

Holly Energy Partners 8 Inch Crouch Line

Work Plan

Section 36, Township 16S, Range 36E Lea County, New Mexico 1RP-4885

January 12, 2018

Prepared for:

Holly Energy Partners 1602 W. Main Artesia, NM 88210

By:

Safety & Environmental Solutions, Inc. 703 East Clinton Street Hobbs, New Mexico 88240 (575) 397-0510

TABLE OF CONTENTS

I.	COMPANY CONTACTS	1
II.	BACKGROUND	1
III.	SURFACE AND GROUND WATER	1
IV.	CHARACTERIZATION	1
V.	WORK PERFORMED	2
VI.	ACTION PLAN	2
VII.	FIGURES & APPENDICES	2
F	igure 1 – Vicinity Map	3
F	igure 2 – Site Plan ppendix A – C-141	4
A	ppenaix A – C-141	5
A	ppendix B – Groundwater	6
A	ppendix C – Analytical Results	/

I. Company Contacts

Representative	Company	Telephone	E-mail
Melanie Isenberg	Holly Energy Partners	214-605-8303	Melanie.isenberg@hollyenergy.com
Bob Allen	SESI	575-397-0510	ballen@sesi-nm.com

II. Background

Safety and Environmental Solutions, Inc., hereinafter referred to as (SESI) was engaged by Holly Energy Partners to assess a spill area at the 8 Inch Crouch Line, concerning a forty five (45) bbl. oil release. This site is situated in Lea County, Section 36, Township 16S, and Range 36E.

According to the C-141: a contractor conducting maintenance activity on the crouch pipeline, struck the line causing a release of approximately forty five (45) bbls of crude oil. Due to the maintenance activity being conducted where there was a 10x35x3 trench that had been dug, the released crude oil collected in the trench. A vacuum truck was able to collect thirty five (35) bbls of crude with an estimated ten (10) bbls remaining in the soil. The release was contained and flow stopped. Soil sampling will be conducted and a remediation plan determined upon receipt of sampling results.

The Crouch 8" line carries over 40,000 barrels of crude oil per day into the refinery for use and distribution to other pipelines.

III. Surface and Ground Water

Research of the New Mexico Office of the State Engineer records indicates the average depth to groundwater for the area to be 81 bgs. However, according to the "2016 Annual Facility-Wide Groundwater Monitoring Report" for the HollyFrontier Navajo Refining LLC, all of the wells immediately adjacent to this location are over 100 bgs.

IV. Characterization

The target cleanup levels are determined using the *Guidelines for Remediation of Leaks, Spills and Releases* published by the NMOCD (August 13, 1993). Based on the ranking criteria presented below, the applicable Recommended Remediation Action Levels (RRAL) are 10 parts per million (ppm) Benzene, 50 ppm combined benzene, toluene, ethyl benzene, and total xylenes (BTEX), and 5,000 ppm Total Petroleum Hydrocarbons (TPH). Characterization of vertical extent of chloride concentration to a level of 250 mg/kg (PPM) is also required.

Depth to Ground Water:									
(Vertical distance from contaminants to	Less than 50 feet	20 points							
seasonal high water elevation of	50 feet to 99 feet	10 points							
groundwater)	>100 feet	0 points	X						
Wellhead Protection Area:									
(Less than 200 feet from a private domestic	Yes	20 points							
water source; or less than 1000 feet from all	No	0 points	Х						
other water sources)									
Distance to Surface Water:									
(Horizontal distance to perennial lakes,	Less than 200 feet	20 points							
ponds, rivers, streams, creeks, irrigation	200 feet to 1000 feet	10 points							
canals and ditches)	>1000 feet	0 points	Х						
RANKING SCORE (TOTAL POINTS)			0						

V. Work Performed

On December 14, 2017, SESI personnel was on site to assess a crude oil spill incident at the Holly Crouch 8" Line to begin installing trenches to determine horizontal and vertical extent of contamination. Soil samples were obtained and field tested for TPH. The sample points were mapped using the Juno 3B. The samples were properly packaged, preserved and transported to Hall Environmental Laboratories of Albuquerque, NM by chain of custody, and analyzed for TPH(total petroleum hydrocarbons)(Method 8015M), BTEX, and Chlorides(Method 300). The results are presented in the table below:

Soil S	Soil Sample Results: Hall Environmental Laboratories 1-4-18											
SAMPLE ID	Benzene	Toluene	Ethyl	Total	Total	TPH	TPH	Chlorides				
			benzene	Xylenes	BTEX	GRO	DRO					
TT-1 NW Wall	ND	ND	ND	ND	ND	ND	ND	ND				
TT-2 SE Wall	ND	ND	ND	ND	ND	ND	ND	ND				
TT-3 SE Wall	ND	ND	ND	ND	ND	ND	ND	ND				
TT-4 SE Wall	ND	ND	ND	ND	ND	ND	ND	ND				
TT-5 Bottom 7ft	ND	ND	ND	ND	ND	ND	ND	ND				

VI. Action Plan

Due to the criticality of the Crouch line, it is not feasible to shut down the line to allow excavation under the existing pipeline. However Holly Energy Partners will remove all contaminated soil within a three (3) foot radius of the pipeline to a depth of seven (7) feet or where the TPH concentration is less than 1000 ppm. All excavated soil will be transported to an approved NMOCD facility for disposal. The excavated area is to be backfilled with similar material and returned to grade and reseeded in the spring of 2018. Upon completion of all approved remediation activity, all necessary closure documentation related to this incident will be submitted to Holly Energy Partners and the appropriate regulatory agencies.

VII. Figures & Appendices

Figure 1 - Vicinity Map Figure 2 - Site Plan Appendix A – C-141 Appendix B – Groundwater Appendix C – Analytical Results Appendix D – Photo Documentation

Figure 1 Vicinity Map

Figure 2 Site Plan

Appendix A C-141 Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa F	Fe, NM 875	05			
Release Notificatio	n and Co	orrective A	ction		
	OPERA	ΓOR	🛛 Initi	al Report	Final Report
Name of Company Holly Energy Partners (HEP)	Contact Me	elanie Nolan			1
Address 2828 N Harwood, Suite 1300		No. 214-605-83	03		
Facility Name Crouch Pipeline	Facility Typ	e Pipeline			
Surface Owner City of Lovington Mineral Owner	State		API No).	
LOCATIO	N OF REI	LEASE			
Unit Letter Section Township Range Feet from the North	h/South Line	Feet from the	East/West Line	County	·····
G 36 16S 36E					
	ngitude -	103.3055	NAD83	I	
			INAD05		
Type of Release Crude	E OF REL	EASE Release 45BBLS		Recovered 35 BBL	S
Source of Release Pipeline Strike		lour of Occurrence		Hour of Discovery	
	11/28/17 (900	11/28/17	0900	
Was Immediate Notice Given?	If YES, To d Olivia Yu	Whom?			
By Whom? Melanie Nolan		lour 11/28/17 102			
Was a Watercourse Reached?	If YES, Vo	olume Impacting t	he Watercourse.		
If a Watercourse was Impacted, Describe Fully.*					
		EIVED			
	By O	livia Yu at	12:40 pm,	Nov 29, 201	17
Describe Cause of Problem and Remedial Action Taken.*					
While conducting a maintenance activity on the Crouch pipeline a contra of crude oil. Due to the maintenance activity being conducted there was					
vacuum truck was able to collect 35 barrels of crude with an estimated 1					
impacted will be remediated in accordance with NMOCD guidelines.		2			
Describe Area Affected and Cleanup Action Taken.*					
Safety & Environmental Solutions, Inc. will be performing clean-up for	HEP.				
	1 1 2	<u> </u>			
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release	the best of my	knowledge and und und perform correct	inderstand that put	rsuant to NMOCD r leases which may e	ules and ndanger
public health or the environment. The acceptance of a C-141 report by t	the NMOCD m	arked as "Final R	leport" does not re	lieve the operator of	f liability
should their operations have failed to adequately investigate and remedi or the environment. In addition, NMOCD acceptance of a C-141 report					
federal, state, or local laws and/or regulations.	does not renev	e the operator of	responsionity for	compliance with an	y oulei
· · · ·		OIL CON	SERVATION	J DIVISION	
Signature: Melane Nolan			0/	Ч /	
	Approved by	Environmental S	Specialist:		
Printed Name: Melanie Nolan		44/00/00	47	-U	
Title: Environmental Specialist	Approval Da	te: 11/29/20	Expiration	n Date:	
E-mail Address: Melanie.Nolan@hollyenergy.com	Conditions o			Attached	7
Date: Phone: 214-605-8303	see atta	ched directiv	/e		
* Attach Additional Sheets If Necessary			7000 4770 1		
fOY1733347463	1RP-488	IS nOY1	733347591	pOY173	3347572

Operator/Responsible Party,

The OCD has received the form C-141 you provided on _11/28/2017_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number _1RP-4885_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _12/29/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us Appendix B Groundwater

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced	(R=POD has been replaced O=orphaned,				- 1	NU							
& no longer serves a water right file.)	C=the file is closed)							IE 3=SW largest)		BUTM in meters)		(In feet	t)
	POD Sub-			Q		-	_	_	v	v	-	-	Water
POD Number L 01350	Code basin C	ounty LE	64				16S		X 658901	Y 3638899* 😜	weii 110	55	Column 55
L 01371	L	LE	4				16S		658603	3638389* 🌍	115	45	70
L 01438	L	LE		3	4	36	16S	36E	658504	3638490* 🌍	110	45	65
L 01557 POD1	L	LE	4	3	3	36	16S	36E	657796	3638374* 🌍	110	40	70
L 04058 POD2	L	LE	2	2	4	36	16S	36E	659000	3638998* 🌍	248	62	186
L 04058 S15	L	LE	3	2	2	36	16S	36E	658786	3639603* 😑	260	50	210
L 04058 S16	L	LE	2	2	4	36	16S	36E	659000	3638998* 🌍	235	62	173
L 04058 S18	L	LE	4	3	1	36	16S	36E	657783	3639180* 🌍	265	50	215
L 04058 S19	L	LE	4	3	3	36	16S	36E	657796	3638374* 🌍	245	50	195
L 04058 S21	L	LE	4	1	1	36	16S	36E	657777	3639583* 🌍	251	65	186
L 04058 S22	L	LE		1	3	36	16S	36E	657691	3638878* 🌔	239	68	171
L 04058 S23	L	LE		4	2	36	16S	36E	658894	3639301* 🌍	119	90	29
L 04058 S24	L	LE	2	1	1	36	16S	36E	657777	3639783* 🌔	257	88	169
L 04058 S25	L	LE	2	3	1	36	16S	36E	657783	3639380* 🌍	256	88	168
L 04058 S26	L	LE	4	4	2	36	16S	36E	658993	3639200* 🌍	237		
L 12562 POD1	L	LE	2	2	4	36	16S	36E	658908	3639001 🌍	120	105	15
L 12562 POD10	L	LE	2	2	4	36	16S	36E	659032	3638913 🌍	113	98	15
L 12562 POD13	L	LE	2	4	2	36	16S	36E	658956	3639405 🌍	120	105	15
L 12562 POD14	L	LE		2	2	36	16S	36E	658677	3639136 🌍	116	101	15
L 12562 POD15	L	LE	4	1	2	36	16S	36E	658634	3639529 🌍	122	107	15
L 12562 POD2	L	LE	2	2	3	36	16S	36E	659065	3638963 🌍	112	97	15
L 12562 POD4	L	LE	4	4	2	36	16S	36E	658584	3638296 🌍	121	106	15
L 12562 POD6	L	LE	4	4	2	36	16S	36E	659001	3639212 🌍	124	109	15
L 12562 POD7	L	LE	4	4	2	36	16S	36E	658912	3639266 🌍	122	107	15
L 12562 POD8	L	LE	2	2	4	36	16S	36E	658992	3639097 🌍	122	107	15
L 13332 POD2	L	LE	4	3	2	36	16S	36E	658677	3639129 🌍	120	104	16

*UTM location was derived from PLSS - see Help

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(quar					IE 3=SW largest)	,	3 UTM in meters)		(In feet)	
POD Number	POD Sub- Code basin C	County	Q 0 641			Tws	Rng	x	Y	•	Depth Water (Water Column
L 13332 POD3	L	LE				16S	-	658660	3639363 🌍	128	123	5
L 14228 POD1	L	LE	34	2	36	16S	36E	658821	3639303 🌍	130		
									Average Depth to	Water:	81 fe	et
									Minimum	Depth:	40 fe	et
									Maximum	Depth:	123 fe	et
Record Count: 28												

PLSS Search:

Section(s): 36

Township: 16S

Range: 36E

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Appendix C Analytical Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

January 04, 2018

Bob Allen Safety & Environmental Solutions PO Box 1613 Hobbs, NM 88241 TEL: (575) 397-0510 FAX (575) 393-4388

RE: Holly Crouch 8" Line

OrderNo.: 1712A07

Dear Bob Allen:

Hall Environmental Analysis Laboratory received 5 sample(s) on 12/16/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Holly Crouch 8" Line

Project:

Client Sample ID: TI-1 NW Wall Collection Date: 12/14/2017 10:20:00 AM Received Date: 12/16/2017 9:00:00 AM

Lab ID: 1712A07-001	Matrix:	SOIL	Received	Date: 12/	/16/2017 9:00:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	1/3/2018 5:54:38 PM	35813
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS	5			Analyst	: ТОМ
Diesel Range Organics (DRO)	42	9.7	mg/Kg	1	12/20/2017 6:11:31 PN	35589
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	12/20/2017 6:11:31 PM	35589
Surr: DNOP	98.4	70-130	%Rec	1	12/20/2017 6:11:31 PM	35589
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	12/20/2017 5:46:22 PN	35592
Surr: BFB	115	15-316	%Rec	1	12/20/2017 5:46:22 PM	35592
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	0.094	mg/Kg	1	12/20/2017 5:46:22 PN	35592
Benzene	ND	0.023	mg/Kg	1	12/20/2017 5:46:22 PM	35592
Toluene	ND	0.047	mg/Kg	1	12/20/2017 5:46:22 PM	35592
Ethylbenzene	ND	0.047	mg/Kg	1	12/20/2017 5:46:22 PM	35592
Xylenes, Total	ND	0.094	mg/Kg	1	12/20/2017 5:46:22 PM	35592
Surr: 4-Bromofluorobenzene	100	80-120	%Rec	1	12/20/2017 5:46:22 PM	35592

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Holly Crouch 8" Line

Project:

Client Sample ID: TI-2 SE Wall Collection Date: 12/14/2017 11:10:00 AM Received Date: 12/16/2017 9:00:00 AM

Lab ID: 1712A07-002	Matrix:	SOIL	Received	Date: 12/	16/2017 9:00:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: MRA
Chloride	ND	30	mg/Kg	20	1/3/2018 6:07:03 PM	35813
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS	5			Analys	t: TOM
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	12/21/2017 12:39:40 P	M 35589
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	12/21/2017 12:39:40 P	M 35589
Surr: DNOP	93.9	70-130	%Rec	1	12/21/2017 12:39:40 P	M 35589
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	12/20/2017 6:10:01 PM	1 35592
Surr: BFB	108	15-316	%Rec	1	12/20/2017 6:10:01 PM	1 35592
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Methyl tert-butyl ether (MTBE)	ND	0.10	mg/Kg	1	12/20/2017 6:10:01 PM	1 35592
Benzene	ND	0.025	mg/Kg	1	12/20/2017 6:10:01 PM	35592
Toluene	ND	0.050	mg/Kg	1	12/20/2017 6:10:01 PM	35592
Ethylbenzene	ND	0.050	mg/Kg	1	12/20/2017 6:10:01 PM	35592
Xylenes, Total	ND	0.10	mg/Kg	1	12/20/2017 6:10:01 PM	35592
Surr: 4-Bromofluorobenzene	98.4	80-120	%Rec	1	12/20/2017 6:10:01 PM	35592

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Holly Crouch 8" Line

Project:

Client Sample ID: TI-3 SE Wall Collection Date: 12/14/2017 1:15:00 PM Received Date: 12/16/2017 9:00:00 AM

Lab ID: 1712A07-003	Matrix:	SOIL	Received	Received Date: 12/16/2017 9:00:00 AM					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	: MRA			
Chloride	ND	30	mg/Kg	20	1/3/2018 6:19:27 PM	35813			
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS	6			Analyst	TOM			
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	12/20/2017 6:55:25 PN	35589			
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	12/20/2017 6:55:25 PN	35589			
Surr: DNOP	85.1	70-130	%Rec	1	12/20/2017 6:55:25 PN	35589			
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	12/20/2017 6:33:57 PN	35592			
Surr: BFB	110	15-316	%Rec	1	12/20/2017 6:33:57 PN	35592			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Methyl tert-butyl ether (MTBE)	ND	0.095	mg/Kg	1	12/20/2017 6:33:57 PN	35592			
Benzene	ND	0.024	mg/Kg	1	12/20/2017 6:33:57 PN	35592			
Toluene	ND	0.047	mg/Kg	1	12/20/2017 6:33:57 PM	35592			
Ethylbenzene	ND	0.047	mg/Kg	1	12/20/2017 6:33:57 PM	35592			
Xylenes, Total	ND	0.095	mg/Kg	1	12/20/2017 6:33:57 PN	35592			
Surr: 4-Bromofluorobenzene	99.8	80-120	%Rec	1	12/20/2017 6:33:57 PN	35592			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Holly Crouch 8" Line

Project:

Client Sample ID: TI-4 NW Wall Collection Date: 12/14/2017 1:30:00 PM Received Date: 12/16/2017 9:00:00 AM

Lab ID: 1712A07-004	Matrix:	SOIL	Received	Received Date: 12/16/2017 9:00:00 AM					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analys	: MRA			
Chloride	ND	30	mg/Kg	20	1/3/2018 6:56:41 PM	35813			
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS	6			Analys	TOM			
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	12/20/2017 7:17:21 PM	35589			
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	12/20/2017 7:17:21 PM	35589			
Surr: DNOP	83.6	70-130	%Rec	1	12/20/2017 7:17:21 PM	35589			
EPA METHOD 8015D: GASOLINE RAI	NGE				Analys	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	12/20/2017 6:57:45 PM	35592			
Surr: BFB	105	15-316	%Rec	1	12/20/2017 6:57:45 PM	35592			
EPA METHOD 8021B: VOLATILES					Analys	: NSB			
Methyl tert-butyl ether (MTBE)	ND	0.098	mg/Kg	1	12/20/2017 6:57:45 PM	35592			
Benzene	ND	0.025	mg/Kg	1	12/20/2017 6:57:45 PM	35592			
Toluene	ND	0.049	mg/Kg	1	12/20/2017 6:57:45 PM	35592			
Ethylbenzene	ND	0.049	mg/Kg	1	12/20/2017 6:57:45 PM	35592			
Xylenes, Total	ND	0.098	mg/Kg	1	12/20/2017 6:57:45 PM	35592			
Surr: 4-Bromofluorobenzene	95.1	80-120	%Rec	1	12/20/2017 6:57:45 PM	35592			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Holly Crouch 8" Line

Project:

Client Sample ID: TI-5 Bottom 7 Ft Collection Date: 12/14/2017 2:15:00 PM Received Date: 12/16/2017 9:00:00 AM

Lab ID: 1712A07-005	Matrix:	SOIL	Received	Date: 12/	/16/2017 9:00:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	1/3/2018 7:09:06 PM	35813
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS	6			Analyst	ТОМ
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	12/21/2017 1:01:48 PM	35589
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	12/21/2017 1:01:48 PM	35589
Surr: DNOP	94.0	70-130	%Rec	1	12/21/2017 1:01:48 PM	35589
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	12/20/2017 7:21:35 PM	35592
Surr: BFB	109	15-316	%Rec	1	12/20/2017 7:21:35 PM	35592
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	0.097	mg/Kg	1	12/20/2017 7:21:35 PN	35592
Benzene	ND	0.024	mg/Kg	1	12/20/2017 7:21:35 PM	35592
Toluene	ND	0.048	mg/Kg	1	12/20/2017 7:21:35 PM	35592
Ethylbenzene	ND	0.048	mg/Kg	1	12/20/2017 7:21:35 PM	35592
Xylenes, Total	ND	0.097	mg/Kg	1	12/20/2017 7:21:35 PM	35592
Surr: 4-Bromofluorobenzene	100	80-120	%Rec	1	12/20/2017 7:21:35 PM	35592

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level. D
- Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 9 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

WO#:	1712A07
	04-Jan-18

Client: Project:		ty & Environme y Crouch 8" Lin		olutions							
Sample ID	MB-35813	SampT	ype: m ł	olk	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	n ID: 35	813	F	RunNo: 4	3160				
Prep Date:	1/3/2018	Analysis D	Date: 1/	3/2018	S	SeqNo: 1	546427	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-35813	SampT	ype: Ics	5	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	n ID: 35	813	F	RunNo: 4	3160				
Prep Date:	1/3/2018	Analysis D	Date: 1/	3/2018	S	SeqNo: 1	546428	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	92.0	90	110			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 6 of 9

•	2 Environme rouch 8" Lin		olutions							
Sample ID LCS-35589	SampT	ype: LC	S	Tes	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: LCSS	Batch ID: 35589			F	RunNo: 4	7873				
Prep Date: 12/19/2017	Analysis D	ate: 12	2/20/2017	S	SeqNo: 1	535639	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	46	10	50.00	0	91.5	73.2	114			
Surr: DNOP	4.9		5.000		97.8	70	130			
Sample ID MB-35589	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	n ID: 35	589	F	RunNo: 4	7873				
Prep Date: 12/19/2017	Analysis D	ate: 12	2/20/2017	5	SeqNo: 1	535640	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Notor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	10		10.00		102	70	130			

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 9

•	& Environme rouch 8" Lir		lutions							
Sample ID MB-35592	•	ype: ME					8015D: Gasc	oline Rang	e	
Client ID: PBS	Batch	1D: 35	592	R	RunNo: 4	7915				
Prep Date: 12/19/2017	Analysis D	ate: 12	2/20/2017	S	SeqNo: 1	535301	Units: mg/k	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	1100		1000		108	15	316			
Sample ID LCS-35592	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	oline Rang	e	
Client ID: LCSS	Batch	D: 35	592	R	RunNo: 4	7915				
Prep Date: 12/19/2017	Analysis D	ate: 12	2/20/2017	S	SeqNo: 1	535302	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	31	5.0	25.00	0	123	75.9	131			
Surr: BFB	1200		1000		121	15	316			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 8 of 9

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1712A07
	04-Jan-18

Client:	Safety & Environ	mental So	olutions							
Project:	Holly Crouch 8" I	Line								
Sample ID MB-355	92 Sam	oType: MI	BLK	Tes	tCode: E	PA Method	8021B: Volat	tiles		
Client ID: PBS	Bat	ch ID: 35	592	F	RunNo: 4	7915				
Prep Date: 12/19/2	2017 Analysis	Date: 12	2/20/2017	S	SeqNo: 1	535333	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (M	rbe) ND	0.10								
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorober	ozene 0.98		1.000		97.8	80	120			
Sample ID LCS-35	5 92 Sam	oType: LC	s	Tes	tCode: E	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Bat	ch ID: 35	592	F	RunNo: 4	7915				
Prep Date: 12/19/2	2017 Analysis	Date: 12	2/20/2017	S	SeqNo: 1	535334	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (M	TBE) 0.86	0.10	1.000	0	86.5	70.1	121			
Benzene	0.91	0.025	1.000	0	91.0	77.3	128			
Toluene	0.94	0.050	1.000	0	93.8	79.2	125			
Ethylbenzene	0.94	0.050	1.000	0	94.0	80.7	127			
Xylenes, Total	2.8	0.10	3.000	0	93.3	81.6	129			
Surr: 4-Bromofluorober	izene 1.0		1.000		103	80	120			

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 9 of 9

HALL ENVIRONMENT ANALYSIS LABORATORY	A TEL: 505-345-39	al Analysis Labora 4901 Hawkin Ibuquerque, NM 8 75 FAX: 505-345 hallenvironmental	ple Log-In Check List			
Client Name: Safety Env	Solutions	Work Order Numb	er: 1712A07		RcptNo: 1	
Received By: Isaiah Ort	iz	12/16/2017 9:00:00	AM	IG	-	
Completed By: Michelle Completed By: DTDS	Sarcia	12/18/2017 10:58:54 してしょう	AM	I Contract Missel Cp	un	
Chain of Custody						
1. Custody seals intact on s	ample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody com	plete?		Yes 🗹	No 🗌	Not Present	
3. How was the sample deli	vered?		FedEx			
<u>Log In</u>						
4. Was an attempt made to	cool the samples?	•	Yes 🖌	Νο	NA 🗌	
5. Were all samples receive	ed at a temperature	of >0° C to 6.0°C	Yes 🔽	No 🗌		
6. Sample(s) in proper cont	ainer(s)?		Yes 🗸	No		
7. Sufficient sample volume	for indicated test(s	;)?	Yes 🔽	No 🗌		
8. Are samples (except VOA	A and ONG) proper	ly preserved?	Yes 🗹	No		
9. Was preservative added	to bottles?		Yes	No 🔽	NA	
10.VOA vials have zero head	dspace?		Yes	No 🗌	No VOA Vials 🗹	
11. Were any sample contain	ners received broke	en?	Yes	No 🔽	# of preserved bottles checked	
12. Does paperwork match b (Note discrepancies on cl			Yes 🗹	No 🗌	for pH: (<2 or ≎	>12 unless noted)
13. Are matrices correctly ide	ntified on Chain of	Custody?	Yes 🔽	No	Adjusted?	
14. Is it clear what analyses w	-		Yes 🗹	No 🗌	-	
15. Were all holding times ab (If no, notify customer for			Yes 🗹	No 🗌	Checked by:	· · · · ·
<u>Special Handling (if ap</u>	<u>plicable)</u>					
16. Was client notified of all c	liscrepancies with t	his order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:		Date		********		
By Whom:	I	Via:	🗌 eMail 📋 I	Phone 🗌 Fax	In Person	
Regarding:	 					
Client Instructions: 17. Additional remarks:	<u></u>					
18. <u>Cooler Information</u>						
Cooler No Temp °C	Condition Se Good Yes	eal Intact Seal No	Seal Date	Signed By		

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	H 8015B (GRO / DRO / MRO) H (Method 418.1) B (Method 504.1) B (Method 504.1) H's (8310 or 8270 SIMS) H's (8310 or 8270 SIMS) B (Posticides / 8082 PCB's for (YOA) M (Semi-VOA) M (Semi-VOA)	TPI CT CT <th></th>	
4901	EX + WIBE + TPH (Gas only)		ime Remarks:
Rush SILANO B"LINO		1712 A0 602 003 003 003	Date Time
	Typ	H Z	A
Turn-Around Time:	Project Manager: Alley Sampler: Son On Ice: Corres Sample Temperature: Container Preserv Type and # Typ		Received by: Received by:
Custody Record + Gulummush 107100 103 E. Clinton NW 88240	Dother Cample Request ID	T-1 AUU WAYA T-2 SE WAYA T-4 NW WANA	Relinquished by:
Client: Safery	Time	2/14 (020 2/14 (315 (2/14 (320 (2/14 (330 (2/14 (330 (2/14 (330)	Date: Time: Re Z/IS/IG/IC/

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

January 09, 2018

Bob Allen Safety & Environmental Solutions PO Box 1613 Hobbs, NM 88241 TEL: (575) 397-0510 FAX (575) 393-4388

RE: Holly Crouch 8" Line

OrderNo.: 1712A50

Dear Bob Allen:

Hall Environmental Analysis Laboratory received 1 sample(s) on 12/16/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Project: Holly Crouch 8" Line

1712A50-001

Lab ID:

Client Sample ID: C-1 Spoils Collection Date: 12/15/2017 9:15:00 AM Received Date: 12/16/2017 9:00:00 AM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
MERCURY, TCLP					Anal	yst: pmf
Mercury	ND	0.020	mg/L	1	12/27/2017 11:45:29	AM 35707
EPA METHOD 6010B: TCLP METALS					Anal	yst: MED
Arsenic	ND	5.0	mg/L	1	12/28/2017 10:22:04	
Barium	ND	100	mg/L	5	1/4/2018 11:40:43 A	
Cadmium	ND	1.0	mg/L	1	12/28/2017 10:22:04	
Chromium	ND	5.0	mg/L	1	12/28/2017 10:22:04	
Lead	ND	5.0	mg/L	1	12/29/2017 9:48:52	
Selenium	ND	1.0	mg/L	1	1/4/2018 11:39:02 A	
Silver	ND	5.0	mg/L	1	12/28/2017 10:22:04	
EPA METHOD 8270C TCLP					Anal	yst: JDC
2-Methylphenol	ND	200	mg/L	1	12/21/2017 2:42:56	PM 35654
3+4-Methylphenol	ND	200	mg/L	1	12/21/2017 2:42:56	PM 35654
Phenol	ND	200	mg/L	1	12/21/2017 2:42:56	PM 35654
2,4-Dinitrotoluene	ND	0.13	mg/L	1	12/21/2017 2:42:56	PM 35654
Hexachlorobenzene	ND	0.13	mg/L	1	12/21/2017 2:42:56	PM 35654
Hexachlorobutadiene	ND	0.50	mg/L	1	12/21/2017 2:42:56	PM 35654
Hexachloroethane	ND	3.0	mg/L	1	12/21/2017 2:42:56	PM 35654
Nitrobenzene	ND	2.0	mg/L	1	12/21/2017 2:42:56	PM 35654
Pentachlorophenol	ND	100	mg/L	1	12/21/2017 2:42:56	PM 35654
Pyridine	ND	5.0	mg/L	1	12/21/2017 2:42:56	PM 35654
2,4,5-Trichlorophenol	ND	400	mg/L	1	12/21/2017 2:42:56	PM 35654
2,4,6-Trichlorophenol	ND	2.0	mg/L	1	12/21/2017 2:42:56	PM 35654
Cresols, Total	ND	200	mg/L	1	12/21/2017 2:42:56	PM 35654
Surr: 2-Fluorophenol	62.0	18-75.1	%Rec	1	12/21/2017 2:42:56	PM 35654
Surr: Phenol-d5	49.4	15-67.2	%Rec	1	12/21/2017 2:42:56	PM 35654
Surr: 2,4,6-Tribromophenol	93.1	34.4-99.1	%Rec	1	12/21/2017 2:42:56	PM 35654
Surr: Nitrobenzene-d5	105	31.3-114	%Rec	1	12/21/2017 2:42:56	PM 35654
Surr: 2-Fluorobiphenyl	101	23.6-105	%Rec	1	12/21/2017 2:42:56	PM 35654
Surr: 4-Terphenyl-d14	69.0	38.2-81.5	%Rec	1	12/21/2017 2:42:56	PM 35654
VOLATILES BY 8260B/1311					Anal	yst: DJF
Benzene	3.6	2.5	mg/L	5	12/26/2017 9:16:44	PM 35633
2-Butanone	ND	200	mg/L	1	12/22/2017 12:50:21	AM 35633
Carbon Tetrachloride	ND	0.50	mg/L	1	12/22/2017 12:50:21	AM 35633
Chlorobenzene	ND	100	mg/L	1	12/22/2017 12:50:21	AM 35633
Chloroform	ND	6.0	mg/L	1	12/22/2017 12:50:21	AM 35633
1,4-Dichlorobenzene	ND	7.5	mg/L	1	12/22/2017 12:50:21	AM 35633
1,2-Dichloroethane (EDC)	ND	0.50	mg/L	1	12/22/2017 12:50:21	AM 35633
1,1-Dichloroethene	ND	0.70	mg/L	1	12/22/2017 12:50:21	AM 35633

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

CLIENT: Safety & Environmental Soluti	ons		Client Samp	le ID: C-1 Spoils	
Project: Holly Crouch 8" Line			Collection	Date: 12/15/2017 9:15:00 AM	
Lab ID: 1712A50-001	Matrix:	SOIL	Received	Date: 12/16/2017 9:00:00 AM	
Analyses	Result	PQL	Qual Units	DF Date Analyzed Bat	tch
VOLATILES BY 8260B/1311				Analyst: DJ	F
Hexachlorobutadiene	ND	0.50	mg/L	1 12/22/2017 12:50:21 AM 356	633
Tetrachloroethene (PCE)	ND	0.70	mg/L	1 12/22/2017 12:50:21 AM 356	633
Trichloroethene (TCE)	ND	0.50	mg/L	1 12/22/2017 12:50:21 AM 356	633
Vinyl chloride	ND	0.20	mg/L	1 12/22/2017 12:50:21 AM 356	633
Surr: 1,2-Dichloroethane-d4	94.4	70-130	%Rec	1 12/22/2017 12:50:21 AM 356	633
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1 12/22/2017 12:50:21 AM 356	633
Surr: Dibromofluoromethane	97.5	70-130	%Rec	1 12/22/2017 12:50:21 AM 356	633
Surr: Toluene-d8	94.2	70-130	%Rec	1 12/22/2017 12:50:21 AM 356	633

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1712A50-001B C-1 SPOILS Collected date/time: 12/15/17 09:15

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012 B

Wet Chemistry by	Method 9012 E	3					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		C
Reactive Cyanide	ND		0.250	1	12/28/2017 15:26	<u>WG1057031</u>	
Wet Chemistry by	Method 9034-	9030B					Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		^⁴ Cr
Reactive Sulfide	48.3		25.0	1	12/27/2017 16:38	WG1057112	L
Wet Chemistry by	Method 90450)					៍ទា
	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	su			date / tíme			Q
Corrosivity by pH	8.42		1	12/22/2017 09:0	94 <u>WG1056424</u>		
Sample Narrative:							GI
L958788-01 WG1056424;	8.42 at 19.5C						
					-		4
Wet Chemistry by	Method D93/10	ΠΟLÁ					
	Result	Qualifier	Dilution	Analysis	<u>Batch</u>		52
Analyte	Deg. F			date / time		-	La 18/10.0000
Ignitability	DNI at 170		1	12/26/2017 13:3	WG1056053		

	9012 8
12	Method 9
n O	by
105/	Chemistry
ž	Wet

QUALITY CONTROL SUMMARY

¥

Method Runk (MR)

MB Result MB Roulifier MB RDL Analyte mg/kg mg/kg Reactive Cyanide U 0.039 0.250	MB Result MB Qualifier MB MDL mg/kg mg/kg 0.039 U 0.039 U 0.039 U Original Sample (OS) • Dupher (1276)	(MB) R3276357-1 12/28/17 15:21	28/17 15:21			
mg/kg mg/kg 0.039 0.039	ng/kg 0.250		MB Result	MB Qualifier	MB MDL	
U 0.039	0.250	Analyte	mg/kg		mg/kg	
		Reactive Cyanide	⊃		0.039	
	a magnetic production of the second					
	1 	01000000			•••	
		10211958788-01 12/	28/17 15-26 . (DL 10	1 D2776257_A 10	1/78/17 16-77	والمراجع والم

⁵ Ss Ss Sr

DUP Qualifier DUP RPD Limits	%	20	
Dilution DUP RPD	ů. /0	1 0	
Original Result DUP Result	mg/kg	0.000	
Original Re:	mg/kg	QN	
	Analyte	Reactive Cyanide	

Laboratory Control Sample (LCS) • Laboratrey Control Sumple Equatore (CSE)

(LCS) R3276357-2 12/28/17 15:22 • (LCSD) R3276357-3 12/28/17 15:23	3/17 15:22 • (LCSC	0) R3276357-3	12/28/17 15:23						
	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	₹ç		86	°6
Reactive Cyanide	2.50	2.13	2.32	85.3	92.7	50-150		8.24	20

Sc Al

WG105/112 Wet Chemistry by Method 9034-9030B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3276081-1 12/27/17 16:38	7/17 16:38		V • V • manual a wave unit or wanter water	(MB) R3276081-1 12/27/17 16:38
	MB Result	MB Qualifier MB MDL	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	Dγ/διυ
Reactive Sulfide	∍		7.63	25.0
048338 01 Orninal Sametri (06) - Direta al 11 - 12				

L955738-01 Orginal Sample (OS) • Duplimity (0.5)

	Original Res	Original Result DUP Result Dilution DUP	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		9 <u>6</u>		*5 5
Reactive Sulfide	48.3	48.3	-	0.000		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Unplicate (LCS)

		(רכא) עאדע המסודד ודודואו ומיאס • (רכאן) אאדע המסודיא ו	12/2//1/ 16:38							
Spike	e Amount	Spike Amount LCS Result	LCSD Result	It LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD	RPD Limits
Analyte mg/kg		mg/kg	mg/kg	Ř	%	а К			*	х
Reactive Sulfide 100		84.4	90.5	84.4	90.5	70.0-130			6.90	20

PROJECT:

QUALITY CONTROL SUMMARY

¥

Laboratory Control Sample (LCS) • Laboratory Control Sample Capaturate (LCSD)

(LCS) R3275196-1 12/22/17 09:04 • (LCSD) R3275196-2 12/22/17 09:04	117 09:04 · (LCSD)) R3275196-2	12/22/17 09:04		-			ara man a any ao amin'ny faritr'o amin'ny faritr	
	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	su	SU	su	8	Х,	ş		ي ح	85
Corrosivity by pH	6.38	6.36	6.38	99.7	100	98.4-102		0.314	-
Sample Narrative:									
LCS: 6.36 at 20.1C									
LCSD: 6.38 at 20.2C									

Sr 4

°Tc SS

12/28/17 17:00 DATE/TIME:

SDG: L958788

PROJECT:

Hall Environmental Analysis Laboratory ACCOUNT:

	D93/1010A
063	y Method
Q	et Chemistry by
WG105	Wet CI

QUALITY CONTROL SUMMARY

à

L958738-01 Original Sample (OS) • Duplicate (DUP)

L958738-01 Onginal Sample (OS) • Duplicate (DUP)	inal Sample	idna • (SO)	ik ato (D. P.								
(OS) L958788-01 12/26/17 13:31 • (DUP) R3275676-3 12/26/17 13:31	6/17 13:31 • (DUP)	R3275676-3 12.	/26/17 13:31	se el facilitza d'un el cue denne de al contra de		of standard of the standard standard of the standard stand Standard standard st		a of follow final water and the standard contract of the standard contract of the standard of the standard contract of the standard of t	a mar a far an		
	Original Resu	Original Result DUP Result	Dilution DUP RPD		DUP Qualifier	DUP RPD Limits					
Analyte	Deg. F	Deg. F	*			Å					
lgnitability	DNI at 170	DNI at 170	1 0.000	00		10					Ss
L959828-01 Original Sample (OS) • Duplicate (Detb)	jinal Sample	idho • (SO) -		···.							_4 C
(OS) L959828-01 12/26/17 13:31 • (DUP) R3275676-4 12/26/17 13:31	5/17 13:31 • (DUP)	R3275676-4 12	3/26/17 13:31		And a second second second second second			and for many the set of	a many far shares of the short of the same of the same water and a same same same of the same of the same same		5
	Original Resu	Original Result DUP Result	Dilution DUP RPD		DUP Qualifier	DUP RPD Limits					S.
Analyte	Deg. F	Deg. F	98		÷	ð ^ę					
Ignitability	DNI at 170	DNI at 170	1 0.000	00		10					္ဂရွိ
Laboratory Control Sample (LCS) • Laboratory Control Conside Lightcate (CS)	ol Sample (LCS) • Labor			rongel en		·				Ū,
(LCS) R3275676-1 12/26/17 13:31 • (LCSD) R3275676-2 12/26/17 13:31	6/17 13:31 • (LCSI	D) R3275676-2	12/26/17 13:31	a	al 10.100 km to confirm the contract of the co	- Address do a ser anno 1994 - Ser anno 1997 - Ser anno 1	meneral and and and and a state of the state	and a first of the first or a second rank of a second definition of the definition of the first of the definition of the	A STATE OF A STATE AND A STATE AND A STATE OF A STATE AND A	·····	
	Spike Amoun	Spike Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits		<u>_</u>
Analyte	Deg. F	Deg. F	Deg. F	%	%	₽?		80	% %		
lgnitability	82.0	83.2	83.2	101	101	96.0-104		0.000	10		s S C

(LCS) R3275676-1 12/26/17 13:31 • (LCSD) R327	17 13:31 • (LCSD)	R3275676-2 1	12/26/17 13:31							
	Spike Amount	Spike Amount LCS Result LCSD Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RF	RPD	RPD Limits
Analyte	Deg. F	Deg. F	Deg. F	%	% 2	s?		8		%
lgnitability	82.0	83.2	83.2	101	101	96.0-104			0.000	10

.

Hall Environmental Analysis Laboratory ACCOUNT:

PROJECT:

1958788 SDG:

12/28/17 17:00 DATE/TIME:
Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
T8	Sample(s) received past/top close to bolding time expiration

Τ8

Sample(s) received past/too close to holding time expiration.

Sr

Qc

GI

Se

WO#:	1712A50
	09-Jan-18

C	lient:	
Р	roiect:	

Safety & Environmental Solutions Holly Crouch 8" Line

Project: Holly Cr	ouch 8" Li	ne								
Sample ID mb-35633	SampT	SampType: MBLK			tCode: V	olatiles by a	8260B/1311			
Client ID: PBS	Batch ID: 35633			F	RunNo: 4	8003				
Prep Date: 12/20/2017	Analysis D	Date: 12	2/22/2017	S	SeqNo: 1	537976	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50								
2-Butanone	ND	200								
Carbon Tetrachloride	ND	0.50								
Chlorobenzene	ND	100								
Chloroform	ND	6.0								
1,4-Dichlorobenzene	ND	7.5								
1,2-Dichloroethane (EDC)	ND	0.50								
1,1-Dichloroethene	ND	0.70								
Hexachlorobutadiene	ND	0.50								
Tetrachloroethene (PCE)	ND	0.70								
Trichloroethene (TCE)	ND	0.50								
Vinyl chloride	ND	0.20								
Surr: 1,2-Dichloroethane-d4	0.18		0.2000		91.9	70	130			
Surr: 4-Bromofluorobenzene	0.21		0.2000		105	70	130			
Surr: Dibromofluoromethane	0.20		0.2000		98.1	70	130			
Surr: Toluene-d8	0.19		0.2000		96.1	70	130			
Sample ID Ics-35633	SampT	ype: LC	s	Tes	tCode: V	olatiles by a				
Client ID: LCSS	Batch	n ID: 35	633	F	RunNo: 4	8003				
Prep Date: 12/20/2017	Analysis D	Date: 12	2/22/2017	S	SeqNo: 1	537977	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50	0.4000	0	100	70	130			
Chlorobenzene	ND	100	0.4000	0	96.5	70	130			
1,1-Dichloroethene	ND	0.70	0.4000	0	105	67.2	131			
Trichloroethene (TCE)	ND	0.50	0.4000	0	96.9	70	130			
Surr: 1,2-Dichloroethane-d4	0.18		0.2000		91.4	70	130			
Surr: 4-Bromofluorobenzene	0.20		0.2000		100	70	130			
Surr: Dibromofluoromethane	0.19		0.2000		97.5	70	130			
Surr: Toluene-d8	0.19		0.2000		94.7	70	130			
Sample ID 1712a50-001ams	SampT	ype: M	3	Tes	tCode: V	olatiles by	8260B/1311			
Client ID: C-1 Spoils	Batch	n ID: 35	633	F	RunNo: 4	8003				
Prep Date: 12/20/2017	Analysis D	Date: 12	2/22/2017	S	SeqNo: 1	537979	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val		LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	3.9	0.50	0.3994	3.456	99.4	70	130			Е
Chlorobenzene	ND	100	0.3994	0	98.5	70	130			
1,1-Dichloroethene	ND	0.70	0.3994	0	103	70	130			
Trichloroethene (TCE)	ND	0.50	0.3994	0	96.7	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

- P Sample pH Not In Range
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 3 of 8

WO#:	1712A50
	09-Jan-18

	& Environme Crouch 8" Lir		olutions							
Sample ID 1712a50-001a	ms SampT	ype: M	6	Tes	tCode: Vo	olatiles by a	3260B/1311			
Client ID: C-1 Spoils	Batch	ID: 35	633	R	unNo: 4	8003				
Prep Date: 12/20/2017	Analysis D	ate: 1	2/22/2017	S	eqNo: 1	537979	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.18		0.1997		92.4	70	130			
Surr: 4-Bromofluorobenzene	0.20		0.1997		103	70	130			
Surr: Dibromofluoromethane	0.19		0.1997		96.8	70	130			
Surr: Toluene-d8	0.19		0.1997		95.1	70	130			
Sample ID 1712a50-001a	msd SampT	ype: M	SD	Tes	tCode: Vo	olatiles by a	3260B/1311			
Client ID: C-1 Spoils	Batch	ID: 35	633	R	unNo: 4	8003				
Prep Date: 12/20/2017	Analysis D	ate: 1	2/22/2017	S	eqNo: 1	537980	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

	•				•		•			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	3.7	0.50	0.3994	3.456	71.1	70	130	2.97	20	E
Chlorobenzene	ND	100	0.3994	0	94.4	70	130	0	20	
1,1-Dichloroethene	ND	0.70	0.3994	0	98.6	70	130	0	20	
Trichloroethene (TCE)	ND	0.50	0.3994	0	93.9	70	130	0	20	
Surr: 1,2-Dichloroethane-d4	0.19		0.1997		94.2	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.20		0.1997		102	70	130	0	0	
Surr: Dibromofluoromethane	0.19		0.1997		96.3	70	130	0	0	
Surr: Toluene-d8	0.19		0.1997		95.6	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 4 of 8

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1712A50
	09-Jan-18

Client:	
Project:	

Safety & Environmental Solutions Holly Crouch 8" Line

Sample ID MB-35654	Samp	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8270C TCLP			
Client ID: PBS	Batc	h ID: 35	654	F	RunNo: 4	7959				
Prep Date: 12/21/2017	Analysis E	Date: 12	2/21/2017	S	SeqNo: 1	536537	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
Phenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.12		0.2000		57.9	18	75.1			
Surr: Phenol-d5	0.091		0.2000		45.6	15	67.2			
Surr: 2,4,6-Tribromophenol	0.17		0.2000		85.0	34.4	99.1			
Surr: Nitrobenzene-d5	0.093		0.1000		93.1	31.3	114			
Surr: 2-Fluorobiphenyl	0.088		0.1000		87.6	23.6	105			
Surr: 4-Terphenyl-d14	0.060		0.1000		60.3	38.2	81.5			
Sample ID Ics-35654	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	8270C TCLP			
Client ID: LCSS	Batc	h ID: 35	654	F	RunNo: 4	7959				
Prep Date: 12/21/2017	Analysis [Date: 12	2/21/2017	5	SeqNo: 1	536538	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.092	0.010	0.1000	0	91.6	47.8	99.2			
3+4-Methylphenol	0.19	0.010	0.2000	0	97.5	41.5	118			
2,4-Dinitrotoluene	0.075	0.010	0.1000	0	75.3	44.4	81			
Hexachlorobenzene	0.097	0.010	0.1000	0	97.1	49.5	91.6			S
Hexachlorobutadiene	0.083	0.010	0.1000	0	82.6	38.6	93			
Hexachloroethane	0.074	0.010	0.1000	0	73.8	39.4	79.9			
Nitrobenzene	0.099	0.010	0.1000	0	99.3	47.4	96.2			S
Pentachlorophenol	0.075	0.010	0.1000	0	75.3	39.4	79.9			
Pyridine	0.054	0.010	0.1000	0	54.1	15	79.9			
	0.097	0.010	0.1000	0	96.8	47.4	118			
2,4,5-Trichlorophenol			0 4000	0	96.0	47.4	101			
	0.096	0.010	0.1000	0	30.0					
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Cresols, Total	0.096 0.29	0.010 0.010	0.1000	0	95.5	44.1	111			
2,4,6-Trichlorophenol										S

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 5 of 8

WO#:	1712A50
	09-Jan-18

•	& Environme Crouch 8" Lir		olutions							
Sample ID Ics-35654	SampT	/pe: LC	s	Test	tCode: El	PA Method	8270C TCLP			
Client ID: LCSS	Batch ID: 35654		RunNo: 47959							
Prep Date: 12/21/2017	Analysis D	ate: 12	2/21/2017	S	eqNo: 1	536538	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	0.21		0.2000		107	34.4	99.1			S
Surr: Nitrobenzene-d5	0.10		0.1000		103	31.3	114			
Surr: 2-Fluorobiphenyl	0.092		0.1000		92.4	23.6	105			
Surr: 4-Terphenyl-d14	0.067		0.1000		66.7	38.2	81.5			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 6 of 8

Client: Project:	•	& Environme Crouch 8" Lin		olutions							
Sample ID	MB-35707	SampT	ype: ME	BLK	Tes	tCode: M	ERCURY, T	CLP			
Client ID:	PBW	W Batch ID: 35707			RunNo: 48076						
Prep Date:	12/26/2017	Analysis D	ate: 12	2/27/2017	S	SeqNo: 1	541029	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.020								
Sample ID	LCS-35707	SampT	ype: LC	S	Tes	tCode: M	ERCURY, T	CLP			
Client ID:	LCSW	Batch	n ID: 35	707	F	unNo: 48	3076				
Prep Date:	12/26/2017	Analysis D	ate: 12	2/27/2017	5	eqNo: 1	541030	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.020	0.005000	0	102	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 7 of 8

Safety & Environmental Solutions

	0 3- Jun-10

Project: Holly C	Crouch 8" Line	
Sample ID MB-35704	SampType: MBLK	TestCode: EPA Method 6010B: TCLP Metals
Client ID: PBW	Batch ID: 35704	RunNo: 48057
Prep Date: 12/26/2017	Analysis Date: 12/28/2017	SeqNo: 1540344 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Arsenic	ND 5.0	
Cadmium Chromium	ND 1.0 ND 5.0	
Silver	ND 5.0	
Sample ID LCS-35704	SampType: LCS	TestCode: EPA Method 6010B: TCLP Metals
Client ID: LCSW	Batch ID: 35704	RunNo: 48057
Prep Date: 12/26/2017	Analysis Date: 12/28/2017	SeqNo: 1540345 Units: mg/L
	-	· · · · ·
Analyte Arsenic	Result PQL SPK value ND 5.0 0.5000	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 0 89.3 80 120 </td
Cadmium	ND 1.0 0.5000	0 116 80 120
Silver	ND 5.0 0.1000	0 119 80 120
Sample ID LCS-35704	SampType: LCS	TestCode: EPA Method 6010B: TCLP Metals
Client ID: LCSW	Batch ID: 35704	RunNo: 48057
Prep Date: 12/26/2017	Analysis Date: 12/28/2017	SeqNo: 1540360 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chromium	ND 5.0 0.5000	0 93.5 80 120
Sample ID MB-35704	SampType: MBLK	TestCode: EPA Method 6010B: TCLP Metals
Client ID: PBW	Batch ID: 35704	RunNo: 48093
Prep Date: 12/26/2017	Analysis Date: 12/29/2017	SeqNo: 1542137 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Barium	ND 100	
Lead	ND 5.0	
Selenium	ND 1.0	
Sample ID LCS-35704	SampType: LCS	TestCode: EPA Method 6010B: TCLP Metals
Client ID: LCSW	Batch ID: 35704	RunNo: 48093
Prep Date: 12/26/2017	Analysis Date: 12/29/2017	SeqNo: 1542138 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Barium	ND 100 0.5000	0 103 80 120
Lead	ND 5.0 0.5000	0 86.8 80 120 0 147 80 120
Selenium	ND 1.0 0.5000	0 147 80 120 S

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 8 of 8

HALL ENVIRONMENTAL ANALYSIS LABORATORY	TEL: 505-345-397	4901 Hawki buquerque, NM	ins NE 87109 Sam 5-4107	ple Log-In Cl	neck List
Client Name: Safety Env Soluti	ons Work Order Numbe	er: 1712A50		RcptNo:	1
Received By: Isaiah Ortiz	12/16/2017 9:00:00 A	M	I Carton Mirul Ga	-	
Completed By: Michelle Garcia	12/18/2017 3:20:16 F	M	Michael Con		
Reviewed By:	רי אזן בו		· 7		
Chain of Custody					
1. Custody seals intact on sample	bottles?	Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?		<u>FedEx</u>			
<u>Log In</u>					
4. Was an attempt made to cool t	he samples?	Yes 🗹	No 🗔	NA 🗌	
5. Were all samples received at a	temperature of >0° C to 6.0°C	Yes 🗹	No 🗌		
6. Sample(s) in proper container(s	s)?	Yes 🗹	No 🗌		
7. Sufficient sample volume for inc	licated test(s)?	Yes 🗹	No 🗌	•	
8. Are samples (except VOA and 0	ONG) properly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bott	es?	Yes 🗋 🦯	No 🗹	NA 🗌	- ¹
10.VOA vials have zero headspace	?	Yes 🗌	No 🗌	No VOA Vials 🗹	
11. Were any sample containers re	ceived broken?	Yes 🗌	No 🗹		
				# of preserved bottles checked	
12. Does paperwork match bottle la		Yes 🗹	No 🗌	for pH:	>12 unless noted)
(Note discrepancies on chain of 13. Are matrices correctly identified		Yes 🗹	No 🗌	Adjusted?	>12 unless holed)
14, Is it clear what analyses were re		Yes 🗹		• –	·
15. Were all holding times able to b		Yes 🗹	No 🗌	Checked by:	
(If no, notify customer for author				· · · · · ·	
Special Handling (if applica	<u>ble)</u>				•
16, Was client notified of all discrep	ancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date				
By Whom:	via:	eMail 🗍	Phone 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
17. Additional remarks:					
18. <u>Cooler Information</u>					
Cooler No Temp °C Co 1 0.9 Gooler	ndition Seal Intact Seal No	Seal Date	Signed By		

Page 1 of 1

Наценсиения Наценсиения Наценсиения Наценсиения Национа Наценсиения Наценсиения Наценсиения Наценсиения Наценсиения Дамина Наценсиения Наценсиения Наценсиения Дамина Наценсиения Дамина Наценсиения Дамина Начина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина Дамина	L H H H R R R R R R R R R R R R R R R R
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date Time Ren Date Time Ren Date Time Ren
Turn-Around Time: ACStandard Ime: Project Name: Holly Croud Project #: Project #: Project Manager: Sampler: Container Preservative Type and #	6 Mart
Lof-Custody Record	Relinquished by: Relinquished by: Relinduished by: Relinduished by: Relinduished by: Relind
Client: SAL + { Client: SAL + { Client: SAL + { So WT Mailing Address: 703 Phone #: 575 - 39 Phone #: 575 - 30 Phone #:	12/15 0915 Date: Time: Date: Time:

Appendix D Site Photos Holly Energy Partners 8 inch Crouch Line Photos-12/14/2017

