APPROVED By Olivia Yu at 4:16 pm, Apr 09, 2018

NMOCD approves of the proposed additional delineation plan for 1RP-4139.

1RP-4139 **DELINEATION PLAN** Cooper Jal Unit Well #512 **Produced Water Spill** Lea County, New Mexico

Latitude: N32° 12' 25.87" Longitude: W-103° 12' 39.19"

LAI Project No. 17-0175-17

February 23, 2018

Prepared for: Legacy Reserves Operating, LP 303 West Wall Street, Suite 1300 Midland, Texas 79701

Prepared by: Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, Texas 79701

Sarah R. Johnson

Staff-Geologist

Mark J. Larson, P.G. Certified Professional Geologist #10490 This Page Intentionally Left Blank

Table of Contents

1.0 INTRODUCTION	.1
1.1 Background	1
1.2 Physical Setting	
1.3 Remediation Action Levels	
2.0 DELINEATION PLAN.	.2
3.0 REMEDIATION PLAN	

Figures

Figure 1	Topographic Map
Figure 2	Aerial Map Showing Proposed Sample Points

Appendices

Appendix A	Initial C-141
Appendix B	ECA Analysis and Remediation Plan
Appendix C	Photographs

1RP-4139 Delineation Plan Cooper Jal Unit Well #512 Produced Water Spill February 23, 2018

1.0 INTRODUCTION

Larson & Associates, Inc. (LAI) has prepared this delineation plan on behalf of Legacy Reserves Operating, LP (Legacy) for submittal to the New Mexico Oil Conservation Division (OCD) District I for a produced water spill at the Cooper Jal Well Unit #512 (Site) located in Unit A (NE/4, NE/4), Section 24, Township 24 South and Range 36 East in Lea County, New Mexico. The geodetic position is North 32° 12' 25.87" and West -103° 12' 39.19". Figure 1 presents a topographic map. Figure 2 presents an aerial map.

1.1 Background

The spill occurred on January 6, 2013, due to a leak in an injection line north of the well, allowing 20 barrels (bbl) of produced water to be released. Approximately 10 bbl were recovered. Resaca Operating Company (Resaca) was the operator when the release occurred. Resaca treated the affected area by mixing fertilizer with uncontaminated soil. Legacy assumed ownership on July 9, 2013. The initial C-141 was submitted on January 18, 2013 and assigned remediation permit number 1RP-4139. Appendix A presents the initial C-141.

Resaca retained Environmental Compliance Associates, Inc. (ECA) to address the release. On January 30, 2013, ECA collected soil samples at nineteen (19) locations (CJU #1 through CJU #19). The samples were collected at 0 - 1, 0 - 1.5, and 0 - 2 feet below ground surface (bgs). The samples were delivered to Xenco Laboratories (Xenco) in Odessa, Texas and analyzed for BTEX (sum of benzene, toluene, ethylbenzene and xylenes), total petroleum hydrocarbons (TPH) including gasoline range organics (GRO) and diesel range organics (DRO) and chloride by EPA SW-846 Methods 8021B, 8015M and 300, respectively. BTEX reported below the RRAL of 50 milligrams per kilogram (mg/Kg) in all samples. TPH reported below the RRAL (1,000 mg/Kg). The laboratory did not include the oil range organic fraction (ORO) of TPH extended to C35. Chloride reported above the recommended delineation limit (600 mg/Kg) in the following samples:

- CJU #1, 0 1 (772 mg/Kg)
- CJU #2, 0 1 (940 mg/Kg)
- CJU #5, 0 1 (977 mg/Kg)
- CJU #11A, 0 1 (668 mg/Kg)
- CJU #11B, 0 2 (693 mg/Kg)

- CJU #13A, 0 1 (825 mg/Kg)
- CJU #13B, 0 2 (692 mg/Kg)
- CJU #14, 0 1 (1,030 mg/Kg)
- CJU #15, 0 1 (711 mg/Kg)
- CJU #16, 0 1 (883 mg/Kg)

Legacy assumed ownership of the Site on July 9, 2013. Appendix B presents the ECA analysis and proposed remediation plan.

1.2 Physical Setting

The physical setting is as follows:

- The surface elevation is approximately 3,3015 feet above mean sea level (msl);
- The topography slopes gradually to the southwest;
- There is no surface water features within 1,000 feet of the Site;
- The soils are designated as "Tonuco loamy fine sand, 0 to 3 percent slopes", consisting of 0 to 12 inches of loamy fine sand underlain by 12 to 17 inches of loamy sand;

1RP-4139 Delineation Plan Cooper Jal Unit Well #512 Produced Water Spill February 23, 2018

- Surface geology is of the Eolian and Piedmont deposits from the Holocene to middle Pleistocene, the deposits are interlayed eolian sands and piedmont-slope deposits;
- Groundwater occurs in the Ogallala formation;
- The nearest fresh water well is located in Unit F (SE/4, NW/4), Section 10, Township 24 South and Range 37 East about 4 miles northwest of the Site;
- Depth to ground water is reported at 83.32 feet bgs (1991).

1.3 Remediation Action Levels

Remediation action levels (RRAL) were calculated for benzene, BTEX and TPH based on the following criteria established by OCD in *"Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993"*.

Criteria	Result	Score
Depth-to-Groundwater	50 - 99 Feet	10
Wellhead Protection Area	No	0
Distance to Surface Water Body	>1,000 Horizontal Feet	0

The following RRAL apply to the release for ranking score: 10

- Benzene 10 mg/Kg
- BTEX 50 mg/Kg
- TPH 1,000 mg/kg

Depth to groundwater between 50 and 100 feet bgs requires vertical delineation for chloride to 600 mg/Kg and maintained a minimum of 5 feet farther in depth.

2.0 DELINEATION PLAN

LAI proposes to collect soil samples at four (4) locations within the contaminated area. The samples will be collected with direct push technology (DPT) at 1 foot intervals to approximately 4 feet bgs and 2 foot intervals to approximately 12 feet bgs, depending on subsurface conditions. Additional samples will be collected in each cardinal direction (north, south, east and west) of the spill area at the same depth intervals for horizontal delineation. The soil samples will be delivered under preservation and chain of custody to a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and analyzed for BTEX, TPH, including GRO, DRO and ORO and chloride by EPA SW-846 Methods 8021B, 8015M and 300 respectively. Pending laboratory results, further delineation will be performed to achieve the RRALs. Appendix C presents photographs.

3.0 DELINEATION

Legacy will include a remediation plan in the delineation report submitted to the OCD upon receipt of the laboratory report.

Figures

Figure 3 - Site Map Showing Proposed Sample Location

Appendix A Initial C-141 District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

		OPERATOR	2	Initial I	Report	Final Repor
Name of Company Resaca Operation	Contact Marc	Neatherlin		-		
Address 2509 Maurice Road, Odes	sa, TX 79763	Telephone No.	(432) 557-9430	1		
Facility Name Cooper Jal Unit Wel	1 #512	Facility Type	Oil Production	Facility		
Surface Owner Kelly Meyers	Mineral Ow	ner		API No.	30-025-391	03
	LOCAT	TON OF RELEA	SE			

Unit Letter J	Section 24	Township 24S	Range 36E	Feet from the	North/South Line	Feet from the	East/West Line	County Lea
------------------	---------------	-----------------	--------------	---------------	------------------	---------------	----------------	---------------

Latitude 32° 12' 20.642" Longitude 103° 12' 40.511"

NATURE OF DELEASE

Type of Release Production Water	Volume of Release 20 Barrels	Volume Recovered 10 Barrels	
Source of Release Injection Line	Date and Hour of Occurrence	Date and Hour of Discovery 1/6/13	
Was Immediate Notice Given?	If YES, To Whom?	1013	
By Whom?	Date and Hour		
Was a Watercourse Reached?	If YES, Volume Impacting the Watercourse.		
If a Watercourse was Impacted, Describe Fully.* N/A			
The injection line developed a leak and releases 20 barrels of produce: produced water were recovered with a vacuum truck. There was an i soil.			
Describe Area Affected and Cleanup Action Taken.* The leak of the injection line occurred north of the Cooper Jal Unit W the soil was remediated using fertilizer and mixing with new, unconta	/ell #512. A vacuum truck was used minated soil.	to recover 10 barrels of the release an	
The leak of the injection line occurred north of the Cooper Jal Unit W	minated soil. ne best of my knowledge and understa otifications and perform corrective act e NMOCD marked as "Final Report" of e contamination that pose a threat to g	nd that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability round water, surface water, human health	
The leak of the injection line occurred north of the Cooper Jal Unit W the soil was remediated using fertilizer and mixing with new, unconta- the hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate or the environment. In addition, NMOCD acceptance of a C-141 report d	minated soil. ne best of my knowledge and understa otifications and perform corrective act e NMOCD marked as "Final Report" of e contamination that pose a threat to g	nd that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability round water, surface water, human health	
The leak of the injection line occurred north of the Cooper Jal Unit We the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the solutions all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate or the environment. In addition, NMOCD acceptance of a C-141 report d federal, state, or local laws and/or regulations.	minated soil. The best of my knowledge and understa otifications and perform corrective act the NMOCD marked as "Final Report" of the contamination that pose a threat to generate APPPR	nd that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability round water, surface water, human health	
The leak of the injection line occurred north of the Cooper Jal Unit We the soil was remediated using fertilizer and mixing with new, uncontained	minated soil. The best of my knowledge and understa otifications and perform corrective act the NMOCD marked as "Final Report" of the contamination that pose a threat to generate APPPR (nd that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability round water, surface water, human health rer	

Appendix B ECA Analysis & Proposed Remediation Plan District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

		OPERATOR Initial Report Final Repo
Name of Company Resaca Operating	Company	Contact Marc Neatherlin
Address 2509 Maurice Road, Odessa	, TX 79763	Telephone No. (432) 557-9430
Facility Name Cooper Jal Unit Well #512		Facility Type Oll Production Facility
Surface Owner Kelly Meyers	Mineral Ow	ner API No. 30-025-39103
	LOCAT	TION OF RELEASE
Unit Latter Section Township Dance	East from the	North Couth Line Beat From the Beat West Line County

County Unit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line J 24 24S 36E Lea

Latitude 32° 12' 20.642" Longitude 103° 12' 40.511"

NATURE OF DELEASE

Type of Release Production Water	Volume of Release 20 Barrels	Volume Recovered 10 Barrels
Source of Release Injection Line	Date and Hour of Occurrence 1/6/13	Date and Hour of Discovery 1/6/13
Was Immediate Notice Given? □ Yes □ No ⊠ Not Required	If YES, To Whom?	
By Whom?	Date and Hour	
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	tercourse.
If a Watercourse was Impacted, Describe Fully.* N/A		
The injection line developed a leak and releases 20 barrels of produce: produced water were recovered with a vacuum truck. There was an i soil.	s water on the ground. The injection nitial remediation using fertilizer and	n line was repaired and 10 barrels of nd mixing with new, uncontaminated
Describe Area Affected and Cleanup Action Taken.* I'he leak of the injection line occurred north of the Cooper Jal Unit W the soil was remediated using fertilizer and mixing with new, unconta	'ell #512. A vacuum truck was used minated soil.	l to recover 10 barrels of the release an
The leak of the injection line occurred north of the Cooper Jal Unit W	minated soil. te best of my knowledge and understa otifications and perform corrective act b NMOCD marked as "Final Report" e contamination that pose a threat to g	and that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability ground water, surface water, human health "er
The leak of the injection line occurred north of the Cooper Jal Unit W the soil was remediated using fertilizer and mixing with new, uncontain thereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate or the environment. In addition, NMOCD acceptance of a C-141 report d	minated soil. ne best of my knowledge and understa otifications and perform corrective act NMOCD marked as "Final Report" of	and that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability ground water, surface water, human health "er
The leak of the injection line occurred north of the Cooper Jal Unit We the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the solutions all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate or the environment. In addition, NMOCD acceptance of a C-141 report defederal, state, or local laws and/or regulations.	minated soil. The best of my knowledge and understand to tifications and perform corrective act to NMOCD marked as "Final Report" to contamination that pose a threat to generate APPPR	and that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability ground water, surface water, human health "er
The leak of the injection line occurred north of the Cooper Jal Unit We the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained the soil was remediated using fertilizer and mixing with new, uncontained to the solutions all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the should their operations have failed to adequately investigate and remediate or the environment. In addition, NMOCD acceptance of a C-141 report defederal, state, or local laws and/or regulations.	minated soil. The best of my knowledge and understand the best of my knowled	und that pursuant to NMOCD rules and tions for releases which may endanger does not relieve the operator of liability round water, surface water, human health rer

Resaca Exploitation, Inc. Cooper Jal Unit Well #512 Corrective Action Plan

HOBBS OCD

FEB 1 9 2013

Subject Lease: Cooper Jal Unit J- Sec. 24 –T24S-R36E Lea County, New Mexico

125'

RECEIVED

Prepared For: New Mexico Oil Conservation Division Hobbs District Office And Resaca Exploitation, Inc. Mr. Marc Neatherlin

February 12, 2013

Reviewed w/comments

Environmental Specialist NMOCD - DIST 1 3/1/13

Prepared by: Environmental Compliance Associates, Inc 10590 Westoffice Drive, Suite 150 Houston, Texas 77042

1331 LAMAR, SUITE #1450 HOUSTON, TEXAS 77010-3039 MAIN: 713-650-1246 FAX: 713-655-1711 WWW.RESACAEXPLOITATION.COM

TABLE OF CONTENTS

- 1.0 PURPOSE
- 2.0 DESCRIPTION OF INCIDENT
- 3.0 GENERAL SITE CHARACTERISTICS
- 4.0 CORRECTIVE ACTIONS
- 5.0 CONCLUSION OF REMEDIATION

APPENDICES:

APPENDIX A	NMOCD Form C-141 (Initial)
APPENDIX B	General Site Diagram
APPENDIX C	Site Ranking Information
APPENDIX D	Photographic Documentation
APPENDIX E	Material Safety Data Sheets
APPENDIX F	Sample Results

1.0 PURPOSE

The purpose of this document is to summarize and define corrective action measures that will take place to mitigate any possible environmental impairment as a result of an accidental release that occurred on January 6th, 2013 from a ruptured injection line north of the Cooper Jal Unit Well #512 located in Section 24, T24S, R36E, Lea County, New Mexico.

This corrective action plan is being submitted to supplement the initial C-141 submitted to the New Mexico Oil Conservation Division (NMOCD) on January 18th, 2013.

2.0 DESCRIPTION OF INCIDENT

On January 6th, 2013, an injection line ruptured, resulting in the release of approximately twenty (20) barrels of produced water. When the release was discovered, Resaca Operating Company repaired the injection line, recovered approximately ten (10) barrels of produced water and performed an initial remediation using fertilizer and uncontaminated soil. The initial Form C-141 was submitted to the NMOCD on January 18th, 2013 by Mr. Aaron Edrington of Environmental Compliance Associates, Inc. (ECA). The area of this release of produced water is located just north of the Cooper Jal Unit #512.

A copy of the initial NMOCD Form C-141 is reproduced as Appendix A. A general site diagram is attached as Appendix B. Site Ranking Information is included as Appendix C. Photographic documentation is presented as Appendix D. Material Safety Data Sheets are provided as Appendix E. The analytical laboratory results of the samples taken are attached as Appendix F.

12

3.0 GENERAL SITE CHARACTERISTICS

The Cooper Jal Unit # 512 well is described as a producing oil and gas well. This location sits on Tonuco series soils. The Tonuco series is shallow to very shallow, excessively drained and is formed from coarse textured alluvium derived from mixed sources. It is on broad plains and alluvial fans with slopes of zero to five percent (0-5%). Average annual precipitation is approximately twelve inches (12") and the average annual air temperature is approximately sixty-three degrees Fahrenheit (63°F). The affected area consists of native plants and grasses.

4.0 CORRECTIVE ACTIONS

The process we propose to chemically remediate the affected area is as follows:

- Collect minimum five point composite sample of the soil profile to a minimum depth of twelve inches (12") below ground surface and analyze for presence and concentrations of BTEX, total petroleum hydrocarbons (TPH) and total chlorides.
- Disc the affected area to a minimum depth of six to twelve inches (6"-12") below ground surface.
- Apply SoilSaver and I A Petro to affected areas (MSDS for each product is located in Appendix E).
- Disc the affected area to a minimum depth of six to twelve inches (6"-12") below ground surface.
- 5) Water the affected area provided the absence of rain.
- 6) Collect minimum five point composite sample of the soil profile to a minimum depth of twelve inches (12") below ground surface and analyze for presence and concentrations of BTEX, total petroleum hydrocarbons (TPH) and total chlorides.
- 7) Contour to minimize erosion.
- 8) Seed with varietal mixture acceptable to landowner.

5.0 CONCLUSION OF REMEDIATION

The remediation process will be complete once the affected areas have been tilled, remediated and confirmation samples, gathered from zero to twenty-four (0"-24") inches below the surface, show that chloride levels are below two hundred fifty (250) ppm and TPH levels are below five thousand (5,000) ppm.

Upon completion of this project, the third party environmental consulting firm will draft notes of sample results during the remediation process, provide photographic documentation of activities and submit a final version of form C-141 to the NMOCD for successful closure of this Corrective Action Plan.

It is our opinion that the implementation of this corrective action plan will assist to ensure protection of fresh waters and public health and the environment.

Sincerely,

uper Mult

Marc Neatherlin - District Manager Resaca Exploitation

GUIDELINES

FOR

REMEDIATION

OF

LEAKS, SPILLS AND RELEASES

(AUGUST 13, 1993)

New Mexico Oil Conservation Division 1220 S. ST. FRANCIS DR. Santa Fe, New Mexico 87505

TABLE OF CONTENTS

Ι.	NOTIC	CE OF LEAK, SPILL OR RELEASE
	Α.	RESPONSIBLE PARTY AND LOCAL CONTACT
	в.	FACILITY
	с.	TIME OF INCIDENT
	D.	DISCHARGE EVENT
	E.	TYPE OF DISCHARGE
	F.	QUANTITY
	G.	SITE CHARACTERISTICS
	н.	IMMEDIATE CORRECTIVE ACTIONS
II.	INITI	AL RESPONSE ACTIONS
	А.	SOURCE ELIMINATION AND SITE SECURITY
	в.	CONTAINMENT
	c.	SITE STABILIZATION
III.	SITE	ASSESSMENT
	Α.	GENERAL SITE CHARACTERISTICS
		1. Depth To Ground Water
		2. Wellhead Protection Area
		3. Distance To Nearest Surface Water Body
	в.	SOIL/WASTE CHARACTERISTICS
		1. Highly Contaminated/Saturated Soils
		2. Unsaturated Contaminated Soils
	c.	GROUND WATER QUALITY
IV.	SOIL	AND WATER REMEDIATION ACTION LEVELS
	A.	SOILS
		1. Highly Contaminated/Saturated Soils
		2. Unsaturated Contaminated Soils
		a. Ranking Criteria
		b. Recommended Remediation Level
	в.	GROUND WATER

17

v.

VI.

SOIL AND WATER SAMPLING PROCEDURES

- A. HIGHLY CONTAMINATED OR SATURATED SOILS
 - 1. Physical Observations
- B. UNSATURATED CONTAMINATED SOILS
 - 1. Soil Sampling Procedures for Headspace Analysis
 - 2. Soil Sampling Procedures For Laboratory Analysis
 - a. Sampling Procedures
 - b. Analytical methods
- C. GROUND WATER SAMPLING
 - 1. Monitor Well Installation/Location
 - 2. Monitor Well Construction
 - 3. Monitor Well Development
 - 4. Sampling Procedures
 - 5. Ground Water laboratory Analysis
 - a. Analytical Methods

REMEDIATION

- A. SOIL REMEDIATION
 - 1. Contaminated Soils
 - 2. Soil Management Options
 - a. <u>Disposal</u>
 - b. Soil Treatment and Remediation Techniques
 - i. Landfarming
 - ii. Insitu Soil Treatment
 - iii. Alternate Methods

ii

- B. GROUND WATER REMEDIATION
 - 1. Remediation Requirements
 - a. Free Phase Contamination
 - b. Dissolved Phase Contamination
 - c. Alternate Methods

VII. TERMINATION OF REMEDIAL ACTION

A. SOIL

B. GROUND WATER

VIII. FINAL CLOSURE

IX. FINAL REPORT

INTRODUCTION

The following document is to be used as a <u>guide</u> on all federal, state and fee lands when remediating contaminants resulting from leaks, spills and releases of oilfield wastes or products. The New Mexico Oil Conservation Division (OCD) requires that corrective actions be taken for leaks, spills or releases of any material which has a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property. These guidelines are intended to provide direction for remediation of soils and fresh waters contaminated as a result of leaks, spills or releases of oilfield wastes and products in a manner that assures protection of fresh waters, public health and the environment.

Fresh waters (to be protected) includes the water in lakes, playas, surface waters of all streams regardless of the quality of the water within any given reach, and all underground waters containing 10,000 milligrams per liter (mg/l) or less of total dissolved solids (TDS) except for which, after notice and hearing, it is found that there is no present or reasonably foreseeable beneficial use which would be impaired by contamination of such waters. The water in lakes and playas shall be protected from contamination even though it may contain more than 10,000 mg/l of TDS unless it can be shown that hydrologically connected fresh ground water will not be adversely affected.

Procedures may deviate from the following guidelines if it can be shown that the proposed procedure will either remediate, remove, isolate or control contaminants in such a manner that fresh waters, public health and the environment will not be impacted. Specific constituents and/or requirements for soil and ground water analysis and/or remediation may vary depending on site specific conditions. Deviations from approved plans will require OCD notification and approval.

**** Note:

Notification to OCD of leaks, spills and releases does not relieve an operator of responsibility for compliance with any other federal, state or local law and/or regulation regarding the incident. Other agencies (ie. BLM, Indian Tribes, etc) may also have guidelines or requirements for remediation of leaks spills and releases.

1

I. NOTIFICATION OF LEAK, SPILL OR RELEASE

Leaks, spills and releases of any wastes or products from oilfield operations are required to be reported to the OCD pursuant to OCD Rule 116 (Appendix A) or New Mexico Water Quality Control Commission (WQCC) Regulation 1-203 (Appendix B). Appendix C contains the phone numbers and addresses for reporting incidents to the OCD district and Santa Fe offices. Notification will include all information required under the respective rule or regulation. Below is a description of some of the information required:

A. RESPONSIBLE PARTY AND LOCAL CONTACT

The name, address and telephone number of the person/persons in charge of the facility/operation as well as the owner and/or operator of the facility/operation and a local contact.

B. FACILITY

The name and address of the facility or operation where the incident took place and the legal location listed by quarterquarter, section, township and range, and by distance and direction from the nearest town or prominent landmark so that the exact site location can be readily located on the ground.

C. TIME OF INCIDENT

The date, time and duration of the incident.

D. DISCHARGE EVENT

A description of the source and cause of the incident.

E. TYPE OF DISCHARGE

A description of the nature or type of discharge. If the material leaked, spilled or released is anything other than crude oil, condensate or produced water include its chemical composition and physical characteristics.

F. QUANTITY

The known or estimated volume of the discharge.

G. SITE CHARACTERISTICS

The relevant general conditions prevailing at the site including precipitation, wind conditions, temperature, soil type, distance to nearest residence and population centers and proximity of fresh water wells or watercourse (ie. any river, lake, stream, playa, arroyo, draw, wash, gully or natural or man-made channel through which water flows or has flowed).

2

H. IMMEDIATE CORRECTIVE ACTIONS

Any initial response actions taken to mitigate immediate threats to fresh waters, public health and the environment.

II. INITIAL RESPONSE ACTIONS

Upon learning of a leak, spill or release of any material which has a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property, the responsible party (RP) should take the following immediate actions unless the actions could create a safety hazard which would result in a threat to personal or public injury:

A. SOURCE ELIMINATION AND SITE SECURITY

The RP should take the appropriate measures to stop the source of the leak, spill or release and limit access to the site as necessary to reduce the possibility of public exposure.

B. CONTAINMENT

Once the site is secure, the RP should take steps to contain the materials leaked, spilled or released by construction of berms or dikes, the use of absorbent pads or other containment actions to limit the area impacted by the event and prevent potential fresh water contaminants from migrating to watercourses or areas which could pose a threat to public health and safety.

C. SITE STABILIZATION

After containment, the RP should recover any products or wastes which can be physically removed from the surface within the containment area. The disposition of all wastes or products removed from the site must be approved by the OCD.

III. SITE ASSESSMENT

Prior to final closure (Section VIII), soils into which nonrecoverable products or wastes have infiltrated and which have a reasonable probability to injure or be detrimental to public health, fresh waters, animal or plant life, or property or unreasonably interfere with the public welfare or use of the property should be assessed for their potential environmental impacts and remediated according to the procedures contained in the following sections. Assessment results form the basis of any required remediation. Sites will be assessed for severity of contamination and potential environmental and public health threats using a risk based ranking system.

The following characteristics should be determined in order to evaluate a sites potential risks, the need for remedial action and, if necessary, the level of cleanup required at the site:

A. GENERAL SITE CHARACTERISTICS

1. Depth To Ground Water

The operator should determine the depth to ground water at each site. The depth to ground water is defined as the vertical distance from the lowermost contaminants to the seasonal high water elevation of the ground water. If the exact depth to ground water is unknown, the ground water depth can be estimated using either local water well information, published regional ground water information, data on file with the New Mexico State Engineer Office or the vertical distance from adjacent ground water or surface water.

2. Wellhead Protection Area

The operator should determine the horizontal distance from all water sources including private and domestic water sources. Water sources are defined as wells, springs or other sources of fresh water extraction. Private and domestic water sources are those water sources used by less than five households for domestic or stock purposes.

3. Distance To Nearest Surface Water Body

The operator should determine the horizontal distance to all downgradient surface water bodies. Surface water bodies are defined as perennial rivers, streams, creeks, irrigation canals and ditches, lakes, ponds and playas.

B. SOIL/WASTE CHARACTERISTICS

Soils/wastes within and beneath the area of the leak, spill or release should be evaluated to determine the type and extent of contamination at the site. In order to assess the level of contamination, observations should be made of the soils at the surface and samples of the impacted soils should be taken in the leak, spill or release area. Observations should note whether previous leaks, spills or releases have occurred at the site. Additional samples may be required to completely define the lateral and vertical extent of contamination. Soil samples should be obtained according to the sampling procedures in Sections V.A. and V.B. This may be accomplished using a backhoe, drill rig, hand auger, shovel or other means.

Initial assessment of soil contaminant levels is not required if an operator proposes to determine the final soil contaminant concentrations after a soil removal or remediation pursuant to section VI.A.

Varying degrees of contamination described below may co-exist at an individual site. The following sections describe the degrees of contamination that should be documented during the assessment of the level of soil contamination:

1. Highly Contaminated/Saturated Soils

Highly contaminated/saturated soils are defined as those soils which contain a free liquid phase or exhibit gross staining.

2. Unsaturated Contaminated Soils

Unsaturated contaminated soils are defined as soils which are not highly contaminated/saturated, as described above, but contain benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH) or other potential fresh water contaminants unique to the leak, spill or release. Action levels and sampling and analytical methods for determining contaminant concentrations are described in detail in Sections IV. and V.

(NOTE: Soils contaminated as a result of spills, leaks or releases of non-exempt wastes must be evaluated for all RCRA Subtitle C hazardous waste characteristics. The above definitions apply only to oilfield contaminated soils which are exempt from federal RCRA Subtitle C hazardous waste provisions and nonexempt oilfield contaminated soils which are characteristically nonhazardous according to RCRA Subtitle C regulations. Any nonexempt contaminated soils which are determined to be characteristically hazardous cannot be remediated using this guidance document and will be referred to the New Mexico Environment Department Hazardous Waste Program.)

C. GROUND WATER QUALITY

If ground water is encountered during the soil/waste characterization of the impacted soils, a sample should be obtained to assess the incidents potential impact on ground water quality. Ground water samples should be obtained using the sampling procedures in Section V.C. Monitor wells may be required to assess potential impacts on ground water and the extent of ground water contamination, if there is a reasonable probability of ground water contamination based upon the extent and magnitude of soil contamination defined during remedial activities.

IV. SOIL AND WATER REMEDIATION ACTION LEVELS

A. SOILS

The sections below describe the OCD's recommended remediation action levels for soils contaminated with petroleum hydrocarbons. Soils contaminated with substances other than petroleum hydrocarbons may be required to be remediated based upon the nature of the contaminant and it's potential to impact fresh waters, public health and the environment.

1. Highly Contaminated/Saturated Soils

All highly contaminated/saturated soils should be remediated insitu or excavated to the maximum extent practicable. These soils should be remediated using techniques described in Section VI.A to the contaminant specific level listed in Section IV.A.2.b.

2. Unsaturated Contaminated Soils

The general site characteristics obtained during the site assessment (Section III.A.) will be used to determine the appropriate soil remediation action levels using a risk based approach. Soils which are contaminated by petroleum constituents will be scored according to the ranking criteria below to determine their relative threat to public health, fresh waters and the environment.

a. Ranking Criteria

Depth To Ground Water	Ranking Score
<50 feet	20
50 - 99	10
>100	0

Wellhead Protection Area

<1000 feet from a water source,or; <200 feet from private domestic water source Yes 20 No 0

Distance To Surface Water Body

<200 horizontal feet	20
200 - 1000 horizontal feet	10
>1000 horizontal feet	0

b. Recommended Remediation Action Level

The total ranking score determines the degree of remediation that may be required at any given site. The total ranking score is the sum of all four individual ranking criteria listed in Section IV.A.2.a. The table below lists the remediation action level that may be required for the appropriate total ranking score.

(NOTE: The OCD retains the right to require remediation to more stringent levels than those proposed below if warranted by site specific conditions (ie. native soil type, location relative to population centers and future use of the site or other appropriate site specific conditions.)

	Total Ranking Score		
	<u>>19</u>	<u>10 - 19</u>	0 - 9
Benzene (ppm) *	10	10	10
BTEX (ppm) *	50	50	50

TPH(ppm)**10010005000*A field soil vapor headspace measurement (Section
V.B.1) of 100 ppm may be substituted for a
laboratory analysis of the Benzene and BTEX
concentration limits.

** The contaminant concentration for TPH is the concentration above background levels.

B. GROUND WATER

Contaminated ground water is defined as ground water of a present or foreseeable beneficial use which contains free phase products, dissolved phase volatile organic constituents or other dissolved constituents in excess of the natural background water quality. Ground water contaminated in excess of the WQCC ground water standards or natural background water quality will require remediation.

V. SOIL AND WATER SAMPLING PROCEDURES

Below are the sampling procedures for soil and ground water contaminant investigations of leaks, spills or releases of RCRA Subtitle C exempt oil field petroleum hydrocarbon wastes. Leaks, spills or releases of non-exempt RCRA wastes must be tested to demonstrate that the wastes are not characteristically hazardous according to RCRA regulations. Sampling for additional constituents may be required based upon the nature of the contaminant which was leaked, spilled or released.

A. HIGHLY CONTAMINATED OR SATURATED SOILS

The following method is used to determine if soils are highly contaminated or saturated:

1. Physical Observations

Study a representative sample of the soil for observable free petroleum hydrocarbons or immiscible phases and gross staining. The immiscible phase may range from a free hydrocarbon to a sheen on any associated aqueous phase. A soil exhibiting any of these characteristics is considered highly contaminated or saturated.

B. UNSATURATED CONTAMINATED SOILS

The following methods may be used for determining the magnitude of contamination in unsaturated soils:

1. Soil Sampling Procedures for Headspace Analysis

A headspace analysis may be used to determine the total volatile organic vapor concentrations in soils (ie. in lieu of a laboratory analysis for benzene and BTEX but not in lieu of a TPH analysis). Headspace analysis procedures should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD procedures are as follows:

a) Fill a 0.5 liter or larger jar half full of sample and seal the top tightly with aluminum foil or fill a one quart zip-lock bag one-half full of sample and seal the top of the bag leaving the remainder of the bag filled with air.

- Ensure that the sample temperature is between 15 to 25 degrees Celsius (59-77 degrees Fahrenheit).
- c) Allow aromatic hydrocarbon vapors to develop within the headspace of the sample jar or bag for 5 to 10 minutes. During this period, the sample jar should be shaken vigorously for 1 minute or the contents of the bag should be gently massaged to break up soil clods.
- d) If using a jar, pierce the aluminum foil seal with the probe of either a PID or FID organic vapor meter (OVM), and then record the highest (peak) measurement. If using a bag, carefully open one end of the bag and insert the probe of the OVM into the bag and re-seal the bag around the probe as much as possible to prevent vapors from escaping. Record the peak measurement. The OVM must be calibrated to assume a benzene response factor.

2. Soil Sampling Procedures For Laboratory Analysis

a. <u>Sampling Procedures</u>

Soil sampling for laboratory analysis should be conducted according to OCD approved industry standards or other OCD-approved procedures. Accepted OCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect samples in clean, air-tight glass jars supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier.
- ii) Label the samples with a unique code for each sample.
- iii) Cool and store samples with cold packs or on ice.
- iv) Promptly ship sample to the lab for analysis following chain of custody procedures.
- v) All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.
- b. Analytical Methods

All soil samples must be analyzed using EPA methods, or by other OCD approved methods and must

be analyzed within the holding time specified by the method. Below are laboratory analytical methods commonly accepted by OCD for analysis of soil samples analyzed for petroleum related constituents. Additional analyses may be required if the substance leaked, spilled or released has been anything other than petroleum based fluids or wastes.

i) Benzene, toluene, ethylbenzene and xylene

EPA Method 602/8020

ii) Total Petroleum Hydrocarbons

EPA Method 418.1, or; EPA Method Modified 8015

C. GROUND WATER SAMPLING

If an investigation of ground water quality is deemed necessary, it should be conducted according to OCD approved industry standards or other OCD-approved procedures. The following methods are standard OCD accepted methods which should be used to sample and analyze ground water at RCRA Subtitle C exempt sites (Note: The installation of monitor wells may not be required if the OCD approves of an alternate ground water investigation or sampling technique):

1. Monitor Well Installation/Location

One monitor well should be installed adjacent to and hydrologically down-gradient from the area of the leak, spill or release to determine if protectable fresh water has been impacted by the disposal activities. Additional monitor wells, located up-gradient and down-gradient of the leak, spill or release, may be required to delineate the full extent of ground water contamination if ground water underlying the leak, spill or release has been found to be contaminated.

2. Monitor Well Construction

- a) Monitor well construction materials should be:
 - i) selected according to industry standards;
 - ii) chemically resistant to the contaminants to be monitored; and
 - iii) installed without the use of glues/adhesives.
- b) Monitor wells should be constructed according to OCD approved industry standards to prevent migration of contaminants along the well casing. Monitor wells should be constructed with a minimum of fifteen

(15) feet of well screen. At least five (5) feet of the well screen should be above the water table to accommodate seasonal fluctuations in the static water table.

3. Monitor Well Development

When ground water is collected for analysis from monitoring wells, the wells should be developed prior to sampling. The objective of monitor well development is to repair damage done to the formation by the drilling operation so that the natural hydraulic properties of the formation are restored and to remove any fluids introduced into the formation that could compromise the integrity of the sample. Monitoring well development is accomplished by purging fluid from the well until the pH and specific conductivity have stabilized and turbidity has been reduced to the greatest extent possible.

4. Sampling Procedures

Ground water should be sampled according to OCD accepted standards or other OCD approved methods. Samples should be collected in clean containers supplied by the laboratory which will conduct the analysis or from a reliable laboratory equipment supplier. Samples for different analyses require specific types of containers. The laboratory can provide information on the types of containers and preservatives required for sample collection. The following procedures are accepted by OCD as standard sampling procedures:

- a) Monitor wells should be purged of a minimum of three well volumes of ground water using a clean bailer prior to sampling to ensure that the sample represents the quality of the ground water in the formation and not stagnant water in the well bore.
- b) Collect samples in appropriate sample containers containing the appropriate preservative for the analysis required. No bubbles or headspace should remain in the sample container.
- Label the sample containers with a unique code for each sample.
- d) Cool and store samples with cold packs or on ice.
- e) Promptly ship sample to the lab for analysis following chain of custody procedures.
- f) All samples must be analyzed within the holding times for the laboratory analytical method specified by EPA.
- 5. Ground Water Laboratory Analysis

Samples should be analyzed for potential ground water contaminants contained in the waste stream, as defined by the WQCC Regulations. All ground water samples must be analyzed using EPA methods, or by other OCD approved methods and must be analyzed within the holding time specified by the method. Below are OCD accepted laboratory analytical methods for analysis of ground water samples analyzed for petroleum related constituents. Additional analyses may be required if the substance leaked, spilled or release has been anything other than a petroleum based fluid or waste.

a. Analytical Methods

i.) Benzene, Toluene, Ethylbenzene and Xylene

- EPA Method 602/8020

ii.) Major Cations and Anions

Various EPA or standard methods

iii.) Heavy Metals

EPA Method 6010, or;

Various EPA 7000 series methods

iv.) Polynuclear Aromatic Hydrocarbons

- EPA Method 8100

VI. REMEDIATION

The following discussion summarizes recommended techniques for remediation of contaminated soil and ground water as defined in Section IV.A. and IV.B. OCD approval for remediation of an individual leak, spill or release site is not required if the company is operating under an OCD approved spill containment plan. All procedures which deviate from the companies spill containment plan must be approved by OCD.

A. SOIL REMEDIATION

When RCRA Subtitle C exempt or RCRA nonhazardous petroleum contaminated soil requires remediation, it should be remediated and managed according to the criteria described below or by other OCD approved procedures which will remove, treat, or isolate contaminants in order to protect fresh waters, public health and the environment.

In lieu of remediation, OCD may accept an assessment of risk which demonstrates that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh waters, public health and the environment.

1. Contaminated Soils

Highly contaminated/saturated soils and unsaturated contaminated soils exceeding the standards described in Section IV.A. should be either:

- Excavated from the ground until a representative sample from the walls and bottom of the excavation is below the contaminant specific remediation level listed in Section IV.A.2.b or an alternate approved remediation level, or;
- Excavated to the maximum depth and horizontal extent practicable. Upon reaching this limit a sample should be taken from the walls and bottom of the excavation to determine the remaining levels of soil contaminants, or;
- c) Treated in place, as described in Section VI.A.2.b.ii. - Treatment of Soil in Place, until a representative sample is below the contaminant specific remediation level listed in Section IV.A.2.b, or an alternate approved remediation level, or;
- d) Managed according to an approved alternate method.

2. Soil Management Options

All soil management options must be approved by OCD. The following is a list of options for either on-site

treatment or off-site treatment and/or disposal of contaminated soils:

a. Disposal

Excavated soils may be disposed of at an off-site OCD approved or permitted facility.

- b. Soil Treatment and Remediation Techniques
 - i. Landfarming

Onetime applications of contaminated soils may be landfarmed on location by spreading the soil in an approximately six inch lift within a bermed area. Only soils which do not contain free liquids can be landfarmed. The soils should be disced regularly to enhance biodegradation of the contaminants. If necessary, upon approval by OCD, moisture and nutrients may be added to the soil to enhance aerobic biodegradation.

In some high risk areas an impermeable liner may be required to prevent leaching of contaminants into the underlying soil.

Landfarming sites that will receive soils from more than one location are considered centralized sites and must be approved separately by the OCD prior to operation.

ii. Insitu Soil Treatment

Insitu treatment may be accomplished using vapor venting, bioremediation or other approved treatment systems.

iii. Alternate Methods

The OCD encourages alternate methods of soil remediation including, but not limited to, active soil aeration, composting, bioremediation, solidification, and thermal treatment.

B. GROUND WATER REMEDIATION

1. Remediation Requirements

Ground water remediation activities will be reviewed and approved by OCD on a case by case basis prior to commencement of remedial activities. When contaminated ground water exceeds WQCC ground water standards, it
should be remediated according to the criteria described below.

a. Free Phase Contamination

Free phase floating product should be removed from ground water through the use of skimming devices, total-fluid type pumps, or other OCD-approved methods.

b. Dissolved Phase Contamination

Ground water contaminated with dissolved phase constituents in excess of WQCC ground water standards can be remediated by either removing and treating the ground water, or treating the ground water in place. If treated waters are to be disposed of onto or below the ground surface, a discharge plan must be submitted and approved by OCD.

c. Alternate Methods

The OCD encourages other methods of ground water remediation including, but not limited to, air sparging and bioremediation. Use of alternate methods must be approved by OCD prior to implementation.

VII. TERMINATION OF REMEDIAL ACTION

Remedial action may be terminated when the criteria described below have been met:

A. SOIL

Contaminated soils requiring remediation should be remediated so that residual contaminant concentrations are below the recommended soil remediation action level for a particular site as specified in Section IV.A.2.b.

If soil action levels cannot practicably be attained, an evaluation of risk may be performed and provided to OCD for approval showing that the remaining contaminants will not pose a threat to present or foreseeable beneficial use of fresh water, public health and the environment.

B. GROUND WATER

A ground water remedial action may be terminated if all recoverable free phase product has been removed, and the concentration of the remaining dissolved phase contaminants in the ground water does not exceed New Mexico WQCC water quality standards or background levels. Termination of remedial action will be approved by OCD upon a demonstration of completion of remediation as described in above.

VIII.FINAL CLOSURE

Upon termination of any required remedial actions (Section VII.) the area of a leak, spill or release may be closed by backfilling any excavated areas, contouring to provide drainage away from the site, revegetating the area or other OCD approved methods.

IX. FINAL REPORT

Upon completion of remedial activities a final report summarizing all actions taken to mitigate environmental damage related to the leak, spill or release will be provided to OCD for approval.

PHOTO NO. 1 – COOPER JAL UNIT #512 SPILL AREA

PHOTO NO. 2 – CHLORIDE CONTAMINATION AREA

PHOTO NO. 3 – HYDROCARBON CONTAMINATION AREA

APPENDIX E MATERIAL SAFETY DATA SHEETS

NUGREEN SPECIALTY - SB-1

Effective Date: 1/03/04 Name and Address:

Revised: 01/03/04 Phone: (248)-330-9029 Emergency Phone: CHEMTREC (800)-424-9300

NUGREEN SPECIALTY, INC. 990 HIGHWAY 287 N, STE. 106 MANSFIELD, TX. 76063

> Synonyms: NONE Chemical Family: N.A. ID No .: NONE

Chemical Name: NOT APPLICABLE D.O.T. Hazard Class: PRODUCT IS NOT DOT REGULATED D.O.T. Shipping Name: PRODUCT IS NOT DOT REGULATED Formula: SEE SECTION II NFPA Profile: Health 1; Flammability 0; Reactivity 0

A. Hazardous Ingredients

	%	TLV
NONE KNOWN	N.A.	N.A.
B. Other Ingredients		
	%*	TLV
INGREDIENTS NOT PRECISELY IDENTIFIED ARE		
NON-HAZARDOUS & PROPRIETARY.		
INGREDIENTS OF <1% HAVE BEEN ADDED TO A		
NON-HAZARDOUS LIQUID ORGANIC SUBSTRATE		
ACTIVE COMPONENTS: PROPRIETARY	>15%	NONE ESTAB.
ENZYME MIXTURE	<5%	NONE ESTAB.
WATER, CAS#7732-18-5	<85%	NONE ESTAB.

SECTION 3 :=========PHYSICAL PROPERTIES=================

Boiling Point:	~212°F	Specific Gravity:	~1.0
Percent Volatile (volume):	N.A.	pH (undiluted):	7.5-9.5
Vapor Pressure (mm Hg):	N.A.	Solubility in Water:	99%
Vapor Density (air=1):	N.A.	Evaporation Rate (water=1):	<1.0
Freezing Point	~0°F	Viscosity:	Similar to Water

Appearance and Odor: DARK BROWN/BLACK LIQUID, MILD EARTHY ODOR.

NUGREEN SPECIATLY - SB-1

Flash Point (method used): NOT APPLICABLE Flammable Limits in Air (lower): N.A.

(upper): N.A.

Extinguishing Media: SOLUTION IS NOT FLAMMABLE. IF INVOLVED IN A FIRE, USE WATER.

Special Fire Fighting Procedures: NONE. PRODUCT WILL NOT BURN.

Unusual Fire or Explosion Hazards:

NONE. PRODUCT WILL NOT BURN.

A. TLV and source: N.A.
B. Effects of a Single Overexposure by

Ingestion: MAY CAUSE SICKNESS IF INGESTED IN LARGE QUANTITIES.
Inhalation: LOW ORDER OF TOXICITY. MAY CAUSE MILD DISCOMFORT.
Skin Contact: SLIGHT REDNESS ON HANDS AND FORARMS IF INDIVIDUAL HAS HISTORY OF DERMAL ALLERGIC REACTIONS.
Eye Contact: MAY CAUSE MILD TRANSIENT IRRITATION.

C. Cancer Statement: THIS PRODUCT (OR ANY COMPONENT AT A CONCENTRATION OF

• Statement: THIS PRODUCT (OR ANY COMPONENT AT A CONCENTRATION OF 0.1% OR GREATER) IS NOT LISTED BY THE NTP, LARC, OSHA OR EPA AS A CARCINOGEN. IT ALSO CONTAINS NO KNOWN TERATOGENS, REPRODUCTIVE TOXINS OR SENSITIZERS.

D. Emergency and First Aid Procedure for

1. Ingestion:	GIVE TWO GLASSES OF WATER. DO NOT INDUCE
	VOMITING GET PROMPT MEDICAL ATTENTION.
2. Inhalation:	IMMEDIATELY REMOVE VICTIM FROM EXPOSURE.
	ADMINISTER ARTIFICIAL RESPIRATION IF BREATHING HAS
	STOPPED. KEEP AT REST. CALL FOR PROMPT MEDICAL
	ATTENTION.
3. Skin Contact:	WASH WITH LARGE AMOUNTS OF WATER; USE SOAP IF
	AVAILABLE. IF IRRITATION PERSISTS, SEEK MEDICAL
	ATTENTION.
4. Eye Contact:	IMMEDIATELY FLUSH WITH LARGE AMOUNTS OF WATER
	UNTIL IRRITATION SUBSIDES. IF IRRITATION PERSISTS,
	GET MEDICAL ATTENTION.

NUGREEN SPECIALTY - SB-1

Respiratory Protection:	NOT NORMALLY REQUIRED. IF MISTED BY HEAT
	AGITATION OR SPRAY, USE A MIST RESPIRATOR
	APPROVED BY NIOSH. DO NOT USE SINGLE-USE TYPE.
Ventilation:	VENTILATION SHOULD BE PROVIDED TO CONTROL
	WORKER EXPOSURES AND PREVENT HEALTH RISK;
Protective Gloves:	CHEMICAL RESISTANT GLOVES.
Eye Protection:	GOGGLES OR SAFETY GLASSES WITH SIDE SHIELDS.
Other Protective Equipment:	EYEWASH STATION IN AREA OF USE.

Product Stability:	STABLE	
Conditions to Avoid:	STRONG ACIDS OR ALKALI COMPOUNDS MAY INACTIVATE	
	BIO CULTURES.	
Incompatibility:	STRONG ACIDS OR ALKALI COMPOUNDS	
Hazard Combustion or		
Decomposition Products:	N.A.	
Hazardous Polymerization:	WILL NOT OCCUR.	

A. Water Spill: PREVENT ADDITIONAL DISCHARGE OF MATERIAL, IF POSSIBLE TO DO SO WITHOUT HAZARD. SINCE N-P-K IS A FERTILIZER, IT MAY PROMOTE ENTROPHICATION IN WATERWAYS. CONSULT AN EXPERT ON DISPOSAL OF RECOVERED MATERIAL, AND ENSURE CONFORMITY TO ALL FEDERAL, STATE, AND LOCAL DISPOSAL REGULATIONS.

B. Land Spill: PREVENT ADDITIONAL DISCHARGE OF MATERIAL, IF POSSIBLE TO DO SO WITHOUT HAZARD. FOR SMALL SPILLS, IMPLEMENT CLEANUP PROCEDURES: FOR LARGE SPILLS, IMPLEMENT CLEANUP PROCEDURES AND, IF IN PUBLIC AREA, ADVISE AUTHORITIES. LIQUID FROM ENTERING PREVENT SEWERS. WATERCOURSES, OR LOW AREAS. CONTAIN SPILLED LIOUID WITH SAND OR EARTH. RECOVER BY PUMPING OR WITH A SUITABLE ABSORBENT. CONSULT AN EXPERT ON DISPOSAL OF RECOVERED MATERIAL AND ENSURE CONFORMITY TO ALL FEDERAL. STATE, AND LOCAL DISPOSAL REGULATIONS.

NUGREEN SPECIALTY - SB-1

A. Handling and

Storage: KEEP CONTAINER CLOSED. BOTH OPEN AND HANDLE CONTAINERS WITH CARE. STORE IN A COOL, WELL VENTILATED PLACE AWAY FROM INCOMPATIBLE MATERIALS.

> STORAGE TEMPERATURE: 0°F MIN TO 180°F MAX. LOADING TEMPERATURE: 0°F MIN TO 180°F MAX. STORAGE PRESSURE: ATMOSPHERIC

B. Other Precautions: NONE

PLEASE CALL THE NON-EMERGENCY TELEPHONE NUMBER ON PAGE ONE IF THIS INFORMATION IS REQUIRED.

PLEASE CALL THE NON-EMERGENCY TELEPHONE NUMBER ON PAGE ONE IF THIS INFORMATION IS REQUIRED.

The data contained in this Material Safety Data Sheet has been prepared based upon an evaluation of the ingredients contained in the product, their concentration in the product and potential interactions. The information is offered in good faith and is believed to be accurate. It is furnished to the customer who is urged to study it carefully to become aware of hazards, if any, in the storage, handling, use and disposal of the product; and to insure their employees are properly informed and advised of all safety precautions required. The information is furnished for compliance with the "Occupational Safety and Health Act" of 1970, the "Hazards Communication Act" of 1983 as well as various other Federal, State and Local regulations. Use or dissemination of all or part of this information for any other purpose is illegal.

Analytical Report 456729

for

Environmental Compliance Associates

Project Manager: Aaron Edrington

Cooper Jal Unit #512

0113-12

06-FEB-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ00989): Arizona (AZ0758)

06-FEB-13

8

Project Manager: Aaron Edrington Environmental Compliance Associates P.O.Box 770005 Houston, TX 77215

Reference: XENCO Report No(s): 456729 Cooper Jal Unit #512 Project Address: Jal.NM

Aaron Edrington:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 456729. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 456729 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully. Jul Ct

Nicholas Straccione Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 456729

Environmental Compliance Associates, Houston, TX

Cooper Jal Unit #512

	Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
	CJU #1	S	01-30-13 12:20	0 - 1 ft	456729-001
1	CJU #2	S	01-30-13 12:33	0 - 1 ft	456729-002
١.	CJU #3	S	01-30-13 12:40	0 - 1 ft	456729-003
	CJU #4	S	01-30-13 12:45	0 - 1.5 ft	456729-004
	CJU #5	S	01-30-13 12:50	0 - 1 ft	456729-005
	CJU #6	S	01-30-13 12:58	0 - 1 ft	456729-006
	CJU #7	S	01-30-13 13:03	0 - 1 ft	456729-007
	CJU #8	S	01-30-13 13:09	0 - 1 ft	456729-008
	CJU #9	S	01-30-13 13:16	0 - 1 ft	456729-009
	CJU #10	S	01-30-13 13:21	0 - 1.5 ft	456729-010
	CJU #11A	S	01-30-13 13:28	0 - 1 ft	456729-011
	CJU #11B	S	01-30-13 13:33	0 - 2 ft	456729-012
	CJU #12	S	01-30-13 13:40	0 - 1 ft	456729-013
Ľ	CJU #13A	S	01-30-13 13:46	0 - 1 ft	456729-014
	CJU #13B	S	01-30-13 13:50	0 - 2 ft	456729-015
	CJU #14	S	01-30-13 13:58	0 - 1 ft	456729-016
1	CJU #15	S	01-30-13 14:05	0 - 1 ft	456729-017
	CJU #16	S	01-30-13 14:10	0 - 1 ft	456729-018
	CJU #17	S	01-30-13 14:15	0 - 1 ft	456729-019
Ľ.	CJU #18	Ś	01-30-13 14:21	0 - 1 ft	456729-020
	CJU #19	S	01-30-13 14:27	0 - 1 ft	456729-021

CASE NARRATIVE

Client Name: Environmental Compliance Associates Project Name: Cooper Jal Unit #512

Project ID: Work Order Number(s): 456729

0113-12

Report Date: 06-FEB-13 Date Received: 01/31/2013

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-905963 BTEX by EPA 8021B SW8021BM

Batch 905963, m p-Xylenes recovered below QC limits in the Matrix Spike. Samples affected are: 456729-004, -002, -005, -001, -003. The Laboratory Control Sample for m_p-Xylenes is within laboratory Control Limits

Batch: LBA-906129 Inorganic Anions by EPA 300/300.1 E300

Batch 906129, Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 456729-004, -002, -006, -005, -001, -003, -007. The Laboratory Control Sample for Chloride is within laboratory Control Limits

Batch: LBA-906268 Inorganic Anions by SW 9056 E300

Batch 906268, Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 456729-016, -013, -012, -014, -018, -011, -015, -017. The Laboratory Control Sample for Chloride is within laboratory Control Limits

(ENCO aboratories Contact: Aaron Edrington

Project Id: 0113-12

Certificate of Analysis Summary 456729 Environmental Compliance Associates, Houston, Project Name: Cooper Jal Unit #512

TX		
Date Received in Lab:	Date Received in Lab: Thu Jan-31-13 08:00 am	
Report Date: 06-FEB-13	06-FEB-13	
Project Manager:	Project Manager: Nicholas Straccione	
456729-004	456729-005	456729-0
CJU #4	CJU #5	CJU #6
0-1.5 ft	0-1 ft	0-1 U
SOIL	SOIL	SOIL

					Project Manager: N	Nicholas Straccione	
	Lab Id:	456729-001	456729-002	456729-003	456729-004	456729-005	456729-006
	Field Id:	CJU#1	CJU #2	CJU #3	CJU #4	CJU #5	CJU #6
Analysis Kequesieu	Depth:	0-1 ft	0-1 ft	0-1 ft	0-1.5 ft	0-1 ft	0-1 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jan-30-13 12:20	Jan-30-13 12:33	Jan-30-13 12:40	Jan-30-13 12:45	Jan-30-13 12:50	Jan-30-13 12:58
BTEX by EPA 8021B	Extracted:	Jan-31-13 09:00	Jan-31-13 09:00	Jan-31-13 09:00	Jan-31-13 09:00	Jan-31-13 09:00	Feb-01-13 08:40
	Analyzed:	Jan-31-13 14:36	Jan-31-13 14:52	Jan-31-13 15:42	Jan-31-13 15:58	Jan-31-13 16:15	Feb-01-13 11:01
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.00106	ND 0.00114	ND 0.00103	ND 0.00105	ND 0.00110	ND 0.00103
Toluene		ND 0.00213	ND 0.00228	ND 0.00205	ND 0.00210	ND 0.00221	ND 0.00207
Ethylbenzene		ND 0.00106	ND 0.00114	ND 0.00103	ND 0.00105	ND 0.00110	ND 0.00103
m_p-Xylenes		ND 0.00213	ND 0.00228	ND 0.00205	ND 0.00210	ND 0.00221	ND 0.00207
o-Xylene		ND 0.00106	ND 0.00114	ND 0.00103	ND 0.00105	0.00485 0.00110	ND 0.00103
Total Xylenes		ND 0.00106	ND 0.00114	ND 0,00103	ND 0.00105	0.00485 0.00110	ND 0.00103
Total BTEX		ND 0.00106	ND 0.00114	ND 0.00103	ND 0.00105	0.00485 0.00110	ND 0.00103
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-04-13 17:45	Feb-04-13 18:37	Feb-04-13 18:55	Feb-04-13 19:12	Feb-04-13 19:29	Feb-04-13 19:47
SUB: E871002	Analyzed:	Feb-04-13 17:45	Feb-04-13 18:37	Feb-04-13 18:55	Feb-04-13 19:12	Feb-04-13 19:29	Feb-04-13 19:47
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		772 1.06	940 1.14	30.5 1.02	49.9 1.04	977 1.09	24.6 1.03
Percent Moisture	Extracted:						
	Analyzed:	Feb-01-13 12:30	Feb-01-13 12:30	Feb-01-13 12:30	Feb-01-13 12:30	Feb-01-13 12:30	Feb-01-13 12:30
	Units/RL:	% RL	% RL	% RL	% RL	% RL	% RL
Percent Moisture		6.62 1.00	12.9 1.00	2.92 1.00	4.64 1.00	8.76 1.00	3.55 1.00
TPH By SW8015B Mod	Extracted:	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45	Feb-04-13 14:50
	Analyzed:	Feb-02-13 00:09	Feb-02-13 00:34	Feb-02-13 01:00	Feb-02-13 01:26	Feb-02-13 01:51	Feb-05-13 02:31
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C10 Gasoline Range Hydrocarbons		ND 16.1	ND 17.3	ND 15.4	ND 15.7	ND 16.4	ND 15.6
C10-C28 Diesel Range Hydrocarbons		41.1 16.1	149 17.3	91.2 15.4	ND 15.7	22.9 16.4	ND 15.6
Total TPH		41.1 16.1	149 17.3	91.2 15.4	ND 15.7	22.9 16.4	ND 15.6

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout its analytical report represent the best jugment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

And Ch

Nicholas Straccione Project Manager

÷	į.			
		_		
	ŀ	2	orie	
	F		orot	
	P	~	4	1

Contact: Aaron Edrington

Project Id: 0113-12

Certificate of Analysis Summary 456729 Environmental Compliance Associates, Houston, TX

)	ie Received in Lab: Thu Jan-31-13 08:00 am	06-FEB-13	Nicholas Straccione
	Date Received in Lab:	Report Date:	Project Manager:
Project Name: Cooper Jal Unit #512			

	Lab Id:	456729-007	456729-008	456729-009	456729-010	456729-011	456729-012
	Field Id:	CJU #7	CJU #8	CJU #9	CJU #10	CJU #11A	CJU #11B
Analysis Kequesiea	Depth:	0-1 U	0-1 ft	0-1 ft	0-1.5 ft	0-1 ft	0-2 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jan-30-13 13:03	Jan-30-13 13:09	Jan-30-13 13:16	Jan-30-13 13:21	Jan-30-13 13:28	Jan-30-13 13:33
BTEX by EPA 8021B	Extracted:	Feb-01-13 08:40					
	Analyzed:	Feb-01-13 15:29	Feb-01-13 11:33	Feb-01-13 11:52	Feb-01-13 12:09	Feb-01-13 12:25	Feb-01-13 12:41
	Units/RL:	mg/kg RL					
Benzene		ND 0.00106	ND 0.00109	ND 0.00103	ND 0.00104	ND 0.00107	ND 0.00107
Toluene		ND 0.00212	ND 0.00218	ND 0.00206	ND 0.00207	ND 0.00213	ND 0.00214
Ethylbenzene		ND 0.00106	ND 0.00109	ND 0.00103	ND 0.00104	ND 0.00107	ND 0.00107
m_p-Xylenes		ND 0.00212	ND 0.00218	ND 0.00206	ND 0.00207	ND 0.00213	ND 0.00214
o-Xylene		ND 0.00106	ND 0.00109	ND 0.00103	ND 0.00104	ND 0.00107	ND 0.00107
Total Xylenes		ND 0.00106	ND 0.00109	ND 0.00103	ND 0.00104	ND 0.00107	ND 0.00107
Total BTEX		ND 0.00106	ND 0.00109	ND 0.00103	ND 0.00104	ND 0.00107	ND 0.00107
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-04-13 20:39	Feb-05-13 07:06	Feb-05-13 07:23	Feb-05-13 07:40	Feb-04-13 21:31	Feb-04-13 22:23
SUB: E871002	Analyzed:	Feb-04-13 20:39	Feb-05-13 07:06	Feb-05-13 07:23	Feb-05-13 07:40	Feb-04-13 21:31	Feb-04-13 22:23
	Units/RL:	mg/kg RL					
Chloride		64.5 1.04	466 1.09	54.3 1.03	ND 1.04	668 1.07	693 1.07
Percent Moisture	Extracted:						
	Analyzed:	Feb-01-13 12:30					
	Units/RL:	% RL					
Percent Moisture		5.50 1.00	8.25 1.00	4.03 1.00	3.83 1.00	6.39 1.00	7.40 1.00
TPH By SW8015B Mod	Extracted:	Feb-01-13 14:45					
	Analyzed:	Feb-02-13 02:43	Feb-02-13 03:08	Feb-02-13 03:34	Feb-02-13 03:59	Feb-02-13 04:50	Feb-02-13 05:16
	Units/RL:	mg/kg RL					
C6-C10 Gasoline Range Hydrocarbons		ND 15.8	ND 16.3	ND 15.6	ND 15.6	ND 16.0	ND 16.2
C10-C28 Diesel Range Hydrocarbons		ND 15.8	ND 16.3	ND 15.6	ND 15.6	71.4 16.0	18.7 16.2
Total TPH		ND 15.8	ND 16.3	ND 15.6	ND 15.6	71.4 16.0	18.7 16.2

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nul 1

Project Manager

Final 1.000

Nicholas Straccione

Contact: Aaron Edrington Project Id: 0113-12 aboratories

ENCO

Certificate of Analysis Summary 456729 Environmental Compliance Associates, Houston, TX Project Name: Cooper Jal Unit #512

	n Lab: Thu Jan-31-13 08:00 am	Renort Date: 06-FFB-13
TX	Date Received in Lab:	Renort

					Project Manager: N	Nicholas Straccione	
	Lab Id:	456729-013	456729-014	456729-015	456729-016	456729-017	456729-018
1 - 1 - 1 - 1 - 1	Field Id:	CJU #12	CJU #13A	CJU #13B	CJU #14	CJU #15	CJU #16
Analysis Kequesieu	Depth:	0-1 ft	0-1 ft	0-2 ft	0-1 ft	0-1 ft	0-1 ft
	Matrix:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sampled:	Jan-30-13 13:40	Jan-30-13 13:46	Jan-30-13 13:50	Jan-30-13 13:58	Jan-30-13 14:05	Jan-30-13 14:10
BTEX by EPA 8021B	Extracted:	Feb-01-13 08:40	Feb-01-13 08:40	Feb-01-13 08:40	Feb-01-13 08:40	Feb-01-13 08:40	Feb-01-13 08:40
	Analyzed:	Feb-01-13 12:58	Feb-01-13 13:15	Feb-01-13 14:06	Feb-01-13 14:22	Feb-01-13 14:39	Feb-01-13 14:56
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Benzene		ND 0.00107	ND 0.00110	ND 0.00110	ND 0.00113	ND 0.00109	ND 0.00108
Toluene		ND 0.00214	ND 0.00220	ND 0.00220	ND 0.00225	ND 0.00218	ND 0.00215
Ethylbenzene		ND 0.00107	ND 0.00110	ND 0.00110	ND 0.00113	ND 0.00109	ND 0.00108
m_p-Xylenes		ND 0.00214	ND 0.00220	ND 0.00220	ND 0.00225	ND 0.00218	ND 0.00215
o-Xylene		ND 0.00107	ND 0.00110	ND 0.00110	ND 0.00113	ND 0.00109	ND 0.00108
Total Xylenes		ND 0.00107	ND 0.00110	ND 0.00110	ND 0.00113	ND 0.00109	ND 0.00108
Total BTEX		ND 0.00107	ND 0.00110	ND 0.00110	ND 0.00113	ND 0.00109	ND 0.00108
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-04-13 22:41	Feb-04-13 22:58	Feb-04-13 23:16	Feb-05-13 00:08	Feb-05-13 00:25	Feb-05-13 00:43
SUB: E871002	Analyzed:	Feb-04-13 22:41	Feb-04-13 22:58	Feb-04-13 23:16	Feb-05-13 00:08	Feb-05-13 00:25	Feb-05-13 00:43
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
Chloride		ND 1.07	825 1.08	692 1.11	1030 1.13	711 1.08	883 1.08
Percent Moisture	Extracted:	E-4 A1 12 12-20	E-4 01 12 12:20	Eak 01 12 12:20	Eek 01 12 12:20	Eek 01 13 13-30	Eak 01 13 13-30
	Units/RL:	% RL	TA %	% RL	% RL	% RL	% RL
Percent Moisture		6.71 1.00	9.17 1.00	9.79 1.00	11.3 1.00	8.44 1.00	7.57 1.00
TPH By SW8015B Mod	Extracted:	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45	Feb-01-13 14:45
	Analyzed:	Feb-02-13 05:41	Feb-02-13 06:06	Feb-02-13 06:32	Feb-02-13 06:57	Feb-02-13 07:22	Feb-02-13 07:47
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL
C6-C10 Gasoline Range Hydrocarbons		ND 16.1	ND 16.5	17.1 16.7	ND 16.8	ND 16.4	ND 16.1
C10-C28 Diesel Range Hydrocarbons		ND 16.1	202 16.5	347 16.7	ND 16.8	ND 16.4	ND 16.1
Total TDH		171 VIN	271 000	264 167	NTN 16.0	NID 16.4	131 UIN

48

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout its analytical report represent the best jugment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warmany to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Nul

Nicholas Straccione Project Manager

_		
	0 3	
	S.	
	2 2	
	W ŝ	
	G	

Contact: Aaron Edrington

Project Id: 0113-12

Certificate of Analysis Summary 456729 Environmental Compliance Associates, Houston, TX

Project Name: Cooper Jal Unit #512

)	Thu Jan-31-13 08:00 am	06-FEB-13	Nicholas Straccione
	Date Received in Lab:	Report Date: 06-FEB-13	Project Manager.

				I INJUCT MANAGE.	r: INICIIOIAS SUACCIONC
	Lab Id:	456729-019	456729-020	456729-021	
Aundratio Damandad	Field Id:	CJU #17	CJU #18	CJU #19	
Anuiysis Mequesieu	Depth:	0-1 ft	0-1 ft	0-1 ft	
	Matrix:	SOIL	SOIL	SOIL	
	Sampled:	Jan-30-13 14:15	Jan-30-13 14:21	Jan-30-13 14:27	
BTEX by EPA 8021B	Extracted:	Feb-01-13 08:40	Feb-04-13 11:00	Feb-04-13 11:00	
	Analyzed:	Feb-01-13 15:12	Feb-04-13 12:47	Feb-04-13 13:04	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Benzene		ND 0.00105	ND 0.00104	ND 0.00111	
Toluene		ND 0.00211	ND 0.00208	ND 0.00222	
Ethylbenzene		ND 0.00105	ND 0.00104	ND 0.00111	
m_p-Xylencs		ND 0.00211	ND 0.00208	ND 0.00222	
o-Xylene		ND 0.00105	ND 0.00104	ND 0.00111	
Total Xylencs		ND 0.00105	ND 0.00104	ND 0.00111	
Total BTEX		ND 0.00105	ND 0.00104	11100 ON	
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-05-13 07:58	Feb-05-13 08:15	Feb-05-13 11:33	
SUB: E871002	Analyzed:	Feb-05-13 07:58	Feb-05-13 08:15	Feb-05-13 11:33	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
Chloride		66.8 1.05	7.18 1.04	220 1.11	
Percent Moisture	Extracted:				
	Analyzed:	Feb-01-13 12:30	Feb-01-13 12:30	Feb-01-13 12:30	
	Units/RL:	% RL	% RL	% RL	
Percent Moisture		5.13 1.00	4.62 1.00	10.0 1.00	
TPH By SW8015B Mod	Extracted:	Feb-01-13 14:45	Feb-01-13 14:45	Feb-04-13 14:50	
	Analyzed:	Feb-02-13 08:13	Feb-02-13 08:38	Feb-05-13 02:57	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	
C6-C10 Gasoline Range Hydrocarbons		ND 15.8	ND 15.7	ND 16.7	
C10-C28 Diesel Range Hydrocarbons		ND 15.8	ND 15.7	18.3 16.7	
Total TPH		ND 15.8	ND 15.7	18.3 16.7	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing. Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mul C

Nicholas Straccione

Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit

PQL Practical Quantitation Limit MQL Method Quantitation Limit

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

LOD Limit of Detection

LOQ Limit of Quantitation

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, 1X //4//
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Project Name: Cooper Jal Unit #512

	Sample: 456729-001 / SMP			:Soil		
Units: mg/kg	Date Analyzed: 01/31/13 14:36	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0277	0.0300	92	80-120	
4-Bromofluorobenzene		0.0263	0.0300	88	80-120	
Lab Batch #: 905963	Sample: 456729-002 / SMP	Bate	h: 1 Matrix	: Soil		
Units: mg/kg	Date Analyzed: 01/31/13 14:52	SU	RROGATE R	ECOVERY	STUDY	
	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0254	0.0300	85	80-120	
4-Bromofluorobenzene		0.0326	0.0300	109	80-120	
Lab Batch #: 905963	Sample: 456729-003 / SMP	Batc	h: 1 Matrix	c: Soil		
Units: mg/kg	Date Analyzed: 01/31/13 15:42		RROGATE R		STUDY	_
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0293	0.0300	98	80-120	
4-Bromofluorobenzene		0.0279	0.0300	93	80-120	
Lab Batch #: 905963	Sample: 456729-004 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 01/31/13 15:58	SU	RROGATE R	ECOVERY	STUDY	
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0279	0.0300	93	80-120	
4-Bromofluorobenzene		0.0266	0.0300	89	80-120	
Lab Batch #: 905963	Sample: 456729-005 / SMP	Bate	h: 1 Matri	x:Soil		
Units: mg/kg	Date Analyzed: 01/31/13 16:15	SU	RROGATE R	ECOVERY	STUDY	
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0249	0.0300	83	80-120	
A CONTRACTOR OF				1		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

	Sample: 456729-006 / SMP	Bate			OTUDY	
Units: mg/kg	Date Analyzed: 02/01/13 11:01	SU	RROGATE R	ECOVERY	STUDY	
	by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0316	0.0300	105	80-120	
4-Bromofluorobenzene		0.0283	0.0300	94	80-120	
Lab Batch #: 906075	Sample: 456729-008 / SMP	Bate	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 02/01/13 11:33	SU	RROGATE R	ECOVERY	STUDY	
	by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0272	0.0300	91	80-120	
4-Bromofluorobenzene		0.0270	0.0300	90	80-120	
Lab Batch #: 906075	Sample: 456729-009 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 11:52	SU	RROGATE R	ECOVERY	STUDY	
	A by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0328	0.0300	109	80-120	
4-Bromofluorobenzene		0.0318	0.0300	106	80-120	
Lab Batch #: 906075	Sample: 456729-010 / SMP	Batc	h: 1 Matrix	:Soil		-
Units: mg/kg	Date Analyzed: 02/01/13 12:09	SU	RROGATE R	ECOVERY	STUDY	
	A by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0248	0.0300	83	80-120	
4-Bromofluorobenzene		0.0292	0.0300	97	80-120	
Lab Batch #: 906075	Sample: 456729-011 / SMP	Bate	h: 1 Matrix	c:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 12:25	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0302	0.0300	101	80-120	
		0.0320	0.0300	107	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Cooper Jal Unit #512

Lab Batch #: 906075	Sample: 456729-012 / SMP	Batc		21.11.14.14		
Units: mg/kg	Date Analyzed: 02/01/13 12:41	su	RROGATE R	ECOVERYS	STUDY	_
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0269	0.0300	90	80-120	1
4-Bromofluorobenzene		0.0309	0.0300	103	80-120	
Lab Batch #: 906075	Sample: 456729-013 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 12:58	SU	RROGATE R	ECOVERY S	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0268	0.0300	89	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	
Lab Batch #: 906075	Sample: 456729-014 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 13:15	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0338	0.0300	113	80-120	
4-Bromofluorobenzene		0.0302	0.0300	101	80-120	
Lab Batch #: 906075	Sample: 456729-015 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 14:06	SU	RROGATE R	ECOVERY	STUDY	_
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0295	0.0300	98	80-120	_
4-Bromofluorobenzene		0.0271	0.0300	90	80-120	
Lab Batch #: 906075	Sample: 456729-016 / SMP		ch: 1 Matrix			
Units: mg/kg	Date Analyzed: 02/01/13 14:22	SU	RROGATE R	ECOVERY	STUDY	
BTE.	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0263	0.0300	88	80-120	-

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

Lab Batch #: 906075	Sample: 456729-017 / SMP	Batc				
Units: mg/kg	Date Analyzed: 02/01/13 14:39	SU	RROGATE R	ECOVERY	STUDY	
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0281	0.0300	94	80-120	
4-Bromofluorobenzene		0.0334	0.0300	111	80-120	-
Lab Batch #: 906075	Sample: 456729-018 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 14:56	SU	RROGATE R	ECOVERY	STUDY	
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0254	0.0300	85	80-120	-
4-Bromofluorobenzene		0.0301	0.0300	100	80-120	
Lab Batch #: 906075	Sample: 456729-019 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 15:12	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0300	0.0300	100	80-120	
4-Bromofluorobenzene		0.0244	0.0300	81	80-120	
Lab Batch #: 906075	Sample: 456729-007 / SMP	Batc	h: 1 Matrix	x:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 15:29	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flaş
1,4-Difluorobenzene		0.0270	0.0300	90	80-120	
4-Bromofluorobenzene		0.0317	0.0300	106	80-120	
Lab Batch #: 906117	Sample: 456729-001 / SMP	Bate	h: 1 Matrix	x:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 00:09	SU	RROGATE R	ECOVERY	STUDY	
ТРН В	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	100	107	70-135	
		11 m	12.00			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

Lab Batch #: 906117	Sample: 456729-002 / SMP	Bate				
Units: mg/kg	Date Analyzed: 02/02/13 00:34	SU	RROGATE R	ECOVERY	STUDY	
ТРН Н	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		106	100	106	70-135	
o-Terphenyl		57.5	50.1	115	70-135	
Lab Batch #: 906117	Sample: 456729-003 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 01:00	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		105	99.8	105	70-135	
o-Terphenyl		55.5	49.9	111	70-135	
Lab Batch #: 906117	Sample: 456729-004 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 01:26	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	99.9	107	70-135	
o-Terphenyl		57.4	50.0	115	70-135	
Lab Batch #: 906117	Sample: 456729-005 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 01:51	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flaş
1-Chlorooctane		108	99.7	108	70-135	
o-Terphenyl		58.2	49.9	117	70-135	
Lab Batch #: 906117	Sample: 456729-007 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 02:43	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		109	99.5	110	70-135	
o-Terphenyl		58.3	49.8	117	70-135	-

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Cooper Jal Unit #512

Lab Batch #: 906117	Sample: 456729-008 / SMP	Bate				
Units: mg/kg	Date Analyzed: 02/02/13 03:08	SU	RROGATE R	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		106	99.9	106	70-135	
o-Terphenyl		56.8	50.0	114	70-135	
Lab Batch #: 906117	Sample: 456729-009 / SMP	Bate	h: 1 Matrix RROGATE R		STUDY	_
Units: mg/kg	Date Analyzed: 02/02/13 03:34	50	RROGATE R	ECOVERY	STUDY	_
TPH F	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	100	107	70-135	-
o-Terphenyl		56.5	50.0	113	70-135	
Lab Batch #: 906117	Sample: 456729-010 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 03:59	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015B Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		106	99.8	106	70-135	
o-Terphenyl		56.8	49.9	114	70-135	
Lab Batch #: 906117	Sample: 456729-011 / SMP	Batc	h: 1 Matrix	x:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 04:50	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		109	99.7	109	70-135	
o-Terphenyl		59.2	49.9	119	70-135	
Lab Batch #: 906117	Sample: 456729-012 / SMP	Batc	h: 1 Matrix	x:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 05:16	SU	RROGATE R	ECOVERY	STUDY	_
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	99.8	107	70-135	1
o-Terphenyl		57.8	49.9	116	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Cooper Jal Unit #512

	Sample: 456729-013 / SMP	en	RROGATE R	FCOVEDV	STUDY	
Units: mg/kg	Date Analyzed: 02/02/13 05:41	50	KRUGATE R	ECOVERY	STUDY	
TPH E	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		108	100	108	70-135	-
o-Terphenyl		57.6	50.1	115	70-135	
Lab Batch #: 906117	Sample: 456729-014 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 06:06	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		109	100	109	70-135	
o-Terphenyl		59.5	50.0	119	70-135	
Lab Batch #: 906117	Sample: 456729-015 / SMP	Batc	h: 1 Matrix	Soil		
Units: mg/kg	Date Analyzed: 02/02/13 06:32	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		106	100	106	70-135	
o-Terphenyl		59.3	50.1	118	70-135	
Lab Batch #: 906117	Sample: 456729-016 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 06:57	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		106	99.5	107	70-135	
o-Terphenyl		57.8	49.8	116	70-135	
Lab Batch #: 906117	Sample: 456729-017 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 07:22	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		102	99.9	102	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

Lab Batch #: 906117	Sample: 456729-018 / SMP	Bate		Soil	OTTIDAY.	
Units: mg/kg	Date Analyzed: 02/02/13 07:47	SU	RROGATE R	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		106	99.5	107	70-135	-
o-Terphenyl		57.5	49.8	115	70-135	
Lab Batch #: 906117	Sample: 456729-019 / SMP	Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 08:13	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	99.9	107	70-135	
o-Terphenyl		57.5	50.0	115	70-135	
Lab Batch #: 906117	Sample: 456729-020 / SMP	Batc	h: 1 Matrix	r: Soil		
Units: mg/kg	Date Analyzed: 02/02/13 08:38		RROGATE R	1.	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		108	99.7	108	70-135	
o-Terphenyl		57.5	49.9	115	70-135	
Lab Batch #: 906231	Sample: 456729-020 / SMP	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/04/13 12:47	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0277	0.0300	92	80-120	
4-Bromofluorobenzene		0.0259	0.0300	86	80-120	
Lab Batch #: 906231	Sample: 456729-021 / SMP	Bate	h: 1 Matrix	x:Soil		
Units: mg/kg	Date Analyzed: 02/04/13 13:04	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0282	0.0300	94	80-120	
				1		-

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Cooper Jal Unit #512

Lab Batch #: 906208	Sample: 456729-006 / SMP	Batc		:Soil	OTTION	
Units: mg/kg	Date Analyzed: 02/05/13 02:31	SU	RROGATE R	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.011	Analytes					
1-Chlorooctane o-Terphenyl		108 57.3	100	108	70-135	
Lab Batch #: 906208	Sample: 456729-021 / SMP			1 200	10 100	
Units: mg/kg	Date Analyzed: 02/05/13 02:57	Bate	RROGATE R		STUDY	
	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	106	100	106	70-135	
o-Terphenyl		57.5	50.0	115	70-135	
Lab Batch #: 905963	Sample: 633199-1-BLK / BI	K Bate	h: 1 Matrix	: Solid		
Units: mg/kg	Date Analyzed: 01/31/13 09:52	1.1	RROGATE R		STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0353	0.0300	118	80-120	
4-Bromofluorobenzene		0.0308	0.0300	103	80-120	
Lab Batch #: 906075	Sample: 633269-1-BLK / BI	.K Batc	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/01/13 10:28	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0284	0.0300	95	80-120	
4-Bromofluorobenzene		0.0287	0.0300	96	80-120	
Lab Batch #: 906117	Sample: 633297-1-BLK / BI	.K Bate	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/01/13 23:43	SU	RROGATE R	ECOVERY	STUDY	
ТРН Н	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		110	100	110	70-135	
o-Terphenyl		59.7	50.1	119	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

XENCO
Laboratories

Project Name: Cooper Jal Unit #512

		en	RROGATE R	FCOVEDV	STUDY	
Units: mg/kg	Date Analyzed: 02/04/13 12:31	50	RAUGATE K	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1.4-Difluorobenzene	Analytes	0.0262	0.0300	87	80-120	
4-Bromofluorobenzene		0.0282	0.0300	87	80-120	-
Lab Batch #: 906208	Sample: 633336-1-BLK / BI	K Batc	h: 1 Matrix	c: Solid		
Units: mg/kg	Date Analyzed: 02/05/13 02:05	5 A	RROGATE R		STUDY	
	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		109	99.9	109	70-135	
o-Terphenyl		58.8	50.0	118	70-135	
Lab Batch #: 905963	Sample: 633199-1-BKS / BK	S Bate	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 01/31/13 09:36		RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0331	0.0300	110	80-120	
4-Bromofluorobenzene		0.0334	0.0300	111	80-120	
Lab Batch #: 906075	Sample: 633269-1-BKS / BK	S Batc	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/01/13 09:23	SU	RROGATE R	ECOVERY	STUDY	
BTE.	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0288	0.0300	96	80-120	-
4-Bromofluorobenzene		0.0304	0.0300	101	80-120	
Lab Batch #: 906117	Sample: 633297-1-BKS / BH	S Bate	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/01/13 22:52	SU	RROGATE R	ECOVERY	STUDY	
ТРН Е	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		100	100	100	70-135	1
		57.1	50.0	114	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

TT. the made	Data Analyzad: 02/04/12 11:57	SU	RROGATE R	ECOVERY	STUDY	
Units: mg/kg BTE	Date Analyzed: 02/04/13 11:57 X by EPA 8021B	Amount Found	True Amount	Recovery	Control Limits	Flag
	Analytes	[A]	(B)	%R [D]	%R	
1,4-Difluorobenzene	Analytes	0.0314	0.0300	105	80-120	1
4-Bromofluorobenzene		0.0329	0.0300	110	80-120	-
Lab Batch #: 906208	Sample: 633336-1-BKS / BH	KS Bate	h: 1 Matrix	c: Solid		
Units: mg/kg	Date Analyzed: 02/05/13 01:13		RROGATE R	and the second second	STUDY	
	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	99.7	107	70-135	
o-Terphenyl		59.8	49.9	120	70-135	
Lab Batch #: 905963	Sample: 633199-1-BSD / BS	SD Bate	h: 1 Matrix	: Solid		
Units: mg/kg	Date Analyzed: 01/31/13 09:19		RROGATE R	12 M.	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0332	0.0300	111	80-120	
Lab Batch #: 906075	Sample: 633269-1-BSD / BS	SD Bate	h: 1 Matrix	c:Solid		
Units: mg/kg	Date Analyzed: 02/01/13 10:11	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0306	0.0300	102	80-120	5
4-Bromofluorobenzene		0.0337	0.0300	112	80-120	(
Lab Batch #: 906117	Sample: 633297-1-BSD / BS	SD Bate	h: 1 Matrix	:Solid		
Units: mg/kg	Date Analyzed: 02/01/13 23:17	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
	Analytes					
1-Chlorooctane		106	99.9	106	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

Lab Batch #: 906231	Sample: 633343-1-BSD / BSD	Batch:	1 Matrix		_	
Units: mg/kg	Date Analyzed: 02/04/13 12:14	SURF	ROGATE R	ECOVERY	STUDY	_
втех	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	Analytes	0.0345	0.0300	115	80-120	
4-Bromofluorobenzene		0.0345	0.0300	113	80-120	
Lab Batch #: 906208	Sample: 633336-1-BSD / BSD	Batch:	1 Matrix	c: Solid		-
Units: mg/kg	Date Analyzed: 02/05/13 01:39			ECOVERY	STUDY	_
	y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		109	99.8	109	70-135	-
o-Terphenyl		61.1	49.9	122	70-135	
Units: mg/kg BTEX	Date Analyzed: 01/31/13 16:32 K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	S	0.0310	0.0300	103	80-120	
4-Bromofluorobenzene		0.0354	0.0300	118	80-120	
Lab Batch #: 906075	Sample: 456729-006 S / MS	Batch:	1 Matrix	: Soil		
Units: mg/kg	Date Analyzed: 02/01/13 16:20	SURI	ROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0307	0.0300	102	80-120	
4-Bromofluorobenzene		0.0316	0.0300	105	80-120	
Lab Batch #: 906117	Sample: 456729-020 S / MS	Batch:	1 Matrix	and the second s		
Units: mg/kg	Date Analyzed: 02/02/13 09:04	SURI	ROGATE R	ECOVERY	STUDY	
ТРН В	y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		99.4	99.9	99	70-135	
o-Terphenyl		57.4	50.0	115	70-135	-

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

ork Orders : 456729 Lab Batch #: 906231	9, Sample: 456729-020 S / MS	Bate		D: 0113-12 a: Soil		
Units: mg/kg	Date Analyzed: 02/04/13 18:22	A DESCRIPTION OF A DESC	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0274	0.0300	91	80-120	-
4-Bromofluorobenzene		0.0340	0.0300	113	80-120	
Lab Batch #: 906208	Sample: 456724-001 S / MS	Batc	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/05/13 05:31	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		107	100	107	70-135	
o-Terphenyl		63.0	50.1	126	70-135	
Lab Batch #: 906075	Sample: 456729-006 SD / M	SD Bate	h: 1 Matrix	:Soil		
Units: mg/kg	Date Analyzed: 02/01/13 16:02	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene		0.0302	0.0300	101	80-120	
4-Bromofluorobenzene		0.0271	0.0300	90	80-120	-
Lab Batch #: 906117	Sample: 456729-020 SD / M	ISD Bate	h: 1 Matrix	s:Soil		
Units: mg/kg	Date Analyzed: 02/02/13 09:30	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	By SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		103	99.8	103	70-135	
o-Terphenyl		56.8	49.9	114	70-135	
Lab Batch #: 906231	Sample: 456729-020 SD / M	ISD Bate	h: 1 Matrix	x:Soil		-
Units: mg/kg	Date Analyzed: 02/04/13 18:39	SU	RROGATE R	ECOVERY	STUDY	
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1,4-Difluorobenzene	r mary too	0.0345	0.0300	115	80-120	-
st : without controlle		0.0010	0.0500	1 1 1 1	00140	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Cooper Jal Unit #512

Ork Orders : 456729 Lab Batch #: 906208	, Sample: 456724-001 SD / M	ISD Batc		D: 0113-12 x: Soil		
Units: mg/kg	Date Analyzed: 02/05/13 05:56	SU	RROGATE R	ECOVERY	STUDY	
ТРН В	y SW8015B Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		108	100	108	70-135	
o-Terphenyl		64.0	50.1	128	70-135	

* Surrogate outside of Laboratory QC limits
 ** Surrogates outside limits; data and surrogates confirmed by reanalysis
 *** Poor recoveries due to dilution
 Surrogate Recovery [D] = 100 * A / B
 All results are based on MDL and validated for QC purposes.

Project Name: Cooper Jal Unit #512

Work Order #: 456729		Pr	oject ID:			0113-1
	Sample: 633301			: Solid		
	epared: 02/04/2		Analyst			
Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SP	IKE REC	OVERY	STUDY
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride	<1.00	100	102	102	80-120	
	Sample: 633371 repared: 02/05/2		Matrix Analyst	: Solid : RKO		
Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SP	IKE REC	OVERY	STUDY
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flag
Chloride	<1.00	100	101	101	80-120	
Lab Batch #: 906268	Sample: 633375	-1-BKS	Matrix	: Solid		
Date Analyzed: 02/04/2013 Date Pr	epared: 02/04/2	013	Analyst	: RKO		
Reporting Units: mg/kg	Batch #: 1	BLANK /	BLANK SP	IKE REC	OVERY	STUD
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flag
Chloride	<1.00	100	104	104	80-120	
	Sample: 633378 epared: 02/05/2		Matrix Analyst	: Solid		
	Batch #: 1	-	BLANK SP		OVERY	STUD
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flag
Chloride	<5.00	500	517	103	80-120	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

XENCO Laboratories

BS / BSD Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729 Analyst: KEB

Lab Batch ID: 905963

Date Prepared: 01/31/2013

Batch #: 1

Sample: 633199-1-BKS

Project ID: 0113-12 Date Analyzed: 01/31/2013 Matrix: Solid

BTEX by EPA 8021B Analytes		Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	V	<0.00100	0.100	0.0873	87	9660.0	0.0925	93	9	70-130	35	
Toluene	~	<0.00200	0.100	0.0889	89	9660.0	0.0892	06	0	70-130	35	
Ethylbenzene	V	<0.00100	0.100	0.0893	89	9660.0	0.0918	92	3	71-129	35	
m_p-Xylenes	V	<0.00200	0.200	0.175	88	0.199	0.180	06	3	70-135	35	
o-Xylene	V	<0.00100	0.100	0.0888	89	0.0996	0.0931	93	5	71-133	35	
Analyst: KEB		Da	te Prepare	Date Prepared: 02/01/2013	3			Date AI	nalyzed: (Date Analyzed: 02/01/2013		
Lab Batch ID: 906075	Sample: 633269-1-BKS		Batch #:	#: 1					Matrix: Solid	Solid		

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	SPIKE / F	STANK S	PIKE DUPI	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	BIK. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.0944	94	0.100	0.0845	85	11	70-130	35	
Toluene	<0.00200	0.100	0.0928	93	0.100	0.0878	88	6	70-130	35	
Ethylbenzene	<0.00100	0.100	0.0938	94	0.100	0.0863	86	8	71-129	35	
m_p-Xylenes	<0.00200	0.200	0.185	93	0.200	0.167	84	10	70-135	35	
o-Xylene	<0.00100	0.100	0.0949	95	0.100	0.0842	84	12	71-133	35	

66

Relative Percent Difference RPD = 200*((C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Page 25 of 37

Laboratories **CENCO**

BS / BSD Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729

Lab Batch ID: 906231 Analyst: KEB

Date Prepared: 02/04/2013 Batch #: 1

Sample: 633343-1-BKS

Project ID: 0113-12 Date Analyzed: 02/04/2013 Matrix: Solid

Units: mg/kg			BLANF	K/BLANK	SPIKE / H	STANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE 1	RECOVI	ERY STUD	X	
BTEX by EPA 8021B Analytes		Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	~	<0.00100	0.100	0.0854	85	0.0996	0.0856	86	0	70-130	35	
Toluene	~	<0.00200	0.100	0.0831	83	9660.0	0.0805	81	3	70-130	35	
Ethylbenzene	~	<0.00100	0.100	0.0813	81	9660.0	0.0835	84	3	71-129	35	
m_p-Xylenes	v	<0.00200	0.200	0.160	80	0.199	0.161	81	1	70-135	35	
o-Xylene	~	<0.00100	0.100	0.0807	81	9660.0	0.0813	82	1	71-133	35	
Analyst: KEB		Da	te Prepare	Date Prepared: 02/01/2013	13			Date AI	nalyzed: (Date Analyzed: 02/01/2013		
Lab Batch ID: 906117	Sample: 633297-1-BKS		Batch #:	#: 1					Matrix: Solid	Solid		

Units: mg/kg		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE	SPIKE / F	LANK S	PIKE DUPI	ICATE 1	RECOVERY	RY STUD	Y	
TPH By SW8015B Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	lcl	la	[E]	Result [F]	[6]				
C6-C10 Gasoline Range Hydrocarbons	<15.0	1000	983	98	666	1010	101	3	70-135	35	
C10-C28 Diesel Range Hydrocarbons	<15.0	1000	1060	106	666	1060	106	0	70-135	35	

67

Relative Percent Difference RPD = 200*((C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Page 26 of 37

BS / BSD Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729 Analyst: KEB

Lab Batch ID: 906208

Date Prepared: 02/04/2013

Batch #: 1

Sample: 633336-1-BKS

Project ID: 0113-12 Date Analyzed: 02/05/2013 Matrix: Solid

Units: mg/kg		BLANH	K/BLANK S	PIKE / H	ILANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE	RECOVI	CRY STUD	X	
TPH By SW8015B Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Result (Fl	Blk. Spk Dup. %R IGI	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		E	Ξ	Ξ			5				
C6-C10 Gasoline Range Hydrocarbons	<15.0	166	1030	103	866	1050	105	2	70-135	35	
C10-C28 Diesel Range Hydrocarbons	<15.0	266	1060	106	866	1070	107	1	70-135	35	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes Page 27 of 37

Form 3 - MS Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729

Lab Batch #: 905963

Project ID: 0113-12 Analyst: KEB

Date Analyzed: 01/31/2013 QC- Sample ID: 456729-001 S	Date Prepared: 01/31 Batch #: 1	/2013		nalyst: K Iatrix: S		
Reporting Units: mg/kg	MATR	IX / MA	TRIX SPIKE	RECO	VERY STU	DY
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Benzene	<0.00107	0.107	0.0929	87	70-130	
Toluene	<0.00214	0.107	0.0779	73	70-130	
Ethylbenzene	<0.00107	0.107	0.0757	71	71-129	
m_p-Xylenes	<0.00214	0.214	0.140	65	70-135	X
o-Xylene	< 0.00107	0.107	0.0762	71	71-133	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit
Laboratories XENCO

Form 3 - MS / MSD Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729

Date Analyzed: 02/01/2013 Lab Batch ID: 906075 Reporting Units: mg/kg

Batch #: QC-Sample ID: 456729-006 S Date Prepared: 02/01/2013

Matrix: Soil I

Project ID: 0113-12

lag

KEB Analyst: MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

1											
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Fla
Benzene	<0.00104	0.104	0.0988	95	0.103	0.0799	78	21	70-130	35	11
Toluene	<0.00207	0.104	0.104	100	0.103	0.0780	76	29	70-130	35	
Ethylbenzene	<0.00104	0.104	0.104	100	0.103	0.0766	74	30	71-129	35	
m_p-Xylenes	<0.00207	0.207	0.198	96	0.207	0.145	70	31	70-135	35	
o-Xylene	<0.00104	0.104	0.0955	92	0.103	0.0732	12	26	71-133	35	

906231	
ä	1
Batch	
Lab	

Date Analyzed: 02/04/2013 - Name I Inite tin. 0

70

QC- Sample ID: 456729-020 S Date Prepared: 02/04/2013

Batch #: Analyst:

Matrix: Soil KEB -

Reporting Units: mg/kg		N	ATRIX SPIK	E/MAT	RIX SPI	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TE RECO	OVERY S	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spil Add IE	te Spiked Sample 1 ed Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00105	0.105	0.102	67	0.105	0.0895	85	13	70-130	35	
Toluene	<0.00210	0.105	0.0958	16	0.105	0.0851	81	12	70-130	35	
Ethylbenzene	<0.00105		0.0952	91	0.105	0.0871	83	6	71-129	35	
m_p-Xylenes	<0.00210	0.210	0.185	88	0.211	0.164	78	12	70-135	35	
o-Xvlene	<0.00105	0.105	0.0890	85	0.105	0.0835	80	9	71-133	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Page 29 of 37

-	
	0.5
-	N a
-	W
	10

Form 3 - MS / MSD Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729

Date Analyzed: 02/04/2013 Lab Batch ID: 906129

Reporting Units: mg/kg

Project ID: 0113-12 Batch #: QC-Sample ID: 456729-001 S

-

Matrix: Soil

RKO Analyst:

Date Prepared: 02/04/2013

Keporting Units: mg/kg		X	ATRIX SPIKI	E/MAT	RIX SPI	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	FE REC	OVERY 5	STUDY		
Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	772	106	734	0	106	735	0	0	80-120	20	X
Lab Batch ID: 906129 Date Analyzed: 02/04/2013	QC- Sample ID: 456767-001 S Date Prepared: 02/04/2013	456767. 02/04/2	-001 S 013	Ba	Batch #: Analyst:	1 Matrix RKO	Matrix: Soil				
Reporting Units: mg/kg		M	ATRIX SPIKI	E/MAT	RIX SPI	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	FE REC	OVERY S	STUDY		
Inorganic Anions by EPA 300/300.1	Parent Sample Decute	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag

Analytes	[A]	Added [B]	[C]	IDI	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride	3.20	99.2	106	104	99.2	107	105	1	80-120	20	
Lab Batch ID: 906260 Date Analyzed: 02/05/2013	QC-Sample ID: 456939-001 S Date Prepared: 02/05/2013	456939.02/05/2	-001 S 013	Ba An	Batch #: Analyst: 1	1 Matrix: Soil RKO	: Soil				
Reporting Units: mg/kg		N	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E / MAT	RLX SPII	KE DUPLICA	FE RECO	OVERY S	STUDY		Γ
Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Spiked Result Sample (C) %R	Spiked Sample %R [D]		Spike Spiked Sample Added Result [F] [E]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag

20

80-120 -100 133 108 66 132 108 25.1 Chloride

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Page 30 of 37

-	-
	0.5
-	N a
	W S
	X 2

Form 3 - MS / MSD Recoveries

Project Name: Cooper Jal Unit #512

456729	906268	
Work Order #:	Lab Batch ID:	

QC- Sample ID: 456729-011 S

Matrix: Soil -Batch #:

Project ID: 0113-12

Reporting Units: mg/kg	MAT	N	1ATRIX SPIK	E/MAT	ATRIX SPIKE D	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	FE REC	OVERY	STUDY		
Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	668	107	651	0	107	651	0	0	80-120	20	x
Lab Batch ID: 906268 Date Analyzed: 02/05/2013 Reporting Units: mg/kg	QC- Sample ID: 456755-017 S Date Prepared: 02/05/2013 MATRI	45675 02/05	-017 S 2013 1ATRIX SPIK	Ba An E/MAT	Batch #: Analyst: ATRIX SPI	 5-017 S Batch #: 1 Matrix: Soil 2013 Analyst: RKO MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY 	: Soil	OVERY	STUDY		
Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	2870	616	2950	13	616	2950	13	0	80-120	20	×
Lab Batch ID: 906270	QC- Sample ID: 456867-004 S	456867	-004 S	Ba	Batch #:	I Matrix: Soil	: Soil				

Date Analyzed: 02/05/2013	Date Prepared: 02/05/2013	02/05/2013	013	An	Analyst:	RKO					
Reporting Units: mg/kg		M	ATRIX SPIK	E/MAT	RIX SPI	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	FE REC	OVERY S	TUDY		
Inorganic Anions by EPA 300/300.1	Parent Sample		Spiked Sample Spiked Result Sample	Spiked		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	<u>כ</u>	IDI		Added Result [F]	%R [G]	%	%R	%RPD	23
Chloride	613	617	1160	89	617	1170	06	1	80-120	20	

72

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Page 31 of 37

Form 3 - MS / MSD Recoveries

Project Name: Cooper Jal Unit #512

Work Order #: 456729

Date Analyzed: 02/02/2013 Lab Batch ID: 906117

Project ID: 0113-12 Batch #:

QC- Sample ID: 456729-020 S

Date Prepared: 02/01/2013

Matrix: Soil -

Analyst: KEB

Reporting Units: mg/kg		M	ATRIX SPIK	E/MAT	RIX SPI	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TE REC	OVERY (STUDY		
TPH By SW8015B Mod	Parent Sample	Spike	Spiked Sample Result	Spiked		Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	[B]	<u>[]</u>	IDI	Added [E]	Kesult [F]	%K	%	%eK	%KPD	5
C6-C10 Gasoline Range Hydrocarbons	<15.7	1050	1010	96	1050	1020	67	1	70-135	35	
C10-C28 Diesel Range Hydrocarbons	<15.7	1050	1090	104	1050	0111	106	2	70-135	35	

Lab Batch ID: 906208 Date Analyzed: 02/05/2013	QC- Sample ID: 456724-001 S Date Prepared: 02/04/2013	456724-02/04/20	001 S 113	Ba	Batch #: Analyst: H	1 Matrix: KEB	ix: Soil				
Reporting Units: mg/kg		W	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E/MAT	RIX SPII	KE DUPLICA	VTE REC	OVERY:	STUDY		
TPH By SW8015B Mod	Parent Sample	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Sp	S.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	<u>c</u>	[D]	Added [E]	Kesult [F]	%K	%	%K	%KPD	
C6-C10 Gasoline Range Hydrocarbons	<17.5	1160	1200	103	1160	1200	103	0	70-135	35	
C10-C28 Diesel Range Hydrocarbons	692	1160	1810	96	1160	1690	86	7	70-135	35	

73

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Final 1.000

Page 32 of 37

Sample Duplicate Recovery

Project Name: Cooper Jal Unit #512

Work Order #: 456729

Lab Batch #: 906020 Date Analyzed: 02/01/2013 12:30 QC- Sample ID: 456729-001 D Reporting Units: %	Date Prepared: 02/01/201 Batch #: 1 SAMPLE	3 Ana	lyst: WRU rix: Soil		OVERY
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	6.62	6.98	5	20	-
Lab Batch #: 906023 Date Analyzed: 02/01/2013 12:30 QC- Sample ID: 456729-021 D	Date Prepared: 02/01/201 Batch #: 1		lyst: WRU rix: Soil		
Reporting Units: %	SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVER
Percent Moisture Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture	10.0	10.1		20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

0	
Client	000
executed	Final 1.0
Ain	
under a	
Desenagonared	
previously	
SSOIUN	4 of 37
Service	Page 3
io s	-
uonin	

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L) Committed to Excellence in Service and Quality. Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

Company-City Fourismentaly lamping accessibles Project Name-Location Project Name-Location Project Name-Location Project Name-Location Project Name-Location Project Name-Location NJ, PA, SC, TN, UT (Ma) NJ, PA, SC, TN, UT (Ma) Regenetic PPM and Qeebci replem & ecc - mail. Cenn Invoice to Daccounting Enflo. Invoice with Final Report D Invoice to Daccounting Enflo. Invoice with Final Report D Invoice to Daccounting Enflo. Invoice with Final Report D Invoice to Daccounting Enflo. Invoice with Final Report D Bill to: Lynn UST DRY-CLEAN Land-Fill Waste-Disp T Reg Program: UST DRY-CLEAN Land-Fill Waste-Disp T Sampler Name Factor CLP AGCEE NAVY DOE DOD US Sampler Name Factor CLP AGCEE NAVY DI POPPA T Sampler Name Factor CLP AGCEE NAVY DI P	Implicate Associates Implication Implicatio	Phone at XENCO (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Phone		Project ID Project ID I 3 - /2 Containers PM) I Fax No: I 3 - /2 Container Size PM) I PM)			La contraction of the contractio		SVOCs: Full-List DW BN&RE TCL PP Appdx-2 CALL 5 1 SVOCs: Full-List DW BN&RE TCL PP Appdx-2 CALL 5 2 Metals: RCRA-4 PL 13PP 23TAL Appdx1 Appdx2 0	SPLP-TCLP (Metals VOCs SVOCs Pest Herb. PCBs)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	787	C 100 214	Standau 9 days f	Light of the second	DE DE DE 184 145 151 18 4ASATAT	Addn: PAH above mg/L W, mg/Kg S Highest Hit Addn: PAH above mg/L W, mg/Kg S Highest Hit	Sample Clean-Ins are non-approved as peried		Vage Bar Point Date Rav. by: From:
0 # 8 0 # 8	E1/02/1	W& 11:1	11	X×			XX		xx											T	
イン 井/D イン 井/D Relinquished by (Initials	1/30/13 1/30/13 (Initials and Sign)		LS'S	Relinqu	1 4 quished to	C O X	S and Sign)	Ê	Date	e & Time	1 - N	Total Co	Total Containers per COC	Der COC			Cooler Temp:		0.0	T	TT
		11-413 8.10	5	2) 4) B) ()XA	AAAA		2		1/3/1		110	Otherwi until pai	se agreed d. Sample equested	i on writin s will be Rush Ch	ig. Report held 30 (arges an	Otherwise agreed on writing. Reports are the Intellectual Property of XENCO until paid. Samples will be held 30 days after final report is e-mailed unless hereby requested. Rush Charges and Collection Fees are pre-approved if needed.	final report	ual Proj ort is e-	erty of XI nailed un pproved	ess ineeded	

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

Contention Conten				i i					F	4	1			ľ		1		1				ŀ					
Project ID TAT: SSAP Project ID TAT: Asx Project ID TAT: Asx Asx Asx Asx Asx	- aka	1000	Acces lates	1	-	\$18-	115			ap O		-			7	451	67	3	0				er.	÷			2
Alternatives Alternatives Alternatives Alternatives Altern	Location / DP	Previous	ly done at XEN	r	1.00	Pro	5 1		= =		ASAP	1 24	Vorkin	g Day	48h Stor I	bd 5d evel II	br 1	104 M	21d	stand g day	s for le	AT is evel III	projec	t spe V dat	cific. a.		1.3
Andrese	AL, FL, GA, LA, MS	S. NC.	Proj, Manage	er (PM			11		H	Π	Ħ	_	H	te	(5	4	I	H	H	4	t	H			-1	Remarks	arks
Amount Containers Containers Container Contai	UT OHE MM	-	Acren	Fal	tor.	(up			SAO	2.		10	171.44		CB	-	à.			1	1	ka:	219	H	(pe		1
All All <td>DPM and</td> <td>p</td> <td></td> <td>1</td> <td>>-</td> <td>Fax</td> <td>No:</td> <td>٢.</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>н .e</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>. PO</td> <td>His</td> <td>LOVE</td> <td>2</td> <td>-</td>	DPM and	p		1	>-	Fax	No:	٢.				-		-	н .e							-	. PO	His	LOVE	2	-
Bit Bit <td></td> <td>nvoice w</td> <td>vith Final Repor</td> <td>-</td> <td>TVOICE</td> <td>must h</td> <td>ave.a</td> <td>P.O.</td> <td>T</td> <td></td> <td>-</td> <td></td> <td></td> <td>-5</td> <td>Her</td> <td></td> <td>12</td> <td></td> <td>1</td> <td>*</td> <td>-</td> <td>-</td> <td>1 1</td> <td>əqbil</td> <td>dde-</td> <td></td> <td></td>		nvoice w	vith Final Repor	-	TVOICE	must h	ave.a	P.O.	T		-			-5	Her		12		1	*	-	-	1 1	əqbil	dde-		
Californic Container SpLP - TCLP Metals: RCRA.4 Pb 13PP 23TAL Californic Container SpLP - TCLP Metals: RCRA.4 Pb 13PP 23TAL Californic Container SpLP - TCLP Metals: RCRA.4 Pb 13PP 23TAL Californic Container SpLP - TCLP Metals: VOCs. Fvill-List Container Californic Container Svocs: Full-List Container Container Californic Container Svocs: Full-List Container Container Californic Container Svocs: Full-List Container Container		/vnn	Occa-mei	> .	14						2			1.	756	-							24	I S		Dep	
Container SPLP-TCLP Metals VOCs SVOCs SVOCs </td <td>- harris</td> <td>-</td> <td>P.O. No:</td> <td></td> <td>r</td> <td></td> <td></td> <td>or P.O</td> <td>1.20</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>ы</td> <td>-</td> <td>1-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td><u>pg</u>)</td> <td>6></td> <td>1</td> <td>Deeu</td> <td></td>	- harris	-	P.O. No:		r			or P.O	1.20				-		ы	-	1-		-				<u>pg</u>)	6>	1	Deeu	
Old Old <td></td> <td>N Land</td> <td>-Fill Waste-Dis</td> <td>Sp NF</td> <td>PDES</td> <td></td> <td>TRRP</td> <td></td> <td>Н</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>soo</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- *</td> <td>-</td> <td>PE</td> <td>i/ɓw</td> <td>-</td> <td>SP D</td> <td>3</td>		N Land	-Fill Waste-Dis	Sp NF	PDES		TRRP		Н						soo						- *	-	PE	i/ɓw	-	SP D	3
Bill	ontract CLP AGCER	EE NAV	Y DOE DOD	/SU (ACE O	THER:)HE				-		AS	111				_1		1	481	'N		NOVe	
Billinquished to (Initials and Sign) SPLP - TCLP (Metals V Date SPLP - TCLP (Metals V Date SPLP - TCLP (Metals V	GW DW QAPP MD	DLs RL	s See Lab PM	Inclu	pep	Call P	(W		1 1 8 1				-	-	soo		24	- 14. 2	- + _	ł.		-	41	۸ ٦/6		dde-	
Distributing Time Brean Hitter Sampling Time Sampling <td></td> <td></td> <td></td> <td>-</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>M</td> <td>1.1</td> <td></td> <td></td> <td></td> <td>-</td> <td>A s</td> <td>37</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>50</td> <td>w</td> <td></td> <td>aud e</td> <td></td>				-	1			1	M	1.1				-	A s	37	-		-				50	w		aud e	
Sampling Time Bate Time Sampling Time Bate (m17) Date (m17) Bate (m18) Bate (matrix Bate Stime Bate Bate Bate Time Bate Bate Bate Bate	Haron ,	(inclo		N	LA	VV	A	N		1		-		1	Netals	pise	MED		-		-	-	421	0	1.1	als are	-
(4 - 1/3c)/3 $(3c)/3$		pling	(with)	m"m Xiti	etisoqm		ezit nenistr	ntainer Type		1				8-AADA :sist		1.12							hð gaðat.	odis HA9 :nb	1	mple Clean-u	1.4
3 $1/3 \circ 1/3$ <		113			00	1. 2	E Co	> co	-	-	-		-	W	A	1			1	0			41	ÞA	19 11 1	29	
1 20/13 1:40 Pm 1' 5 X 1 C X X A 1/20/13 1:50 Pm 1' 5 X 1 4 C X X X B 1/20/13 1:50 Pm 1' 5 X 1 4 C 0 X X X B 1/20/13 1:50 Pm 1' 5 X 1 4 C 0 X <td></td> <td>113</td> <td></td> <td>1-</td> <td>X</td> <td>-</td> <td>1</td> <td>2</td> <td>X</td> <td></td> <td></td> <td>X</td> <td></td> <td>-</td> <td>14</td> <td>X</td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td>		113		1-	X	-	1	2	X			X		-	14	X			-		1	1		1			
\mathcal{A} $(126)/23$ $(14, 2m)/1$ \mathcal{S} \mathcal{X} \mathcal{Y} \mathcal{X} \mathcal	1/20/		megh:1	2	×	E	1	10		1		X			-	X	1		-	57		-					:
(130/13) 1:50 PM 021 5 × 1 × <td>1/30/</td> <td>4</td> <td>1.46 m 1</td> <td>5</td> <td>×</td> <td>-</td> <td>4</td> <td>2</td> <td>X</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td>-</td> <td>X</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>1.57</td> <td></td> <td></td> <td></td>	1/30/	4	1.46 m 1	5	×	-	4	2	X			X			-	X			-			-		1.57			
1/30/r3 1: S&PM 1' 5 X 1 4 C O X X 1/130/r3 2: 05Pm 1' 5 X 1 4 C O X X X 1/130/r3 2: 05Pm 1' 5 X 1 4 C O X X X 1/130/r3 2: 05Pm 1' 5 X 1 4 C O X	1		1:50 PM 02	200	×	-	4	2	л Х			V	-		1	×	4	-				-		N.		ł.,	
「1/30//3 2:05孙川 /* 5 × 1 4 C O × </td <td>1</td> <td>13</td> <td></td> <td></td> <td>X</td> <td>11</td> <td>E.</td> <td>5</td> <td>XO</td> <td></td> <td>-</td> <td>X</td> <td>_</td> <td></td> <td></td> <td>×</td> <td>-</td> <td></td> <td>1</td> <td></td> <td>(a)</td> <td></td> <td>-</td> <td> 1</td> <td>-</td> <td></td> <td></td>	1	13			X	11	E.	5	XO		-	X	_			×	-		1		(a)		-	1	-		
【*ao/1.3 ン:/D pm/ 1' 5 X 1 4 C O X <th< td=""><td>11</td><td>63</td><td>2:05Pm 1</td><td>2</td><td>X</td><td>-</td><td>3</td><td>12</td><td>X</td><td></td><td>-</td><td>×</td><td>_</td><td></td><td>-</td><td>×</td><td></td><td></td><td></td><td></td><td>. A</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>1</td></th<>	11	63	2:05Pm 1	2	X	-	3	12	X		-	×	_		-	×					. A	-	-		-		1
1/30//3 2:/573m // 5 K 1 ℓ C K X </td <td>6 11</td> <td>5</td> <td>D:/DAM 1</td> <td>5</td> <td>×</td> <td>-</td> <td>3</td> <td>C</td> <td>N</td> <td></td> <td>7</td> <td>V</td> <td>1</td> <td>-</td> <td></td> <td>×</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>A. A.</td> <td>-</td> <td></td> <td></td>	6 11	5	D:/DAM 1	5	×	-	3	C	N		7	V	1	-		×		-	-			-		A. A.	-		
Image: Non-start Image: Sign and Si	1 1	-	2:15Pm 1	· S	X	11	F	J	N X			X			-	×	14	1	-	1		-	ł		- 2	21	
(Initials and Sign) Date & Time Relinquished to (Initials and Sign) Date & Time	30	13	1 WEIE:C	51	×	-	1	J	× 0			X				×	1	1	-	-	100	0	1			6	
sianting 2)	(Initials	(ub)	Date & Tin	e	Rel	Inquist	ed to	(Initial	and	Sign)		Da	٥ð	Time	-	otal Co	Intaine	ars pet	COC	14		0	ooler 7	Temp;	0	0	
	1 X M		1/11/3 8:00	5	2)					14						therwis	se agr	eed of	n writin	ng. Rel	ports a	are the	Intelle	ctual I	Proper	y of XE	NCO
	2			-	4)						3	ł	1		5	ntil paid	d. San	saldu	Will be	pled 3	SU day	satter	final re	bort	s e-ma	lun bel	SS
5) (A A A A A A A A A A A A A A A A A A A	A DE	I WIN OF	al offer ruse	TIME	10.00	TAA		B	2	3 2	No.A	210	011	200	10	Now	sonho	A) Coo	o liche	I II I	Otho			100	tin aki	Innan	

Company-City	701 Harry Hines B	9701 Harry Hines Bivd., Dallas, TX 75220 214-902-0300	220 .214	1-902-0	300	+		842	842 Cantwell, Corpus Christi, TX 78408	II, Corp	us Chri	sti, TX	78408	361-6	361-8840371	-	Serial #:		Inc	00	20	Page	3 of 2
11	. 4	hand a	5	one 61,2) 21	211-01	15	1	Lab Only:	Inly:		4	15wn	72	6)		4			1 A	S.) - 24 010	
ation	D Previously	D Previously done at XENCO	I		oject	10		TAT: It is tw	ASAP 5h bically 5-7	5-7 W	12h 24h Norking E	th 4	48h 3d vs for lev	d 5d	TAT: ASAP 5h 12h 24h 48h 3d 5d 7d 10d 21d Standard TAT is project speci this trolcally 5-7 Working Dave for level III and 10+ Working dave for level III and IV data	10d 21d	d Stan	Standary TAT is project specific o days for level III and IV data.	AT is p	project	t speci	jç.	
Deni State TX AL FL GA LA MS NC	HSV - F	Proi. Manager (PM)	(MM)	C	-	X	1		È	6		H			H	E			-		H	8	advent
NJ, PA, SC, TN, UT CHO	WN	Aaren .	Edin	(inglos	C		Π	sAO'		EL3		zxpdc	sgoa			197	-		1	21q		1	Kemarks
E-mail Results to	DPM and		1-1-1	978-	Fax No:				-		_				-		2		-	POL	-	Moud	
Invoice to DAccounting Turns. Invoice with Final Report	Tinc. Invoice w	ith Final Report		ice mu	ist have	have a P.O.	1	CALL		cons	abicide	_	θΗ			-				P/	_	1	
Bill to: Lynn Weathy	aly (1/2	ing & ece mail. con	29/100	wo			T				1.1		Pest			: -				69		14	
Quote/Pricing: C.C.LEAN Land-Fill Waste-Disp NPDES	CLEAN Land-	Fill Waste-Dist	D NPD	ES DW	N TRRP	SP 0	T	D HC	-		d0	23T	800	4	-		_		-) PE	6y/6w		_
OAPP Per-Contract CLP AGCEE NAVY DOE DOD	AGCEE NAV	Y DOE DOD	USACE OTHER:	EOTH	ER:		13		1.00	HE T	sepic		AS 1		-	-		_	-	481		1	_
Special DLs (GW DW QAPP MDLs		RLs See Lab PM Included Call	Included	d Call	(Md					A AN		-	500	_	5		1			41	Λ 7/6		-
				1						-		-	A 6	7	-	-	-	-	-	5			-
Sampler Name Aaron	Edination	Signature		N	M	A	Π			ND 1	PCB:	-	Netal	212		1	-		-	421	-	1.0	_
Campio ID	Sampling	Time			N	ner Size	seviter	PP TC Full-List	WIS	E DRO	sebioites	RCRA-8		1901			4		0-3	HB 9A	vods HA	Clean-u	
	Date	0	Depth Matrix Matrix	Grab	# Contain			ACO,2 ACO2:	eHA			-	ED8 \ 1	401						SATAT	-		
CJU#19	1/30/13	2:27PM 1	5	×	F	υ	0	X		×			\vdash	X			-						
			-	-	-	-		+		-	_		-		-		+		-	1	+	-	
			-	-	-	1		+		-			-		+		-	-			1		-
			+	+	+	-		+		-	-		+	1	+		-	1	-		+	_	
			-	-		-				+	-	1	-		-	-			-		-		-
			-					-		-			-		-		-		-		-		T
			*	H						$\left \right $			H										- 1 - 1
			-	-	-					-	1		+		-		-			1		-	
Relinquished by (Initials	(Initials and Sign)	Date & Time	1	Relinquis	uished	shed to (Initials and Sign)	als and	d Sign		Date	00	Time	P	al Cont	Total Containers per COC	Der CO			- 8	Cooler Temp:	emp:	0.0	
111	0	1/21/13 8: 104 a	M 2)						Π				ð	herwise	agreed	I on wri	ting. Re	sports a	te the l	Intellec	tual Pr	Otherwise agreed on writing. Reports are the Intellectual Property of XENCO	XENCO
3)			(4)	4) B) 1/1/1	Neve	K	111	1	1	113	1/13	0.1	N her	until paid. herebv red	Sample ruested.	Rush (Charges	30 days	s after fi ollection	inal rep 1 Fees	port is are pre	Samples will be held 30 days after final report is e-mailed unless uested. Rush Charges and Collection Fees are pre-approved if he	until paid. Samples will be held 30 days after final report is e-mailed unless (711/132015) hereby requested. Rush Charges and Collection Fees are pre-approved if needed
Preservatives: Various (V), HCI pH<2 (H), H2SO4 pH<2 (S), HNO3 pH<2 (N)	HCI pH<2 (H), H	(2SO4 pH<2 (S)	HNO3	pH<2	(N), Ash), Asbc Acid&NaOH (A), ZnAc&NaOH (Z), (Cool,	NaOH	(A), Zi	hAc&N	aOH (Z), (C	pol, <4	(C)), None	<4C) (C), None (NA), See Label	See La	bel (L),), Other (O)	(O)	Lee			1
Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40ml VOA (40), 1L	32oz (32), 40	ml VOA (40), 1L	· (1), 50	(c) (m)	lediar	edlar Bag (B),), Vari	Various (V), Other), Oth	er		1	1	g (B), Various (V), Other Cont. Typ	Cont. Type:		s Amb	Glass Amb (A), Glass		Clear (C).		stic (P), V	Plastic (P), Various (V)

77

Page 36 of 37

Work Order #: 456729

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Environmental Compliance Associates Date/ Time Received: 01/31/2013 08:00:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		1	
#2 *Shipping container in good of	condition?	Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on ship	pping container/ cooler?	Yes	
#5 Custody Seals intact on sam	ple bottles?	Yes	
#6 *Custody Seals Signed and c	lated?	Yes	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete	e on Chain of Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed wh	en relinquished/ received?	Yes	
#11 Chain of Custody agrees wi	th sample label(s)?	Yes	
#12 Container label(s) legible ar	nd intact?	Yes	
#13 Sample matrix/ properties a	gree with Chain of Custody?	Yes	
#14 Samples in proper containe	r/ bottle?	Yes	
#15 Samples properly preserved	1?	Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for	or indicated test(s)?	Yes	
#18 All samples received within	hold time?	Yes	
#19 Subcontract of sample(s)?		Yes	
#20 VOC samples have zero he	adspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserve	d with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserve	ed with NaAsO2+NaOH, ZnAc+NaOH?	Yes	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date:

Checklist reviewed by:

Date:

Final 1.000

Appendix C Photographs

Site Location, September 8, 2017

Site Prior to Remediation Viewing South, September 8, 2017

Site Prior to Remediation Viewing North, September 8, 2017

Site Prior to Remediation Viewing East, September 8, 2017