kequesieu	Depth:						
	Matrix:	SOIL		SOIL			
	Sampled:	Jun-07-17 10:36		Jun-07-17 10:45			
Chloride by EPA 300	Extracted:	Jun-12-17 15:50		Jun-12-17 15:50			
	Analyzed:	Jun-12-17 18:21		Jun-12-17 1	8:29		
	Units/RL:	mg/kg Rl	L	mg/kg	RL		
Chloride		67.5 4.9	6	<4.97	4.97		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Brand Rotinson

Brandi Ritcherson Project Manager

Analytical Report 555003

for Larson and Associates, Inc.

Project Manager: Mark Larson

Enviroclean/RAM Yates State #2

17-155-01

13-JUN-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

13-JUN-17

Project Manager: **Mark Larson Larson and Associates, Inc.** P. O. Box 50685 Midland, TX 79710

Reference: XENCO Report No(s): **555003 Enviroclean/RAM Yates State #2** Project Address: NM

Mark Larson :

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 555003. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 555003 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

mand

Brandi Ritcherson Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

Yates #2 HA-2 3'
Yates #2 HA-2 5'
Yates #2 HA-2 7'
Yates #2 HA-2 10'
Yates #2 HA-2 15'
Yates #2 HA-2 20'
Yates #2 SSB-3 0'
Yates #2 SSB-3 5'
Yates #2 HA-2 0'

Sample Cross Reference 555003

Larson and Associates, Inc., Midland, TX

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-07-17 10:10		555003-002
S	06-07-17 10:12		555003-003
S	06-07-17 10:15		555003-004
S	06-07-17 10:21		555003-005
S	06-07-17 10:25		555003-006
S	06-07-17 10:30		555003-007
S	06-07-17 10:36		555003-008
S	06-07-17 10:45		555003-009
S	06-07-17 10:00		Not Analyzed

CASE NARRATIVE

Client Name: Larson and Associates, Inc. Project Name: Enviroclean/RAM Yates State #2

 Project ID:
 17-155-01

 Work Order Number(s):
 555003

 Report Date:
 13-JUN-17

 Date Received:
 06/08/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Larson and Associates, Inc., Midland, TX

Sample Id: Lab Sample I	Yates #2 HA-2 3' d: 555003-002		Matrix: Date Collec	Soil cted: 06.07.17 10.10	Date Received:06.08.17 11.0			9
Analytical M	ethod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	t Weight	
Seq Number:	3019514		-					
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1970	24.8	mg/kg	06.12.17 17.28		5

Larson and Associates, Inc., Midland, TX

Sample Id: Lab Sample I	Yates #2 HA-2 5' d: 555003-003		Matrix: Date Collec	Soil cted: 06.07.17 10.12	Date Received:06.08.17 11.0			9
Analytical M	ethod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	t Weight	
Seq Number:	3019514							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	42.5	4.93	mg/kg	06.12.17 17.05		1

Larson and Associates, Inc., Midland, TX

Sample Id: Lab Sample I	Ample Id: Yates #2 HA-2 7' ab Sample Id: 555003-004			Soil cted: 06.07.17 10.15	Date Received:06.08.17 11.09			9
Analytical M	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	et Weight	
Seq Number:	3019514							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	93.8	4.88	mg/kg	06.12.17 17.36		1

Larson and Associates, Inc., Midland, TX

Sample Id: Lab Sample I	Yates #2 HA-2 10' d: 555003-005		Matrix: Date Colle	Soil cted: 06.07.17 10.21	Date Received:06.08.17 11.09			9
Analytical Me	ethod: Chloride by EPA	. 300				Prep Method: E3	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	et Weight	
Seq Number:	3019514							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	255	4.88	mg/kg	06.12.17 17.43		1

Larson and Associates, Inc., Midland, TX

Sample Id: Yates #2 HA-2 15' Lab Sample Id: 555003-006			Matrix: Date Colle	Soil cted: 06.07.17 10.25	Date Received:06.08.17 11.09			9
Analytical M	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	et Weight	
Seq Number:	3019514							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	689	4.93	mg/kg	06.12.17 17.51		1

Larson and Associates, Inc., Midland, TX

Sample Id: Lab Sample I	ple Id: Yates #2 HA-2 20' Sample Id: 555003-007			Soil cted: 06.07.17 10.30	Date Received:06.08.17 11.09			9
Analytical M	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	et Weight	
Seq Number:	3019514							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	98.0	4.97	mg/kg	06.12.17 18.14		1

Larson and Associates, Inc., Midland, TX

Sample Id: Lab Sample I	Yates #2 SSB-3 0' d: 555003-008		Matrix: Date Colle	Soil cted: 06.07.17 10.36	Date Received:06.08.17 11.09			9
Analytical M	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	06.12.17 15.50		Basis: We	et Weight	
Seq Number:	3019514							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	67.5	4.96	mg/kg	06.12.17 18.21		1

Larson and Associates, Inc., Midland, TX

Sample Id: Yates #2 SSB-3 5' Lab Sample Id: 555003-009		Matrix: Date Collec	Soil ted: 06.07.17 10.45	Date Received:06.08.17 11.09			9
Analytical Method: Chloride by EPA	300				Prep Method: E3	00P	
Tech: MGO					% Moisture:		
Analyst: MGO		Date Prep:	06.12.17 15.50		Basis: We	et Weight	
Seq Number: 3019514							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<4.97	4.97	mg/kg	06.12.17 18.29	U	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(.)

QC Summary 555003

Larson and Associates, Inc.

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300)P	
Seq Number:	3019514			Matrix:	Solid				Date Pre	ep: 06.1	2.17	
MB Sample Id:	725971-1-BLK		LCS Sar	nple Id:	725971-1-	BKS		LCSI	D Sample	Id: 7259	971-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<2.50	125	127	102	125	100	90-110	2	20	mg/kg	06.12.17 16:02	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	od: E30	0P	
Seq Number:	3019514			Matrix:	Soil				Date Pre	ep: 06.1	2.17	
Parent Sample Id:	555003-003		MS Sar	nple Id:	555003-00)3 S		MSI	D Sample	Id: 5550	003-003 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	42.5	247	297	103	296	103	90-110	0	20	mg/kg	06.12.17 17:13	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30)P	
Seq Number:	3019514			Matrix:	Soil				Date Pre	ep: 06.1	2.17	
Parent Sample Id:	555004-002		MS Sar	nple Id:	555004-00	02 S		MSI	O Sample	Id: 5550	004-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<4.89	245	255	104	254	104	90-110	0	20	mg/kg	06.12.17 18:59	

PRESERVATION PRESERVATION Anamix # of Containers HCI HO HCI HO HCI HO HCI HO HO HO <th>In: MHPLE LARSON- ISLAMR SULLAYR LAI PROJECT SSOIL P=PAINT SL-SULDGE PESERVATION LAI PROJECT A-ANR Date Time Matrix PRESERVATION PRESERVATION A-ANR I IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 IO: 1/2 IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 III: 0/2 III: 0/2 IIIIIIIIII 1 1 1<th>CARRIER BILL #</th></th>	In: MHPLE LARSON- ISLAMR SULLAYR LAI PROJECT SSOIL P=PAINT SL-SULDGE PESERVATION LAI PROJECT A-ANR Date Time Matrix PRESERVATION PRESERVATION A-ANR I IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 IO: 1/2 IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 A-ANR IO: 1/2 1 1 1 1 III: 0/2 III: 0/2 IIIIIIIIII 1 1 1 <th>CARRIER BILL #</th>	CARRIER BILL #
S=SOL P=PAINT N=WNTER SL=SLUDGE AAAR OT=OTHER OTTOO OT=OTHER OT=OTHER	In: MIRLE LAR.SOULYAR SULLAR.SOULYAR PRESERVATION LAI PROJE S=SOIL P=PAINT SI=SUBDE PRESERVATION PRESERVATION Introduction A=AR Date Time Matrix # of Containers PRESERVATION Introduction Q Introduction Introduction Introduction Introduction Introduction Introduction Introduction S Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction S Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction S Introduction Introduction Introduction Introduction Introduction Introduction Introduction S Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction S Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction Introduction <th>ND</th>	ND
S=SOIL M=WATER S=SLUDGE A-AIR OT=OTHER SL=SLUDGE Time Lab # Date Time Matrix S S S S S S S S S S S S S	In: MARLE LARSON- IGLAMI. SULLIVAN PRESERVATION LAI PROJE SSOL SSOL S-SOL SSOL PRESERVATION INIT Mainter SL-SLUDGE Mainter PRESERVATION INIT INIT Mainter Init Init Init Init Init Init Mainter Init Init <th>_</th>	_
S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER A=AIR OT=OTHER A=AIR OT=OTHER A=AIR OT=OTHER A=AIR OT=OTHER A=AIR OT=OTHER A=AIR OT=OTHER Date Time Matrix PRESERVATION A=AIR OT=OTHER Time Matrix # of Containers A=AIR OT=OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHER A=AIR OTHE	ID: MARLE LAR.SOU- IQUAR. SULLYRY INTER PERAINT S=SOIL PERAINT SL=SLUDGE PRESERVATION SL=SLUDGE M=WATER SL=SLUDGE Time Matrix PRESERVATION PRESERVATION A=AIR Date Time Matrix of Containers PRESERVATION Lab # Date Time Matrix of Containers PRESERVATION Lab # Date Time Matrix of Containers PRESERVED 0 IO:1/2 I I HCI HNO3 IO:1/2 0 IO:1/2 I I HA2SO4 IO:1/2 IO:1/2 0 IO:3/6 I I H/2/1 IO:1/2 IO:1/2 0 IO:3/6 I I I/2/1 IO:1/2 0 IO:4/5 I I I/2/1 IO:1/2 0 IO:3/6 I I I/2/1 IO:1/2 0 IO:4/5 I I I/2/1 IO:1/2 0 IO:4/6 I III/2 III/2 III/2 0 IO:4/6 III/2 III/2 III/2 III/2	
S=SOIL P=PAINT W=WMTER SL=SLUDGE A=AIR OT=OTHER A=AIR OTHER A=AIR OTHER A=AI	In: MAPLE LAR.SOV- IGLANIX SULLIVATION PRESERVATION LAI PROJE S=SOL W=WATER A=AIR P=PAINT SL=SLUDGE OT=OTHER PRESERVATION OT=OTHER PRESERVATION PRESERVATION	
S=SOL W=WWRER A=AIR PEPAINT SL=SLUDGE OT=OTHER PRESERVATION OT=OTHER PRESERVATION OT=OTHER A=AIR Date Time Matrix # of Containers Lab # Date Time Matrix # of Containers I Io: Io Io: Io I HNO3 I Io: Io I HNO3 NaOH I Io: Io I HO3 Io: Io I Io: Io I HO3 Io: Io I Io: Io I Io: Io Io: Io I Io: Io I Io: Io Io: Io I Io: Io I Io: Io Io: Io I Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io Io: Io	In: MARLE LARSON- IGUARI SULLIVA- PERAINT S=SOIL P=PAINT SULDIGE PESERVATION VI LAI PROJE M=WARER SL=SLUDGE OT=OTHER PRESERVATION PRESERVATION LAI PROJE A=AIR Date Time Matrix # of Containers PRESERVATION Lab Lab # Date Time Matrix # of Containers Image: Containers Image: Containers Image: Containers 100:12 10:12 1 1 HNO3 Image: Containers Image: Containers Image: Containers Image: Containers Image: Containers 5 10:12 1 1 HNO3 Image: Containers 6 10:12 1 1 Image: Containers Image: Containers <td< td=""><td>-</td></td<>	-
S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER A=AIR Interview A=AIR Interview <t< td=""><td>It: MARE LARSON-IBLAN SULLINA PERSERVATION LAIPROJE S=SOIL P=PAINT N=NATER SL=SLUDGE PRESERVATION LAIPROJE M=MATER SL=SLUDGE Time Matrix PRESERVATION PRESERVATION LAIPROJE A=AIR Date Time Matrix # of Containers PRESERVED PR</td><td></td></t<>	It: MARE LARSON-IBLAN SULLINA PERSERVATION LAIPROJE S=SOIL P=PAINT N=NATER SL=SLUDGE PRESERVATION LAIPROJE M=MATER SL=SLUDGE Time Matrix PRESERVATION PRESERVATION LAIPROJE A=AIR Date Time Matrix # of Containers PRESERVED PR	
S=SOL W=WATER A=AIR P=PAINT SI=SLUDGE OT=OTHER PRESERVATION A=AIR OT=OTHER SI=SLUDGE OT=OTHER PRESERVATION A=AIR Date Time Matrix A=AIR Date Time Matrix # of Containers A=AIR Date Time Matrix # of Containers A=AIR IO:12 I HCI HNO3 HCI IO:15 I I HCI HO3 HCI HO3 IO:12 I I I I I I I IO:15 I	to: MARE LARSON- IGLAM SULLYAN PEPAINT PRESERVATION LAI PROJE S=SOL P=PAINT S=SULDGE PEPAINT PRESERVATION LAI PROJE A=AIR OT=OTHER S=SULGE PRESERVATION PRESERVATION I PROJE A=AIR Date Time Matrix # of Containers PRESERVED I PROJE A=AIR Date Time Matrix # of Containers I PROJE I PROJE A=AIR Date Time Matrix # of Containers I PROJE I PROJE A=AIR Date Time Matrix # of Containers I PROJE I PROJE A=AIR Date Time Matrix # of Containers I PROJE I PROJE A=AIR Date Time Matrix # of Containers I PROJE I PROJE A=AIR Date I I PROJE I I PROJE I PROJE I PROJE I PROJE A=AIR Date Time Matrix # of Containers I PROJE I PROJE A=AIR I PROJE I PROJE I PROJE I PROJE I PROJE I PROJE A=AIR I PROJE I PROJE I PROJE I PROJE I PROJE I PROJE <	
S=SOIL W=WATER P=PAINT SL=SLUDGE PRESERVATION V V=WATER SL=SLUDGE V=VATER V=VATER V=VATER V=VATER <td>Io: MARLE LARSON - IBLARI SULLIVAN PEPAINT PRESERVATION LAI PROJE S=SOIL P=PAINT SL=SLUDGE PRESERVATION PRESERVATION LAI PROJE A=AIR OT=OTHER SL=SLUDGE PRESERVATION PRESERVATION PRESERVATION LAI PROJE A=AIR Date Time Matrix # of Containers PRESERVED PRESERVED</td> <td></td>	Io: MARLE LARSON - IBLARI SULLIVAN PEPAINT PRESERVATION LAI PROJE S=SOIL P=PAINT SL=SLUDGE PRESERVATION PRESERVATION LAI PROJE A=AIR OT=OTHER SL=SLUDGE PRESERVATION PRESERVATION PRESERVATION LAI PROJE A=AIR Date Time Matrix # of Containers PRESERVED	
S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER OT=OTHER SL=SLUDGE A=AIR OT=OTHER OT=OTHER Time Matrix HCI HNO3 HCI HNO3 HCI HNO3 HCI HNO3 HCI HNO3 HCI HNO3 HCI HO: 12 H HO: 15 H HO: 16 HO HO: 17 HO: 16 HO: 16 HCI HO: 17 HO: 16 HO: 18 HCI HO: 16 HCI HO: 17 HCI HO: 18 HCI HO: 16 HCI HO: 17 HCI HO: 18 HCI HO: 16 HCI HO: 17 HCI HO: 18 HCI HO: 19 HCI HO: 10 HCI <td>to: MRPL LARSON - BLAR SULLYR S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER Date Time Matrix # of Containers CV G/7/17 100:00 S I HOUS S I I I HOUS S I I I HOUS S I I I HOUS S I I I I I I I I I I I I I I I I I I I</td> <td></td>	to: MRPL LARSON - BLAR SULLYR S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER Date Time Matrix # of Containers CV G/7/17 100:00 S I HOUS S I I I HOUS S I I I HOUS S I I I HOUS S I I I I I I I I I I I I I I I I I I I	
S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER SL=SLUDGE Time Matrix H of Containers Lab # Date Time Matrix # of Containers	to: MRPLE LARSON- BLAR SULLYR S=SOIL M=WATER A=AIR Date Lab # Lab # Lab # Date Lab # Date Lab # Lab # Date Lab # Date Lab # Date Lab # Lab # Date Lab # Da	1
S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER OT=OTHER OT=OTHER Lab # Date Time Matrix # of Containers Lab # Date Time Matrix # of Containers U Lab # Date Time Matrix # of Containers HCI HNO_3 DATE THE TIME MATRIX # of Containers	to: MRPLE LARSON- IBLAR SOLLIVAN LAI PROJE S=SOIL P=PAINT SL=SLUDGE PRESERVATION LAI PROJE M=WATER SL=SLUDGE PRESERVATION PRESERVATION LAI PROJE A=AIR OT=OTHER OT=OTHER PRESERVATION PRESERVATION LAI PROJE A=AIR OT=OTHER Time Matrix # of Containers PRESERVED PRESERVED Lab # Date Time Matrix # of Containers PRESERVED PRESERVED PRESERVED 3 Lab # Date Time Matrix # of Containers PRESERVED PRESER	
CV Lab # Date Time Matrix # of Containers U Lab # Date Time Matrix # of Containers U Lab # Date Time Matrix # of Containers U Lab # Date Time Matrix # of Containers U Lab # Date Time Matrix # of Containers U Lab # Date Time Matrix # of Containers U UNPRESERVED V V V V U U V U V V	In: MRPLE LARSON - IBLAR Source LAI PROJE SSOIL P=PAINT PRESERVATION LAI PROJE W=WATER SL=SLUDGE PRESERVATION PRESERVATION A=AIR OT=OTHER PRESERVATION PRESERVATION Lab # Date Time Matrix # of Containers Lab # Date Time Matrix # of Containers UNPRESERVED State State State OT Lab # Date Time Matrix	
Lab # Date Time Matrix # of Containers HCI UNPRESERVED VER UNPRESERVED VER	Time Matrix # of Containers HCI UNPRESERVED HIR SOLUTION HIR SERVED HIS 400 CC	
A=AIR OT=OTHER SL=SLUDGE PERVATION A=AIR OT=OTHER AIN OT	T T T T T T T T T T T T T T	1.10101
S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER	T T T T T T T T T T T T T T	
S=SOIL P=PAINT PRESERVATION	T T T T T T T T T T T T T T	
	BUAND SULLIVAN LAI PROJE	1 1
Environmental Consultants A32-687-0001 PO #: LAB WORK ORD		

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 06/08/2017 11:09:00 AM Temperature Measuring device used : R8 Work Order #: 555003 Comments Sample Receipt Checklist 5.2 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes #14 Sample matrix/ properties agree with Chain of Custody? Yes #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer

Date: 06/09/2017

Checklist reviewed by: Hely Taylor Holly Taylor

Date: 06/09/2017