Remediation Completion Report

February 20, 2017

Oilfield Water Logistics (OWL) Produced Water Pipeline Release Nearby OWL Red Hills SWD Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Prepared For:

INFORMATION ONLY

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

New Mexico Energy Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD) Ms. Olivia Yu 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Prepared By:

500 Moseley Road Cross Roads, Texas 76227 (940) 387-0805 Phone (940) 387-0830 Fax

February 20, 2018

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

RE: Remediation Completion Report: Oilfield Water Logistics (OWL) Produced Water Pipeline Release Nearby OWL Red Hills SWD, Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Dear Mr. Sanders:

KJ Environmental Mgt., Inc. (KJE) is pleased to submit this Remediation Completion report for the Produced Water Pipeline Release located near the Red Hills Salt-Water Disposal in Lea County, New Mexico. This report discusses background information, assessment purpose and scope of work, execution of work, and documents the corresponding results.

We appreciate your selection of KJE for this project and look forward to assisting you further on other projects. If you have any questions, please do not hesitate to contact either of the undersigned at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.

Best Regards,

Heather Leven Environmental Project Manager

Dena M. Vandenberg, REM, LEEP AP Director of Environmental Services

Table of Contents

1.0 Summary	. 4
2.0 Introduction	.4
3.0 Environmental Assessment Activities	. 5
3.1 Delineation Activities	. 5
3.2 Remediation Activities	. 6
3.3 Deviations from the Scope	.7
4.0 Soil/Groundwater Sample Collection/Handling Procedures	.7
5.0 Summary of Analytical Results	.7
6.0 Photographs	. 8
7.0 Conclusions/Recommendations	. 8
8.0 Qualifications of Environmental Professional	. 9
9.0 Signature of Environmental Professional	. 9

APPENDICES

Appendix A – Figures:

A1 – Boring Location Map

A2 – Soil Excavation Map

A3 – Detailed View of Blending Areas

Appendix B – Analytical Data:

Table 1 – Soil Analytical Data

Table 2 – Stockpile Field Screening and Analytical Data

Appendix C – Photography Exhibits

Appendix D – Boring Logs

Appendix E – Laboratory Analytical Reports

Appendix F – Environmental Professional's Credentials

Appendix G – NMOCD Approved Pertinent Information and Workplans

1.0 Summary

KJ Environmental Mgt., Inc. (KJE), was retained by Oilfield Water Logistics (OWL) to complete certain delineation and remediation activities for a produced water pipeline release to vacant land situated approximately five miles southwest of Jal in Lea County, New Mexico. The results of the delineation and remediation activities are summarized as follows:

On October 28, 2016, KJE was notified by Mr. Phillip Sanders, Safety Director with OWL, regarding two spill occurrences at the above referenced location. Following the New Mexico Oil Conservation Division (NMOCD), part of the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) notification and approval, the two spills were assigned remediation case numbers and subsurface investigations to delineate the potential soil impacts ensued. Subsequent to soil delineation activities, soil exhibiting concentrations of chloride above the 600 parts per million (ppm), NMOCD approved action limit, were excavated to depths of four feet below ground surface (bgs). Excavated soil was stockpiled on poly liners and blended with soil deemed representative of clean, native soil. Following confirmatory sampling of the stockpiles, the soil stockpiles were backfilled into the excavations, the results of which are further summarized herein.

2.0 Introduction

On October 28, 2016, KJE was provided notification by Mr. Phillip Sanders, Safety Director with OWL, regarding two spill occurrences over a relatively short time frame. Mr. Sanders provided further notification to the Oil Conservation Division (OCD), part of The New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), of the spill at 2:00 p.m. on October 28, 2016. KJE was notified of the second subsequent spill occurrence on November 2, 2016. Mr. Sanders notified OCD of this subsequent spill occurrence at 8:11 a.m. on November 2, 2016. It was determined that 1,659 barrels of produced water was released during the first spill event and 418 barrels of produced water was released during the second spill event. KJE submitted Form C-141 Spill reports to OCD on November 2, 2016 for their review. A response received from the OCD on November 7, 2016, indicated that both incidents were assigned remediation case numbers RP-4497 (first spill event) and RP-4498 (second spill event). The latter spill event is the subject of this report. The general view of both spills is illustrated in Appendix A on Figure A1.

Subsequent to the NMOCD directive to complete division-approved corrective action, at the request of the NMOCD, KJE completed a delineation workplan detailing the collection of soil samples for analysis to delineate the vertical and horizontal extent of produced water impacted soil. This workplan was submitted by KJE and administratively approved by Mr. Tomas Oberding on November 30, 2016. The NMOCD approved Work Plan for the Characterization of Impacts is located in Appendix G of this report.

As such, following approval of the soil delineation workplan from December 5, 2016, through December 21, 2016, forty-nine (49) soil borings were advanced within Spill Area 2, one of which

(soil boring BG-2) was advanced outside of the affected soil areas nearby each spill area in an effort confirm soil background constituents. Soil samples collected were transferred to an accredited lab and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), total petroleum hydrocarbons (TPH), and chloride. Analytical soil data identified concentrations of TPH (maximum concentration of 818 milligrams per kilogram [mg/kg]) and chloride (maximum concentration of 11,900 mg/kg). The impacted soil depth was verified at depths of 0 to greater than 14 feet below ground surface (bgs) with an average depth of hydrocarbon and chloride impacted soil estimated to be 5.64 feet bgs, corresponding to an estimated volume of 21,656 cubic yards.

Subsequently, KJE submitted the Spill Delineation Report, Remediation Plan, and Addendum to the Remediation Plan to the NMOCD on February 17 and April 12, 2017, respectively, in an effort to detail planned remediation efforts. Based on the laboratory analytical data, TPH and BTEX were identified at concentrations below the applicable regulatory criteria and were eliminated as constituents of concern, leaving chloride as the only constituent of concern. Details of the remediation plan and addendum included excavation of soil in areas where chloride concentrations exceeded 1,000¹ parts per million (ppm) up to a depth of four feet bgs. Subsequent to excavation, soils were to be placed on poly liner and blended with soil deemed representative of clean, native soil. Following blending activities, soil stockpile confirmation samples were collected to confirm concentrations of chloride. Once concentrations. The Spill Delineation and Remediation Plan is located in Appendix G of this report. Implementation of the remediation plan and activities are further detailed below.

3.0 Environmental Assessment Activities

3.1 Delineation Activities

In accordance with the NMOCD Approved Remediation Plan, KJE personnel observed the drilling subcontractor advance seven soil borings (TSS-1 through TSS-6 and SS-02) along the southern boundary of the identified soil impact area in an attempt to further delineate the southern extent of impact and potential groundwater impacts. The locations of the soil borings are depicted on the Soil Boring Location Site Plan in Appendix A.

The subcontracted driller advanced the borings via truck-mounted backhoe/ excavator equipment. Soil borings TSS-1 through TSS-2 were advanced to a depth of four feet bgs with the intent to further delineate the southern boundary of the impacted soil area. Soil boring SS-02 was advanced to a maximum depth of 24 feet bgs, approximately 10 feet below the known vertical extent of soil impact, and intended to assess potential groundwater impacts in the area of soil impact. Water was not encountered during the drilling activities; therefore, water was not

¹ The NMOCD originally mandated a soil cleanup level of 600 ppm; however, the Workplan Addendum approved by the NMOCD increased the soil cleanup level to 1,000 ppm, based on the landfarm standard (Title 19, Chapter 15, Part 36.15).

developed nor sampled during the sampling event. In lieu of groundwater, soil samples were collected from SS-02 at the termination depth of the boring.

Field screening for chloride concentrations and soil conductivity was conducted using a calibrated Hanna HI993310 soil conductivity meter. Field screening for Volatile Organic Compounds (VOCs) was conducted using a calibrated Photoionization Detector (PID) (Model RAE MINIRAE Lite 0-5K ppm) to screen for the highest readings from each of the borings. Photo documentation of field activities is included in Appendix C. The soil boring lithology and field screening data table (Table 1) is included in Appendix D for review.

3.2 Remediation Activities

Based on prior delineation activities and KJE's NMOCD Approved Addendum to Remediation Plan, dated April 14, 2017, KJE conducted certain remediation activities that included the removal of chloride impacted soil to depths of four feet bgs, as depicted on Figure A2 located in Appendix A. Excavated soil was stockpiled on poly-liner and segregated into designated sections (A through F and M²) consisting of approximately 20 cubic yards of soil per stockpile. Stockpiles were field screened for Chlorides using the Horiba D-73 Portable Multiparamater Chloride Meter based on a frequency of approximately one sample for each 20 cubic yards of excavated soil. Per the NMOCD directive, every 10th soil sample was submitted to the laboratory for confirmation of analytical results.

Soil from stockpiles that exhibited chloride concentrations of 1,000 ppm or greater by field meter reading were blended with native soil representative of clean soil and field screened again. The results were recorded to confirm the accuracy of the meter. Field screening, laboratory analytical confirmatory data, and blended areas are provided in the table located in Appendix B. Subsequent to confirmatory analytical data, soil from stockpiles were backfilled and compacted into the poly-lined excavations.

Subsequent to backilling activities, the Revegetation and Noxious Weed Plan was implemented. Details of this plan included the broadcast application of BLM mix No. 2 (for sandy soil), on the remediation area outside of the road right-of-way in an effort to revegetate the impacted area. Further details regarding this plan are outlined in the Revegetation and Noxious Weed Plan located in Appendix G of this report.

As previously discussed, impacted soil located within the vicinity of the pipeline easements and in a 10 foot buffer zone, were left in place due to access and safety constraints.

² Stockpile samples are represented by the Section that they were designated. For example, soil samples from the Section A stockpiles were represented by ASP followed by the sample number (ASP1 through ASP62).

3.3 Deviations from the Scope

As indicated above, rather than advance a boring to groundwater depth (SS-02), KJE advanced a boring to ten feet below the known contamination (24 feet bgs), in response to NMOCD recommendations. Analytical data from this soil boring is discussed in Section 5.0 of this report.

4.0 Soil/Groundwater Sample Collection/Handling Procedures

Soil samples were collected based on field indicators, proximity to the boring termination depths, or depth of potential impact as noted above, and select samples were collected in 4 ounce laboratory supplied glass containers for laboratory analysis. The collected soil samples were placed in laboratory-supplied containers, labeled, placed in an insulated container with ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratories (a third-party, independent, and licensed environmental laboratory in Midland, Texas) accompanied by completed chain-of-custody. The sample collection and handling activities were conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. Before and after installation of each of the soil borings and construction of the temporary monitoring well, the drilling augers were decontaminated.

In lieu of available groundwater from SS-02 and based on the analytical data collected during the delineation phase of assessment, soil samples were submitted to the laboratory for analysis of chloride by EPA Method 300/300.1. Based on laboratory analytical data from the prior soil delineation investigation, soil samples collected from soil borings TSS-1 through TSS-6 were analyzed for chloride by SW-846 Method 300/300.1. Soil stockpile samples and confirmatory samples were analyzed for chloride by SW-846 Method 300/300.1. These analytical methods are the EPA, NMOCD, and industry-approved standards used to determine the potential for soil contamination.

The sample results were compared to the NMOCD approved applicable criteria, as detailed below and in Appendix B.

5.0 Summary of Analytical Results

Soil Action Limits

The NMOCD required delineation of Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), TPH (Total Petroleum Hydrocarbons), and Chlorides for the spill areas. Published values for BTEX and TPH were obtained from the NMOCD document "Guidelines for Remediation of Leaks, Spills, and Releases, 1993". Horizontal and vertical delineation values were determined to be 10 ppm Benzene, 50 ppm BTEX, and 5,000 ppm TPH since no groundwater or surface water is present in the area of the site. Verbal directives issued by NMOCD representatives Ms. Kristen Lynch and Mr. Tomáš Oberding were that horizontal delineation for chlorides is 600 ppm and vertical delineation is 250 ppm. However, Mr. Oberding approved the Addendum to the Remediation Workplan on April 18, 2017, increasing the chloride cleanup target concentrations

to 1,000 ppm. Additionally, under the NMOCD directive, soil was to be excavated from a depth of four feet bgs. Remaining soil was to be left in place. Figure A1 in Appendix A soil borings collected and areas of exceedances. Analytical results are included on Table 2 in Appendix B for review. Laboratory reports are also included in Appendix E.

Soil Delineation and Remediation Activities - Analytical Results

Based on prior soil delineation analytical data, TPH and BTEX were eliminated as constituents of concern. As such, chloride was the only constituent of concern requiring remediation. In an effort to further delineate impacted soils, soil samples (TSS-01 through TSS-06 and SS-02) were collected on the southern boundary of the spill area. Additionally, following soil stockpile blending, laboratory analytical confirmatory samples were collected. Laboratory analytical data did not identify the detectable presence of chloride above the NMOCD mandated applicable regulatory criteria. Based on the laboratory analytical results, delineation and remediation of impacted soils has been completed.

Analytical summary tables of the results are included in Appendix B. Copies of the laboratory analytical reports with chain-of-custody forms are included in Appendix E.

6.0 Photographs

Photo documentation of the drilling and sampling activities are included in Appendix C.

7.0 Conclusions/Recommendations

Based on laboratory analytical data, chloride was reported at concentrations above applicable NMOCD criteria. As such, following NMOCD directives, remedial activities ensued which effectively remediated chloride impacted soil to concentrations below applicable NMOCD criteria. While some areas of impact remain, KJE understands that these areas are located within the pipeline easements and buffer zones, and/or at depths greater than four feet bgs. Since there is no noticeable impact to wildlife, no surface water in the site area, groundwater depth is believed to be greater than 100 feet, chloride impacts are not anticipated to be at depths greater than 24 feet bgs, and there are no buildings on site, these chloride considerations should not be a factor.

Although no environmental investigation can determine absolutely whether environmental risk exists on a particular property, based on the completed scope of work, KJE does not recommend additional remediation of the impacted on-site soil.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.

8.0 Qualifications of Environmental Professional

This is to certify that the Remediation Completion report completed at the site located near the Red Hills Salt-Water Disposal in Lea County, New Mexico; was performed following EPA, NMOCD, and industry-approved standards/protocols. This work was conducted between November 2, 2016 and July 2017 for Mr. Phillip Sanders, and all field activities were completed under the supervision of Ms. Dena M. Vandenberg, REM, LEED AP. Ms. Vandenberg's credentials are included in Appendix F.

9.0 Signature of Environmental Professional

Conatradulenting-

2/20/2018

Date

Dena M. Vandenberg, REM, LEED AP Environmental Professional Director of Environmental Services

APPENDIX A

Figure A1 – Boring Location Map Figure A2 – Soil Excavation Map Figure A3 – Detailed View of Blending Areas

- NOTES:
 1. GOOGLE EARTH WAS USED AS AN UNDERLAY IMAGE FOR THIS MAP. (http://earth.google.com/)
 2. SURVEY OF SPILL EXTENTS PROVIDED BY FIELD SURVEY DATED 11/08/2016 FROM JAMES E. TOMPKINS, N.M. P.L.S.

	<u>SPILL</u>	<u>#2</u>	
100		50	100
-	SCALE: 1"	= 100'	

LEGEND -PL-PL-PIPELINE LOCATI AREAS TO BE EXCAVATED

a a	Rt R	REVISIONS:
1 20 100	21/1	
and an	2º	
and a set	R. R.	THIS DRAWING IS TO BE USED FOR PERMIT INFORMATION PURPOSES ONLY.
er la la	and the second	The second second
AL AL AL AL		500 Moseley Road Cross Roads, TX 76227 Phone (940) 387-0805 Fax (940) 387-0830
and the second diverse	and the set	OOLL
	The state of the lot	33
		DETAILED VIEW OF EXCEEDANCE AREAS TO BE EXCAVATED TO 4 FEET NEARBY OWL RED HILL SWD SPILL OILFIELD WATER LOGISTICS JAL, NEW MEXICO
三十二年 二年 二	States and	DATE
A COLOR OF A		2/20/2018
and the state of the second se	States in sec.	rena ta ana <u>sila</u> falia a
		SHEET
UFFER	N	
		A2
IONS	(- •••-)	74
)	$\mathbf{\nabla}$	

	<u>SPIL</u>	.L #	2		
100		0	50	10	C
	SCALE: 1	ı" =	100'		

APPENDIX B

Table 1 – Soil Analytical DataTable 2 – Stockpile Field Screening and Analytical Data

	Table 1: Soil Analytical Data Produced Water Pipeline Release Nearby Red Hills SWD Lea County, New Mexico New Mexico - Case No. 1RP 4498													
					New Mexico - Case M Spill 2 Field Data	io. 1RP 4498			Bannana ma/lua	Labo Total BTEX mg/k	oratory Results g Chlorides mg/kg	Total TPH mg/kg		
Soil Boring ID	Latitude	Longitude	Sample ID	Date Collected	Soil Type	Soil Color/Size	PID (PPM)	Chlorides (field screening)	10 mg/kg		ction Limits Horizontal: 600 mg/kg	5000 mg/kg		
SB1	32.084175°	-103.224745°	SB1 (0'-2')	12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine	10.2	165	<0.001	<0.001	Vertical: 250 mg/kg 353	<15.0		
			SB1 (2'-4') SB1 (4'-6')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.6 8.7	460 440	<0.001 <0.001	<0.001 <0.001	483 800	<15.0 <15.0		
			SB1 (6'-8') SB1 (8'-10')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines PR	Light red/Fine PR	10.0 PR	360 PR	<0.001 N/A	<0.001 N/A	539 N/A	<15.0 N/A		
SB2	32.084335°	-103.224854°	SB2 (0'-2') SB2 (2'-4')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	7.7	130 62	<0.001 <0.001	<0.001	7.45	<15.0 <15.0		
			SB2 (4'-6')	12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine	12.7	550	< 0.001	<0.001	592	<15.0		
			SB2 (6'-8') SB2 (8'-10')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines PR	Light gray/Fine PR	45.7 PR	75 PR	<0.001 N/A	<0.001 N/A	728 N/A	<15.0 N/A		
5B3	32.084257°	-103.225022°	SB3 (0'-2') SB3 (2'-4')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.0 5.8	85 65	<0.001 <0.001	<0.001	414 185	<15.0 <15.0		
			SB3 (4'-6') SB3 (6'-8')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	7.3 7.3	10	<0.001 <0.001	<0.001 <0.001	8.85 5.85	<15.0 <15.0		
B4	32.084099°	-103.224966°	SB4 (0'-2') SB4 (2'-4')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	48.4 4.9	270 515	<0.001 <0.001	<0.001 <0.001	1900 3990	<15.0 <15.0		
			SB4 (4'-6')	12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.1	540 425	<0.001 <0.001	<0.001	5350 5350 6180	<15.0		
			SB4 (6'-8') SB4 (8'-10')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.9 4.7	335	<0.001	<0.001 <0.001	4400	<15.0 <15.0		
B5	32.084042°	-103.225120°	SB4 (10'-12') SB5 (0'-2')	12/12/2016 12/12/2016	PR SP - Poorly - graded sands, gravelly sands, little or no fines	PR Light red/Fine	PR 4.3	PR 5	N/A <0.001	N/A <0.001	N/A 15	N/A <15.0		
			SB5 (2'-4') SB5 (4'-6')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light gray/Fine	2.4	5	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0		
			SB5 (6'-8') SB5 (8'-9.5')	12/12/2016 12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	4.4 3.4	65 10	<0.001 <0.001	<0.001 <0.001	5.08 <5.00	<15.0 <15.0		
686	32.083929°	-103.225223°	SB5 (8-5.5) SB5 (9.5'-10') SB6 (0'-2')	12/12/2016	PR SP - Poorly - graded sands, gravely sands, little or no fines	PR Light red/Fine	PR 3.8	PR	<0.001 N/A <0.001	<0.001 N/A <0.001	N/A 11.9	<15.0 N/A <15.0		
	32.003323	-103.223223	SB6 (2'-4')	12/12/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.9	10	< 0.001	<0.001	<5.00	<15.0		
			SB6 (4'-6') SB6 (6'-8')	12/12/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine Light red/Fine	4.3	10 40	<0.001 <0.001	<0.001 <0.001	<5.00 7.28	<15.0 <15.0		
SB7	32.083830°	-103.225407°	SB7 (0'-2') SB7 (2'-4')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	2.2 2.8	5 10	<0.001 <0.001	<0.001 <0.001	6.22 <5.00	<15.0 <15.0		
			SB7 (4'-6') SB7 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	4.3 3.0	30 20	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0		
588	32.083719°	-103.225571°	SB7 (8'-10') SB8 (0'-2')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	2.8	30	<0.001 <0.001	<0.001 <0.001	<5.00	<15.0 36.2		
588	52.065719	-105.225571	SB8 (2'-4')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	7.2	5	<0.001	<0.001	<5.00	<15.0		
			SB8 (4'-6') SB8 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	11.3 8.1	15 25	<0.001 <0.001	<0.001 <0.001	<5.00 6.08	<15.0 <15.0		
89	32.083943°	-103.225797°	SB8 (8'-10') SB9 (0'-2')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.3 14.3	45 10	<0.001 <0.001	<0.001 <0.001	5.85	<15.0 <15.0		
			SB9 (2'-4') SB9 (4'-6')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	15.4 14.5	30 15	<0.001 <0.001	<0.001 <0.001	18 9.83	97.7 216		
			SB9 (6'-8')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	13.8	15	<0.001	<0.001	6.36	<15.0		
			SB9 (8'-10') SB9 (8'-10')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	15.1 15.1	25 25	<0.001 <0.001	<0.001 <0.001	7.45	<15.0 <15.0		
810	32.083942°	-103.225553°	SB10 (0'-2') SB10 (2'-4')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine Light red/Fine	10.8 9.5	0	<0.001 <0.001	<0.001 <0.001	6.87 <5.00	<15.0 <15.0		
			SB10 (4'-6') SB10 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	10.6 15.8	10 40	<0.001 <0.001	<0.001 <0.001	5.31 <5.00	<15.0 <15.0		
B11	32.084390°	-103.225138°	SB10 (8'-10') SB11 (0'-2')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	7.5 6.8	55	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0		
			SB11 (2'-4') SB11 (4'-6')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.2 5.8	5 15	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0		
B12	32.084203°	-103.225211°	SB11 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.2 7.6	15	<0.001 <0.001	<0.001 <0.001 <0.001	<5.00	<15.0 <15.0		
812	32.084203	-103.225211	SB12 (0'-2') SB12 (2'-4')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.1	5	< 0.001	<0.001	5.02	<15.0		
			SB12 (4'-6') SB12 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine Light red/Fine	5.7 5.3	10 30	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0		
5813	32.084048°	-103.225345°	SB13 (0'-2') SB13 (2'-4')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.8 7.6	0	<0.001 <0.001	<0.001	<5.00	<15.0 <15.0		
			SB13 (4'-6') SB13 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	5.5 7.6	5 45	<0.001 <0.001	<0.001 <0.001	5.15 8.48	<15.0 <15.0		
SB14	32.084166°	-103.225467°	SB14 (0'-2') SB14 (2'-4')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	9.1	0	<0.001 <0.001	<0.001 <0.001 <0.001	6.12	<15.0 <15.0		
			SB14 (4'-6')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	8.7	25	<0.001	<0.001	5.83	<15.0		
			SB14 (4'-6') SB14 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.7 7.8	25 20	<0.001 <0.001	<0.001 <0.001	5.83 5.47	<15.0 <15.0		
815	32.082708°	-103.226382°	SB15 (0'-2') SB15 (2'-4')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	7.3 7.8	130 90	<0.001 <0.001	<0.001 <0.001	1840 869	<15.0 <15.0		
			SB15 (4'-6') SB15 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	9.4 11.0	105 45	<0.001 <0.001	<0.001 <0.001	1090 127	<15.0 <15.0		
			SB15 (8'-10') SB15 (10'-12')	12/13/2016 12/13/2016 12/13/2016	Caliche Rock	Light gray/Fine PR	12.7 PR	10 PR	<0.001 <0.001 N/A	<0.001 <0.001 N/A	15.1 N/A	<15.0 <15.0 N/A		
B16	32.082892°	-103.226083°	SB16 (0'-2')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	36.0	5	< 0.001	<0.001	2130	<15.0		
			SB16 (2'-4') SB16 (4'-6')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	46.9 17.0	540 680	<0.001 <0.001	<0.001 <0.001	<5.00 5910	<15.0 <15.0		
		\vdash	SB16 (6'-8') SB16 (8'-10')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	46.3 27.9	480 180	<0.001 <0.001	<0.001 <0.001	5740 1300	<15.0 <15.0		
817	32.083077°	-103.225809°	SB16 (10'-12') SB17 (0'-2')	12/13/2016 12/13/2016	PR SP - Poorly - graded sands, gravelly sands, little or no fines	PR Light red/Fine	PR 11.9	PR 250	N/A <0.001	N/A <0.001	N/A 1960	N/A <15.0		
			SB17 (2'-4') SB17 (4'-6')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravely sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	9.9	570	<0.001 <0.001	<0.001 <0.001 <0.001	3180 6420	<15.0 <15.0		
			SB17 (6'-8')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	13.5	310	< 0.001	<0.001	4000	<15.0		
			SB17 (8'-10') SB17 (10'-12')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	10.4 7.8	760 100	<0.001 <0.001	<0.001 <0.001	6640 913	<15.0 <15.0		
B18	32.083262°	-103.225537°	SB17 (12'-14') SB18 (0'-2')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.2 51.3	30 230	<0.001 <0.001	<0.001 <0.001	11.8 1790	<15.0 60		
			SB18 (2'-4') SB18 (2'-4')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	10.5 10.5	635 635	<0.001 <0.001	<0.001 <0.001	4170 4200	<15.0 <15.0		
			SB18 (4'-6') SB18 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.7	740			4770	<15.0 <15.0		
			SB18 (8'-10')	12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine	9.9	600	< 0.001	< 0.001	6350	<15.0		
			SB18 (10'-12') SB18 (12'-14')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine Light gray/Fine	8.9 7.5	15 30	<0.001 <0.001	<0.001 <0.001	315 21.5	<15.0 <15.0		
B19	32.083446°	-103.225265°	SB19 (0'-2') SB19 (2'-4')	12/13/2016 12/13/2016	NR SP - Poorly - graded sands, gravelly sands, little or no fines	NR Red/Fine	NR 6.5	NR 535	N/A <0.001	N/A <0.001	N/A 317	N/A <15.0		
			SB19 (4'-6') SB19 (6'-8')	12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.5 7.6	495 415	<0.001 <0.001	<0.001 <0.001	4430 1750	<15.0 <15.0		
			SB19 (8'-10') SB19 (10'-12')	12/13/2016 12/13/2016 12/13/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine Light red/Fine	6.5	415	<0.001 <0.001	<0.001 <0.001 <0.001	143	<15.0 <15.0		
B20	32.083581°	-103.225142°	SB20 (0'-2')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	29.5	415	< 0.001	<0.001	4600	38.1		
			SB20 (2'-4') SB20 (4'-6')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	2.6 3.3	800 600	<0.001 <0.001	<0.001 <0.001	5030 4000	<15.0 68.8		
			SB20 (6'-8') SB20 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	2.7 3.3	680 120	<0.001 <0.001	<0.001 <0.001	4670 159	<15.0 <15.0		
		1	SB20 (10'-12')	12/14/2016	Caliche Rock	Light gray/Fine	4.5	65	<0.001	<0.001	18.8	<15.0		

					Spill 2 Field Data	n	1				ratory Results	
							PID	Chlorides	Benzene mg/kg	Total BTEX mg/kg Ac	Chlorides mg/kg tion Limits	Total TPH mg/kg
Soil Boring ID	Latitude	Longitude	Sample ID	Date Collected	Soil Type	Soil Color/Size	(PPM)	(field screening)	10 mg/kg	50 mg/kg	Horizontal: 600 mg/kg Vertical: 250 mg/kg	5000 mg/kg
			SB21 (2'-4')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	8.1	560	<0.001	<0.001	4210	<15.0
			SB21 (4'-6') SB21 (6'-8')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	7.3 5.8	100 25	<0.001 <0.001	<0.001 <0.001	646 <5.00	<15.0 <15.0
			SB21 (6'-8') SB21 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light gray/Fine	4.9 4.9	40 40	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0
			SB21 (10'-11')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.8	15	<0.001	<0.001	6.5	<15.0
SB22	32.083806°	-103.224809°	SB21 (10'-11') SB22 (0'-2')	12/14/2016 12/14/2016	PR SP - Poorly - graded sands, gravelly sands, little or no fines	PR Light red/Fine	PR 480.0	PR 710	N/A <0.001	N/A <0.001	N/A 4160	N/A 818
			SB22 (2'-4') SB22 (4'-6')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light brown/Fine	25.4 10.0	615 70	<0.001 <0.001	<0.001 <0.001	6570 45	<15.0 <15.0
			SB22 (6'-8') SB22 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Dark red/Fine Light red/Fine	8.3 12.6	55 55	<0.001 <0.001	<0.001 <0.001	14.6 31.8	<15.0 <15.0
SB23	32.083921°	-103.224638°	SB23 (0'-2') SB23 (2'-4')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	17.2	155	<0.001	< 0.001	278	<15.0
			SB23 (4'-6')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.9 7.0	185 510	<0.001 <0.001	<0.001 <0.001	56.2 907	<15.0 <15.0
			SB23 (6'-8') SB23 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.0 5.3	140 220	<0.001 <0.001	<0.001 <0.001	390 206	<15.0 <15.0
SB24	32.084065°	-103.224523°	SB24 (0'-2') SB24 (2'-4')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	58.0 331.0	5 10	<0.001 <0.001	<0.001 <0.001	6.9 7.5	<15.0 <15.0
			SB24 (4'-6')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	28.0	35	< 0.001	<0.001	5.45	<15.0
			SB24 (6'-8') SB24 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	19.8 24.5	60 35	<0.001 <0.001	<0.001 <0.001	7.97 19.8	<15.0 <15.0
SB25	32.084010°	-103.224815°	SB25 (0'-2') SB25 (2'-4')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	12.6 14.7	15	<0.001 <0.001	<0.001 <0.001	20.3 8.91	<15.0 <15.0
			SB25 (4'-6') SB25 (6'-8')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	14.7 11.9	20	<0.001 <0.001	<0.001 <0.001	<5.00 <5.00	<15.0 <15.0
			SB25 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	12.4	50 45	<0.001	<0.001	6.06	<15.0
SB26	32.083941°	-103.224964°	SB26 (0'-2') SB26 (0'-2')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	9.4 9.4	325 325	<0.001 <0.001	<0.001 <0.001	1470 1630	<15.0 <15.0
			SB26 (2'-4') SB26 (4'-6')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light brown/Fine	11.6 11.8	365 40	<0.001 <0.001	<0.001 <0.001	1940 7.46	<15.0 <15.0
			SB26 (6'-8') SB26 (8'-10')	12/14/2016	SP - Poorly - graded sands, gravely sands, little of no lines SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine	12.7	50	<0.001	<0.001	7.44	<15.0
			SB26 (10'-12')	12/14/2016 12/14/2016	PR	Red/Fine PR	10.4 PR	40 PR	<0.001 N/A	<0.001 N/A	<5.00 N/A	<15.0 N/A
SB27	32.083810°	-103.225101°	SB27 (0'-2') SB27 (2'-4')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine Light red/Fine	5.6 7.0	415 480	<0.001 <0.001	<0.001 <0.001	1210 836	<15.0 <15.0
			SB27 (4'-6') SB27 (6'-8')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine Red/Fine	6.5 11.1	80 65	<0.001 <0.001	<0.001 <0.001	14.8 5.03	<15.0 <15.0
			SB27 (8'-10')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine	5.8	25	<0.001	< 0.001	12.1	<15.0
SB28	32.083698°	-103.225317°	SB28 (0'-2') SB28 (2'-4')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	5.3 7.3	435 630	<0.001 <0.001	<0.001 <0.001	2120 3610	<15.0 <15.0
			SB28 (4'-6') SB28 (6'-8')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	5.5 9.4	755 205	<0.001 <0.001	<0.001 <0.001	6290 645	<15.0 <15.0
SB29	32.083494°	-103.225346°	SB28 (8'-10') SB29 (0'-2')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	8.2 5.3	90 95	<0.001 <0.001	<0.001 <0.001	<5.00 28.4	<15.0 <15.0
3829	52.005454	-103.223340	SB29 (2'-4')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.7	625	<0.001	<0.001	5930	<15.0
			SB29 (4'-6') SB29 (6'-8')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	9.7 7.1	735 355	<0.001 <0.001	<0.001 <0.001	5800 1520	<15.0 <15.0
SB30	32.083315°	-103.225606°	SB29 (8'-10') SB30 (0'-2')	12/14/2016 12/14/2016	Caliche Rock SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine Light red/Fine	7.0	120 195	<0.001 <0.001	<0.001 <0.001	216 266	<15.0 <15.0
			SB30 (0'-2')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.2	195	<0.001	<0.001	526	<15.0
			SB30 (2'-4') SB30 (4'-6')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.1 7.2	745 520	<0.001 <0.001	<0.001 <0.001	4060 3120	<15.0 <15.0
			SB30 (6'-8') SB30 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine Red/Fine	7.0	725 500	<0.001 <0.001	<0.001 <0.001	5050 3200	<15.0 <15.0
			SB30 (10'-12') SB30 (12'-14')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine Red/Fine	5.6 5.0	335 130	<0.001 <0.001	<0.001 <0.001	4890 124	<15.0 <15.0
SB31	32.083136°	-103.225866°	SB31 (0'-2')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.7	50	<0.001 <0.001	<0.001 <0.001	5.59	<15.0 <15.0
			SB31 (2'-4') SB31 (4'-6')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.6 5.7	30 75	<0.001	<0.001	<5.00	<15.0
			SB31 (6'-8') SB31 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines PR	Light red/Fine PR	6.1 PR	35 PR	<0.001 N/A	<0.001 N/A	<5.00 N/A	<15.0 N/A
SB32	32.082957°	-103.226126°	SB32 (0'-2') SB32 (2'-4')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	3.5 4.3	0	<0.001 <0.001	<0.001 <0.001	5.43 <5.00	<15.0 <15.0
			SB32 (4'-6')	12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.2	165	< 0.001	<0.001	<5.00	<15.0
			SB32 (6'-8') SB32 (8'-10')	12/14/2016 12/14/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	4.7	50 55	<0.001 <0.001	<0.001 <0.001	<5.00 12.8	<15.0 <15.0
SB33	32.083817°	-103.224360°	SB33 (0'-2') SB33 (2'-4')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines Caliche Rock	Light red/Fine Light gray/Fine	1.6	30 5	<0.001 <0.001	<0.001 <0.001	8.08 <5.00	<15.0 <15.0
			SB33 (4'-6') SB33 (6'-8')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines Caliche Rock	Light brown/Fine Light gray/Fine	1.7 1.3	15 40	<0.001 <0.001	<0.001 <0.001	<5.00 9.18	<15.0 <15.0
	22.00274.48	403 3345 458	SB33 (8'-10')	12/15/2016	PR	PR	PR	PR	N/A	N/A	N/A	N/A
SB34	32.083744°	-103.224545°	SB34 (0'-2') SB34 (0'-2')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	404.0 404.0	370 370	<0.001 <0.001	<0.001 <0.001	3690 3110	<15.0 <15.0
			SB34(2'-4') SB34 (4'-6')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	11.6 4.0	950 775	<0.001 <0.001	<0.001 <0.001	4550 4800	<15.0 <15.0
			SB34 (6'-8') SB34 (8'-10')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines Caliche Rock	Light red/Fine Light gray/Fine	4.5	885 895	<0.001 <0.001	<0.001 <0.001	4800 3760	<15.0 <15.0
			SB34 (10'-12')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine	2.5	375	<0.001	< 0.001	594	<15.0 <15.0
SB35	32.083558°	-103.224843°	SB34 (12'-14') SB35 (0'-2')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Red/Fine Light red/Fine	3.8	75	<0.001 <0.001	<0.001 <0.001	8.23	<15.0
			SB35(2'-4') SB35 (4'-6')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	red/Fine Light red/Fine	4.4 3.6	775 115	<0.001 <0.001	<0.001 <0.001	4790 74.6	<15.0 <15.0
			SB35 (6'-8') SB35 (8'-10')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	4.5 6.4	840 1060	<0.001 <0.001	<0.001 <0.001	5330 7670	<15.0 <15.0
			SB35 (10'-10.6')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.3	1205	< 0.001	<0.001	4490	<15.0
SB36	32.083372°	-103.225140°	SB35 (10.6'-12') SB36 (0'-2')	12/15/2016 12/15/2016	PR SP - Poorly - graded sands, gravelly sands, little or no fines	PR Light red/Fine	PR 4.1	PR 20	N/A <0.001	N/A <0.001	N/A 97.3	N/A <15.0
			SB36 (2'-4') SB36 (4'-6')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	3.5 3.3	595 320	<0.001 <0.001	<0.001 <0.001	2470 3450	<15.0 <15.0
			SB36 (6'-8') SB36 (8'-10')	12/15/2016 12/15/2016	Caliche Rock Caliche Rock	Light gray/Fine Light gray/Fine	4.0	780 45	<0.001 <0.001	<0.001 <0.001	2360	<15.0 <15.0
	22.0024068	402 225 4208	SB36 (10'-12')	12/15/2016	Caliche Rock	Light gray/Fine	3.6	45	<0.001	<0.001	<5.00	<15.0
SB37	32.083186°	-103.225438°	SB37 (0'-2') SB37 (2'-4')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	3.8 3.3	170 640	<0.001 <0.001	<0.001 <0.001	443 2730	<15.0 <15.0
			SB37 (2'-4') SB37 (4'-6')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	3.3 4.0	640 680	<0.001 <0.001	<0.001 <0.001	3030 4950	<15.0 <15.0
			SB37 (6'-8') SB37 (8'-10')	12/15/2016 12/15/2016	Caliche Rock SP - Poorly - graded sands, gravelly sands, little or no fines	Light gray/Fine Light red/Fine	4.1 4.6	1070 220	<0.001 <0.001	<0.001 <0.001	4590 504	<15.0 <15.0
6020	22.002000	102 225725	SB37 (10'-12')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.1	25	<0.001	<0.001	9.86	<15.0
SB38	32.083000°	-103.225735°	SB38 (0'-2') SB38 (2'-4')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	3.7 3.0	575 540	<0.001 <0.001	<0.001 <0.001	2880 2570	<15.0 <15.0
			SB38 (4'-6') SB38 (6'-8')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines Caliche Rock	Light red/Fine Light gray/Fine	3.2 2.7	655 250	<0.001 <0.001	<0.001 <0.001	4950 915	<15.0 <15.0
			SB38 (8'-10') SB38 (10'-12')	12/15/2016 12/15/2016	Caliche Rock PR	Light gray/Fine PR	2.7 PR	70 PR	<0.001 <0.001 N/A	<0.001 N/A	15.8 N/A	<15.0 N/A
SB39	32.082814°	-103.226032°	SB39 (0'-2')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.0	900	<0.001	<0.001	2770	<15.0
			SB39 (2'-4') SB39 (4'-6')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	2.7 5.1	785 500	<0.001 <0.001	<0.001 <0.001	516 4090	<15.0 <15.0
			SB39 (6'-8') SB39 (8'-10')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines Caliche Rock	Light red/Fine Light gray/Fine	5.0 4.4	975 625	<0.001 <0.001	<0.001 <0.001	8790 4640	<15.0 <15.0
			SB39 (10'-12')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.2	520	<0.001	<0.001	3180	<15.0
SB40	22 0926570	-103.226330°	SB39 (12'-14') SB40 (0'-2')	12/15/2016 12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	3.0 4.2	65 10	<0.001 <0.001	<0.001 <0.001	31.5 7.61	<15.0 <15.0

					Field Data					Labor	atory Results	
		1			Heid Data	1		1	Bonzono ma/ka	Total BTEX mg/kg		Total TPH mg/kg
									benzene mg/kg		ion Limits	Total TPH mg/Kg
Soil Boring ID	Latitude	Longitude	Sample ID	Date Collected	Soil Type	Soil Color/Size	PID	Chlorides				
							(PPM)	(field screening)	10 mg/kg	50 mg/kg	Horizontal: 600 mg/kg Vertical: 250 mg/kg	5000 mg/kg
			SB40 (2'-4')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.3	35	<0.001	<0.001	12.2	<15.0
			SB40 (2 -4) SB40 (4'-6')	12/15/2016			4.3	35	<0.001	<0.001	5.42	<15.0
			SB40 (4 -6) SB40 (6'-7')	12/15/2016	SP - Poorly - graded sands, gravelly sands, little or no fines Caliche Rock	Light red/Fine	4.2	100	<0.001	<0.001	5.42	<15.0
			SB40 (6 -7) SB40 (6'-7')	12/15/2016	Caliche Rock	Light gray/Fine Light gray/Fine	4.2	100	<0.001	<0.001	12.3	<15.0
			SB40 (8-7) SB40 (7'-8')	12/15/2016	PR	PR	4.2 PR	PR	N/A	N/A	12.7 N/A	N/A
SB41	32.082671°	-103.225939°	SB40 (7-8) SB41 (0'-2')	12/20/2016			PR 12.2	0	<0.001	<0.001	N/A 5.71	N/A <15.0
5841	32.082671	-103.225939	SB41 (0 -2) SB41 (2'-4')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine Light red/Fine	6.2	0	<0.001	<0.001	7.46	<15.0
			SB41 (2 -4) SB41 (4'-6')	12/20/2016	SP - Poorly - graded sands, gravely sands, little or no fines SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	7.8	5	<0.001	<0.001	7.04	<15.0
							7.8	10	<0.001	<0.001	<5.00	<15.0
60.42	22.00206.48	102 22560.48	SB41 (6'-8')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine		0	<0.001	<0.001		
5B42	32.082864°	-103.225604°	SB42 (0'-2')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	7.0		<0.001	<0.001	11.4 6.32	<15.0 <15.0
			SB42 (2'-4')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.4	0	<0.001			<15.0
			SB42 (4'-6')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.1	5		<0.001	5.12	
			SB42 (6'-8')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.5	95	<0.001	<0.001	6.11	<15.0
SB43	32.083057°	-103.225269°	SB43 (0'-2')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.0	5	<0.001	<0.001	5.98	<15.0
			SB43 (2'-4')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.2	5	<0.001	<0.001	5.37	165
			SB43 (4'-6')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.1	25	<0.001	<0.001	<5.00	<15.0
			SB43 (6'-8')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.6	130	<0.001	<0.001	7.11	<15.0
SB44	32.083250°	-103.224935°	SB44 (0'-2')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.0	5	<0.001	<0.001	6.27	<15.0
			SB44 (2'-4')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.9	15	<0.001	<0.001	5.57	<15.0
			SB44 (4'-6')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	1.8	50	<0.001	<0.001	5.62	<15.0
			SB44 (6'-8')	12/20/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.9	30	<0.001	< 0.001	6.49	<15.0
SB45	32.083414°	-103.224696°	SB45 (0'-2')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.5	0	<0.001	<0.001	6.96	<15.0
			SB45 (2'-4')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.2	0	<0.001	< 0.001	5.9	<15.0
			SB45 (4'-6')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.8	5	<0.001	< 0.001	5.28	<15.0
			SB45 (6'-8')	12/21/2016	21/2016 SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.3	10	<0.001	<0.001	<5.00	<15.0
SB46	32.083574°	-103.224391°	SB46 (0'-2')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.8	0	<0.001	< 0.001	<5.00	<15.0
			SB46 (0'-2')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.8	0	<0.001	< 0.001	5.4	<15.0
			SB46 (2'-4')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.1	0	<0.001	<0.001	<5.00	<15.0
			SB46 (4'-6')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.7	5	<0.001	< 0.001	<5.00	<15.0
			SB46 (6'-8')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.5	10	<0.001	<0.001	<5.00	<15.0
SB47	32.084402°	-103.224775°	SB47 (0'-2')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.7	0	<0.001	<0.001	<5.00	<15.0
			SB47 (2'-4')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.2	0	<0.001	<0.001	<5.00	<15.0
			SB47 (4'-6')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.6	5	<0.001	<0.001	<5.00	<15.0
			SB47 (6'-8')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.3	10	<0.001	<0.001	<5.00	<15.0
			SB47 (8'-10')	12/21/2016	PR	PR	PR	PR	N/A	N/A	N/A	N/A
SB48	32.083391°	-103.225705°	SB48 (0'-2')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	5.1	5	<0.001	<0.001	<5.00	<15.0
			SB48 (2'-4')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	8.7	15	<0.001	<0.001	<5.00	<15.0
			SB48 (4'-6')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.5	15	<0.001	<0.001	<5.00	<15.0
			SB48 (6'-8')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.9	20	<0.001	<0.001	<5.00	<15.0
			SB48 (8'-10')	12/21/2016	PR	PR	PR	PR	N/A	N/A	N/A	N/A
BG1	32.083537°	-103.225916°	BG (0'-2')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.9	0	< 0.001	<0.001	7.02	<15.0
			BG (2'-4')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.1	0	<0.001	<0.001	5.69	<15.0
			BG (4'-6')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.7	0	<0.001	<0.001	<5.00	<15.0
			BG (6'-8')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.9	25	<0.001	<0.001	6.99	<15.0
			BG (8'-10')	12/21/2016	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.9	20	<0.001	<0.001	6.15	<15.0
SS-02	32.082988°	-103.225653°	SS-02 (21')	3/8/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	N/A	N/A	N/A	N/A	13.1	N/A
TSS1	32.083656°	-103.224558°	TSS-01 (4')	4/22/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.9	-	N/A	N/A	12.7	N/A
TSS2	32.083453°	-103.224893°	TSS-02 (4')	4/22/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	6.0	-	N/A	N/A	21.9	N/A
TSS3	32.083242°	-103.225184°	TSS-03 (4')	4/22/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	4.5	-	N/A	N/A	11	N/A
rss4	32.083080°	-103.225468°	TSS-04 (4')	4/22/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.7	-	N/A	N/A	9.03	N/A
rss5	32.082855°	-103.225810°	TSS-05 (4')	4/22/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	3.6	-	N/A	N/A	<4.09	N/A
rss6	32.082696°	-103.226111°	TSS-06 (4')	4/22/2017	SP - Poorly - graded sands, gravelly sands, little or no fines	Light red/Fine	2.0	-	N/A	N/A	<5.00	N/A
			e laboratory deter									

Red Shaded cells indicate Horizontal senzene, pi EA, chronies and pi Freekeene Orange shaded cells indicate Horizontal and Vertical Dirolardes exceedance. Action Limits: Benzene : 10 ppm, BTX: -50 ppm, TPH - 5,000 ppm, Chorides : -60 ppm (Horizontal), Chorides - 250 ppm, Vertical) NOTE: NR=ND RECOVERY, PR=PROBE REFUSAL SPUT SAMPLE, NA=NOT APPLICABLE

					Pi N	roduced V Neark Lea Cou ew Mexic	Vater Pipe by Red Hill unty, New to - Case N								
	LOCATION: OWL BOBCAT/REDHILLS PIPELINE RELEASE Spill Area 2														
	Spill Area 2														
DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N				
	TSS1	1'	-	-	-	-	-	sandy sand damp	41.2	-	N				
	TSS1	2'	-	-	-	-	-	sandy sand damp	49.6	-	Ν				
	TSS1	3'	-	-	-	-	-	sandy sand damp	77.2	-	Ν				
	TSS1	4'	19	44	2.32	0.05	116	sandy sand damp		12.7	Ν				
	TSS2	1'	-	-	-	-	-	sandy sand damp	78.4	-	Ν				
	TSS2	2'	-	-	-	-	-	sandy sand damp	85.6	-	Ν				
	TSS2	3'	-	-	-	-	-	sandy sand damp	73.2	-	Ν				
	TSS2	4'	18	45	2.50	0.05	125	sandy sand damp		21.9	Ν				
	TSS3	1'	-	-	-	-	-	sandy sand damp	70.8	-	Ν				
	TSS3	2'	-	-	-	-	-	sandy sand damp	79.2	-	Ν				
	TSS3	3'	-	-	-	-	-	sandy sand damp	88.4	-	Ν				
26-Apr-17	TSS3	4'	15	48	3.20	0.03	96	sandy sand damp		11	Ν				
- 1	TSS4	1'	-	-	-	-	-	sandy sand damp	57.6	-	Ν				
	TSS4	2'	-	-	-	-	-	sandy sand damp	59.2	-	Ν				
	TSS4	3'	-	-	-	-	-	sandy sand damp	54.4	-	Ν				
	TSS4	4'	24	47	1.96	0.03	59	sandy sand damp		9.03	Ν				
	TSS5	1'	-	-	-	-	-	sandy sand damp	55.6	-	Ν				
	TSS5	2'	-	-	-	-	-	sandy sand damp	60.4	-	N				
	TSS5	3'	-	-	-	-	-	sandy sand damp	61.2	-	N				
	TSS5	4'	20	45	2.25	0.03	67	sandy sand damp		4.9	N				

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	TSS6	1'	-	-	-	-	-	sandy sand damp	44.8	-	N
	TSS6	2'	-	-	-	-	-	sandy sand damp	46.4	-	N
	TSS6	3'	-	-	-	-	-	sandy sand damp	38.8	-	N
	TSS6	4'	21	49	2.33	0.03	70	sandy sand damp		5	N
	ASP1	1'	18	45	2.50	0.16	400	sandy sand damp		-	N
	ASP2	1'	21	43	2.05	0.20	409	sandy sand damp		-	N
	ASP3	1'	22	44	2.00	0.19	380	sandy sand damp		-	N
	ASP4	1'	22	49	2.23	0.31	690	sandy sand damp		-	N
	ASP5	1'	19	45	2.37	0.24	568	sandy sand damp		-	N
	ASP6	1'	21	45	2.14	0.17	364	sandy sand damp		-	N
	ASP7	1'	20	48	2.40	0.16	384	sandy sand damp		-	N
	ASP8	1'	21	45	2.14	0.27	578	sandy sand damp		-	N
	ASP9	1'	21	45	2.14	0.34	728	sandy sand damp		-	N
	ASP10	1'	23	48	2.09	0.26	542	sandy sand damp		548	N
	ASP11	1'	-	-	-	-	-	sandy sand damp	400.0	-	N
	ASP12	1'	-	-	-	-	-	sandy sand damp	292.8	-	N
	ASP13	1'	-	-	-	-	-	sandy sand damp	432.0	-	N
	ASP14	1'	-	-	-	-	-	sandy sand damp	370.4	-	N
	ASP15	1'	-	-	-	-	-	sandy sand damp	334.4	-	N
	ASP16	1'	-	-	-	-	-	sandy sand damp	332.0	-	N
	ASP17	1'	-	-	-	-	-	sandy sand damp	393.2	-	N
	ASP18	1'	-	-	-	-	-	sandy sand damp	338.8	-	N
	ASP19	1'	-	-	-	-	-	sandy sand damp	644.0	-	N
31-May	ASP20	1'	-	-	-	-	-	sandy sand damp	334.0	316	N
31-iviay	ASP21	1'	-	-	-	-	-	sandy sand damp	412.0	-	N
	ASP22	1'	-	-	-	-	-	sandy sand damp	321.6	-	N

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	ASP23	1'	-	-	-	-	-	sandy sand damp	548.0	-	N
	ASP24	1'	-	-	-	-	-	sandy sand damp	389.2	-	N
	ASP25	1'	-	-	-	-	-	sandy sand damp	96.0	-	Ν
	ASP26	1'	-	-	-	-	-	sandy sand damp	279.6	-	Ν
	ASP27	1'	-	-	-	-	-	sandy sand damp	424.0	-	N
	ASP28	1'	-	-	-	-	-	sandy sand damp	484.0	-	Ν
	ASP29	1'	-	-	-	-	-	sandy sand damp	372.8	-	Ν
	ASP30	1'	-	-	-	-	-	sandy sand damp	572.0	607	N
	ASP31	1'	-	-	-	-	-	sandy sand damp	195.2	-	Ν
	ASP32	1'	-	-	-	-	-	sandy sand damp	440.0	-	N
	ASP33	1'	-	-	-	-	-	sandy sand damp	393.6	-	N
	ASP34	1'	-	-	-	-	-	sandy sand damp	356.8	-	N
	ASP35	1'	-	-	-	-	-	sandy sand damp	314.8	-	Ν
	ASP36	1'	-	-	-	-	-	sandy sand damp	412.0	-	Ν
	ASP37	1'	-	-	-	-	-	sandy sand damp	387.2	-	N
	ASP38	1'	-	-	-	-	-	sandy sand damp	294.0	-	Ν
	ASP39	1'	-	-	-	-	-	sandy sand damp	397.6	-	N
	ASP40	1'	-	-	-	-	-	sandy sand damp	223.6	200	N
	ASP41	1'	-	-	-	-	-	sandy sand damp	118.0	180	N
	ASP42	1'	-	-	-	-	-	sandy sand damp	131.6	183	Ν
	ASP43	1'	-	-	-	-	-	sandy sand damp	266.0	380	N
	ASP44	1'	-	-	-	-	-	sandy sand damp	106.4	176	N
	ASP45	1'	-	-	-	-	-	sandy sand damp	293.2	388	N
	ASP46	1'	-	-	-	-	-	sandy sand damp	142.0	202	Ν
	ASP47	1'	-	-	-	-	-	sandy sand damp	98.0	163	N
	ASP48	1'	-	-	-	-	-	sandy sand damp	229.2	322	N

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	ASP49	1'	-	-	-	-	-	sandy sand damp	180.8	195	N
1-Jun	ASP50	1'	-	-	-	-	-	sandy sand damp	130.8	192	N
	ASP51	1'	-	-	-	-	-	sandy sand damp	113.6	-	N
	ASP52	1'	-	-	-	-	-	sandy sand damp	250.4	-	N
	ASP53	1'	-	-	-	-	-	sandy sand damp	280.4	-	N
	ASP54	1'	-	-	-	-	-	sandy sand damp	201.6	-	Ν
	ASP55	1'	-	-	-	-	-	sandy sand damp	209.2	-	N
	ASP56	1'	-	-	-	-	-	sandy sand damp	124.4	-	N
	ASP57	1'	-	-	-	-	-	sandy sand damp	117.6	-	N
	ASP58	1'	-	-	-	-	-	sandy sand damp	169.2	-	N
	ASP59	1'	-	-	-	-	-	sandy sand damp	197.6	-	N
	ASP60	1'	-	-	-	-	-	sandy sand damp	160.0	-	N
	ASP61	1'	-	-	-	-	-	sandy sand damp	448.0	-	Ν
	ASP62	1'	-	-	-	-	-	sandy sand damp	143.2	-	Ν
	BSP1	1'	19	49	2.58	0.07	180	sandy sand damp	260.0	-	Ν
	BSP2	1'	15	49	3.27	0.28	914	sandy sand damp	329.0	-	Y
	BSP3	1'	15	46	3.07	0.17	521	sandy sand damp	254.0	-	Ν
	BSP4	1'	16	42	2.63	0.19	499	sandy sand damp	138.0	-	Ν
	BSP5	1'	15	51	3.40	0.27	918	sandy sand damp	249.0	-	Y
6-Jun	BSP6	1'	18	51	2.83	0.53	1501	sandy sand damp	137.0	-	Y
0-Jun	BSP7	1'	16	50	3.13	0.38	1187	sandy sand damp	291.0	-	Y
	BSP8	1'	15	50	3.33	0.26	866	sandy sand damp	580.0	-	Y
	BSP9	1'	20	54	2.70	0.29	783	sandy sand damp	428.0	-	Y
	BSP10	1'	19	49	2.58	0.27	696	sandy sand damp	291.0	296	Ν
	BSP11	1'	16	50	3.13	0.31	968	sandy sand damp	104.0	-	Y
	BSP12	1'	23	44	1.91	0.43	822	sandy sand damp	296.8	-	Y

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	BSP13	1'	22	44	2.00	0.77	1540	sandy sand damp	277.6	-	Y
	BSP14	1'	18	44	2.44	0.62	1515	sandy sand damp	283.2	-	Y
	BSP15	1'	18	42	2.33	0.51	1190	sandy sand damp	452.0	-	Y
	BSP16	1'	19	43	2.26	0.57	1290	sandy sand damp	208.4	-	Y
	BSP17	1'	19	50	2.63	0.34	894	sandy sand damp	220.8	-	Y
	BSP18	1'	25	37	1.48	0.17	252	sandy sand damp	135.6	-	Ν
	BSP19	1'	17	43	2.53	0.48	1214	sandy sand damp	157.2	-	Y
	BSP20	1'	18	47	2.61	0.2	522	sandy sand damp	354.8	127	Ν
	BSP21	1'	15	45	3.00	0.15	450	sandy sand damp	243.6	-	Ν
	BSP22	1'	17	51	3.00	0.15	450	sandy sand damp	334.0	-	Ν
	BSP23	1'	19	45	2.37	0.09	213	sandy sand damp	456.0	-	Ν
	BSP24	1'	21	43	2.05	0.1	205	sandy sand damp	386.4	-	Ν
	BSP25	1'	23	42	1.83	0.18	329	sandy sand damp	1376.0	-	Ν
17-May	BSP26	1'	24	47	1.96	0.28	548	sandy sand damp	524.0	-	Ν
17-iviay	BSP27	1'	24	46	1.92	0.51	977	sandy sand damp	1016.0	-	Y
	BSP28	1'	18	47	2.61	0.18	470	sandy sand damp	296.0	-	Ν
	BSP29	1'	21	45	2.14	0.19	407	sandy sand damp	584.0	-	Ν
	BSP30	1'	19	44	2.32	0.4	926	sandy sand damp	257.6	266	Y
	BSP31	1'	18	45	2.50	0.46	1150	sandy sand damp	276.8	-	Y
	BSP32	1'	19	48	2.53	0.65	1642	sandy sand damp		-	Y
	BSP33	1'	19	46	2.42	0.36	871	sandy sand damp		-	Y
	BSP34	1'	19	48	2.53	0.34	859	sandy sand damp		-	Y
	BSP35	1'	22	46	2.09	0.75	1568	sandy sand damp		-	Y
	BSP36	1'	22	47	2.14	0.5	1068	sandy sand damp		-	Y
	BSP37	1'	19	43	2.26	0.84	1900	sandy sand damp		-	Y
	BSP38	1'	22	42	1.91	0.81	1546	sandy sand damp		-	Y

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	BSP39	1'	18	41	2.28	0.28	638	sandy sand damp		-	Ν
	BSP40	1'	24	44	1.83	0.75	1375	sandy sand damp		-	Y
	BSP41	1'	-	-	-	-	-	sandy sand damp	260.0	-	Ν
	BSP42	1'	-	-	-	-	-	sandy sand damp	329.6	-	Ν
	BSP43	1'	-	-	-	-	-	sandy sand damp	254.0	-	Ν
	BSP44	1'	-	-	-	-	-	sandy sand damp	138.0	-	Ν
	BSP45	1'	-	-	-	-	-	sandy sand damp	249.6	-	Ν
	BSP46	1'	-	-	-	-	-	sandy sand damp	137.6	-	Ν
	BSP47	1'	-	-	-	-	-	sandy sand damp	291.2	-	Ν
	BSP48	1'	-	-	-	-	-	sandy sand damp	580.0	-	Ν
	BSP49	1'	-	-	-	-	-	sandy sand damp	428.0	-	Ν
	BSP50	1'	-	-	-	-	-	sandy sand damp	260.4	-	Ν
	BSP51	1'	-	-	-	-	-	sandy sand damp	104.8	-	Ν
	BSP52	1'	-	-	-	-	-	sandy sand damp	296.8	-	Ν
5-Jun	BSP53	1'	-	-	-	-	-	sandy sand damp	277.6	-	Ν
	BSP54	1'	-	-	-	-	-	sandy sand damp	283.2	-	Ν
	BSP55	1'	-	-	-	-	-	sandy sand damp	452.0	-	Ν
	BSP56	1'	-	-	-	-	-	sandy sand damp	208.4	-	Ν
	BSP57	1'	-	-	-	-	-	sandy sand damp	220.8	-	Ν
	BSP58	1'	-	-	-	-	-	sandy sand damp	135.6	-	Ν
	BSP59	1'	-	-	-	-	-	sandy sand damp	157.2	-	Ν
	BSP60	1'	-	-	-	-	-	sandy sand damp	354.8	-	Ν
	BSP61	1'	-	-	-	-	-	sandy sand damp	243.6	-	Ν
	BSP62	1'	-	-	-	-	-	sandy sand damp	334.0	-	Ν
	BSP63	1'	-	-	-	-	-	sandy sand damp	456.0	-	Ν
	BSP64	1'	-	-	-	-	-	sandy sand damp	386.4	-	Ν

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	BSP65	1'	-	-	-	-	-	sandy sand damp	1376.0	-	Y
	BSP66	1'	-	-	-	-	-	sandy sand damp	524.0	-	Ν
	BSP67	1'	-	-	-	-	-	sandy sand damp	1016.0	-	Y
	BSP68	1'	-	-	-	-	-	sandy sand damp	296.0	-	Y
	BSP69	1'	-	-	-	-	-	sandy sand damp	584.0	-	Y
	BSP70	1'	-	-	-	-	-	sandy sand damp	257.6	-	Y
	BSP71	1'	-	-	-	-	-	sandy sand damp	276.8	-	Y
	CSP1	1'	19	46	2.42	0.16	387	sandy sand damp		-	Ν
	CSP2	1'	17	46	2.71	0.15	406	sandy sand damp		-	Ν
	CSP3	1'	15	44	2.93	0.12	352	sandy sand damp		-	Ν
	CSP4	1'	12	48	4.00	0.2	800	sandy sand damp		-	Ν
	CSP5	1'	19	45	2.37	0.17	403	sandy sand damp		-	Ν
	CSP6	1'	14	43	3.07	0.3	921	sandy sand damp		-	Ν
	CSP7	1'	18	49	2.72	0.52	1415	sandy sand damp		-	Y
	CSP8	1'	17	48	2.82	0.3	847	sandy sand damp		-	Ν
	CSP9	1'	19	44	2.32	0.24	556	sandy sand damp		-	Ν
27-Apr	CSP10	1'	22	47	2.14	0.46	982	sandy sand damp		-	Ν
2 <i>1-</i> Api	CSP11	1'	22	43	1.95	0.64	1251	sandy sand damp		-	Y
	CSP12	1'	17	43	2.53	0.39	986	sandy sand damp		-	Ν
	CSP13	1'	15	46	3.07	0.56	1717	sandy sand damp		-	Y
	CSP14	1'	19	46	2.42	0.27	653	sandy sand damp		-	Ν
	CSP15	1'	21	46	2.19	0.43	942	sandy sand damp		-	Ν
	CSP16	1'	24	41	1.71	0.44	751	sandy sand damp		-	Ν
	CSP17	1'	19	47	2.47	0.26	643	sandy sand damp		-	Ν
	CSP18	1'	18	46	2.56	0.3	766	sandy sand damp		-	Ν
	CSP19	1'	28	40	1.43	0.59	843	sandy sand damp		-	N

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	CSP20	1'	17	43	2.53	0.3	759	sandy sand damp		-	Ν
	CSP21	1'	14	41	2.93	0.18	527	sandy sand damp		-	Ν
	CSP22	1'	16	40	2.50	0.38	950	sandy sand damp		-	Ν
	CSP23	1'	15	46	3.07	0.15	460	sandy sand damp		-	Ν
	CSP24	1'	15	41	2.73	0.23	628	sandy sand damp		-	Ν
	CSP25	1'	16	41	2.56	0.28	717	sandy sand damp		-	Ν
	CSP26	1'	15	47	3.13	0.32	1002	sandy sand damp		-	Y
	CSP27	1'	-	-	-	-	-	sandy sand damp	496.0	-	Ν
	CSP28	1'	-	-	-	-	-	sandy sand damp	516.0	-	Ν
	CSP29	1'	-	-	-	-	-	sandy sand damp	664.0	-	Ν
	CSP30	1'	-	-	-	-	-	sandy sand damp	320.8	-	Ν
	CSP31	1'	-	-	-	-	-	sandy sand damp	456.0	-	Ν
	CSP32	1'	-	-	-	-	-	sandy sand damp	548.0	-	Ν
	CSP33	1'	-	-	-	-	-	sandy sand damp	391.2	-	Ν
	CSP34	1'	-	-	-	-	-	sandy sand damp	512.0	-	Ν
	CSP35	1'	-	-	-	-	-	sandy sand damp	576.0	-	Ν
	CSP36	1'	-	-	-	-	-	sandy sand damp	307.6	-	Ν
	CSP37	1'	-	-	-	-	-	sandy sand damp	159.2	-	Ν
	CSP38	1'	-	-	-	-	-	sandy sand damp	129.2	-	Ν
	CSP39	1'	-	-	-	-	-	sandy sand damp	266.4	-	Ν
	CSP40	1'	-	-	-	-	-	sandy sand damp	236.0	-	Ν
17-May	CSP41	1'	-	-	-	-	-	sandy sand damp	147.2	-	Ν
i <i>i</i> -iviay	CSP42	1'	-	-	-	-	-	sandy sand damp	226.8	-	Ν
	CSP43	1'	-	-	-	-	-	sandy sand damp	179.6	-	Ν
	CSP44	1'	-	-	-	-	-	sandy sand damp	242.8	-	Ν
	CSP45	1'	-	-	-	-	-	sandy sand damp	396.4	-	Ν

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	CSP46	1'	-	-	-	-	-	sandy sand damp	272.8	-	Ν
	CSP47	1'	-	-	-	-	-	sandy sand damp	780.0	-	Y
	CSP48	1'	-	-	-	-	-	sandy sand damp	354.8	-	Ν
	CSP49	1'	-	-	-	-	-	sandy sand damp	696.0	-	Ν
	CSP50	1'	-	-	-	-	-	sandy sand damp	500.0	-	Ν
	CSP51	1'	-	-	-	-	-	sandy sand damp	432.0	-	Ν
	CSP52	1'	-	-	-	-	-	sandy sand damp	500.0	-	Ν
	CSP53	1'	-	-	-	-	-	sandy sand damp	904.0	-	Y
	CSP54	1'	-	-	-	-	-	sandy sand damp	984.0	-	Y
	CSP55	1'	-	-	-	-	-	sandy sand damp	828.0	-	Y
	CSP56	1'	-	-	-	-	-	sandy sand damp	792.0	-	Y
	CSP57	1'	-	-	-	-	-	sandy sand damp	592.0	-	Ν
	CSP58	1'	-	-	-	-	-	sandy sand damp	472.0	-	Ν
	CSP59	1'	-	-	-	-	-	sandy sand damp	600.0	-	Ν
	CSP60	1'	-	-	-	-	-	sandy sand damp	916.0	-	Y
	CSP61	1'	-	-	-	-	-	sandy sand damp	816.0	-	Y
	CSP62	1'	-	-	-	-	-	sandy sand damp	1044.0	-	Y
	DSP1	1'	20	45	2.25	0.45	1012	sandy sand damp		-	Y
	DSP2	1'	19	49	2.58	0.37	954	sandy sand damp		-	Ν
	DSP3	1'	17	48	2.82	0.52	1468	sandy sand damp		-	Y
	DSP4	1'	20	46	2.30	0.5	1150	sandy sand damp		-	Y
27-Apr	DSP5	1'	17	46	2.71	0.52	1407	sandy sand damp		-	Y
2 <i>1-</i> Api	DSP6	1'	18	55	3.06	0.32	977	sandy sand damp		-	Ν
	DSP7	1'	16	49	3.06	0.53	1623	sandy sand damp		-	Y
	DSP8	1'	19	49	2.58	0.17	438	sandy sand damp		-	Ν
	DSP9	1'	22	48	2.18	0.26	567	sandy sand damp		-	Ν

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	DSP10	1'	16	50	3.13	0.24	750	sandy sand damp		163	Ν
	DSP11	1'	17	49	2.88	0.25	720	sandy sand damp		-	Ν
	DSP12	1'	16	49	3.06	0.1	306	sandy sand damp		-	N
	DSP13	1'	16	44	2.75	0.13	357	sandy sand damp		-	N
	DSP14	1'	16	49	3.06	0.11	337	sandy sand damp		-	Ν
	DSP15	1'	19	45	2.37	0.4	947	sandy sand damp		-	N
	DSP16	1'	16	48	3.00	0.18	540	sandy sand damp		-	Ν
	DSP17	1'	17	52	3.06	0.07	214	sandy sand damp		-	N
	DSP18	1'	15	50	3.33	0.08	267	sandy sand damp		-	Ν
	DSP19	1'	16	48	3.00	0.17	510	sandy sand damp		-	N
	DSP20	1'	16	48	3.00	0.12	360	sandy sand damp		169	N
	DSP21	1'	22	48	2.18	0.12	262	sandy sand damp		-	Ν
	DSP22	1'	14	49	3.50	0.07	245	sandy sand damp		-	Ν
	DSP23	1'	19	47	2.47	0.1	247	sandy sand damp		-	Ν
	DSP24	1'	19	44	2.32	0.07	162	sandy sand damp		-	Ν
	DSP25	1'	22	45	2.05	0.13	266	sandy sand damp		-	Ν
	DSP26	1'	17	49	2.88	0.17	490	sandy sand damp		-	Ν
	DSP27	1'	16	48	3.00	0.34	1020	sandy sand damp		-	Y
	DSP28	1'	18	48	2.67	0.36	960	sandy sand damp		-	Ν
	DSP29	1'	19	46	2.42	0.14	339	sandy sand damp		-	Ν
	DSP30	1'	19	50	2.63	0.16	421	sandy sand damp		346	Ν
	DSP31	1'	26	42	1.62	0.57	920	sandy sand damp		-	Ν
	DSP32	1'	15	54	3.60	0.38	1368	sandy sand damp		-	Y
	DSP33	1'	15	45	3.00	0.16	480	sandy sand damp		-	Ν
	DSP34	1'	15	47	3.13	0.11	345	sandy sand damp		-	Ν
	DSP35	1'	15	54	3.60	0.18	648	sandy sand damp		-	Ν

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	DSP36	1'	14	47	3.36	0.46	1544	sandy sand damp		-	Y
28-Apr	DSP37	1'	22	49	2.23	0.21	468	sandy sand damp		-	Ν
20-Api	DSP38	1'	23	47	2.04	0.13	266	sandy sand damp		-	Ν
	DSP39	1'	16	47	2.94	0.15	440	sandy sand damp		-	Ν
	DSP40	1'	14	49	3.50	0.11	385	sandy sand damp		284	Ν
	DSP41	1'	16	46	2.88	0.11	316	sandy sand damp		-	Ν
	DSP42	1'	16	51	3.19	0.1	319	sandy sand damp		-	Ν
	DSP43	1'	15	48	3.20	0.07	224	sandy sand damp		-	Ν
	DSP44	1'	19	43	2.26	0.12	271	sandy sand damp		-	Ν
	DSP45	1'	21	48	2.29	0.08	183	sandy sand damp		-	Ν
	DSP46	1'	17	45	2.65	0.11	291	sandy sand damp		-	Ν
	DSP47	1'	20	47	2.35	0.1	235	sandy sand damp		-	Ν
	DSP48	1'	21	39	1.86	0.26	483	sandy sand damp		-	Ν
	DSP49	1'	23	42	1.83	0.15	274	sandy sand damp		-	N
	DSP50	1'	17	46	2.71	0.16	433	sandy sand damp		232	N
	DSP51	1'	17	49	2.88	0.13	375	sandy sand damp		-	Ν
	DSP52	1'	17	45	2.65	0.1	265	sandy sand damp		-	Ν
	DSP53	1'	14	46	3.29	0.08	263	sandy sand damp		-	N
	DSP54	1'	19	42	2.21	0.07	155	sandy sand damp		-	N
	DSP55	1'	16	45	2.81	0.07	197	sandy sand damp		381	Ν
	DSP56	1'	15	50	3.33	0.06	200	sandy sand damp		154	N
	DSP57	1'	13	48	3.69	0.07	258	sandy sand damp		155	Ν
	DSP58	1'	16	45	2.81	0.09	253	sandy sand damp		178	Ν
	DSP59	1'	14	47	3.36	0.09	302	sandy sand damp	145		Ν
	DSP60	1'	15	49	3.27	0.07	229	sandy sand damp		151	Ν
	DSP61	1'	19	47	2.47	0.03	74	sandy sand damp		156	Ν

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	DSP62	1'	16	48	3.00	0.1	300	sandy sand damp		157	Ν
	DSP63	1'	17	47	2.76	0.08	221	sandy sand damp		139	Ν
	DSP64	1'	17	49	2.88	0.1	288	sandy sand damp		99.5	Ν
	ESP1	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
16-May	ESP2	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
TO-IVIAY	ESP3	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP4	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP5	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP6	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP7	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP8	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP9	1'	*	*	*	*	*	sandy sand damp	*	-	Ν
	ESP10	1'	*	*	*	*	*	sandy sand damp	*	1400	Y
	FSP1	1'	19	43	2.26	0.18	407	sandy sand damp		-	Ν
	FSP2	1'	15	45	3.00	0.23	690	sandy sand damp		-	Ν
	FSP3	1'	18	50	2.78	0.26	722	sandy sand damp		-	Ν
	FSP4	1'	17	48	2.82	0.33	931	sandy sand damp		-	Ν
	FSP5	1'	18	45	2.50	0.38	950	sandy sand damp		-	Ν
	FSP6	1'	18	44	2.44	0.38	929	sandy sand damp		-	Ν
	FSP7	1'	18	49	2.72	0.3	816	sandy sand damp		-	N
	FSP8	1'	16	44	2.75	0.21	577	sandy sand damp		-	Ν
	FSP9	1'	15	46	3.07	0.16	491	sandy sand damp		-	Ν
	FSP10	1'	24	42	1.75	0.22	385	sandy sand damp		-	Ν
	FSP11	1'	20	45	2.25	0.18	405	sandy sand damp		-	Ν
	FSP12	1'	21	46	2.19	0.38	832	sandy sand damp		-	Ν
	FSP13	1'	17	46	2.71	0.35	947	sandy sand damp		-	Ν

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
3-May	FSP14	1'	19	45	2.37	0.17	403	sandy sand damp		-	Ν
	FSP15	1'	21	43	2.05	0.47	962	sandy sand damp		-	Ν
	FSP16	1'	23	43	1.87	0.11	206	sandy sand damp		-	Ν
	FSP17	1'	20	44	2.20	0.15	330	sandy sand damp		-	Ν
	FSP18	1'	17	47	2.76	0.25	691	sandy sand damp		-	Ν
	FSP19	1'	19	46	2.42	0.09	218	sandy sand damp		-	Ν
	FSP20	1'	16	48	3.00	0.19	570	sandy sand damp		-	Ν
	FSP21	1'	19	41	2.16	0.18	388	sandy sand damp		-	Ν
	FSP22	1'	16	49	3.06	0.25	765	sandy sand damp		-	Ν
	FSP23	1'	17	48	2.82	0.33	931	sandy sand damp		-	Ν
	FSP24	1'	15	45	3.00	0.22	660	sandy sand damp		-	Ν
	FSP25	1'	21	51	2.43	0.08	194	sandy sand damp		-	Ν
	FSP26	1'	19	46	2.42	0.21	508	sandy sand damp		-	Ν
	FSP27	1'	15	47	3.13	0.12	376	sandy sand damp		-	Ν
	FSP28	1'	20	43	2.15	0.2	430	sandy sand damp		-	Ν
	FSP29	1'	15	49	3.27	0.25	816	sandy sand damp		-	Ν
	FSP30	1'	14	50	3.57	0.23	821	sandy sand damp		-	Ν
	FSP31	1'	19	47	2.47	0.39	964	sandy sand damp		-	Ν
	FSP32	1'	22	49	2.23	0.15	334	sandy sand damp		-	Ν
	FSP33	1'	21	48	2.29	0.21	480	sandy sand damp		-	Ν
4-May	FSP34	1'	15	47	3.13	0.24	752	sandy sand damp		-	Ν
4-iviay	FSP35	1'	15	47	3.13	0.37	1159	sandy sand damp		-	Y
	FSP36	1'	17	48	2.82	0.4	1129	sandy sand damp		-	Y
	FSP37	1'	16	47	2.94	0.23	675	sandy sand damp		-	Ν
	FSP38	1'	18	45	2.50	0.08	200	sandy sand damp		-	Ν
	FSP39	1'	22	47	2.14	0.67	1431	sandy sand damp		-	Y

LOCATION: OWL BOBCAT/REDHILLS PIPELINE RELEASE Spill Area 2

DATE	Sample Pt.	DEPTH	SOIL	WATER	CF	AgNO ₃	CL-	SOIL LITHOLOGY	FIELD SCREENING HORIBA D-73	LAB RESULTS CL-	BLENDED Y / N
	FSP40	1'	15	49	3.27	0.07	229	sandy sand damp		-	N
	FSP41	1'	19	48	2.53	0.28	707	sandy sand damp		-	Ν
	MB1	1'	18	44	2.44	0.04	98	sandy sand damp		-	Ν
	MB2	1'	23	44	1.91	0.07	134	sandy sand damp		-	Ν
8-May	MB3	1'	22	49	2.23	0.01	22	sandy sand damp		-	Ν
0-iviay	MB4 1' 15 46 3.07 0.02 61 sandy sand	sandy sand damp		-	Ν						
	MB5	1'	15	51	3.40	0.05	170	sandy sand damp		-	Ν
	MB6	1'	19	41	2.16	0.05	108	sandy sand damp		-	Ν
	MB7	1'	18	41	2.28	0.07	159	sandy sand damp		-	Ν
	MB8	1'	20	42	2.10	0.08	168	sandy sand damp		-	Ν
	MB9	1'	18	45	2.50	0.03	75	sandy sand damp		-	Ν
	MB10	1'	16	46	2.88	0.38	1092	sandy sand damp		64.7	Y
10-May	MB11	1'	17	46	2.71	0.16	433	sandy sand damp		-	Ν
10-iviay	MB12	1'	20	52	2.60	0.06	156	sandy sand damp		-	Ν
	DMB2	1'	20	42	2.10	0.4	840	sandy sand damp		-	Ν
	DMB3	8 1' 21 42 2.00 0.28 560 sandy sand damp			-	Ν					
6-Jun	DMB4	1'	17	46	2.71	0.56	1515	sandy sand damp		-	Y
	DMB5	1'	17	50	2.94	0.27	794	sandy sand damp		-	Ν

* Blending Area E was consolidated into Blending Area B

Notes:

1. TSS samples are delineation samples for the southern extent of impact.

2. Remaining samples are stockpiles samples from Bledning Areas. Refer to Figure for locations.

APPENDIX C

Photography Exhibits

Site Photographs

Photo 1: View of the excavation area.

Photo 2: View of sampling area with plastic sheeting.

Photo 3: Additional view of the excavation areas being constructed.

Spill Delineations & Remediation Plan Oilfield Water Logistics (OWL) Case No. 1RP 4498 Section 36, T25S, Lea County, New Mexico Photo 4: View of completed excavation area.

Site Photographs

Photo 5: View of the soil stockpiles and blending areas.

Photo 7: View of the BLM reseeding.

Photo 6: View of the soil stockpiles and blending areas.

Photo 4: View watering of the reseeded area.

Spill Delineations & Remediation Plan Oilfield Water Logistics (OWL) Case No. 1RP 4498 Section 36, T25S, Lea County, New Mexico

APPENDIX D

Representative Logs – Spill 2 Area

INARCAN			KJ 50	Environn 0 Moseley Ro 940-387-08	BSURFACI	v il Enginee Roads, Tx 76 940-387-0830	ring 227			
Client Name:	Oilfield Water Logistics (OWL)		Well/Bor		(2) SB 1-48	Date Drille		Dec. 5-21		
Client Address:	8214 Westchester Drive, Suite 85 Produced Water Pipeline Releases Nea		Depth of		10	Diameter o		N/		
Project Name: Project Address:	Section 2, T26S, R36E, Lea Cour		Depth of		N/A N/A	Diameter of Diameter of		N/ N/		
Driller:	Ed Cohagan	nty, NM (Spill 2)	Length o Length o		N/A N/A	Slot Size:	i Casing:	N/		
Drilling Method:	Geoprobe/CME Rig Sampling N	Iethod: Split Spoon	Logged H		James F.	Well Mater	·ial·	N/		
Drining interiour		-real-real	Logged I	Sample	Junico I .	Sample		Completio		
	Description / Remarks Size, Texture, Structure, Consiste		Depth (feet)	Interval (feet)	PID (ppm)	Core Zone	(graphic	al represent not to scale	tation	
Surface Type: Topso	oil, Light Red fine SAND, (SP), poo	orly graded, dry	-		-]	Bentonite		
			-1-	0.0-2.0						
			-2-	2.0-4.0	-					
			~	2.0-7.0						
			-3-							
			-4-	4.0-6.0	-					
Red/light red SAND	, (SP), poorly graded, dry		-5-							
			-6-	6.0-8.0	-					
			-7-							
Depth of average pro Caliche Rock, Light			-8-	8.0-10.0						
	5× 5		-9-							
Depth of average bor	rings		-10-	10.0-12.0	-					
			-11-	10.0 12.0						
			-12-	12.0-14.0						
			-13-	12.0 11.0						
Depth of deepest bor	ring		-14-	14.0-16.0	-					
			-15-							
			-16-	16.0-18.0	-					
			-17-							
NOTE: This baring 1	log shows an approximate average	of all borings in	-18-	18.0-20.0	1					
Spill Area 2		-	-19-							
		or un conneo	-20-	20.0-22.0	1					
			-21-							
			-22-	22.0-24.0	-					
			-23-							
			-24-	24.0-26.0	4					
			-25-							
			-26-	26.0-28.0	-					
			-27-							
			-28-	28.0-30.0	-					
These loas chould in	ot be used separately from the orig	ínal report	-29-							
i nusu wys snouw M	er er nærn separarerg frum tar URG	urunu i upul L.	-30-		1					
Problem Provided Ward Taylor (VIV) Construction of the Co						BSURFAC				
---	----------------------	--	---------------------	----------	--------------	-------------	---------------	---------	----------	-------------
Client Addressi Spill Area 2 Poiglet Allerse; NA Diameter of Series; NA Project Aulerse; Nakod Water of Series; NA Diameter of Series; NA Drillor; Inveni: Decision of T255, R2161; La Crunty, NAI 1981 Isoue of Series; NA Diameter of Series; NA Drillor; Inveni: Decision of Namete Isoue of Series; NA Diameter of Series; NA Drillor; Inveni: Decision of Namete Isoue of Series; NA Diameter of Series; NA Surface Type: Topscol Julia Media Tipe Samita, SP, poorty graded, dip Invent Invent Na Diameter of Series; NA Surface Type: Topscol Julia Media Tipe Samita, SP, poorty graded, dip Invent Invent Invent Na Diameter of Series; Surface Type: Topscol Julia Media Tipe Samita, SP, poorty graded, dip Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent	ENVERON				0 Moseley Ro	oad • Cross	Roads, Tx 762			
Client Addressi Spill Area 2 Poiglet Allerse; NA Diameter of Series; NA Project Aulerse; Nakod Water of Series; NA Diameter of Series; NA Drillor; Inveni: Decision of T255, R2161; La Crunty, NAI 1981 Isoue of Series; NA Diameter of Series; NA Drillor; Inveni: Decision of Namete Isoue of Series; NA Diameter of Series; NA Drillor; Inveni: Decision of Namete Isoue of Series; NA Diameter of Series; NA Surface Type: Topscol Julia Media Tipe Samita, SP, poorty graded, dip Invent Invent Na Diameter of Series; NA Surface Type: Topscol Julia Media Tipe Samita, SP, poorty graded, dip Invent Invent Invent Na Diameter of Series; Surface Type: Topscol Julia Media Tipe Samita, SP, poorty graded, dip Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent Invent Invent Invent Invent Red Tight red SAND, (SP, poorty graded, dip Invent	Client Name	Oilfield Water Logistics (OWI)		Well/Por	ing #	002	Data Drillad	1.	2/9	/2017
Project Advance Project Advance Name: NA Diameter of Centrage NA Driller Exciss 50:03 Storigs 50:03 Storigs 50:03 NA Storigs 50:03 NA Driller Exciss 50:03 Storigs 50:03 Na Storigs 50:03 Na Storigs 50:03 Na Driller Mediot Convex, Protecting for Remarks Storiget 19:00 Name: F Well Completion Na Color, Grain Size, Excurp. Nucleure, Considency, Muktare 1: Inter 3 Sample Sample Storiget 20:00 Na Sample										
Project address: Science of Casing: NA Diameter of Casing: NA Driller: Invini / bell Sample de Casing: NA Skatter of Casing: NA Drilling Method: Terrini / bell Sample de Casing: NA Skatter of Casing: NA Drilling Method: Terrini / bell Sample de Casing: NA Sample de Casing: NA Color, Casing Single Casing: Read fine SAND, (SP, poorly graded, dy Inter of Casing: Sample de Casing:			arby Red Hills SWD							
Drilling Exercise Eventse NA Sour Street NA Defining Method: 64 yee Source Names F Water Lines (Names F) Observed CMP Register (Namer's) Source (Namer's) Source (Namer's) Source (Namer's) Names F Staffset Type: Topol-Line (Namer's) Namer's) Mater Lines (Namer's) Namer's) Namer's Name										
Trilling Method: Owner SME Rg Sampling Method: index Processed of the standard of th			unty, NWI (Spin 1)					Casing.		
Description / Remarks (Color, Grain Size, Texture, Structure, Consistency, Moisture) Dept (text) Sample (text) Sample (ppm) Sample Core (ppm) Sample (ppm) Well Completion (ppm) Surface Type: Topool, Light Red fue SAND, (SP, poorly graded, dy			fathad Split Spoon					al.		
DepthIntervalPupthCoreCore(traphical regreemation (text)Surface Type: Typical, Light Red fine SAND, (SP), poorly graded, dry1111121111112111111131111111131111111114111 <th>Diming Method.</th> <th>Sesprose stilling bailping i</th> <th>ictitou. Spin Spoon</th> <th>Loggeu L</th> <th></th> <th>James I .</th> <th></th> <th></th> <th></th> <th></th>	Diming Method.	Sesprose stilling bailping i	ictitou. Spin Spoon	Loggeu L		James I .				
Uter Uter Upp Zone obly, not in scalp) Surface Type: Topool, Light Red line SAND, (SP), poorly graded, dy - - - - Betomite -2. -		Description / Domonics		Donth		PID				
Surface Type: Topsoil, Ligh: Red fine SAND, (SP), poorly graded, dry I <thi< th=""> I</thi<>	(Color Grain		nev Moisture)	-						
1.1 1.1 1.1 2.2 1.1 1.1 2.3 1.1 1.1 3.4 1.1 1.1 4.4 1.1 1.1 4.6 1.1 1.1 6.6 1.1 1.1 7.7 7.8 1.1 9.9 1.1 1.1 10.1 1.1 1.1 11.1 1.1 1.1 12.2 1.1 1.1 13.3 1.1 1.1 14.4 1.1 1.1 13.5 1.1 1.1 14.4 1.1 1.1 14.4 1.1 1.1 14.5 1.1 1.1 15.6 1.1 1.1 16.6 1.1 1.1 17.7 1.1 1.1 18.8 1.1 1.1 19.9 1.1 1.1 12.1 1.1 1.1 13.2 1.1 1.1 14.1 1.1 1.1 12.2 1.				(Itet)	(itet)	(ppm)	Zone			<i>iic)</i>
2	Surface Type: Topso	bil, Light Red line SAND, (SP), poo	orly graded, dry			-		В	entonite	
3.				-1-			-			
3.										
A Image: Construct of the state of th				-2-			-			
A Image: Construct of the state of th				_						
Red Tight red SAND, (SP), poorly graded, dry 5- Image: Control of the set o				-3-		<u> </u>	1			
Red Tight red SAND, (SP), poorly graded, dry 5- Image: Control of the set o				4						
Red light red SAND, (SP), poorly graded, dry -6 -7. -8 -9 -10. -8. -9 -10. -10 -11. -11. -12 -11. -11. -12 -11. -11. -12. -11. -11. -12. -11. -11. -13. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -15. -11. -11. -16. -11. -11. -17. -11. -11. -18. -11. -11. -19. -11. -11. -12. -11. -11. -12. -11. -11. -12. -11. -11. -12. -11. -11. -12.				-4-			1			
Red light red SAND, (SP), poorly graded, dry -6 -7. -8 -9 -10. -8. -9 -10. -10 -11. -11. -12 -11. -11. -12 -11. -11. -12. -11. -11. -12. -11. -11. -13. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -14. -11. -11. -15. -11. -11. -16. -11. -11. -17. -11. -11. -18. -11. -11. -19. -11. -11. -12. -11. -11. -12. -11. -11. -12. -11. -11. -12. -11. -11. -12.				5						
7.	Red/light red SAND	, (SP), poorly graded, dry		-3-						
7.				-6-		ļ	_ I			
8.				Ŭ						
8.				-7-			-			ļ
9-9										
Red/light red SAND, (SP), poorly graded, dry -10- 11-				-8-			-			
Red/light red SAND, (SP), poorly graded, dry -10- 11-										
Red/light red SAND, (SP), poorly graded, dry -11- .12- .13- .13- .14- .14- .13- .14- .14- .14- .15- .15- .16- .17- .16- .18- .19- .19- .19- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .21- .10- .22- .10- .23- .10- .22- .10- .23- .10- .24- .10- .25- .10- .26- .10- .27- .10- .28- .10- .29- .10- .29- .10- .29- .10- .29- .10-				-9-						·
Red/light red SAND, (SP), poorly graded, dry -11- .12- .13- .13- .14- .14- .13- .14- .14- .14- .15- .15- .16- .17- .16- .18- .19- .19- .19- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .19- .10- .21- .10- .22- .10- .23- .10- .22- .10- .23- .10- .24- .10- .25- .10- .26- .10- .27- .10- .28- .10- .29- .10- .29- .10- .29- .10- .29- .10-				10						
-12.	Red/light red SAND	, (SP), poorly graded, dry		-10-						ľ
-12.	-			11						
-13. -13. -14. -14. -14. -14. -14. -14. -15. -16. -16. -17. -17. -18. -19. -19. -18. -19. -19. -10. -12. -11. -13. -11. -14. -11. -15. -11. -16. -17. -18. -19. -19. -11. -20. -11. -21. -11. -22. -11. -23. -11. -24. -11. -25. -11. -26. -11. -27. -11. -28. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27.				-11-						
-13. -13. -14. -14. -14. -14. -14. -14. -15. -16. -16. -17. -17. -18. -19. -19. -18. -19. -19. -10. -12. -11. -13. -11. -14. -11. -15. -11. -16. -17. -18. -19. -19. -11. -20. -11. -21. -11. -22. -11. -23. -11. -24. -11. -25. -11. -26. -11. -27. -11. -28. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27. -11. -27.				-12-			_			
Image:				12						
Red/light red SAND, (SP), poorly graded, dry -15- -16- -16- -17- -16- -18- -19- -18- -19- -19- -10- -20- -10- -21- -10- -22- -10- -22- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -24- -10- -25- -10- -26- -10- -27- -10- -26- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -28- -10- -29- -10-				-13-			_			
Red/light red SAND, (SP), poorly graded, dry -15- -16- -16- -17- -16- -18- -19- -18- -19- -19- -10- -20- -10- -21- -10- -22- -10- -22- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -24- -10- -25- -10- -26- -10- -27- -10- -26- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -28- -10- -29- -10-				_						
Red/light red SAND, (SP), poorly graded, dry -16- .17-				-14-			_			·
Red/light red SAND, (SP), poorly graded, dry -16- .17-										
-16- -16- -17- -18- -18- -19- -19- -10- -20- -10- -21- -10- -22- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -23- -10- -24- -10- -25- -10- -26- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -27- -10- -28- -10- -29- -10-	Red/light red SAND	(SP) poorly graded dry		-15-			-			
Red/light red SAND, (SP), poorly graded, dry -17- -18- -19- -19- -20- -20- -21- -22- -22- -23- -23- -23- -23- -23- -24- -23- -24- -25- -26- -26- -27- -26- -27- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -26- -27- -28- -29- -29-	Red/light fed SAIVD	, (SI), poorty graded, dry								
Red/light red SAND, (SP), poorly graded, dry -18- -19- -19- -20- -21- -21- -22- -22- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- -25- -26- -26- -26- -27- -26- -27- -26- -27- -28- -29- -29-				-16-						·
Red/light red SAND, (SP), poorly graded, dry -18- -19- -19- -20- -21- -21- -22- -22- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- -25- -26- -26- -26- -27- -26- -27- -26- -27- -28- -29- -29-				17						
Red/light red SAND, (SP), poorly graded, dry -19- -20- -20- -21- -21- -22- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -25- Red/light red SAND, (SP), poorly graded, dry -24- NOTE: No water was encountered throughout installation of the boring. -28- -29- -29-				-1/-						ľ
Red/light red SAND, (SP), poorly graded, dry -19- -20- -20- -21- -21- -22- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -25- Red/light red SAND, (SP), poorly graded, dry -24- NOTE: No water was encountered throughout installation of the boring. -28- -29- -29-				-18-			I			l
Red/light red SAND, (SP), poorly graded, dry -20- -21- -21- -22- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -24- NOTE: No water was encountered throughout installation of the boring. -28- These loas should wat he used sensately from the original report -28-				10-						
Red/light red SAND, (SP), poorly graded, dry -20- -21- -21- -22- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -24- NOTE: No water was encountered throughout installation of the boring. -28- These loas should wat he used sensately from the original report -28-				-19-			-			
Red/light red SAND, (SP), poorly graded, dry -21- -22- -23- -23- -23- Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -24- NOTE: No water was encountered throughout installation of the boring. -28- -27- -28- -29- -29-										
Depth of Boring: 24'8'' One sample (\$\$002) was collected at bottom of boring for Chlorides. Red/light red SAND, (\$P), poorly graded, dry -24- -25- -26- -26- -27- -28- -27- -28- -29-	Red/light red SAND	(SP) noorly graded dry		-20-		+				ŀ
Depth of Boring: 24'8'' One sample (SS002) was collected at bottom of boring for Chlorides. Red/light red SAND, (SP), poorly graded, dry OTE: No water was encountered throughout installation of the boring. -27- -28- -27- -28- -29-	Red/ light red SAIND	, (or), poorry graucu, ury								
Depth of Boring: 24'8'' -23- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -25- NOTE: No water was encountered throughout installation of the boring. -28- -29- -29-				-21-		<u> </u>	1			
Depth of Boring: 24'8'' -23- One sample (SS002) was collected at bottom of boring for Chlorides. -24- Red/light red SAND, (SP), poorly graded, dry -25- NOTE: No water was encountered throughout installation of the boring. -28- -29- -29-				22						
Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -25- Red/light red SAND, (SP), poorly graded, dry -26- NOTE: No water was encountered throughout installation of the boring. -28- These loas should not be used separately from the original report -29-				-22-						
Depth of Boring: 24'8'' -24- One sample (SS002) was collected at bottom of boring for Chlorides. -25- Red/light red SAND, (SP), poorly graded, dry -26- NOTE: No water was encountered throughout installation of the boring. -28- These loas should not be used separately from the original report -29-				_23.		ļ				
Depth of Boring: 24'8'' One sample (SS002) was collected at bottom of boring for Chlorides. Red/light red SAND, (SP), poorly graded, dry -25262627- NOTE: No water was encountered throughout installation of the boring. These loss should not be used separately from the original report				-23-						
Depth of Boring: 24'8'' One sample (SS002) was collected at bottom of boring for Chlorides. Red/light red SAND, (SP), poorly graded, dry -25262627- NOTE: No water was encountered throughout installation of the boring. These loss should not be used separately from the original report				-24-			<u> </u>			
Red/light red SAND, (SP), poorly graded, dry -25- .26- -26- .27- -28- .28- -28- .29- -29-				2.						
NOTE: No water was encountered throughout installation of the boring. -26- -27- -28- -28- -29-			for Chlorides.	-25-			-			ļ
NOTE: No water was encountered throughout installation of the boring. -27- -28- -28- -29- -29-	Red/light red SAND	, (SP), poorly graded, dry								
NOTE: No water was encountered throughout installation of the boring. -28- -29- -29-				-26-		+	┤ ┃			
NOTE: No water was encountered throughout installation of the boring. -28- -29- -29-										
NOTE: No water was encountered throughout installation of the boring. -29-				-27-			1			
NOTE: No water was encountered throughout installation of the boring. -29-				20						
These loas should not be used separately from the original report	NOTE: No water wa	as encountered throughout installation	on of the boring.	-28-		1	1			
These loas should not be used semarately from the original report			-0-	20						
These logs should not be used separately from the original report.				-29-		<u> </u>				
	These logs should n	ot be used separately from the orig	ínal report.	20						
-30-	-			-30-		1				

APPENDIX E

Laboratory Analytical Reports

Certificate of Analysis Summary 551956

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: OWL Bobcat/Red Hills

Date Received in Lab:Thu Apr-27-17 07:04 pmReport Date:03-MAY-17Project Manager:Holly Taylor

	Lab Id:	551956-0	01	551956-0	02	551956-0	03	551956-0	04	551956-0	05	551956-00	06
Analysis Requested	Field Id:	ASP 10)	TSS 1		TSS 2		TSS 3		TSS 4		TSS 5	
Anaiysis Kequesieu	Depth:			4 ft		4 ft		4 ft		4 ft		4 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Apr-22-17 1	14:00	Apr-27-17	14:15	Apr-27-17 1	4:20	Apr-27-17 1	4:25	Apr-27-17	4:30	Apr-27-17 1	4:35
Inorganic Anions by EPA 300/300.1	Extracted:	May-01-17	11:00	May-01-17	11:00	May-01-17	11:00	May-01-17 1	1:00	May-01-17	11:00	May-01-17 1	1:00
	Analyzed:	May-01-17	12:21	May-01-17	13:29	May-01-17	13:37	May-01-17 1	3:45	May-01-17	13:52	May-01-17 1	4:15
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		548	4.94	12.7	4.93	21.9	4.94	11.0	4.94	9.03	4.99	<4.90	4.90

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y and

Holly Taylor Project Manager

Certificate of Analysis Summary 551956

KJE Enviromental & Civil Engineering, Aubrey, TX

SUP ACCREDING

Project Name: OWL Bobcat/Red Hills

Date Received in Lab:Thu Apr-27-17 07:04 pmReport Date:03-MAY-17Project Manager:Holly Taylor

	Lab Id:	551956-007			
Analysis Requested	Field Id:	TSS 6			
Analysis Kequestea	Depth:	4 ft			
	Matrix:	SOIL			
	Sampled:	Apr-27-17 14:40			
Inorganic Anions by EPA 300/300.1	Extracted:	May-01-17 11:00			
	Analyzed:	May-01-17 14:23			
	Units/RL:	mg/kg RL			
Chloride		<5.00 5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayls

Holly Taylor Project Manager

Analytical Report 551956

for KJE Enviromental & Civil Engineering

Project Manager: James Fox OWL Bobcat/Red Hills

03-MAY-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

03-MAY-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering** 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): **551956 OWL Bobcat/Red Hills** Project Address: Jal, NM

James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 551956. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 551956 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

toly Jaylor

Holly Taylor Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 551956

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
ASP 10	S	04-22-17 14:00	N/A	551956-001
TSS 1	S	04-27-17 14:15	- 4 ft	551956-002
TSS 2	S	04-27-17 14:20	- 4 ft	551956-003
TSS 3	S	04-27-17 14:25	- 4 ft	551956-004
TSS 4	S	04-27-17 14:30	- 4 ft	551956-005
TSS 5	S	04-27-17 14:35	- 4 ft	551956-006
TSS 6	S	04-27-17 14:40	- 4 ft	551956-007

CASE NARRATIVE

Client Name: KJE Enviromental & Civil Engineering Project Name: OWL Bobcat/Red Hills

Project ID: Work Order Number(s): 551956
 Report Date:
 03-MAY-17

 Date Received:
 04/27/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id:ASP 1Lab Sample Id:55195		Matrix: Date Collec	Soil eted: 04.22.17 14.00]	Date Received:0	4.27.17 19.04	4
Analytical Method: Ir Tech: MGO Analyst: MGO Seq Number: 301624	organic Anions by EPA 300/300.1	l Date Prep:	05.01.17 11.00	Q	Prep Method: E % Moisture: Basis: V	2300P Vet Weight	
Parameter Chloride	Cas Number 16887-00-6	Result	RL	Units mg/kg	Analysis Date	8	Dil

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	TSS 1 : 551956-002		Matrix: Date Collec	Soil cted: 04.27.17 14.15		Date Received:04 Sample Depth: 4		
-	thod: Inorganic Anions	by EPA 300/300.1				Prep Method: E	300P	
Tech: Analyst:	MGO MGO		Date Prep:	05.01.17 11.00		% Moisture: Basis: W	et Weight	
Seq Number:	3016246							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	12.7	4.93	mg/kg	05.01.17 13.29		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id:	TSS 2 551956-003		Matrix: Date Collec	Soil ted: 04.27.17 14.20		Date Received:04 Sample Depth: 4		
-	hod: Inorganic Anions	by EPA 300/300.1				Prep Method: E	300P	
	MGO					% Moisture:		
,	MGO		Date Prep:	05.01.17 11.00		Basis: W	Vet Weight	
Seq Number:	3016246							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	21.9	4.94	mg/kg	05.01.17 13.37		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	TSS 3 l: 551956-004		Matrix: Date Collec	Soil eted: 04.27.17 14.25		Date Received: Sample Depth: 4		
•	thod: Inorganic Anions	by EPA 300/300.1				Prep Method: H	E300P	
Tech:	MGO					% Moisture:		
Analyst:	MGO		Date Prep:	05.01.17 11.00		Basis: V	Wet Weight	
Seq Number:	3016246							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	11.0	4.94	mg/kg	05.01.17 13.45	5	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	TSS 4 d: 551956-005		Matrix: Date Collec	Soil cted: 04.27.17 14.30		Date Received:0 Sample Depth: 4		
•	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: E	E300P	
Tech: Analyst:	MGO		Date Prep:	05.01.17 11.00		% Moisture: Basis: V	Vet Weight	
Seq Number:	3016246							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	9.03	4.99	mg/kg	05.01.17 13.52	!	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: TSS 5 Lab Sample Id: 551956-006		Matrix: Date Collec	Soil cted: 04.27.17 14.35		Date Received:04 Sample Depth: 4		4
Analytical Method: Inorganic Anions Tech: MGO	by EPA 300/300.1				Prep Method: E3 % Moisture:	800P	
Analyst: MGO Seq Number: 3016246		Date Prep:	05.01.17 11.00		Basis: W	et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<4.90	4.90	mg/kg	05.01.17 14.15	U	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: TSS 6 Lab Sample Id: 551956-007		Matrix: Date Collec	Soil eted: 04.27.17 14.40		Date Received:04 Sample Depth:4		4
Analytical Method: Inorganic Anions Tech: MGO	by EPA 300/300.1				Prep Method: E3 % Moisture:	00P	
Analyst: MGO Seq Number: 3016246		Date Prep:	05.01.17 11.00		Basis: We	et Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	<5.00	5.00	mg/kg	05.01.17 14.23	U	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	
2525 W. Hunnington Dr Suite 102, Tempe 742 05202	(002) 457-0550	

QC Summary 551956

KJE Enviromental & Civil Engineering OWL Bobcat/Red Hills

Analytical Method:	Inorganic Anions b	y EPA 300				Prep Method: E300P						
Seq Number:	3016246								Date Pre	ep: 05.0	1.17	
MB Sample Id:	723865-1-BLK	LCS Sample Id: 723865-1-I				-BKS		LCSI	O Sample	Id: 7238	365-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	organic Anions by EPA 300/300.1								Prep Method: E300P			
Seq Number:	3016246	Matrix:	Soil				Date Pre	ep: 05.0	1.17				
Parent Sample Id:	551956-001	nple Id:	551956-00	551956-001 S MSD Sample Id: 551					956-001 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	548	247	798	101	798	101	90-110	0	20	mg/kg	05.01.17 12:29		

Analytical Method:	Inorganic Anions b	organic Anions by EPA 300/300.1								Prep Method: E300P			
Seq Number:	3016246	Matrix:	Soil				Date Pre	ep: 05.0	1.17				
Parent Sample Id:	551997-004	551997-00)4 S		MSI	O Sample	Id: 5519	997-004 SD					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	<4.91	246	253	103	251	102	90-110	1	20	mg/kg	05.01.17 15:01		

CHAIN OF CUSTODY

Page ____ Of ____

Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

<u>San Antonio, Texas (210-509-3334)</u> Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Final 1.000

Page 16 of 17

	WWW.xenco.com								Xenco Quote # Xenco Job # 55 956					956					
	1			1	1		- 42					-	1.2	Anal	ytical Informat	ion	See.		Matrix Codes
Client / Reporting Information			Proje	ect Infor	mation		-					- 1							man Coues
KJ E Company Address:		Project Nan	ation:	WI	Bol	569	+1	Rei	6,1	s									W = Water
500 Moseley Road, LOSS Roads, TX, 76 Email: Tanner & Kuen Wirdan Mintal, 10 Phone No:	227	Project Loc	Jal	. /	VM														S = Soil/Sed/Solid GW =Ground Water DW = Drinking Water
Email: Tanner @ Kulen Viron March 1, co Phone No: James @ Kulen Viron Marchel (a ma		invoice To:		1				-											P = Product SW = Surface water SL = Sludge
Project Contact: James FOX Samplers's Name	FOX PO Number:							0)						OW =Ocean/Sea Water WI = Wipe					
Sampiers's Name							5						O = Oil WW= Waste Water						
No. Field ID / Point of Collection	*	Collection	1					ber of	preser	ved be	ottles		10						A = Air
	ample Depth	Date	Teri		≢ of	Ţ	VaOH/Zn Acetate	INO3	12SO4	VaUN VaHSO4	MEOH	NONE	2						
1 ASPIO		4/22	Time	Matrix	bottles	Ť	Ze	£	Ŷ.	EZ Z	N	2	U					-	Field Comments
2 7551		4/27	1415	G					-	-	+	-	X				-		
3 JSY Z	1	1	1420	G			-		-	-	-	-	11				-		
4 5553		-	1425	0	-		-		-	-	-								
5 545 4	1 1	+		-	-		-		-	-									
6 1475	+ +	-	1430																
	1	1	1435	-															
8	-	*	1440		-				-	+	-	-	V						
9			-		-					+	+	-						1.0	
10	-		-		-		-		-	+	-	-							
Turnaround Time (Business days)				-	Data Data				-	-									
Same Day TAT S Day TAT			Lev	rel II Std	Data Deli	veració	e inform	ation	Lavel	N/E	dl Ded	De Plus	/raw dat		Note	16:	Tion	2111111	
Next Day EMERGENCY 7 Day TAT			Lev	el III Sta	d QC+ F	orms			TRRF	-	-	а Ркд	/raw dat	1)	-				
2 Day EMERGENCY Contract TAT			-	-	P Form				UST	_	1.64	-			-				
3 Day EMERGENCY	1			RP Chee	cklist		-					-							
TAT Starts Day received by Lab, if received by 5:00 p	m	-		_		_	_												
SAMPLE CUSTODY MU	UST BE D	OCUMENT	D BELOW EA	CH TIM	E SAMPL	ES CH	ANGE	POSSE	SSION	INCLU	DING	COLIDI	ED DEL NO	DV	FED-EX /				
1 Janner FLANS	41.	27	Received	Dy:			tin		Reling	uishe	d By:	COUNT	EN DELIVE	Date T	ime:		ived By	:	
	te Time:	19:04	Received		. 1	12	11/1	27	Reling	uishe	d By:		-	Date T	ime:	2 Rece	eived By	. 7	emp: 4.4 IR ID:R-9
Relinquished by: Dat 5	te Time:		3 Received	By:		-			4 Custo	dy Sea	al #	-	Р	reserved w	here applicab	4		0	CF:(0-6: 0.0°C) (6-23: +0.1°C) - Corrected Temp:

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any will be enforced unless previously negotiated under a fully executed client contract.

Client: KJE Enviromental & Civil Engineering

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 04/27/2017 07:04:00 PM	Air and Metal samples Acceptable Range: Ambient							
Work Order #: 551956	Temperature Measuring device used: R9							
Sample Rece	ipt Checklist Comments							
#1 *Temperature of cooler(s)?	4.4							
#2 *Shipping container in good condition?	Yes							
#3 *Samples received on ice?	Yes							
#4 *Custody Seal present on shipping container/ cooler?	N/A							
#5 *Custody Seals intact on shipping container/ cooler?	N/A							
#6 Custody Seals intact on sample bottles?	N/A							
#7 *Custody Seals Signed and dated?	N/A							
#8 *Chain of Custody present?	Yes							
#9 Sample instructions complete on Chain of Custody?	Yes							
#10 Any missing/extra samples?	Νο							
#11 Chain of Custody signed when relinquished/ received?	Yes							
#12 Chain of Custody agrees with sample label(s)?	Yes							
#13 Container label(s) legible and intact?	Yes							
#14 Sample matrix/ properties agree with Chain of Custody?	Yes							
#15 Samples in proper container/ bottle?	Yes							
#16 Samples properly preserved?	Yes							
#17 Sample container(s) intact?	Yes							
#18 Sufficient sample amount for indicated test(s)?	Yes							
#19 All samples received within hold time?	Yes							
#20 Subcontract of sample(s)?	N/A							
#21 VOC samples have zero headspace?	N/A							
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? I samples for the analysis of HEM or HEM-SGT which are verif analysts.								
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnA	c+NaOH? N/A							

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer
Jessica Kramer

Date: 04/28/2017

Checklist reviewed by: Hely Taylor Holly Taylor

Date: 04/28/2017

Certificate of Analysis Summary 554471

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Thu Jun-01-17 03:00 pmReport Date:07-JUN-17Project Manager:Holly Taylor

	Lab Id:	554471-0	01	554471-0	02	554471-0	03	554471-0	04	554471-0	05	554471-0	06
Analysis Requested	Field Id:	ASP20)	ASP30)	ASP40		ASP41		ASP42		ASP43	
Analysis Kequestea	Depth:	1 ft		1 ft		1 ft		1 ft		1 ft		1 ft	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-31-17	May-31-17 10:00		12:00	May-31-17 14:00		Jun-01-17 0	9:00	Jun-01-17 (9:05	Jun-01-17 0	9:10
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-06-17 1	5:15	Jun-06-17 15:15		Jun-06-17 15:15		Jun-06-17 1	5:15	Jun-06-17 1	5:15	Jun-06-17 1	5:15
	Analyzed:	Jun-06-17 1	5:53	Jun-06-17 1	6:16	Jun-06-17 1	6:24	Jun-06-17 1	6:31	Jun-06-17 1	6:39	Jun-06-17 1	7:02
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride	316 4.94		4.94	607	4.96	200	4.90	180	4.88	183	4.94	380	4.96

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayls

Holly Taylor Project Manager

Certificate of Analysis Summary 554471

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Thu Jun-01-17 03:00 pmReport Date:07-JUN-17Project Manager:Holly Taylor

	Lab Id:	554471-0	07	554471-0	08	554471-0	09	554471-0	10	554471-0	11	554471-0	12
Analysis Requested	Field Id:	ASP44		ASP45		ASP46		ASP47		ASP48		ASP49	
Analysis Kequestea	Depth:	1 ft		1 ft		1 ft		1 ft		1 ft		1 ft	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Jun-01-17 (un-01-17 09:15		0:00	Jun-01-17 10:15		Jun-01-17 1	0:30	Jun-01-17 1	2:00	Jun-01-17 1	3:00
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-06-17 1	5:15	Jun-06-17 15:15		Jun-06-17 15:15		Jun-06-17 1	5:15	Jun-06-17 1	5:15	Jun-06-17 1	5:15
	Analyzed:	Jun-06-17 1	7:09	Jun-06-17 1	7:17	Jun-06-17 1	7:24	Jun-06-17 1	7:32	Jun-06-17 1	7:40	Jun-06-17 1	8:02
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
ıloride 176		4.95	388	5.00	202	4.90	163	4.88	322	4.99	195	4.94	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayls

Holly Taylor Project Manager

Certificate of Analysis Summary 554471

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Thu Jun-01-17 03:00 pmReport Date:07-JUN-17Project Manager:Holly Taylor

	Lab Id:	554471-013			
Analysis Requested	Field Id:	ASP50			
Analysis Kequesieu	Depth:	1 ft			
	Matrix:	SOIL			
	Sampled:	Jun-01-17 14:00			
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-06-17 15:15			
	Analyzed:	Jun-06-17 18:10			
	Units/RL:	mg/kg RL			
Chloride		192 4.98			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayou

Holly Taylor Project Manager

Analytical Report 554471

for KJE Enviromental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

07-JUN-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

07-JUN-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering** 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): **554471 Bobcat/Red Hills Pipeline Release** Project Address: Jal, NM

James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 554471. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 554471 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

toly Jaylor

Holly Taylor Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 554471

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
ASP20	S	05-31-17 10:00	- 1 ft	554471-001
ASP30	S	05-31-17 12:00	- 1 ft	554471-002
ASP40	S	05-31-17 14:00	- 1 ft	554471-003
ASP41	S	06-01-17 09:00	- 1 ft	554471-004
ASP42	S	06-01-17 09:05	- 1 ft	554471-005
ASP43	S	06-01-17 09:10	- 1 ft	554471-006
ASP44	S	06-01-17 09:15	- 1 ft	554471-007
ASP45	S	06-01-17 10:00	- 1 ft	554471-008
ASP46	S	06-01-17 10:15	- 1 ft	554471-009
ASP47	S	06-01-17 10:30	- 1 ft	554471-010
ASP48	S	06-01-17 12:00	- 1 ft	554471-011
ASP49	S	06-01-17 13:00	- 1 ft	554471-012
ASP50	S	06-01-17 14:00	- 1 ft	554471-013

CASE NARRATIVE

Client Name: KJE Enviromental & Civil Engineering Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Work Order Number(s): 554471
 Report Date:
 07-JUN-17

 Date Received:
 06/01/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	ASP20 d: 554471-001		Matrix: Date Collec	Soil cted: 05.31.17 10.00		0		
Analytical Me Tech:	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: 1 % Moisture:	E300P	
Analyst: Seq Number:	MGO 3019052		Date Prep:	06.06.17 15.15			Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	316	4.94	mg/kg	06.06.17 15.5	3	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	ASP30 d: 554471-002		Matrix: Date Collec	Soil cted: 05.31.17 12.00		0		
Analytical Me Tech: Analyst:	ethod: Inorganic Anions MGO MGO	by EPA 300/300.1	Date Prep:	06.06.17 15.15		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Seq Number:	3019052	Cae Nambar	D14	D.	T T 1 /			D .1
Parameter Chloride		Cas Number 16887-00-6	Result 607	RL 4.96	Units mg/kg	Analysis Dat 06.06.17 16.1	8	Dil

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id:ASP40Lab Sample Id:554471-003			Matrix: Date Collec	Soil cted: 05.31.17 14.00	Date Received:06.01.17 15.00 Sample Depth: 1 ft			
Analytical Me Tech:	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method:	E300P	
Analyst: Seq Number:	MGO 3019052		Date Prep:	06.06.17 15.15			Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	200	4.90	mg/kg	06.06.17 16.2	4	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP41 Lab Sample Id: 554471-004			Matrix: Date Collec	Soil cted: 06.01.17 09.00	Date Received:06.01.17 15.00 Sample Depth: 1 ft			
Analytical Me Tech:	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: 1 % Moisture:	E300P	
Analyst: Seg Number:	MGO 3019052		Date Prep:	06.06.17 15.15		Basis:	Wet Weight	
Parameter	/	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	180	4.88	mg/kg	06.06.17 16.3	1	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP42 Lab Sample Id: 554471-(Matrix: Date Collec	Soil ted: 06.01.17 09.05	Date Received:06.01.17 15.00 Sample Depth: 1 ft				
Tech: MGO	ganic Anions by EPA 300/300.1		06 06 17 15 15		Prep Method: H % Moisture: Basis: V	E300P Wet Weight	
Analyst: MGO Seq Number: 3019052		Date Prep:	06.06.17 15.15		Dasis:	wet weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride	16887-00-6	183	4.94	mg/kg	06.06.17 16.39)	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id:ASP43Lab Sample Id:554471-006			Matrix: Soil Date Collected: 06.01.17 09.10		Date Received:06.01.17 15.00 Sample Depth: 1 ft)
2	hod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: 1 % Moisture:	E300P	
Analyst:	MGO 3019052		Date Prep:	06.06.17 15.15			Wet Weight	
Parameter	5017032	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	380	4.96	mg/kg	06.06.17 17.0	2	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP44 Lab Sample Id: 554471-007	Matrix: Date Collec	Matrix: Soil Date Collected: 06.01.17 09.15		Date Received:06.01.17 15.00 Sample Depth: 1 ft			
Analytical Method: Inorganic A Tech: MGO	Anions by EPA 300/300.1				Prep Method: E % Moisture:		
Analyst: MGO Seq Number: 3019052		Date Prep:	06.06.17 15.15		Basis: V	Vet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	176	4.95	mg/kg	06.06.17 17.09		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id:ASP45Lab Sample Id:554471-008			Matrix: Date Collec	Soil ted: 06.01.17 10.00	Date Received:06.01.17 15.00 Sample Depth: 1 ft			
2	od: Inorganic Anions I MGO	by EPA 300/300.1				Prep Method: 1 % Moisture:	E300P	
	MGO 3019052		Date Prep:	06.06.17 15.15			Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	388	5.00	mg/kg	06.06.17 17.1	7	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP46 Lab Sample Id: 554471-009			Matrix: Date Collec	Soil cted: 06.01.17 10.15	Date Received:06.01.17 15.00 Sample Depth: 1 ft			
Analytical Me Tech:	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method:	E300P	
Analyst:	MGO		Date Prep:	06.06.17 15.15		Basis:	Wet Weight	
Seq Number: Parameter	3019052	Cas Number	Result	DI	T T - 1			
Chloride		16887-00-6	202	RL 4.90	Units mg/kg	Analysis Dat 06.06.17 17.2	0	Dil

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP47 Lab Sample Id: 554471-010	Matrix: Date Collec	Matrix: Soil Date Collected: 06.01.17 10.30		Date Received:06.01.17 15.00 Sample Depth: 1 ft			
Analytical Method: Inorgani Tech: MGO	c Anions by EPA 300/300.1				Prep Method: 1 % Moisture:	E300P	
Analyst: MGO		Date Prep:	06.06.17 15.15		Basis:	Wet Weight	
Seq Number: 3019052							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	163	4.88	mg/kg	06.06.17 17.3	2	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP48 Lab Sample Id: 554471-011		Matrix: Date Collec	Soil cted: 06.01.17 12.00		Date Received: Sample Depth:)
Analytical Method: Inorganic Anion Tech: MGO	s by EPA 300/300.1				Prep Method:		
Analyst: MGO Seq Number: 3019052		Date Prep:	06.06.17 15.15		Basis:	Wet Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	322	4.99	mg/kg	06.06.17 17.4	0	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	ASP49 d: 554471-012		Matrix: Date Collec	Soil cted: 06.01.17 13.00		Date Received: Sample Depth:		0
Tech: Analyst:	ethod: Inorganic Anions MGO MGO	by EPA 300/300.1	Date Prep:	06.06.17 15.15		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Seq Number: Parameter	3019052	Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	195	4.94	mg/kg	06.06.17 18.0	02	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: ASP50 Lab Sample Id: 554471-013		Matrix: Date Collec	Soil cted: 06.01.17 14.00		Date Received: Sample Depth:		0
Analytical Method: Inorganic A Tech: MGO Analyst: MGO	nions by EPA 300/300.1	Date Prep:	06.06.17 15.15		Prep Method: 1 % Moisture: Basis:	E300P Wet Weight	
Seq Number: 3019052							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	192	4.98	mg/kg	06.06.17 18.1	0	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 554471

KJE Enviromental & Civil Engineering

Analytical Method:	Inorganic Anions b	norganic Anions by EPA 300/300.1								Prep Method: E300P						
Seq Number:	3019052	3019052 Matrix: S						Date Prep: 06.06.17								
MB Sample Id:	725682-1-BLK LCS Sample Id: 725682-1-BKS							LCSI	O Sample	Id: 7256	582-1-BSD					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag				
Chloride	< 5.00	250	250	100	248	99	90-110	1	20	mg/kg	06.06.17 13:53					

Analytical Method:	Inorganic Anions b	Inorganic Anions by EPA 300/300.1 Prep Method:											
Seq Number:	3019052			Matrix:	Soil Date Prep: 06.06.17								
Parent Sample Id:	554471-001		MS Sar	nple Id:	554471-00	01 S		MSI	D Sample	Id: 5544	554471-001 SD		
Parameter	Parent Result	·- 1 ·					Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	316	247	572	104	563	100	90-110	2	20	mg/kg	06.06.17 16:01		

Analytical Method:	Inorganic Anions b	Inorganic Anions by EPA 300/300.1 Prep Method:											
Seq Number:	3019052			Matrix:	Soil Date Prep: 06.06.17								
Parent Sample Id:	554471-011		MS Sar	nple Id:	554471-01	554471-011 S MSD Sample Id:					554471-011 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	322	250	565	97	565	97	90-110	0	20	mg/kg	06.06.17 17:47		

1		_	4)
	F)
	ABOR	'n	1	
	RATO	ZC		
	RIFS	Ċ	í	

CHAIN OF CUSTODY

Relinquished by: Date Time: 5 5 Notice: Notice: Storature of this document and relinquishment at service of the servi	Date Time:	GANNU EVGAS	arrow by capt in the	TAT Starts Day received by I ab if received by show the	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT S Day TAT	Turneround Time (Business days)	10 A6847 J W	3 ASPYL	8 ASP45	7 ASPYY	6 Asrus		41	3 ASP40 5/11	2 ASr30 5/31		Field ID / Point of Collection Sample Depth		Project Contration nel Evans 940-368-3535 PONUMER	Tanner@ Kyenviranmental . Wan Invoice To:	500 Mose les cross hours JTX Project Location	J CN Hann	Client / Reporting Information	いたいた はたいゆう しのいいたい たいい あいけん	
Received By: 4 Custody Seal # Preserve	rd By) Relinquished By:	URIER DELIVERY	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE DOSSESSION MOLTONIC CONTRACT OF THE SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE DOSSESSION MOLTONIC CONTRACT OF THE SAMPLES CHANGE DOSSESSION MOLTONIC CONTRACT	I HRP Checklist		Level 3 (CLP Forms)		Level II Std QC Level IV (Full Data Pkg /raw data)	Data Deliverable Information	TA 10501	5101	0.00	2190	0,90	2010	0000		1200	2 2 2 2 7 7 5 7 00 01	HCI HNO3 HZSO4 HZO	Allowed and the set	(NO	Jal, NM	Project Name Number: Bohcat Rodhills Pip Blin Dalase		WWW.XEITCO.COM Xenco Quote #	
Relinquished by: Date Time: Received By: 4 5 Custody Seal # Preserved where applicable On ice Notice: Notice: Storature of this formand and ralizonities and rali	Date Time: 2 Corrected Temp:	-		Ten DD				Santon S											Field Comments	A = Air	O = OII W/W= Waste Water	OW =Ocean/Sea Water	P = Product SW = Surface water SI = Slutze	S = Soll/Sed/Solid GW =Ground Water DW = Drinking Water	W = Water	Analytical Information Matrix Codes	Xanco Job & DOULT	

Final 1.000

6)
E)
AT DO	

Setting the Standard since 1990 Stafford,Texas (281-240-4200)

CHAIN OF CUSTODY

Notice: Notice: Signature of this document and refinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only tak the cost of samples and shell not assume any responsibility for any will be enforced unless previously negotiated under a fully executed client contract. Samplers's Name 5 No. SOU Moseles Road, Cross Roads, TX Relinquished by: 9 1 Project Contact: Relinquished by Sampler: œ 6 сл w mail: Company Address: Company Name / Branch: Relinquished by: tanner@ Ksenuronmental . com 2 Day EMERGENCY Next Day EMERGENCY 3 Day EMERGENCY Dallas Texas (214-902-0300) TAT Starts Day received by Lab, if received by 5:00 pm Same Day TAT Client / Reporting Information ASPUS ASP50 ASPUG Turnaround Time (Business days) TANNER TERANS 940-368-3 Julipo Number Field ID / Point of Collection ICJE Frands K 5 Day TAT Contract TAT 7 Day TAT SAMPLE CUSTODY MUST BE OCCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Phone No: Date Time: Date Time: Sample -. Depth Collection 40 Project Namenumber Bob cat / Redhills PipBlin Release Project Location: Midland, Texas (432-704-5251) San Antonio, Texas (210-509-3334) nvoice To: Date 1400 0021 Received By: 1300 Received By: TRRP Checklist Level 3 (CLP Forms) Level III Std QC+ Forms Time Owil - Oil Field Logistius Level II Std QC Project Information Jul, NM 4 5 Matrix Data Deliverable Information www.xenco.com # of bottles -HCI NaOH/Zn Number of preserved bottles Acetate HNO3 Custody Seal # Relinquished By: TRRP Level IV Level IV (Full Data Pkg /raw data) UST / RG -411 12504 VaOH VaHSO4 MEOH 4 × NONE Chlorides Phoenix, Arizona-(480-355-0900) Xenco Quote a 4 × Preserved where applicable Date Time: Date Time: Analytical Information FED-EX / UPS: Track Notes: Receive Xenco Job # Received Onvice Temp: 0.3 CF:(0-6: -0.2°C) Corrected Temp: 1 (6-23: +0.2°C) Cooler Temp. Thermo, Corr. Factor 1 Field Comments GW =Ground Water DW = Drinking Water P = Product Wi = Wipe O = Oil WW= Waste Water SW = Surface water W = Water S = Soil/Sed/Solid OW =Ocean/Sea Water SL = Sludge A = Air Ģ Matrix Codes IR ID:R-8

Final 1.000

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: KJE Enviromental & Civil Engineering	Acceptable Temperature Range: 0 - 6 degC							
Date/ Time Received: 06/01/2017 03:00:00 PM	Air and Metal samples Acceptable Range: Ambient							
Work Order #: 554471	Temperature Measuring device used: R8							
Sample Recei	pt Checklist Comments							
#1 *Temperature of cooler(s)?	2.1							
#2 *Shipping container in good condition?	Yes							
#3 *Samples received on ice?	Yes							
#4 *Custody Seal present on shipping container/ cooler?	N/A							
#5 *Custody Seals intact on shipping container/ cooler?	N/A							
#6 Custody Seals intact on sample bottles?	N/A							
#7 *Custody Seals Signed and dated?	N/A							
#8 *Chain of Custody present?	Yes							
#9 Sample instructions complete on Chain of Custody?	Yes							
#10 Any missing/extra samples?	Νο							
#11 Chain of Custody signed when relinquished/ received?	Yes							
#12 Chain of Custody agrees with sample label(s)?	Yes							
#13 Container label(s) legible and intact?	Yes							
#14 Sample matrix/ properties agree with Chain of Custody?	Yes							
#15 Samples in proper container/ bottle?	Yes							
#16 Samples properly preserved?	Yes							
#17 Sample container(s) intact?	Yes							
#18 Sufficient sample amount for indicated test(s)?	Yes							
#19 All samples received within hold time?	Yes							

#20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer
Jessica Kramer

Date: 06/02/2017

Checklist reviewed by: Hely Taylor Holly Taylor

Date: 06/05/2017

Project Id:Contact:James FoxProject Location:Jal, NM

Certificate of Analysis Summary 554912

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Thu Jun-08-17 02:45 pmReport Date:12-JUN-17Project Manager:Holly Taylor

	Lab Id:	554912-0	01	554912-0	02	554912-0	03		
Analysis Requested	Field Id:	B10		B20		B30			
Analysis Kequestea	Depth:	1 ft		1 ft		1 ft			
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Jun-08-17 1	Jun-08-17 13:00		3:00	Jun-08-17 1	3:00		
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-09-17 1	4:42	Jun-09-17 1	4:42	Jun-09-17 1	4:42		
	Analyzed:	Jun-09-17 1	9:56	Jun-09-17 2	0:03	Jun-09-17 2	0:26		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		296	4.93	127	4.89	266	4.96		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayls

Holly Taylor Project Manager

Analytical Report 554912

for KJE Enviromental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

12-JUN-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

12-JUN-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering** 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): **554912 Bobcat/Red Hills Pipeline Release** Project Address: Jal, NM

James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 554912. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 554912 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

toly Jaylor

Holly Taylor Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 554912

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
B10	S	06-08-17 13:00	- 1 ft	554912-001
B20	S	06-08-17 13:00	- 1 ft	554912-002
B30	S	06-08-17 13:00	- 1 ft	554912-003

CASE NARRATIVE

Client Name: KJE Enviromental & Civil Engineering Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Work Order Number(s): 554912
 Report Date:
 12-JUN-17

 Date Received:
 06/08/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: B 1 Lab Sample Id: 55			Matrix: Date Collect	Soil ed: 06.08.17 13.00		Date Received: Sample Depth:	06.08.17 14.45 1 ft	
Analytical Method Tech: MC	l: Inorganic Anions b GO	y EPA 300/300.1				Prep Method: % Moisture:	E300P	
Analyst: MC	GO		Date Prep:	06.09.17 14.42		Basis:	Wet Weight	
Seq Number: 301	19449							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	296	4.93	mg/kg	06.09.17 19.5	56	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id:	B20 554912-002		Matrix: Date Collec	Soil cted: 06.08.17 13.00		Date Received:06 Sample Depth: 1		5
5	hod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: E3 % Moisture:	00P	
	MGO		Date Prep:	06.09.17 14.42			et Weight	
Seq Number:	3019449							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	127	4.89	mg/kg	06.09.17 20.03		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	B30 d: 554912-003		Matrix: Date Collec	Soil cted: 06.08.17 13.00		Date Received:0 Sample Depth: 1		5
Analytical Me Tech:	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: E % Moisture:	300P	
Analyst:	MGO		Date Prep:	06.09.17 14.42			/et Weight	
Seq Number: Parameter	3017447	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	266	4.96	mg/kg	06.09.17 20.26		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 554912

KJE Enviromental & Civil Engineering

Analytical Method:	Inorganic Anions b	25871-1-BLK LCS Sample 1						Pr	ep Metho	d: E30	OP		
Seq Number:	3019449			Matrix:	Solid				Date Pre	ep: 06.0	9.17		
MB Sample Id:	725871-1-BLK		LCS Sar	nple Id:	725871-1	BKS		LCSD Sample Id: 725871-1-B					
Parameter		-	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	<5.00	250	258	103	256	102	90-110	1	20	mg/kg	06.09.17 17:39		

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	d: E30	0P	
Seq Number:	3019449			Matrix:	Soil				Date Pre	ep: 06.0	9.17	
Parent Sample Id:	554810-031		MS Sar	nple Id:	554810-03	31 S		MS	D Sample	Id: 5548	310-031 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	38.7	248	298	105	297	104	90-110	0	20	mg/kg	06.09.17 19:41	

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	d: E30	OP	
Seq Number:	3019449			Matrix:	Soil				Date Pre	ep: 06.1	2.17	
Parent Sample Id:	554810-018		MS Sar	nple Id:	554810-0	18 S		MSI	O Sample	Id: 5548	810-018 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	28.9	244	277	102	271	99	90-110	2	20	mg/kg	06.12.17 13:32	

	-	-		
	F	-		
1	ABD	Х П	1	
	RAT	Z		
	DRI	2		
	(1) (1)	L		

CHAIN OF CUSTODY

4 2		Relinquished by:	telinquish	TATS	3 Day	2 Day	Next	Same		10	9	œ	7	σ	σ	4	ω	N	-	NO.		Samplers's Name	Project Contact: J. Fox	Jame	500 M	Company Name / Branch:	Clien		Dallas Te	Stafford,
Kelinquished by:		S. Fox	Relinquished by Sampler:	itarts Day received by	3 Day EMERGENCY	2 Day EMERGENCY	Next Day EMERGENCY	Same Day TAT	Turnaround Time (Business days)								330	\$ 20	1510	Field ID / Point of Collection	r	me JAIMES	"J. Fax	james & Kjenviranmental.com	seley Rol	0	Client / Reporting Information		Dallas Texas (214-902-0300)	Stafford, Texas (281-240-4200)
			SAMPLE CUSTOD	TAT Starts Day received by Lab, if received by 5:00 pm		Contract TAT	7 Day TAT	5 Day TAT	L	and many front astrong										of Collection		FOX	940-368-	rental . co m	, Ciell Roads, TX	Environmentel	-			
Date Time:		60	Date Time:	00 pm				-	41100 - 185								13	11	11 6	Sample Depth	Co		55.55	P		Pro		記した。	Mic	Sa
Received By:	Hecely 3	1445 1 Macceived by:	Date TIME: Become below EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER D		Ū				のないというないので				-	-			+		18 1300	Date Time	Collection		PO Number:	Phillip Scadure	Jal, NM	킕	Pr	朝鮮語の読書	Midland, Texas (432-704-5251)	San Antonio, Texas (210-509-3334)
ed By:	ed By	No. Com	EACH TIME SAM		TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data De					_	_		+	1 1	I S	# of Matrix bottles				1	2	Bobert /k	Project Information		32-704-5251) <u>www.x</u> i	IS (210-509-333
		U18/11	PLES CHANGE PO			ms) [Forms [Data Deliverable Information											HCI	Number			OWL		shills	A liter of the literature		251) www.xenco.com	4)
Custody Seal #	Relinquished By:	Relinquished By: 2	SSESSION, INCLU			UST / RG -411	TRRP Level IV	Level IV (F	on			_							-	HNO3 H2SO4 NaOH NaHSO4	Number of preserved bottles					ipelino P	1			
al #	id By:	d By:	IDING COURIER D			411	A IV	Level IV (Full Data Pkg /raw data)								-	44	- 7		NONE Chlu		0.				Celacite			Xenc	Pho
Preserved w	Date Time:	Date Time:	ELIVERY					v data)												Chi			5				Analy		Xenco Quote #	Phoenix, Arizona (480-355-0900)
Preserved where applicable	ime:	ime:		FED-EX / I					Notes:					-													Analytical Information			480-355-0900)
7	Received	Receiver		FED-EX / UPS: Traci					14													_	_				5	-	Xenco Job #	
On Cooler	Corrected Lemp.	(6-23: +0.2°C)	CF:(U-6: -U.2	lemp: + +	- 11													+										0	SP	
Cooler Temp. T	emp.	0.2°C)	()	5	0															Field	Þ	0	×0	SUST	D D D D	n z	A	7112	an	
Meininguissed by: Date Time: Received By: Custody Seal # Preserved where applicable On Ide Cooler Temp. Thermo. Corr. Factor 5 5	セナ			יהי.ח-ס	מ-מירו מו				「「「「「「「」」										Contraction Contraction		WW= Waste Water A = Air	II0 = 0	OW =Ocean/Sea Water WI = Wipe	P = Product SW = Surface water SL = Sludge	GW =Ground Water DW = Drinking Water	W = Water	Matrix Codes	ſ		

Final 1.000

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: KJE Enviromental & Civil Engineering	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 06/08/2017 02:45:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 554912	Temperature Measuring device used: r8
Sample Recei	pt Checklist Comments
#1 *Temperature of cooler(s)?	4.4
#2 *Shipping container in good condition?	Yes
#3 *Samples received on ice?	Yes
#4 *Custody Seal present on shipping container/ cooler?	N/A
#5 *Custody Seals intact on shipping container/ cooler?	N/A
#6 Custody Seals intact on sample bottles?	N/A
#7 *Custody Seals Signed and dated?	N/A
#8 *Chain of Custody present?	Yes
#9 Sample instructions complete on Chain of Custody?	Yes
#10 Any missing/extra samples?	No
#11 Chain of Custody signed when relinquished/ received?	Yes
#12 Chain of Custody agrees with sample label(s)?	Yes
#13 Container label(s) legible and intact?	Yes
#14 Sample matrix/ properties agree with Chain of Custody?	Yes
#15 Samples in proper container/ bottle?	Yes
#16 Samples properly preserved?	Yes
#17 Sample container(s) intact?	Yes

#18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes #20 Subcontract of sample(s)? N/A #21 VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Matta Anaya

Marithza Anaya

Date: 06/08/2017

Checklist reviewed by:

Hely Taylor Holly Taylor

Date: 06/08/2017

Project Id:Contact:James FoxProject Location:Jal, NM

Certificate of Analysis Summary 552683

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Mon May-08-17 03:00 pmReport Date:18-MAY-17Project Manager:Holly Taylor

	Lab Id:	552683-0	01	552683-0	02	552683-0	03	552683-0	04	552683-0	05	552683-0	06
Analysis Requested	Field Id:	D64		D63		D62		D61		D60		D59	
Analysis Kequestea	Depth:	1 N/A		1 N/A		1 N/A		1 N/A		1 N/A		1 N/A	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-04-17	13:00	May-04-17	13:05	May-04-17	13:10	May-04-17	13:15	May-04-17	13:20	May-04-17	13:25
Inorganic Anions by EPA 300/300.1	Extracted:	May-17-17	08:00	May-17-17	08:00	May-17-17 (08:00	May-17-17	08:00	May-17-17	08:00	May-17-17 (08:00
	Analyzed:	May-17-17	12:52	May-17-17	13:15	May-17-17	3:22	May-17-17	13:30	May-17-17	13:37	May-17-17 1	4:00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		99.5	5.00	139	5.00	157	5.00	156	5.00	151	5.00	145	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

y ayls

Holly Taylor Project Manager

Project Id:Contact:James FoxProject Location:Jal, NM

Certificate of Analysis Summary 552683

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Mon May-08-17 03:00 pmReport Date:18-MAY-17Project Manager:Holly Taylor

	Lab Id:	552683-0	07	552683-0	08	552683-0	09	552683-0)10		
Analysis Requested	Field Id:	D58		D57		D56		D55			
Analysis Kequestea	Depth:	1 N/A		1 N/A		1 N/A		1 N/A			
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	May-04-17	13:30	May-04-17	13:35	May-04-17	13:40	May-04-17	13:45		
Inorganic Anions by EPA 300/300.1	Extracted:	May-17-17	08:00	May-17-17 (08:00	May-17-17 (08:00	May-17-17	08:00		
	Analyzed:	May-17-17	14:08	May-17-17	4:15	May-17-17	14:23	May-17-17	14:31		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		178	5.00	155	5.00	154	5.00	381	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

y ayls

Holly Taylor Project Manager

Analytical Report 552683

for KJE Enviromental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

18-MAY-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

18-MAY-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering** 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): **552683 Bobcat/Red Hills Pipeline Release** Project Address: Jal, NM

James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 552683. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 552683 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

toly Jaylor

Holly Taylor Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 552683

KJE Enviromental & Civil Engineering, Aubrey, TX

Bobcat/Red Hills Pipeline Release

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
D64	S	05-04-17 13:00	- 1 N/A	552683-001
D63	S	05-04-17 13:05	- 1 N/A	552683-002
D62	S	05-04-17 13:10	- 1 N/A	552683-003
D61	S	05-04-17 13:15	- 1 N/A	552683-004
D60	S	05-04-17 13:20	- 1 N/A	552683-005
D59	S	05-04-17 13:25	- 1 N/A	552683-006
D58	S	05-04-17 13:30	- 1 N/A	552683-007
D57	S	05-04-17 13:35	- 1 N/A	552683-008
D56	S	05-04-17 13:40	- 1 N/A	552683-009
D55	S	05-04-17 13:45	- 1 N/A	552683-010

Final 1.000

CASE NARRATIVE

Client Name: KJE Enviromental & Civil Engineering Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Work Order Number(s): 552683
 Report Date:
 18-MAY-17

 Date Received:
 05/08/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: De Lab Sample Id: 55			Matrix: Date Collect	Soil ted: 05.04.17 13.00		Date Received: Sample Depth:	05.08.17 15.00 1 N/A	
2	: Inorganic Anions by	y EPA 300/300.1				Prep Method:	E300P	
Tech: MC Analyst: MC			Date Prep:	05.17.17 08.00		% Moisture: Basis:	Wet Weight	
Seq Number: 301	17517							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride	1	16887-00-6	99.5	5.00	mg/kg	05.17.17 12.5	2	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D63 Lab Sample Id: 552683-002		Matrix: Date Collec	Soil ted: 05.04.17 13.05		Date Received:(Sample Depth: 1)
Analytical Method: Inorgan Tech: MGO Analyst: MGO	ic Anions by EPA 300/300.1	Date Prep:	05.17.17 08.00		Prep Method: I % Moisture: Basis:	E300P Wet Weight	
Seq Number: 3017517						C	
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	139	5.00	mg/kg	05.17.17 13.15	5	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	D62 d: 552683-003		Matrix: Date Collec	Soil eted: 05.04.17 13.10		Date Received: Sample Depth:)
Analytical Me Tech:	ethod: Inorganic Anions MGO	by EPA 300/300.1				Prep Method: 1 % Moisture:	E300P	
Analyst:	MGO		Date Prep:	05.17.17 08.00			Wet Weight	
Seq Number:	3017517		_					
Parameter Chloride		Cas Number 16887-00-6	Result 157	RL 5.00	Units mg/kg	Analysis Dat 05.17.17 13.2	8	Dil

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	D61 : 552683-004		Matrix: Date Collec	Soil cted: 05.04.17 13.15		Date Received: Sample Depth:)
Tech: Analyst:	thod: Inorganic Anions MGO MGO	by EPA 300/300.1	Date Prep:	05.17.17 08.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Seq Number: Parameter	3017517	Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	156	5.00	mg/kg	05.17.17 13.3	30	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D60 Lab Sample Id: 552683-005		Matrix: Date Collec	Soil eted: 05.04.17 13.20		Date Received:(Sample Depth: 1		0
Analytical Method: Inorgan Tech: MGO	ic Anions by EPA 300/300.1				Prep Method: H % Moisture:	E300P	
Tech: MGO Analyst: MGO		Date Prep:	05.17.17 08.00			Wet Weight	
Seq Number: 3017517							
Parameter	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride	16887-00-6	151	5.00	mg/kg	05.17.17 13.37	7	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D59 Lab Sample Id: 552683-006		Matrix: Date Colle	Soil cted: 05.04.17 13.25		Date Received: Sample Depth:		0
Analytical Method: Inorganic Anion Tech: MGO Analyst: MGO Seq Number: 3017517	s by EPA 300/300.1	Date Prep:	05.17.17 08.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Parameter Chloride	Cas Number 16887-00-6	Result	RL 5.00	Units mg/kg	Analysis Da 05.17.17 14.0	8	Dil

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D58 Lab Sample Id: 552683-007		Matrix: Date Collec	Soil eted: 05.04.17 13.30		Date Received:0 Sample Depth: 1)
Analytical Method: Inorganic A	nions by EPA 300/300.1				Prep Method: H	E300P	
Tech: MGO					% Moisture:		
Analyst: MGO		Date Prep:	05.17.17 08.00		Basis: V	Vet Weight	
Seq Number: 3017517							
Parameter	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride	16887-00-6	178	5.00	mg/kg	05.17.17 14.08	3	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D57 Lab Sample Id: 552683-0	08	Matrix: Date Collec	Soil ted: 05.04.17 13.35		Date Received: Sample Depth:)
	ganic Anions by EPA 300/300.1				Prep Method:	E300P	
Tech: MGO Analyst: MGO		Date Prep:	05.17.17 08.00		% Moisture: Basis:	Wet Weight	
Seq Number: 3017517							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride	16887-00-6	155	5.00	mg/kg	05.17.17 14.1	5	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D56 Lab Sample Id: 552683-009	•			Date Received:05.08.17 15.00 Sample Depth: 1 N/A			
Analytical Method: Inorganic A Tech: MGO Analyst: MGO	nions by EPA 300/300.1	Date Prep:	05.17.17 08.00		Prep Method: I % Moisture: Basis: V	E300P Wet Weight	
Seq Number: 3017517							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	8	Dil
Chloride	16887-00-6	154	5.00	mg/kg	05.17.17 14.23	3	1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	D55 l: 552683-010		Matrix: Date Collec	Soil cted: 05.04.17 13.45	Date Received:05.08.17 15.00 Sample Depth: 1 N/A			0
Tech: Analyst:	thod: Inorganic Anions MGO MGO	by EPA 300/300.1	Date Prep:	05.17.17 08.00		Prep Method: % Moisture: Basis:	E300P Wet Weight	
Seq Number: Parameter	3017517	Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	381	5.00	mg/kg	05.17.17 14.3	31	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	гах
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 552683

KJE Enviromental & Civil Engineering

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	od: E300	OP	
Seq Number:	3017517			Matrix:	Solid				Date Pre	ep: 05.1	7.17	
MB Sample Id:	724743-1-BLK		LCS San	nple Id:	724743-1-	BKS		LCSI	O Sample	Id: 7247	743-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	od: E30	0P	
Seq Number:			Matrix:	Soil				Date Prep: 05.17.17				
Parent Sample Id:	552656-001 MS Sample Id				552656-00	01 S		MSI	D Sample	Id: 552	656-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	6.24	250	285	112	327	128	90-110	14	20	mg/kg	05.17.17 14:46	Х

Analytical Method:	Inorganic Anions b	Inorganic Anions by EPA 300/300.1						Prep Method: E300P			0P	
Seq Number:	3017517			Matrix:	Soil				Date Pre	ep: 05.1	7.17	
Parent Sample Id:	552683-001		MS Sar	nple Id:	552683-00	01 S		MSI	O Sample	Id: 552	583-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	99.5	250	362	105	363	105	90-110	0	20	mg/kg	05.17.17 12:59	

LABORATORIES Setting the Standard since 1990 Statford,Texas (281-240-4200) Dallas Texas (214-902-0300) Client / Reporting Information Company Name / Branch: KJE		CHAIN OF CUSTODY Page L of L San Antonio Texas (210-509-3334) Midland, Texas (432-704-5251) WWW.xenco.com Project Information Project Information
salanna Kjenvir	Phone No: on mental. Com	involve To: oilwaser logistics (ow L)
Project Contact: James Fox - 940 . 387-	5080-4	•
Sampiers's Name		Collegion
No. Field ID / Point of Collection	Sample	Collection Date Time
+ D64	11	1 S
2 063		1305
290 E		13/0
4 0 61		1315
5 060		1320
		13.30
450 B		1335
9 056		13 Ho
10 0 55	N	T A 54.81 +
Turnaround Time (Business days)		Data Deliverable Information
Same Day TAT X 5	S Day TAT	Level II Std QC
Next Day EMERGENCY	7 Day TAT	Level III Std QC+ Forms
2 Day EMERGENCY	Contract TAT	Level 3 (CLP Forms)
3 Day EMERGENCY		TRRP Checklist
TAT Starts Day received by Lab, if received by 5:00 pm	eived by 5:00 pm	
Relinquished by Sampler:	Date Time:	State Time: 600 Received By: Advise SAMPLES SHANGE POSSESSION, INCLUDING
	Date Time:	Received By:
Helinquished by:	Date Time:	re: Received By:

Page 19 of 20

Final 1.000

Client: KJE Enviromental & Civil Engineering

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 05/08/2017 03:00:00 PM	Air and Metal samples Ac	ceptable Range: Ambient
Work Order #: 552683	Temperature Measuring of	levice used :
Sample Recei	pt Checklist	Comments
#1 *Temperature of cooler(s)?	11.4	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seal present on shipping container/ cooler?	N/A	
#5 *Custody Seals intact on shipping container/ cooler?	N/A	
#6 Custody Seals intact on sample bottles?	N/A	
#7 *Custody Seals Signed and dated?	N/A	
#8 *Chain of Custody present?	Yes	
#9 Sample instructions complete on Chain of Custody?	Yes	
#10 Any missing/extra samples?	No	
#11 Chain of Custody signed when relinquished/ received?	Yes	
#12 Chain of Custody agrees with sample label(s)?	Yes	
#13 Container label(s) legible and intact?	Yes	R9
#14 Sample matrix/ properties agree with Chain of Custody?	Yes	
#15 Samples in proper container/ bottle?	Yes	
#16 Samples properly preserved?	Yes	
#17 Sample container(s) intact?	Yes	
#18 Sufficient sample amount for indicated test(s)?	Yes	
#19 All samples received within hold time?	Yes	
#20 Subcontract of sample(s)?	N/A	
#21 VOC samples have zero headspace?	N/A	
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? E samples for the analysis of HEM or HEM-SGT which are verifi analysts		

analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Marta thaya Marithza Anaya

Date: 05/09/2017

Checklist reviewed by: Hely Taylor Holly Taylor

Date: 05/09/2017

Project Id:Contact:James FoxProject Location:Jal, NM

Certificate of Analysis Summary 553327

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Wed May-17-17 08:19 amReport Date:19-MAY-17Project Manager:Holly Taylor

	Lab Id:	553327-0	01	553327-0	02	553327-0	03	553327-0	04	553327-0	05	553327-0	06
Analysis Requested	Field Id:	MB 10)	E 10	E 10		D 10		D 20		D 30		
Analysis Kequestea	Depth:	1 ft	1 ft		1 ft		1 ft		1 ft			1 ft	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	May-16-17	15:00	May-16-17 15:05		May-16-17	15:10	May-16-17 15:15		May-16-17 15:20		May-16-17	15:25
Inorganic Anions by EPA 300/300.1	Extracted:	May-18-17	19:50	May-18-17 19:50		May-19-17 11:47 May-19-17 11:4		1:47	May-19-17 11:47		May-19-17 1	11:47	
SUB: TX104704215	Analyzed:	May-18-17	May-18-17 21:05		21:14	May-19-17	12:53	May-19-17	3:02	May-19-17	13:11	May-19-17 1	14:13
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		64.7	9.98	1400	9.88	163	9.77	169	9.75	346	9.71	284	9.60

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayls

Holly Taylor Project Manager

Project Id:Contact:James FoxProject Location:Jal, NM

Certificate of Analysis Summary 553327

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: Bobcat/Red Hills Pipeline Release

Date Received in Lab:Wed May-17-17 08:19 amReport Date:19-MAY-17Project Manager:Holly Taylor

	Lab Id:	553327-007			
Analysis Requested	Field Id:	D 50			
Analysis Kequestea	Depth:	1 ft			
	Matrix:	SOIL			
	Sampled:	May-16-17 15:30			
Inorganic Anions by EPA 300/300.1	Extracted:	May-19-17 11:47			
SUB: TX104704215	Analyzed:	May-19-17 14:23			
	Units/RL:	mg/kg RL			
Chloride		232 9.62			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

y ayls

Holly Taylor Project Manager

Analytical Report 553327

for KJE Enviromental & Civil Engineering

Project Manager: James Fox Bobcat/Red Hills Pipeline Release

19-MAY-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

19-MAY-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering** 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): 553327 Bobcat/Red Hills Pipeline Release Project Address: Jal, NM

James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 553327. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 553327 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

toly Jaylor

Holly Taylor Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 553327

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MB 10	S	05-16-17 15:00	- 1 ft	553327-001
E 10	S	05-16-17 15:05	- 1 ft	553327-002
D 10	S	05-16-17 15:10	- 1 ft	553327-003
D 20	S	05-16-17 15:15	- 1 ft	553327-004
D 30	S	05-16-17 15:20	- 1 ft	553327-005
D 40	S	05-16-17 15:25	- 1 ft	553327-006
D 50	S	05-16-17 15:30	- 1 ft	553327-007

CASE NARRATIVE

Client Name: KJE Enviromental & Civil Engineering Project Name: Bobcat/Red Hills Pipeline Release

Project ID: Work Order Number(s): 553327
 Report Date:
 19-MAY-17

 Date Received:
 05/17/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: MB 10 Lab Sample Id: 553327-001	Matrix: Date Colle	Soil ected: 05.16.17 15.00		Date Received:05.7 Sample Depth: 1 ft		9
Analytical Method: Inorganic Anions by EPA	A 300/300.1			Prep Method: E30)0P	
Tech: DHE				% Moisture:		
Analyst: DHE	Date Prep	: 05.18.17 19.50		Basis: We	t Weight	
Seq Number: 3017719				SUB: TX10470421	15	
Parameter Cas	Number Result	RL	Units	Analysis Date	Flag	Dil
Chloride 16887	-00-6 64.7	9.98	mg/kg	05.18.17 21.05		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: E 10 Lab Sample Id: 553327-002	Matrix: Date Collec	Soil cted: 05.16.17 15.05		Date Received:05. Sample Depth: 1		9
Analytical Method: Inorganic Anions by EPA 300/300. Tech: DHE	1			Prep Method: E3 % Moisture:	00P	
Analyst: DHE	Date Prep:	05.18.17 19.50			et Weight	
Seq Number: 3017719				SUB: TX1047042	15	
Parameter Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride 16887-00-6	1400	9.88	mg/kg	05.18.17 21.14		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D 10 Lab Sample Id: 553327-003			Soil 05.16.17 15.10		te Received:05.1 mple Depth: 1 ft		
Analytical Method: Inorganic Anions by E	PA 300/300.1			Pre	ep Method: E30	0P	
Tech: DHE				%	Moisture:		
Analyst: DHE	Da	ate Prep:	05.19.17 11.47	Ba	sis: Wet	Weight	
Seq Number: 3017764				SU	JB: TX10470421	5	
Parameter Ca	s Number Resu	lt RL	τ	J nits	Analysis Date	Flag	Dil
Chloride 168	87-00-6	163 9.	77 m	ng/kg	05.19.17 12.53		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: Lab Sample Id	D 20 1: 553327-004		Matrix: Date Collec	Soil cted: 05.16.17 15.15		Date Received:05. Sample Depth: 1 f		9
Analytical Me	thod: Inorganic Anions	by EPA 300/300.1				Prep Method: E30)0P	
Tech:	DHE					% Moisture:		
Analyst:	DHE		Date Prep:	05.19.17 11.47		Basis: We	t Weight	
Seq Number:	3017764					SUB: TX1047042	15	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	169	9.75	mg/kg	05.19.17 13.02		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D 30 Lab Sample Id: 553327-005		Matrix: Date Collec	Soil eted: 05.16.17 15.20		Date Received:05. Sample Depth: 1		9
Analytical Method: Inorganic Anions b	oy EPA 300/300.1				Prep Method: E3	00P	
Tech: DHE					% Moisture:		
Analyst: DHE		Date Prep:	05.19.17 11.47		Basis: We	et Weight	
Seq Number: 3017764					SUB: TX1047042	15	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	346	9.71	mg/kg	05.19.17 13.11		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D 40 Lab Sample Id: 553327-006		Matrix: Date Collec	Soil cted: 05.16.17 15.25		Date Received:05.7 Sample Depth: 1 ft		9
Analytical Method: Inorganic Anion	s by EPA 300/300.1				Prep Method: E30	00P	
Tech: DHE					% Moisture:		
Analyst: DHE		Date Prep:	05.19.17 11.47		Basis: We	t Weight	
Seq Number: 3017764					SUB: TX10470421	15	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	284	9.60	mg/kg	05.19.17 14.13		1

KJE Enviromental & Civil Engineering, Aubrey, TX

Sample Id: D 50 Lab Sample Id: 553327-007		Matrix: Date Collec	Soil cted: 05.16.17 15.30		Date Received:05.7 Sample Depth: 1 ft		9
Analytical Method: Inorganic Anions	by EPA 300/300.1				Prep Method: E30	0P	
Tech: DHE					% Moisture:		
Analyst: DHE		Date Prep:	05.19.17 11.47		Basis: We	t Weight	
Seq Number: 3017764					SUB: TX10470421	15	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	232	9.62	mg/kg	05.19.17 14.23		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

<1.00

10.0

10.1

101

Chloride

QC Summary 553327

KJE Enviromental & Civil Engineering

Bobcat/Red Hills Pipeline Release

Analytical Method: Seq Number: MB Sample Id:	Inorganic Anions b 3017719 724873-1-BLK	oy EPA 300,		Matrix: nple Id:	Solid 724873-1	-BKS			ep Metho Date Pro D Sample	ep: 05.1		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<1.00	10.0	9.99	100	9.92	99	80-120	1	20	mg/kg	05.18.17 20:00	
Analytical Method:	Inorganic Anions b	y EPA 300	/300.1					Pr	ep Metho	od: E30	0P	
Seq Number:	3017764			Matrix:	Solid				Date Pre	ep: 05.1	9.17	
MB Sample Id:	724904-1-BLK		LCS Sat	nple Id:	724904-1	-BKS		LCS	D Sample	e Id: 7249	904-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Analytical Method:	Inorganic Anions b	norganic Anions by EPA 300/300.1						Pr	ep Metho	od: E300	OP	
Seq Number:	3017719			Matrix:	Soil				Date Pre	ep: 05.1	8.17	
Parent Sample Id:	553187-001		MS Sar	nple Id:	553187-00	01 S		MSI	O Sample	Id: 5531	187-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	771	100	860	89	857	86	80-120	0	20	mg/kg	05.18.17 20:28	

10.0

100 80-120

1

20

mg/kg

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	d: SW9	0056P	
Seq Number:	3017764			Matrix:	Soil				Date Pre	ep: 05.1	9.17	
Parent Sample Id:	553317-001		MS Sar	nple Id:	553317-00	01 S		MSI	O Sample	Id: 5533	317-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	19600	106	19300	0	19500	0	80-120	1	20	mg/kg	05.19.17 14:42	Х

05.19.17 11:57

6			
0			
101			'
LXX1		2	
	C)	
C C			

Setting the Standard since 1990

CHAIN OF CUSTODY

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any indexes or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms 10 No. Samplers's Name =matt Company Address: Relinquished by: 9 o G N Relinquished by Sampler: roject Contact: Relinquished by: ompany Name / Branch: 1 Stafford, Texas (281-240-4200) Dallas Texas (214-902-0300) TAT Starts Day received by Lab, if received by 5:00 pm **3 Day EMERGENCY** 2 Day EMERGENCY Next Day EMERGENCY Same Day TAT 040 D 20 D 10 D Client / Reporting Information D (1) 3 500 Moseley Rd, Cross Roads, TX 50 30 10 Turnaround Time (Business days) 0 james a Kyenvironmentalicoun James Fox James Fox 0 KJ Environmental Field ID / Point of Collection 940-368-3535 Contract TAT 7 Day TAT SAMPLE CUSTODY MUST BE OCCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY
Date Time: Received By: JUN | Relinquished By: 5 Day TAT Phone No: Date Time: 5/(7)Date Time: Date Time: Sample Depth 1 -2 5 5/16 Project NameNumber Robcod / Redhills Midland, Texas (432-704-5251) San Antonio, Texas (210-509-3334) Collection PO Number: roject Location: 518 Date oice To: < OWL - oilfield Water Logistics Jal, NM Received By: 1530 1515 1510 1525 Level 3 (CLP Forms) 1520 1505 1500 Received By: TRRP Checklist Level III Std QC+ Forms Time Project Information Level II Std QC Smatrix < Data Deliverable Information www.xenco.com # of 4 HCI 5-VaOH/Zn Number of preserved bottles Acetate HNO3 Lipeline Release 2 Relinquished By: Custody Seal # TRRP Level IV Level IV (Full Data Pkg /raw data) H2SO4 UST / RG -411 NaOH NaHSO MEOH × NONE < Xenco Quote # Phoenix, Arizona (480-355-0900) < × Chlorides Preserved where applicable Date Time: Date Time: Analytical Information FED-EX / UPS: Tracking # Notes: Xenco Job # Received By: Received By: Onlice 100000 Cooler Temp. Field Comments W = Water S = Soil/Sed/Solid SW = Surface water DW = Drinking Water GW =Ground Water P = Product O = OII WW= Waste Water WI = Wipe OW =Ocean/Sea Water SL = Sludge A = Air Thermo. Corr. Factor Matrix Codes

Final 1.000

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 1043851

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient **Temperature Measuring device used :**

Sent By:	Jessica Kramer	Date Sent:	05/17/2017 11:30 AM
Received By:	Maria Paula Guerra	Date Received:	05/18/2017 09:30 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	2.6
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 *Custody Seals Signed and dated for Containers/coolers	N/A
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	N/A
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Date: 05/18/2017

Client: KJE Enviromental & Civil Engineering

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC

Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 05/17/2017 08:19:00 AM Temperature Measuring device used : R8 Work Order #: 553327 Comments Sample Receipt Checklist 3.1 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seal present on shipping container/ cooler? N/A #5 *Custody Seals intact on shipping container/ cooler? N/A #6 Custody Seals intact on sample bottles? N/A #7 *Custody Seals Signed and dated? N/A #8 *Chain of Custody present? Yes #9 Sample instructions complete on Chain of Custody? Yes #10 Any missing/extra samples? No #11 Chain of Custody signed when relinguished/ received? Yes #12 Chain of Custody agrees with sample label(s)? Yes #13 Container label(s) legible and intact? Yes Yes #14 Sample matrix/ properties agree with Chain of Custody? #15 Samples in proper container/ bottle? Yes #16 Samples properly preserved? Yes #17 Sample container(s) intact? Yes #18 Sufficient sample amount for indicated test(s)? Yes #19 All samples received within hold time? Yes Houston

#20 Subcontract of sample(s)? Yes #21 VOC samples have zero headspace? N/A #22 <2 for all samples preserved with HNO3,HCL, H2SO4? Except for N/A samples for the analysis of HEM or HEM-SGT which are verified by the analysts. #23 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Veamer Jessica Kramer

Date: 05/17/2017

Checklist reviewed by:

Holly Taylor

Date: 05/17/2017

James Fox

Owl Bobcat/Redhills Pipeline

Contact:

Project Location:

Certificate of Analysis Summary 548179

KJE Enviromental & Civil Engineering, Aubrey, TX

Project Name: OWL102816D

Date Received in Lab:Wed Mar-08-17 04:40 pmReport Date:15-MAR-17Project Manager:Holly Taylor

Lab Id: 548179-001 548179-002 Field Id: SS001 SS002 Analysis Requested 21 ft 296 In Depth: Matrix: SOIL SOIL Sampled: Mar-08-17 12:15 Mar-08-17 08:45 BTEX by SW 8260B Extracted: Mar-14-17 12:45 SUB: TX104704215 Analyzed: Mar-14-17 15:24 RL Units/RL: mg/kg < 0.00109 0.00109 Benzene < 0.00109 Toluene 0.00109 Ethylbenzene < 0.00109 0.00109 0.00218 m,p-Xylenes < 0.00218 o-Xylene < 0.00109 0.00109 Total Xylenes < 0.00109 0.00109 Total BTEX < 0.00109 0.00109 Inorganic Anions by EPA 300/300.1 Extracted: Mar-10-17 14:20 Mar-10-17 14:20 Analyzed: Mar-10-17 14:53 Mar-10-17 15:29 Units/RL: mg/kg RL mg/kg RL Chloride 93.5 5.00 13.1 4.91 **Percent Moisture** Extracted: Analyzed: Mar-10-17 11:48 Units/RL: % RL Percent Moisture 7.90 1.00 **TPH by Texas1005** Extracted: Mar-09-17 14:00 Analyzed: Mar-10-17 08:22 Units/RL: mg/kg RL C6-C12 Gasoline Range Hydrocarbons <25.4 25.4 C12-C28 Diesel Range Hydrocarbons <25.4 25.4 C28-C35 Oil Range Hydrocarbons <25.4 25.4 Total TPH 1005 <25.4 25.4

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Hely Taylor

Holly Taylor Project Manager

Page 1 of 14

Analytical Report 548179

for KJE Enviromental & Civil Engineering

Project Manager: James Fox OWL102816D

15-MAR-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215), Arizona (AZ0765), Florida (E871002), Louisiana (03054) Oklahoma (9218)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400) Xenco-San Antonio: Texas (T104704534) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

ENS ACCREONS

15-MAR-17

Project Manager: **James Fox KJE Enviromental & Civil Engineering** 500 Mosley Rd Aubrey, TX 76227

Reference: XENCO Report No(s): **548179 OWL102816D** Project Address: Owl Bobcat/Redhills Pipeline

James Fox:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 548179. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 548179 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

Holly Taylor Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 548179

KJE Enviromental & Civil Engineering, Aubrey, TX

OWL102816D

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS001	S	03-08-17 12:15	- 21 ft	548179-001
SS002	S	03-08-17 08:45	- 296 In	548179-002

CASE NARRATIVE

Client Name: KJE Enviromental & Civil Engineering Project Name: OWL102816D

Project ID: Work Order Number(s): 548179
 Report Date:
 15-MAR-17

 Date Received:
 03/08/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

KJE Enviromental & Civil Engineering, Aubrey, TX

OWL102816D

Sample Id: SS001 Lab Sample Id: 548179-001		Matrix: Date Colle	Soil cted: 03.08	.17 12.15		Date Received:03 ample Depth: 21		0
Analytical Method: Inorganic Anio Tech: MGO Analyst: MGO	ns by EPA 300/300).1 Date Prep:	03.10	.17 14.20	%	rep Method: E3 5 Moisture: 5 asis: Wo	00P et Weight	
Seq Number: 3012195		Ĩ						
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	93.5	5.00		mg/kg	03.10.17 14.53		1
Analytical Method:TPH by Texas ITech:ARMAnalyst:ARMSeq Number:3012071	005	Date Prep:	03.09	.17 14.00	%	rep Method: TX 5 Moisture: 7.9 asis: Dr		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
C6-C12 Gasoline Range Hydrocarbons	PHC612	<25.4	25.4		mg/kg	03.10.17 08.22	U	1
C12-C28 Diesel Range Hydrocarbons	PHCG1228	<25.4	25.4		mg/kg	03.10.17 08.22	U	
C28-C35 Oil Range Hydrocarbons								1
g,	PHCG2835	<25.4	25.4		mg/kg	03.10.17 08.22	U	1 1
Total TPH 1005	PHCG2835 PHC635	<25.4 <25.4	25.4 25.4		mg/kg mg/kg	03.10.17 08.22 03.10.17 08.22	U U	-
6.	PHC635	<25.4		Units %				1

KJE Enviromental & Civil Engineering, Aubrey, TX OWL102816D

Sample Id: SS001 Lab Sample Id: 548179-001		Matrix: Date Collecto	Soil ed: 03.08.17 12.15		Date Received Sample Depth	1:03.08.17 16.4 :21 ft	40
Analytical Method: BTEX by SW 826 Tech: JTR	50B				Prep Method: % Moisture:	SW5035 7.9	
Analyst: JTR		Date Prep:	03.14.17 12.45		Basis:	Dry Weight	
Seq Number: 3012380					SUB: TX1047	04215	
Parameter	Cas Number	Result]	RL	Units	Analysis D	ate Flag	Dil

						e	0	
Benzene	71-43-2	< 0.00109	0.00109		mg/kg	03.14.17 15.24	U	1
Toluene	108-88-3	< 0.00109	0.00109		mg/kg	03.14.17 15.24	U	1
Ethylbenzene	100-41-4	< 0.00109	0.00109		mg/kg	03.14.17 15.24	U	1
m,p-Xylenes	179601-23-1	< 0.00218	0.00218		mg/kg	03.14.17 15.24	U	1
o-Xylene	95-47-6	< 0.00109	0.00109		mg/kg	03.14.17 15.24	U	1
Total Xylenes	1330-20-7	< 0.00109	0.00109		mg/kg	03.14.17 15.24	U	1
Total BTEX		< 0.00109	0.00109		mg/kg	03.14.17 15.24	U	1
			%					
Surrogate		Cas Number	Recovery	Units	Limits	Analysis Date	Flag	
Dibromofluoromethane		1868-53-7	107	%	74-126	03.14.17 15.24		
1,2-Dichloroethane-D4		17060-07-0	106	%	80-120	03.14.17 15.24		
Toluene-D8		2037-26-5	94	%	73-132	03.14.17 15.24		

KJE Enviromental & Civil Engineering, Aubrey, TX

OWL102816D

Sample Id: SS002		Matrix:	Soil	1	Date Received:	03.08.17 16.40)
Lab Sample Id: 548179-002		Date Collec	ted: 03.08.17 08.45	1	Sample Depth: 2	296 In	
Analytical Method: Inorganic	Anions by EPA 300/300.1]	Prep Method: I	E300P	
Tech: MGO					% Moisture:		
Analyst: MGO		Date Prep:	03.10.17 14.20	1	Basis: V	Wet Weight	
Seq Number: 3012195							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	13.1	4.91	mg/kg	03.10.17 15.29	9	1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

KJE Enviromental & Civil Engineering OWL102816D

Analytical Method:	Inorganic Anions b	organic Anions by EPA 300/300.1								od: E300	0P	
Seq Number:	3012195			Matrix:	Solid				Date Pre	ep: 03.1	0.17	
MB Sample Id:	721309-1-BLK		LCS Sar	nple Id:	721309-1-	BKS		LCSI	D Sample	d: 7213	309-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<4.98	249	243	98	251	101	90-110	3	20	mg/kg	03.10.17 14:38	

Analytical Method:	Inorganic Anions b	y EPA 300/	300.1					Pr	ep Metho	od: E30	OP	
Seq Number:	3012195			Matrix:	Soil				Date Pre	ep: 03.	10.17	
Parent Sample Id:	547991-007		MS Sar	nple Id:	547991-00	07 S		MS	D Sample	Id: 547	991-007 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	21.8	247	272	101	274	102	90-110	1	20	mg/kg	03.10.17 16:43	

Analytical Method:	Inorganic Anions b	organic Anions by EPA 300/300.1								d: E30)P	
Seq Number:	3012195			Matrix:	Soil				Date Pre	ep: 03.1	0.17	
Parent Sample Id:	548179-001		MS Sar	nple Id:	548179-00	01 S		MSI	O Sample	Id: 5481	79-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	93.5	250	341	99	340	99	90-110	0	20	mg/kg	03.10.17 15:00	

Analytical Method:	Percent Moisture				
Seq Number:	3012308 Matrix	: Solid			
	MB Sample Ic	: 3012308-1-BLK			
Parameter	MB Result		Units	Analysis Date	Flag
Percent Moisture	<1.00		%	03.10.17 11:48	

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3012308 548179-001	Matrix: MD Sample Id:						
Parameter	Parent Result	MD Result	%]	RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	7.90	7.76		2	20	%	03.10.17 11:48	

QC Summary 548179

KJE Enviromental & Civil Engineering OWL102816D

Analytical Method	: TPH by T	exas1005							Pı	ep Meth	od: TX1	005P	
Seq Number:	3012071				Matrix:	Solid				Date Pr	ep: 03.0	9.17	
MB Sample Id:	721306-1-	BLK		LCS Sar	nple Id:	721306-1	-BKS		LCS	D Sample	e Id: 7213	306-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
C6-C12 Gasoline Range H	Iydrocarbons	<25.0	1000	1000	100	1010	101	70-135	1	35	mg/kg	03.10.17 00:05	
C12-C28 Diesel Range Hy	ydrocarbons	<25.0	1000	1030	103	1040	104	70-135	1	35	mg/kg	03.10.17 00:05	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			mits	Units	Analysis Date	
1-Chlorooctane		105		1	24		126		70	-135	%	03.10.17 00:05	
o-Terphenyl		111		1	27		126		70	-130	%	03.10.17 00:05	

Analytical Method: Seq Number:	TPH by T 3012071 548133-00				Matrix:	Soil 548133-0	15 8			ep Metho Date Pr	ep: 03.0	005P 9.17 33-005 SD	
Parent Sample Id: Parameter	548155-00	Parent Result	Spike Amount	MS Sar MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
C6-C12 Gasoline Range Hy C12-C28 Diesel Range Hyd		<25.0 <25.0	999 999	862 860	86 86	851 862	85 86	70-135 70-135	1 0	35 35	mg/kg mg/kg	03.10.17 01:44 03.10.17 01:44	
Surrogate					/IS Rec	MS Flag	MSD %Re			mits	Units	Analysis Date	
1-Chlorooctane o-Terphenyl					09 06		101 97			-135 -130	% %	03.10.17 01:44 03.10.17 01:44	

Analytical Method: Seq Number: MB Sample Id:	BTEX by SW 8260 3012380 721516-1-BLK	В	LCS Sar	Matrix: nple Id:	Solid 721516-1-	-BKS			rep Meth Date Pr D Sample	rep: 03.1		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00100	0.100	0.0918	92	0.0926	93	62-132	1	25	mg/kg	03.14.17 08:32	
Toluene	< 0.00100	0.100	0.0851	85	0.0895	90	66-124	5	25	mg/kg	03.14.17 08:32	
Ethylbenzene	< 0.00100	0.100	0.0905	91	0.0922	92	71-134	2	25	mg/kg	03.14.17 08:32	
m,p-Xylenes	< 0.00200	0.200	0.182	91	0.193	97	69-128	6	25	mg/kg	03.14.17 08:32	
o-Xylene	< 0.00100	0.100	0.0871	87	0.0914	91	72-131	5	25	mg/kg	03.14.17 08:32	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
Dibromofluoromethane	102		ç	96		99		74	-126	%	03.14.17 08:32	
1,2-Dichloroethane-D4	119		8	36		89		80	0-120	%	03.14.17 08:32	
Toluene-D8	95		9	96		103		73	3-132	%	03.14.17 08:32	

KJE Enviromental & Civil Engineering OWL102816D

Analytical Method:	BTEX by SW 8260	В					Prep Meth	nod: SW:	5035	
Seq Number:	3012380			Matrix:	Soil		Date P	rep: 03.1	4.17	
Parent Sample Id:	548079-001		MS Sar	nple Id:	548079-001 S					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec		Limits		Units	Analysis Date	Flag
Benzene	< 0.000759	0.0759	0.0773	102		62-132		mg/kg	03.14.17 12:28	
Toluene	< 0.000759	0.0759	0.0683	90		66-124		mg/kg	03.14.17 12:28	
Ethylbenzene	< 0.000759	0.0759	0.0717	94		71-134		mg/kg	03.14.17 12:28	
m,p-Xylenes	< 0.00152	0.152	0.151	99		69-128		mg/kg	03.14.17 12:28	
o-Xylene	< 0.000759	0.0759	0.0703	93		72-131		mg/kg	03.14.17 12:28	
Surrogate				AS Rec	MS Flag		Limits	Units	Analysis Date	
Dibromofluoromethane			9	96			74-126	%	03.14.17 12:28	
1,2-Dichloroethane-D4			9	93			80-120	%	03.14.17 12:28	
Toluene-D8			9	90			73-132	%	03.14.17 12:28	

(-	2	
	F.		
		ñ	
	ATO	Z	
		Ś	

Setting the Standard since 1990

CHAIN OF CUSTODY

Introduction Project Internation Analytical Information Project Internation Torget Internation Torget Internation Project Internation Torget Internation Torget Internation Project Internation Torget Internation Torget Internation Torget Internation Prove Ris polygin random Torget Internation Torget Internation <th c<="" th=""><th>Dallas Texas (214-902-0300) Service Center - San Antonio, Texas (210-509-3334)</th><th></th><th></th><th>www.xenco.com</th><th></th><th>No</th><th>Norcross, Geo Xenco Quote #</th><th>Odessa, Texas (432-563-1800) Norcross, Georgia (770-449-8800) Xenco Quote # x</th><th>00) Xenco Job #</th><th>Lakeland, Florida (863-646-8526) Tampa, Florida (813-620-2000)</th></th>	<th>Dallas Texas (214-902-0300) Service Center - San Antonio, Texas (210-509-3334)</th> <th></th> <th></th> <th>www.xenco.com</th> <th></th> <th>No</th> <th>Norcross, Geo Xenco Quote #</th> <th>Odessa, Texas (432-563-1800) Norcross, Georgia (770-449-8800) Xenco Quote # x</th> <th>00) Xenco Job #</th> <th>Lakeland, Florida (863-646-8526) Tampa, Florida (813-620-2000)</th>	Dallas Texas (214-902-0300) Service Center - San Antonio, Texas (210-509-3334)			www.xenco.com		No	Norcross, Geo Xenco Quote #	Odessa, Texas (432-563-1800) Norcross, Georgia (770-449-8800) Xenco Quote # x	00) Xenco Job #	Lakeland, Florida (863-646-8526) Tampa, Florida (813-620-2000)
Inton Project Information Intig Project Information Project Information Project Information Proje							A	nalytical Informa	lo -		
Ining Profession Name	Client / Reporting Information	2	Project Info	rmation					-		
Base / 76227 Prove to registry - 4000 Proveto registry - 40000 Prove to registry -	Company Name / Branch: KJE, Enviromental & Civil Engineering	Project	느 클								
Phone No: [bit]0007 0005 Investor Logination Number of preserved bottes investor Logination Sample Collection Number of preserved bottes Dipph Data Time Number of preserved bottes Number of preserved bottes Dipph Data Time Number of preserved bottes Number of preserved bottes Dipph Data Time Number of preserved bottes Number of preserved bottes Dipph Data Time Number of preserved bottes Number of preserved bottes Dipph Data Time Number of preserved bottes Number of preserved bottes Dipph Data Time Number of preserved bottes Number of preserved bottes Dipph Data Proved Solo proved Number of preserved bottes Number of preserved bottes Solo prove Data Deliverable information Number of preserved bottes Number of preserved bottes Number of preserved bottes Solo prove Number of preserved bottes Number of preserved bottes Number of preserved bottes Number of preserved bottes Solo prove Numb	Company Address: 500 Mosely Road, Cross Roads, Texas 76227	Project	WL Bohrad /	Pedhills F	peline						
a Other Logistics a Collection Number of preserved bottes Paul (D) / Point of Collection Sample Dop/n Collection Number of preserved bottes Dop/n Time Manny Isolant Sample Number of preserved bottes Dop/n Time Manny Isolant Sample Number of preserved bottes Dop/n Time Manny Isolant Sample Isolant Isolant Dop/n Time Manny Isolant Isolant Isolant Isolant Isolant Isolant O/L J/L J/L J/L J/L J/L Isolant Isolant <thisolant< th=""> Isolant Isolant</thisolant<>	2										
Field ID / Point of Collection Collection Number of preserved bottes Dight Dash Time wark viol Elevented Viole	Project Contact:	DO Num		alica	-	5)					
Collection Number of preserved battes SSC00/ Sample Time Name of all Status	Samplers's Name		iber.			(503					
Field D/ Petric of Collection Sample Digits Time Data Mark Using Time Value Solution Value Solution SSC021 21' 3/B 12'S 5 1 Xet Solution SSC021 21' 3/B 12'S 5 1 Xet Solution Trunscound Time (Builanea skyn) 21'S 5 1 Xet Solution Xet Solution Trunscound Time (Builanea skyn) Xet Solution 1 Xet Solution Xet Solution Xet Solution Same Day TAT Solution Solution 1 Xet Solution Xet Solution Xet Solution Isame Day TAT Solution Solution Isame Day TAT Isame Isame Day T		Collec	tion	Nur	mber of preserved						
SSC001 31' 3/B 1/215' 5 6 X	No. Field ID / Point of Collection	1	Time	HCI NaOH/Zn	HNO3 H2SO4	MEOH NONE	TPH				
SS C 0.2 24' 8'' 3/8 845 5 1 X X Image: SS C 0.2 24' 8'' 3/8 845 5 1 X X Image: SS C 0.2 24' 8'' 3/8 845 5 1 X X Image: SS C 0.2 24' 8'' 3/8 845 5 1 X X Image: SS C 0.2 24' 8'' 3/8 845 5 1 X X Image: SS C 0.2 24' 8'' 3/8 845 5 1 X X Image: Starts Day FMERGENCY Image: Starts Day FMC Contract TAT Image: Starts Day FMC Cubic District Cubic Contract TAT Image: Starts Day FMC Cubic District Cubic Contract TAT Image: Starts Day FMC Cubic District Cubic C	1 SSool	3	1215	6 ×		×	×				
Image: Second	2 55002	3/5 "8, 42		1		×				-	
Image: Same Day TAT Image: Same Day TAT<	ω										
Image: Index Starts Image: Index Starts<	4 70										
Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved time (Business days) Improved (Business da	i 6								1		
Turnaround Time (Business days)	ω								1	-	
Image: Turnaround Time (Business days) Same Day TAT Image: Turnaround Time (Business days) Same Day TAT Image: Turnaround Time (Business days) Image: Turnaround Time (Full Data Pkg /raw data) Next Day EMERGENCY Image: Turnaround TaT Image: Turnaround TaT Image: Turnaround TaT 2 Day EMERGENCY Image: Turnaround TaT Image: Turnaround TaT Image: Turnaround TaT Image: Turnaround TaT 3 Day EMERGENCY Image: Turnaround TaT 3 Day EMERGENCY Image: Turnaround TaT	0								+		
Business days) Data Deliverable Information X S Day TAT Y 7 Day TAT Contract TAT Level II Std QC + Forms Contract TAT Level 3 (CLP Forms) Contract TAT Level 3 (CLP Forms) Business days) UST / RG -411 SampLe custoror Must Be Documented by Cacht Time SampLes Change Possession, Including DeLIVERY SampLe custoror Must Be Documented by: Date Time: Date Time:	10								-		
X S Day TAT Level II Std OC Level IV (Full Data Pkg /raw data) Y 7 Day TAT Level II Std OC + Forms TRRP Level IV Contract TAT Level 3 (CLP Forms) UST / RG -411 cived by Lab, if received by 5:00 pm TRRP Checklist UST / RG -411 sampLe custoror Must Be Documented BeLOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURLER DELIVERY Date Time: Date Time: Received By: Referend By: Date Time:				Data Deliverable Infor	rmation			Note			
Y] 7 Day TAT Level III Std QC+ Forms TRRP Level IV Contract TAT Level 3 (CLP Forms) UST / RG -411 Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract TAT Image: Contract Tat Time: Contract Tat Time: Contract Tatat Tat Tat Tat Tat Tat Tat Tat Tat			Level II St	d QC			v data)				
eived by Lab, if received by 5:00 pm SAMPLE CUSTOOY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELLVERY Date Time: Date Time: Referved By: Referved By			Level III St	ld QC+ Forms	TRRP Lev	vel IV					
eived by Lab, if received by 5:00 pm sampLe custopy Must BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Date Time: 1040 Received BY: 22 Date Time: Received By: 24 Date Time: Received By: 24 Received By:			Level 3 (C	LP Forms)	UST / RG	-411					
eived by Lab, if received by 5:00 pm SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Date Time: Received BY: Annual Court Date Time: Date Time: Received BY: Annual Court Relinquished By: Date Time: Date Time: Regeived By: Relinquished By: Date Time: Date Time: Relinquished By:	3 Day EMERGENCY		TRRP Che	cklist							
SAMPLE CUSTOOY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COUNTER DELIVERY A Bate Time: Received By: Relinquished By: Date Time: Reference By: Relinquished By: Relinquished By: Date Time: Reference By: Relinquished By: Date Time: Reference By: Reference By: Relinquished By: Relinquished By: Reference By: R	TAT Starts Day received by Lab, if received by 5:	00 pm	1.					FED-EX /	UPS	: Tracking #	
AX 3/b//3 AVHO AVHO AVHO AVHO Avenue Date Time: Date Time: Referved By: Relinquished By: Relinquished By: Date Time:		Date Time: *	NTED BELOW EACH TIM	IE SAMPLES CHANGE	E POSSESSION, INCI	LUDING COURIER D			0	D	
Date Time: Referved By: Pate Time: Date Time:	X	3/8/17 Vor	10 Hecepved by:	ANNY	Relinquist	ned By:		Time:	Rece 2	Received By: 2	
	Relinquished by:	Date Time:	Received By: '		Relinquist	hed By:	Date	Time:	Recei	Received By:	

Client: KJE Enviromental & Civil Engineering

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 03/08/2017 04:40:00 PM	Acceptable reinperature Range: 0 - 0 degc Air and Metal samples Acceptable Range: Ambient					
Work Order #: 548179	Temperature Measuring d	levice used:R8				
Sample Rece	ipt Checklist	Comments				
#1 *Temperature of cooler(s)?	5.2					
#2 *Shipping container in good condition?	Yes					
#3 *Samples received on ice?	Yes					
#4 *Custody Seal present on shipping container/ cooler?	N/A					
#5 *Custody Seals intact on shipping container/ cooler?	N/A					
#6 Custody Seals intact on sample bottles?	N/A					
#7 *Custody Seals Signed and dated?	N/A					
#8 *Chain of Custody present?	Yes					
#9 Sample instructions complete on Chain of Custody?	Yes					
#10 Any missing/extra samples?	No					
#11 Chain of Custody signed when relinquished/ received?	Yes					
#12 Chain of Custody agrees with sample label(s)?	Yes					
#13 Container label(s) legible and intact?	Yes					
#14 Sample matrix/ properties agree with Chain of Custody?	Yes					
#15 Samples in proper container/ bottle?	Yes					
#16 Samples properly preserved?	Yes					
#17 Sample container(s) intact?	Yes					
#18 Sufficient sample amount for indicated test(s)?	Yes					
#19 All samples received within hold time?	Yes					
#20 Subcontract of sample(s)?	Yes	Houston				
#21 VOC samples have zero headspace?	N/A					
#22 <2 for all samples preserved with HNO3,HCL, H2SO4? I samples for the analysis of HEM or HEM-SGT which are verif analysts.	•					
#23 >10 for all samples preserved with NaAsO2+NaOH, ZnA	Ac+NaOH? N/A					

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Jessica Kramer
Jessica Kramer

Date: 03/09/2017

Checklist reviewed by: Hely Taylor Holly Taylor

Date: 03/09/2017
APPENDIX F

Environmental Professional's Credentials

Kevin J. Ware 109 South Oakland Street Denton, Texas 76201 Phone: 940-387-0805 Fax: 940-387-0830 Cell: 469-487-6083 kevin@kjenvironmental.com

EDUCATION

M.S., Environmental Engineering

Oklahoma State University, Stillwater, Oklahoma

B.S., Environmental Science

University of Oklahoma, Norman, Oklahoma

WORK EXPERIENCE

KJ Environmental Mgt., Inc.

Denton, Texas

President – (December 2005 to Present)

- Environmental compliance audits of large scale industrial and manufacturing plants • Air, water, waste, EPA reporting, etc....
- Hazardous Waste Management
 - Hazardous waste audits & management plans for thirty different industries
 - Designing process modifications for industrial clients to reduce waste (P2)
- Hazardous waste remediation
 - Soil & groundwater cleanup
 - (Chlorinated solvents -lumber treating operation, Broken Bow, OK)
 - o Soil & surface water cleanup
 - (Lead contamination natural gas pipeline, Madill, OK)
- Air permitting
 - Major source air permit applications for several large industries
- Phase I and Phase II Environmental Site Assessments
- Wetland delineation studies
- Storm water pollution prevention management (construction and industrial facilities)
- Expert witness

GaiaTech, Inc.

Irving, Texas

Senior Environmental Consultant – (August 2005 to December 2005)

- Performed Environmental Compliance, safety and engineering audits for various largescale industrial/commercial clients
 - o air, water, hazardous waste, safety, etc.
- Designed waste minimization system to lower operating costs for businesses
 - o i.e., wastewater recycling project

Isbell Engineering Group, Inc.

Sanger, Texas

Senior Environmental Engineer – (July 2003 to August 2005)

- Completed environmental compliance and safety audits for industrial clients
- Performed Phase I Environmental Site Assessments Due Diligence
- Reviewed engineering designs for a fire suppression system at a FEMA facility
- Directed environmental investigations for waste dump sites
- Designed utility (water/sanitary sewer) lines for subdivisions and other developments
- Assisted in the development of civil engineering construction plans for small medical offices/facilities
- Assisted in the review of City Engineering plans for small municipalities
- Assisted in the design and construction management of a 200,000 gal/day municipalrelated wastewater treatment plant

Science Applications International (SAIC)

Midwest City, Oklahoma

Environmental Engineer – (May 2003 to July 2003)

- Created Site Health & Safety Plan for Air Force Remediation Project (Tinker AFB)
- Field Safety Manager for groundwater monitoring project (Tinker AFB)

Marshall Environmental Management, Inc.

Oklahoma City, Oklahoma

Environmental Specialist – (November 1999 to May 2003)

- Facility-wide noise survey (FAA Facility- Will Rogers Airport, Oklahoma)
- Industrial Hygiene Studies Tinker, AFB
- Lead-based paint analysis & remediation design of base housing (Vance AFB, OK)
- Project Supervisor for cleanup and disposal of hazardous material spills
 - Emergency Response situations

Department of Environmental Quality (Oklahoma)

Oklahoma City, Oklahoma

Environmental Specialist – (July 1999 to November 1999)

- Trained and informed businesses of pollution prevention techniques
- Explained the applicability of environmental regulations to specific industrial sectors and regulated entities

CERTIFICATIONS AND LICENSES

- Engineer-In-Training (EIT)
- Qualified Environmental Professional (Institute of Professional Practice)
- Registered Professional Environmental Specialist (Oklahoma)

<u>OTHER</u>

• Routine Guest Lecturer for Southwest Oklahoma State Aviation Safety Classes at Tinker AFB, Midwest City, OK

James Lawrence Fox project manager

WORK HISTORY

<u>Project Manager</u> <u>KJ Environmental Management, Inc.</u>

2014 - Present

I am currently working as a Project Manager at KJ Environmental in Cross Roads, Texas. I have over three years of experience in the environmental field. I provide regulatory compliance services for various industries including oil and gas storage and trucking facilities, sand and gravel mining facilities, and manufacturing facilities. My areas of expertise include project management, wetland determination and delineation, construction and industrial storm water pollution prevention plans (SWPPP), management of PST tank pulls, oil pollution prevention compliance (SPCC), asbestos sampling and assessments, Phase I Environmental Site Assessments, Limited Phase II Environmental Site Assessments, and Naturally Occurring Radioactive Material (NORM) surveys. I have also served as the Project Manager for oil & gas production and commercial saltwater disposal clients in handling multiple produced water spill investigations and remediation activities completed under the jurisdiction of the Railroad Commission of Texas. I currently work as a Project Manager to complete projects for a variety of industries, while ensuring the delivery of the highest quality work product, customer service, and professionalism.

<u>Environmental Scientist</u> <u>Trinity River Authority of Texas (TRA)</u> 2013 - 2014

At TRA, I conducted surface water sampling throughout the Trinity River Basin. Under the Planning and Environmental Services Special Studies and Assessments Manager, I handled a variety of tasks related to field data collection, field gear and sampling equipment preparation/maintenance, and data quality assurance/analysis. I worked within an interdisciplinary scientific team in both field and office settings. The job was physically demanding in harsh, outdoor environments. Main field studies included biological surveys, water quality sampling, geomorphological and hydrological surveys.

<u>Field Technician</u> <u>Texas Forest Service (TFS)</u> 2009-2013

At TFS, I conducted various types of tree surveys for exotic invasive trees and insects throughout east Texas. I became very experienced in identifying woody plants and herbaceous species of Texas. I was certified for Wildland firefighting and assisted the U.S. Forest Service in prescribed burnings. I specifically aided in research and control of the southern pine beetle (*Dendroctonus frontalis*), Ips bark beetle (*Ips grandicollis, calligraphus and avulsus*), Nantucket pine tip moth (*Rhyacionia frustrana*) for the Texas Forest Service.

<u>Military Service</u> <u>United States Marine Corps</u> 2004-2010

I served in Fallujah, Iraq with the 14th Marines in 2006 - 2007. During that time, I was awarded medals of combat action, Marine Corps Reserve select, Global war on terrorism, Iraq campaign medal, Sea service deployment, national defense service, Navy unit commendation, and armed forces reserve. My occupational specialty was an Automotive Maintenance Technician for the High Mobility Multipurpose Wheeled Vehicle (HMMWV), and the Medium Tactical Vehicle Replacement (MTVR). During my time in Fallujah, I assisted in planning and security of hundreds of convoys for multiple platoons of infantry Marines. I also routinely drove the lead patrol vehicle with an Improvised Explosive Devise (IED) / Mine sweeper attachment on a 7-ton vehicle.

EDUCATION

University of Stephen F. Austin Bachelor of Science in Forestry with a focus in Wildlife Management 2009-2013

Activites and Societies: Ducks Unlimited Wildlife Society

ADDITIONAL INFORMATION

Professional Education & Certifications:

HAZWOPER 40 HR Certification Certified Asbestos Inspector (Certificate No. 15039) Certified NORM Surveyor USACE Wetland Delineation 40 HR Training Course Red Card certified for Wildland firefighting SPCC/FRP Compliance Workshop, EPA Region 6

Affiliations:

Planning and Zoning Committee member for the City of Sanger, Texas Parks and Recreation Committee member for the City of Sanger, Texas Society of Texas Environmental Professionals

CONTACT INFORMATION

Email: jfox3549@yahoo.com Phone: (940) 368 - 3535

940-387-0805

gregg@kienvironmental.com

PROFESSIONAL EXPERIENCE:

KJE Environmental & Civil Engineering

2016 – Present

KJ Environmental Management, Inc. (KJE) is a dedicated, full-service environmental and civil engineering consulting firm located on the north side of the Dallas-Fort Worth metroplex. KJE is comprised of a team of professionals who strive to provide creative and cost effective solutions for today's multi-faceted environmental and civil engineering issues.

Senior Project Manager – Primary projects include Phase II Environmental Site Assessments. SPCC Plans, Stormwater Pollution Prevention Plans, and Oil and Gas Permitting.

Sage Environmental Consulting, L.P., Richardson, TX

2011 - 2016 Sage Environmental Consulting provides environmental project management and consulting services nationwide. Role was to manage soil and groundwater investigation projects and remediation, Due Diligence projects, Spill Prevention, Control, and Countermeasure (SPCC) Plans, and Storm Water Pollution Prevention Plans (SWPPP).

Senior Project Manager

- Developed and managed a fugitive gas emissions program for all New Source Performance Standard (NSPS) OOOO and Subpart W regulated equipment. The client was a Major Global Oil Company and project sites consisted of their Onshore USA Assets.
- Implemented best practices using Optical Gas Imaging (OGI) and FLIR GF320 Infrared Cameras to inspect all onshore equipment to identify any fugitive gas emission leak sources.
- Developed a Master Fugitive Emissions Program Plan and provided to all the assets, which included procedures, training, and methods for maintaining the program. Managed implementation by client supervisors at various locations throughout Texas and Louisiana.

Due Diligence Manager

- Managed teams of personnel who conducted due diligence site inspections for over 1,200 oil and gas wells and 67 tank batteries in less than two weeks across four separate regions of Texas.
- Reviewed Texas Commission on Environmental Quality (TCEQ) and Railroad Commission of Texas (RRCT) records, and aerial and site photographs for details and/or evidence of site contamination.
- Calculated estimated remediation costs for 49 separate tank batteries and well locations. •

Senior Project Manager

Proposed, Conducted, and Managed surface and subsurface spill investigations and remediation, and completed over 1,000 SWPPP and SPCC Plans.

Senior Project Manager

Scheduled, Managed, and Performed Optical Gas Imaging (OGI) inspections utilizing FLIR (Forward Looking Infrared Radiometer) GF320 infrared cameras on offshore oil platforms in The Gulf of Mexico near Texas and Louisiana coasts.

Terracon Consultants, Inc., Enercon Services, Inc., Cirrus Associates, LLC.,2009 - 2011Fugro Consultants, Inc., Geoscience Consultants International,
and Mas-Tek Engineering, Inc., Dallas/Fort Worth, TX2009 - 2011

Civil Engineer / Professional Geoscientist / Project Manager: (Independent Consultant)

Primary projects included The North Tarrant Expressway in Fort Worth; the LBJ Freeway Managed Lanes in Dallas; and The Trinity River Levee and Floodplain investigation for The US Army Corp of Engineers.

- Conducted logging of drill holes and core holes to determine site specific lithology.
- Installed piezometers, developed monitor wells, and performed slug tests to determine the aquifer transmissivity and storativity for multiple monitoring wells.
- Conducted field soil tests, performed packer tests, installed piezometers, and recorded data from downhole pressure transducers.
- Assisted with CPT (Cone Penetrometer Testing) operator performing seismic survey tests, pore pressure dissipation tests, and dilatometer tests.
- Performed various other engineering projects on a contract basis. SPCC Plans, SWPPP, and Phase I or Phase II Environmental Site Assessments (ESAs) were additional responsibilities.

Talon/LPE, Inc., Carrollton, TX

Senior Engineer / Project Manager

- Managed, supervised, and conducted all project activities, including well/boring logging, development and sampling of groundwater monitoring wells; soil sample collection; waste classification and disposal; hydrogeologic characterizations; and preparing groundwater monitoring and corrective action plans.
- Designing, installed, and monitored the effectiveness of remediation systems. Performed these projects, as well as Phase I and II ESAs, for major oil, communication, utility, real estate, municipal, retail, and financial clients.
- Performed site visits and prepared SWPPP/SPCC Plans to maintain clients' regulatory compliance.

Terra-Solve, Inc., Carrollton, TX

Project Manager / Civil Engineer

- Managed, supervised, and conducted over 550 projects in 16 states. Coordinated field investigation activities, including scheduling and procurement of subcontract labor and necessary materials.
- Conducted well and boring logging at numerous sites in Texas, New Mexico, Oklahoma, and Arkansas. For these projects the lithologic units were described using the Unified Soil Classification System (USCS), conducted field screening for various geotechnical and analytical parameters, and prepared soil samples for shipping to testing laboratories in various states.
- Conducted Dual-Phase Extraction and aquifer tests, analyzed the recorded data and completed the required analytical reports. Performed these projects, as well as Phase I and II Environmental Site Assessments (ESAs), for major oil, communication, utility, real estate, municipal, retail, and financial clients.
- Designed remediation systems, supervised system installations, and monitored the effectiveness of various types of remediation systems.
- Performed site visits and prepared SWPPP/SPCC Plans to maintain clients' regulatory compliance.
- Provided construction management and engineering/construction inspection services over a five year period for a local municipality and Habitat For Humanity which included asphalt and concrete roadway construction, railroad crossings, utility installations, bridge construction, and sanitary sewer lift station construction.

2008 – 2009

1996 - 2008

EDUCATION, PROFESSIONAL REGISTRATIONS & TRAINING:

Education: B.S. Petroleum Engineering, Texas Tech University, Lubbock, TX

Professional Registrations:

- Licensed Professional Engineer (P.E.), (License No. 88441), Texas
- Licensed Professional Engineering Firm, (License No. 17779), Texas
- Licensed Professional Engineer (P.E.), (License No. 21593), New Mexico
- Licensed Professional Geoscientist (P.G.), (License No. 6264), Texas
- Licensed Professional Geoscientist (P.G.), (License No. 1051), Louisiana
- UST Remediation Consultant (License No. 60), Oklahoma
- Corrective Action Project Manager (CAPM No. 799), TCEQ
- Transportation Worker Identification Credential (TWIC), Transportation Safety Administration (TSA)

Certifications and Continuing Education:

- Occupational Safety and Health Administration (OSHA) Training for Hazardous Waste Operations, Supervisor Level, (40 Hour Course and Annual Refreshers)
- Basic Plus Safety and Annual Refreshers
- Wastewater and Stormwater Permitting and Compliance Seminars, TCEQ
- Produced Water Production Conference, Society of Petroleum Engineers
- Air Permitting Basics and Advanced Air Permitting, Sage Environmental Consulting
- Helicopter Underwater Egress Training (HUET), Falck Safety Training
- Oil and Gas Essentials, Sage Environmental Consulting
- Environmental Chemistry, Oklahoma State University
- Management of Solid and Hazardous Waste (RCRA), Oklahoma State University
- Pollution Prevention (P2) Plan and Waste Management Workshop, TCEQ
- Project Manager Professional Training (PMP), D and L Training

Dena Marie Vandenberg, REM, LEED AP ENVIRONMENTAL PROFESSIONAL

WORK HISTORY

Chief Operating Officer / Director of Environmental Services

KJ Environmental Management, Inc.

June 2011 - Present (5 years, 2 months)

I am currently working as the Chief Operating Officer / Director of Environmental Services at KJ Environmental in Cross Roads, Texas. I have over eleven years of experience as an environmental professional in consulting. I lead a team of Engineers and Scientists to complete projects for a variety of industries, while ensuring the delivery of the highest quality work product, customer service, and professionalism.

Project Manager

KJ Environmental Management, Inc.

April 2010 – June 2011 (1 year 3 months)

When I began working at KJ Environmental in Denton, Texas as a Project Manager, I provided regulatory compliance services for various industries including oil and gas storage and trucking facilities, sand and cement handling facilities, manufacturing facilities, and municipal agencies. My areas of expertise included project management, construction and industrial storm water pollution prevention plans (SWPPP), NPDES/TPDES permit applications, management of PST tank pulls, oil pollution prevention compliance (SPCC), Permit-By-Rule (PBR) Applications, New Source Review (NSR) Applications, Barnett Shale Phase I & Phase II Special Emissions Inventories, Saltwater Disposal Well Permitting, Underground Injection Control Permitting, TCEQ Public Water System compliance, drinking water, storm water, ground water, and waste sampling, asbestos sampling, mold assessments, radon testing, lead-based paint sampling, lead in drinking water sampling, Phase I Environmental Site Assessments, Limited Phase II Environmental Site Assessments, noise monitoring, and brownfield redevelopment. I have also served as the Environmental Professional on record for oil & gas production and commercial saltwater disposal clients in handling multiple produced water spill investigations and remediation activities completed under the jurisdiction of the Railroad Commission of Texas.

Environmental Scientist

Terracon

Privately Held; 1001-5000 employees; Civil Engineering industry April 2006 – February 2010 (3 years 11 months)

At Terracon, I conducted hundreds of Phase I ESAs for various types of properties from vacant land to industrial/manufacturing facilities and gas stations. I also did regulatory compliance consulting for oil & gas clients, industrial/manufacturing facilities, and municipalities. I completed SWPPPs and SPCCs, conducted storm water sampling, and operated a public water system on behalf of a municipality. I became a licensed Asbestos Inspector, Mold Assessment Technician, and LEED Accredited Professional.

Environmental Geologist

<u>Cirrus Associates</u> March 2006 – March 2006 (1 month)

At Cirrus Associates, I acted as a contract employee on a VCP project for a client in Odessa, Texas. I conducted sampling of groundwater monitoring wells using low-flow sampling techniques.

Environmental Scientist

Delta Environmental

August 2004 – December 2005 (1 year 5 months)

At Delta Environmental, I worked conducted public drinking water sampling under a mulitmillion dollar TCEQ contract. I collected over 3,000 drinking water samples with a 99.8% laboratory acceptance rate. I was recognized as one of the top 5 samplers in the state for productivity and was trusted with the responsibility of training other samplers associated with the project. In addition, I conducted several ESAs to obtain more experience, when time would allow.

EDUCATION

University of North Texas

Bachelor of Science in Geography with a focus in Earth Science, Geology Minor1999-2004

Activities and Societies: Vice Chairman of the Planning & Zoning Commission for the Town of Providence Village, Texas Delta Zeta Sorority

ADDITIONAL INFORMATION

Professional Education & Certifications:

National Registry of Environmental Professionals (NREP) Registered Environmental Manager (REM) OSHA 29 CFR 1910.120 HAZWOPER 40 HR Certification EPA Accredited Asbestos Inspector TDSHS License Asbestos Inspector (License No. 602837) TDSHS Licensed Mold Assessment Technician (License No. MAT1011) TCEQ Class C Water Distribution Operator (License No. WD0007445) Leadership in Energy and Environmental Design (LEED) Accredited Professional Texas Commission on Environmental Quality (TCEQ) Certified Water Sampler under the Safe Drinking Water Act and State Regulations (ID No. 2005-006) ORIS-Enviromod University- AERMOD Modeling For Permits Certification Certified NORM Surveyor

Affiliations:

The North Texas Association of Environmental Professionals Society of Texas Environmental Professionals Association of American Geographers U.S. Green Building Council

CONTACT INFORMATION

Email: <u>denavandenberg@yahoo.com</u> Phone: (214) 364-7627

APPENDIX G

OCD Approved Pertinent Information and Workplans

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rel	ease Notifi	catio	n and Co OPERA			Initia	Depart		Final Danart
Name of Company – Oilfield Water Logistics (OWL)					OPERATOR Initial Report Final Report Contact – Mr. Phillip Sanders							
					Telephone No. – 210-906-3551							
Facility Na	me – One	mile east of	OWL Re	d Hills SWD			e - Pipeline on		Red	Hills SWI	D Facili	ity
Surface Owner Mineral Owner					API No. – 30-025-09806							
						LOPPE	P.LOP	1			07000	
Unit Letter	Section	Township	Range	Feet from the	_	N OF REI	Feet from the	Fast/West I	t/West Line C		Country	
Clar Briter	orelion	rownship	Range	rect nom me	North	South Ente	reet from the	Last west L	ine County			
			Latitu	de_ <u>32.095190</u>	2	Longitude	-103.201991					
				NAT	URE	OF RELI	EASE					
		iced Salt Wate				Volume of Release - 418 bbls Volume R				ecovered – In progress		
	Source of Release – 2" Ball Valve on pipeline					Date and Hour of Occurrence - Date and			and I	Hour of Discovery – at 8:11 a.m.		
Was Immediate Notice Given?					If YES, To Whom? Unknown truck driver notified Phillip Sanders with OWL at 8:11 a.m. on 11/2/16						m. on	
By Whom? I	Jnknown tr	uck driver con	ntacted Phi	llip Sanders with	OWL	Date and Hour – 11/2/16 at 8:11 a.m.						
Was a Watercourse Reached?					If YES, Volume Impacting the Watercourse.							
was bled off	auring the I	6 inch diamet	ler transmi	n Taken.* - A 2" l ssion pipeline shu The 2" Ball Valv	itdown.	and when pipe	eline operation w	as restarted sp	ciden ill beg	tally left op gan to occur	en after 7. Pipelir	pressure ne was
Describe Are and prevent fi	a Affected a urther sprea	and Cleanup A ding of the flu	Action Tak uids. Vacu	en.* - Excavation um truck onsite re	and dirt	t moving equi as much fluic	pment currently o ls as possible.	onsite and cons	struct	ing a berm t	o contai	n fluids
public health should their o	or the envir perations ha	are required to conment. The ave failed to a ddition, NMO	acceptance dequately CD accept	is true and compl d/or file certain re e of a C-141 repo investigate and re lance of a C-141 r	elease no rt by the emediate	NMOCD ma contaminatio	d perform correct rked as "Final Re n that pose a thre	tive actions for port" does not at to ground w	relea relie	uses which r ve the opera	nay enda ator of lia	anger ability
Signature: Milij						OIL CONSERVATION DIVISION						
Printed Name: MILLOLY MARGERS						Approved by Environmental Specialist:						
		V Dal				Approval Date	11/7/2016	Expirati	tion Date: 1/7/2016			
				he Logistics.	-	Conditions of A				Attached		
Date:	1-2-14		Phone:	432-2.4-3	235	Please see	attached dir	ecuve		1RP 4	498	

* Attach Additional Sheets If Necessary

nKL1631253063 pKL1631255685

Operator/Responsible Party,

The OCD has received the form C-141 you provided on 11/2/2016 regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number RP 4498 has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District1 office in Hobbs on or before 12/7/2016. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

December 2, 2016

New Mexico Energy Minerals and Natural Resources Department (NM EMNRD) Oil Conservation Division (OCD) Ms. Kristen Lynch 1220 South Saint Francis Drive Santa Fe. New Mexico 87505

Re: Work Plan for the Characterization of Impacts Due to Two Pipeline Releases Oilfield Water Logistics Produced Water Pipeline Nearby OWL Red Hills SWD Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Dear Ms. Lynch:

KJE understands that the goals of the characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact 4) The characterization of any other adverse impacts that may have occurred (ex. Impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.).

KJE is pleased to provide the attached Work Plan for the characterization of Impacts due to two pipeline releases associated with Oilfield Water Logistics' (OWL's) Red Hills SWD Facility, located in Lea County, New Mexico.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. We look forward to receiving comments in order to proceed with the project and closure.

Kevin J. Ware, QEP / REM Principal

Gregg Beasine

Gregg Bessire, P.E., P.G. Senior Project Manager

Sonalyandenting

Dena M. Vandenberg, REM, LEED AP Director of Environmental Services

December 2, 2016

New Mexico, Energy Minerals and Natural Resources (EMNRD) Oil Conservation Division (OCD) Ms. Kristen Lynch 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Re: Work Plan for the Characterization of Impacts Due to Two Pipeline Releases Oilfield Water Logistics Produced Water Pipeline Nearby OWL Red Hills SWD Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Dear Ms. Lynch:

KJE proposes to perform the following environmental consulting services for OWL for the delineation portion of the project.

Environmental Investigation

The proposed scope of work will consist of performing an Environmental Investigation to evaluate the presence/absence of environmental contaminants in the soil at the two above-referenced produced water release locations. In addition, OCD has requested that KJE attempt to delineate any on-site soil contamination for future remediation efforts.

KJE understands that the goals of this workplan and characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact 4) The characterization of any other adverse impacts that may have occurred (ex. Impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.).

The Investigation will consist of the following activities:

• KJE will contact New Mexico 811 to request that they communicate with underground utility companies in the site area for location of their pipelines beneath the site and the site area.

- Multiple soil borings will be installed to a maximum depth to reach chloride and other constituent delineation levels as noted below (horizontal and vertical delineation), by Geoprobe. A site map (Figure A1) is attached showing the general locations and areal extent of both release locations. The proposed soil boring locations are illustrated on attached Figure A2, but the quantity of borings and boring locations may be field adjusted due to onsite conditions. The drilling contractor will be using a five (5) foot split-spoon continuous sampling device to allow for sampling of soil at two and one half (2.5) foot intervals for laboratory analysis. The actual number of borings and number of samples collected for analysis will be determined in the field based on assessment of release areas and Geoprobe access points available.
- Note that the OWL pipeline and the City of Jal Municipal Water Supply pipeline should both be excavated near proposed soil boring locations prior to installing soil borings nearby either of the pipelines.
- Horizontal delineation of soil impacts will be attempted in each of the four cardinal compass directions. Adsorbed soil contamination will be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes (BTEX) by either Method 8260 or 8021, total petroleum hydrocarbons (TPH) by Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), and for chloride by Method 300. KJE understands that delineation to 10 ppm Benzene, 50 ppm BTEX, 5,000 ppm TPH, and 600 ppm chlorides horizontally is required. Soil sampling will be both within the impacted area and beyond as field determined.
- Vertical delineation of soil impacts will also be attempted. Adsorbed soil contamination will be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes (BTEX) by either Method 8260 or 8021, total petroleum hydrocarbons (TPH) by Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified if required by OCD. Vertical characterization samples should be taken at depth intervals no greater than five (5) feet apart. Lithologic description of encountered soils will also be provided. KJE understands that delineation to 10 ppm Benzene, 50 ppm BTEX, 5,000 ppm TPH, and 250 ppm chlorides vertically is required. At least ten (10) vertical feet of soils with contaminant concentrations at or below these values will be demonstrated as existing above the water table.
- In addition to the horizontal and vertical delineation borings, KJE will install one (1) soil boring upgradient of each release area to a depth of ten (10) feet and collect background samples at two and one half (2.5) foot intervals for laboratory analysis.

Page 3

- Discrete, grab soil samples will be collected from each of the two and one half (2.5) foot intervals for laboratory analysis. A clean, decontaminated sampling trowel will be used to sample from each depth interval selected. For each soil boring, soil samples will be field screened using a calibrated Photo-ionization Detector (PID) (Model RAE MINIRAE 3000 Lite 0-15K ppm) for the highest reading for each boring. The sample with the highest PID reading and the sample collected at the bottom of each boring will be submitted for laboratory analysis.
- A statistically significant set of split samples will be submitted for confirmatory laboratory analysis, including the laterally farthest from the release sites and vertically deepest set of soil samples collected. In addition we will ensure that there are at least two samples submitted for laboratory analysis from each boring (highest contamination from PID and deepest depth investigated).
- Each soil sample will be handled with nitrile-gloved hands. The samples will be placed in clean, dedicated, laboratory-supplied, 4-ounce glass containers, and labeled with pertinent sampling information. The soil samples will be then placed in a cooling chest with adequate ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratory (a third-party, NELAP Certified, independent, and licensed environmental laboratory in Midland, Texas). The sample collection and handling activities will be conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. The drilling equipment, sampling equipment, and tools will be decontaminated before and between each sampling location. All personnel used dedicated nitrile gloves that will be changed frequently during the drilling activities.
- For this investigation, groundwater is not anticipated to be encountered during environmental drilling. According to records obtained from the New Mexico Office of the State Engineer's office Hydrology Bureau records, the minimum depth to water for water wells located in the same Township and Range as where the releases occurred is 200 feet.
- If groundwater is encountered in any of the soil borings, the boring will be left open for twenty-four (24) hours to determine if substantial water accumulates for sample collection and lab analysis. After 24 hours KJE will attempt to collect a groundwater sample using a new disposable bailer and submit the samples for laboratory analysis of BTEX, TPH, and Chloride if possible.

Report of Findings

KJE will prepare and provide an electronic copy of the final report describing the findings, conclusions, and recommendations from the Environmental Investigation. KJE will present the laboratory analytical results in a tabular format and compare these levels to the OCD specified delineation levels. Accurately scaled and well-drafted site maps will be provided showing the location of all borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Digital photographic documentation of the release locations and field work will also be included.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. We look forward to receiving comments in order to proceed with the project and closure.

Sincerely,

Kevin J. Ware, QEP / REM Principal

Gregg Beasine

Gregg Bessire, P.E., P.G. Senior Project Manager

Stenatyandenting

Dena M. Vandenberg, REM / LEED AP Director of Director of Environmental Services

Attachments: Figure A1 – General View of Releases Figure A2 – Detailed View of Releases

- NOTES:
 1. GOOGLE EARTH WAS USED AS AN UNDERLAY IMAGE FOR THIS MAP. (http://earth.google.com/)
 2. SURVEY OF SPILL EXTENTS PROVIDED BY FIELD SURVEY DATED 11/08/2016 FROM JAMES E. TOMPKINS, N.M. P.L.S.

SCALE: 1" = 120'

Spill Delineation Report & Remediation Plan

February 16, 2017

Oilfield Water Logistics (OWL) Produced Water Pipeline Releases Nearby OWL Red Hills SWD Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Prepared For:

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

New Mexico Energy Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD) Mr. Tomáš Oberding 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Prepared By:

500 Moseley Road Cross Roads, Texas 76227 (940) 387-0805 Phone (940) 387-0830 Fax

Table of Contents

- 1.0 Introduction
- 2.0 Subsurface Investigation Activities
- 3.0 Soil Sample Collection / Handling Procedures
- 4.0 Summary of Analytical Results
- 5.0 Risk Assessment
- 6.0 Photographic Exhibit
- 7.0 Conclusions / Recommendations
- 8.0 Qualifications of Environmental Professionals
- 9.0 Signature of Environmental Professional

Appendix A

Fig A1 – General View of Spills

- Fig A2 Detailed View of Spills Showing Soil Boring Locations Installed for Delineation
- Fig A3 Proposed Soil Boring / Temporary Monitoring Well (SB/TMW-1) Location

Appendix B

Photographic Exhibit

Appendix C

Representative Soil Boring Logs Table 1 - Soil Boring Lithology and Field Screening Values Recorded

Appendix D

Table 2 – Soil Borings Installed – Soil Sample Analytical Results

Appendix E

Environmental Professionals' Credentials

Appendix F

Workplan to Install One Soil Boring (SB) / Temporary Monitoring Well

1.0 Introduction

Oilfield Water Logistics (OWL) notified KJE of two spill occurrences over a relatively short time frame. KJE was notified of the first spill occurrence by Mr. Phillip Sanders, Safety Director with Oilfield Water Logistics, on October 28, 2016. Mr. Sanders notified the Oil Conservation Division (OCD) which is part of The New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) of the spill at 2:00 p.m. on October 28. KJE was notified of the second spill occurrence on November 2, 2016. Mr. Sanders notified OCD of this spill occurrence at 8:11 a.m. on November 2, 2016. It was determined that 1,659 barrels of produced water was released during the first spill event, and it was determined that 418 barrels of produced water was released during the second spill event. KJE submitted Form C-141 Spill reports to OCD on November 2, 2016 for their review. The general view of both spills is illustrated in Appendix A on Figure A1.

KJE was retained by Oilfield Water Logistics (OWL) to complete delineations of the two produced water spill sites located approximately five miles miles southwest of Jal in Lea County, New Mexico. The delineation workplan was submitted by KJE and administratively approved by Mr. Tomas Oberding on November 30, 2016. This workplan was prepared at the request of OCD to collect soil samples for analysis to delineate the vertical and horizontal extent of the produced water affected soils.

2.0 Subsurface Investigation Activities

From December 5, 2016, through December 21, 2016, forty-seven (47) soil borings were advanced within Spill Area 1, and forty-eight (48) soil borings were advanced within Spill Area 2 utilizing either a geoprobe or hollow stem auger rig. Additionally one background sample boring was advanced outside of the affected soil areas nearby each spill area. Detailed views of each spill area are exhibited on Figure A2 in Appendix A. Field screening for chloride concentrations and soil conductivity was conducted using a calibrated Hanna HI993310 soil conductivity meter. Field screening for Volatile Organic Compounds (VOCs) was conducted using a calibrated Photoionization Detector (PID) (Model RAE MINIRAE Lite 0-5K ppm) to screen for the highest readings from each of the borings. Photo documentation of field activities is included in Appendix B. Soil Boring depths sampled and analyzed ranged from ground surface (0') to twenty-six feet (26'). The soil boring lithology and field screening data table (Table 1) is included in Appendix C for review. Due to the uniformity in lithology, representative boring logs are also provided in Appendix C.

3.0 Soil Sample Collection/Handling Procedures

Soil sampling procedures/activities included the collection of soil cores utilizing a geoprobe or hollow stem auger rig. A clean, decontaminated sampling trowel was used to sample from each

core section. Soil samples were placed in laboratory provided 4-ounce glass jars labeled with pertinent sampling information. To prevent contamination of the sample containers, each container remained laboratory-sealed until sample collection. The OCD requested we collect a statistically significant set of split samples and submit to the lab for confirmatory laboratory analysis. One set of samples for every twenty (20) samples collected were split for laboratory analysis, and these results are included on Table 2 in Appendix D for review. KJE personnel used dedicated nitrile gloves that were changed frequently during the sampling activities.

The soil samples were then placed in a cooling chest with adequate ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratory (a third-party, independent, and licensed environmental laboratory in Midland, Texas). The sample collection and handling activities were conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. The drilling equipment, sampling equipment, and tools were decontaminated before and between each sampling location.

Chain-of-Custody forms were completed in the field at the time of sample collection. When custody of the samples changed, signatures of personnel handling the sample exchange were noted on the form along with the date and time. A copy of the form was retained prior to sample delivery, and stored in the project files. A signed and completed copy of the chain-of-custody form was returned from Xenco Laboratory with the laboratory report, and is included in Appendix D of this report.

The soil samples were analyzed for Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) by EPA Method 8260, and TPH (Total Petroleum Hydrocarbons) by EPA Method 8015 modified with extended range, and Chlorides by EPA Method 300. These analytical methods are the EPA, OCD, and industry-approved standards used to determine the potential for soil contamination.

4.0 Summary of Analytical Results

Soil Action Limits

The OCD required delineation of Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), TPH (Total Petroleum Hydrocarbons), and Chlorides for the spill areas. Published values for BTEX and TPH were obtained from the OCD document "Guidelines for Remediation of Leaks, Spills, and Releases, 1993". Horizontal and vertical delineation values were determined to be 10 ppm Benzene, 50 ppm BTEX, and 5,000 ppm TPH since no groundwater or surface water is present in the site area. Verbal directives issued by OCD representatives Ms. Kristen Lynch and Mr. Tomáš Oberding were that horizontal delineation for chlorides is 600 ppm and vertical delineation is 250 ppm. Figure A2 in Appendix A illustrates areas which are fully delineated and areas with one or more constituent exceedance. Analytical results are

included on Table 2 in Appendix D for review. Laboratory reports are also included in Appendix D. Based on the laboratory analytical results, delineation of affected soils has been completed for the majority of both spill areas.

Soil Delineation - Analytical Results

For Spill Area 1, Benzene concentrations in soil samples ranged from BDL (Below Detection Limits) to 7.57 mg/kg (ppm) while BTEX concentrations ranged from BDL to 304 mg/kg (ppm). The TPH results ranged from BDL to 10,900 mg/kg (ppm) and Chloride concentrations ranged from BDL to 11,900 mg/kg (ppm).

For Spill Area 2, Benzene and BTEX concentrations were all BDL. The TPH results ranged from BDL to 818 mg/kg (ppm), and Chloride concentrations ranged from BDL to 8,790 mg/kg (ppm). The affected soil depths in Spill Area 1 range from verified depths of 0 to 26 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 6.40 feet. The estimated area of affected soils is 1.21 acres (52,708 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 1 is 12,494 cubic yards.

The affected soil depths in Spill Area 2 range from verified depths of 0 to greater than 14 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 5.64 feet. The estimated area of affected soils is 2.38 acres (103,673 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 2 is 21,656 cubic yards.

Groundwater

Groundwater was not encountered in any of the soil borings which were installed. According to records available from the New Mexico Office of the State Engineers database, a water well which is located approximately 4.75 miles southwest of the spill areas recorded the shallowest depth to water in the site vicinity at 214 feet.

KJE recommends the installation of a groundwater monitoring well to evaluate the depth to groundwater and presence of impacts. It is not anticipated that groundwater will be encountered during drilling; however, if groundwater is encountered, it will be sampled in accordance with the attached workplan (Appendix F).

5.0 Risk Screening

Analytical results from soil boring SB4 in Spill Area 1 are included on the table below and are compared to the OCD Action Limits, Pit and Recycling Containment Closures, and the New Mexico Environmental Department (NMED) Soil Screening Levels issued December 2014 and July 2015. These soil samples exhibited the highest Benzene, BTEX, and TPH concentrations. All Chloride levels for the analyzed samples are less than the OCD requirements for Pit Closures and Recycling Containment Closures as illustrated in the table below and in Table 2 in Appendix D. All constituents except for TPH levels are less than one or more OCD or NMED regulatory guidelines. The TPH soil screening levels are based solely on human health considerations related to direct soil exposure, not ecological risk considerations, protection of surface or groundwater, or potential soil vapor impacts from soil vapor. Since there is no noticeable impact to wildlife, no surface water in the site area, groundwater depth is believed to be greater than 100 feet, and there are no buildings on site, these TPH considerations should not be a factor.

SPILL AREA 1									
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	Chlorides	TPH		
SB4 (0'-2')	<0.099	6.03	0.766	52.8	59.6	3,000	4,150		
SB4 (2'-4')	<0.200	2.15	0.715	153	155	1,590	10,900		
SB4 (4'-6')	0.731	6.72	<0.198	105	112	1,330	7,510		
SB4 (6'-8')	7.51	97.9	8.20	190	304	1,780	10,400		
SB4 (8'-10')	0.51	12.9	5.74	29.5	48.7	5,970	2,740		
SB4 (10'-12')	6.27	99.2	30.9	156	292	3,670	8,540		
SB4 (14'-16')	1.38	42.5	17.0	79.3	140	2,460	4,460		
Split	0.247	13.8	9.63	49.3	73	2,050	3,910		
SB4 (16'-18')	<0.001	<0.001	<0.001	0.00352	0.003	2430	22.2		
OCD Action Limits 1993 Guideline	10				50	Horiz. – 600 Vert 250	5,000		
OCD Rule 19.15.17.13 Pit Closures	10				50	20,000	1,000		
OCD Rule 19.15.34.14 Recycling Containment Closures	10				50	20,000	1,000		
NMED Soil Screening Levels, December 2014 and July 2015 Const. Worker	142	14,000	1,770	798			5,000		
Action Limits and Closure Requirements Assumes Depth To Water is > 100 feet									

6.0 Photographs

Photographic documentation of the drilling and sampling activities is included in Appendix B.

7.0 Conclusions/Recommendations

KJE has concluded that the majority of each spill area has been delineated, and that there would be no beneficial outcome of installing five to ten additional soil borings in the spill areas. KJE feels that we would only replicate analytical results from other nearby soil borings.

According to the records acquired from the New Mexico Office of the State Engineers database, it appears that there is at least 185 feet between the zones of affected soils and groundwater. KJE feels that the chance of groundwater contamination from the affected soils is highly unlikely.

Based on the following reasoning, KJE requests that the affected soils be allowed to remain in place if groundwater is determined to be at a depth unlikely to be impacted by the releases:

- the majority of the impacted soils are located adjacent to, or below one of three operating pipelines (OWL produced water, City of Jal drinking water, and nearby ranch drinking water). Excavation in these areas could adversely affect the structural integrity of one or all of these pipelines.
- adverse environmental impacts are minimal,
 - land owner has approved the soil to remain in place
 - little vegetation was present in the area due to the sandy soils, and the right of way (ROW) is being used as the route for 24-hour OWL pipeline inspectors
 - o there is no noticeable impact to wildlife
 - there are no residences in the site area
 - there are no buildings in the site area for vapor intrusion consideration
 - there is no ongoing air quality impact
 - construction worker exposure would be primarily chlorides
- the large total volume (34,150 cubic yards) of impacted soil in both spill areas would make remediation efforts economically infeasible.

A small area of TPH affected soils was identified within Spill Area 1 with analytical results above the OCD action levels for TPH. KJE proposes that quarterly soil sampling be completed in this area for soil monitoring, and soil samples will be submitted to the laboratory for TPH sample analysis. These areas with TPH exceedances in soil will be monitored quarterly and resampled until the levels decrease to below the action limits.

In order to confirm that shallow groundwater is not present in the site area, KJE is proposing to install one soil boring to a depth of 100 feet and allow it to remain open for 24 hours to determine if groundwater is present. If no groundwater is present after this time period, then the soil boring will be properly plugged as required. If groundwater is present, then the soil boring will be converted to a 2-inch monitoring well. The well would then be gauged, purged, and sampled for analysis of Volatile Organic Compounds (VOCs) Method 8260 full list, (TPH) by

Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), Total Dissolved Solids (TDS) by Method 2540, pH by Method 9040, major anions and cations including chloride and sulfate by Method 9056, dissolved iron and manganese by Method 6010. The proposed location of the soil boring is shown on Figure A3 in Appendix A. The proposal and associated workplan is included in Appendix F for your review. If groundwater analytical results confirm that groundwater is impacted, a separate workplan will be submitted to conduct quarterly sampling for one year to monitor the affected groundwater.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.

8.0 Qualifications of Environmental Professional

This is to certify that the Environmental Investigation that was completed at the two produced water spill sites located approximately five miles southwest of Jal in Lea County, New Mexico were conducted using EPA, OCD, and industry-approved standards/protocols. This field work was conducted from December 5 through December 21, 2016 for OWL, and all field activities were completed under the supervision of Ms. Dena M. Vandenberg, REM, LEED AP. Mr. Ware's, Ms. Vandenberg's, Mr. Bessire's, and Mr. Fox's credentials are included in Appendix E for review.

9.0 Signature of Environmental Professional

algondenting

2/16/2017

Dena M. Vandenberg, REM, LEED AP Environmental Professional Date

2/16/2017

Kevin J. Ware, QEP, REM Principal Date

APPENDIX A

Figure A1 – General View of Spill Areas Figure A2 – Detailed View of Soil Borings Installed Figure A3 – Proposed Soil Boring / Monitoring Well Location

Spill Delineation Report & Remediation Plan

February 16, 2017

Oilfield Water Logistics (OWL) Produced Water Pipeline Releases Nearby OWL Red Hills SWD Section 2, T26S, R36E, Lea County, New Mexico – Case No. 1RP 4497 and Section 36, T25S, R36E, Lea County, New Mexico – Case No. 1RP 4498

Prepared For:

Mr. Phillip Sanders Oilfield Water Logistics 8214 Westchester Drive, Suite 850 Dallas, Texas 75225

New Mexico Energy Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD) Mr. Tomáš Oberding 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Prepared By:

500 Moseley Road Cross Roads, Texas 76227 (940) 387-0805 Phone (940) 387-0830 Fax

Table of Contents

- 1.0 Introduction
- 2.0 Subsurface Investigation Activities
- 3.0 Soil Sample Collection / Handling Procedures
- 4.0 Summary of Analytical Results
- 5.0 Risk Assessment
- 6.0 Photographic Exhibit
- 7.0 Conclusions / Recommendations
- 8.0 Qualifications of Environmental Professionals
- 9.0 Signature of Environmental Professional

Appendix A

Fig A1 – General View of Spills

- Fig A2 Detailed View of Spills Showing Soil Boring Locations Installed for Delineation
- Fig A3 Proposed Soil Boring / Temporary Monitoring Well (SB/TMW-1) Location

Appendix B

Photographic Exhibit

Appendix C

Representative Soil Boring Logs Table 1 - Soil Boring Lithology and Field Screening Values Recorded

Appendix D

Table 2 – Soil Borings Installed – Soil Sample Analytical Results

Appendix E

Environmental Professionals' Credentials

Appendix F

Workplan to Install One Soil Boring (SB) / Temporary Monitoring Well

1.0 Introduction

Oilfield Water Logistics (OWL) notified KJE of two spill occurrences over a relatively short time frame. KJE was notified of the first spill occurrence by Mr. Phillip Sanders, Safety Director with Oilfield Water Logistics, on October 28, 2016. Mr. Sanders notified the Oil Conservation Division (OCD) which is part of The New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) of the spill at 2:00 p.m. on October 28. KJE was notified of the second spill occurrence on November 2, 2016. Mr. Sanders notified OCD of this spill occurrence at 8:11 a.m. on November 2, 2016. It was determined that 1,659 barrels of produced water was released during the first spill event, and it was determined that 418 barrels of produced water was released during the second spill event. KJE submitted Form C-141 Spill reports to OCD on November 2, 2016 for their review. The general view of both spills is illustrated in Appendix A on Figure A1.

KJE was retained by Oilfield Water Logistics (OWL) to complete delineations of the two produced water spill sites located approximately five miles miles southwest of Jal in Lea County, New Mexico. The delineation workplan was submitted by KJE and administratively approved by Mr. Tomas Oberding on November 30, 2016. This workplan was prepared at the request of OCD to collect soil samples for analysis to delineate the vertical and horizontal extent of the produced water affected soils.

2.0 Subsurface Investigation Activities

From December 5, 2016, through December 21, 2016, forty-seven (47) soil borings were advanced within Spill Area 1, and forty-eight (48) soil borings were advanced within Spill Area 2 utilizing either a geoprobe or hollow stem auger rig. Additionally one background sample boring was advanced outside of the affected soil areas nearby each spill area. Detailed views of each spill area are exhibited on Figure A2 in Appendix A. Field screening for chloride concentrations and soil conductivity was conducted using a calibrated Hanna HI993310 soil conductivity meter. Field screening for Volatile Organic Compounds (VOCs) was conducted using a calibrated Photoionization Detector (PID) (Model RAE MINIRAE Lite 0-5K ppm) to screen for the highest readings from each of the borings. Photo documentation of field activities is included in Appendix B. Soil Boring depths sampled and analyzed ranged from ground surface (0') to twenty-six feet (26'). The soil boring lithology and field screening data table (Table 1) is included in Appendix C for review. Due to the uniformity in lithology, representative boring logs are also provided in Appendix C.

3.0 Soil Sample Collection/Handling Procedures

Soil sampling procedures/activities included the collection of soil cores utilizing a geoprobe or hollow stem auger rig. A clean, decontaminated sampling trowel was used to sample from each

core section. Soil samples were placed in laboratory provided 4-ounce glass jars labeled with pertinent sampling information. To prevent contamination of the sample containers, each container remained laboratory-sealed until sample collection. The OCD requested we collect a statistically significant set of split samples and submit to the lab for confirmatory laboratory analysis. One set of samples for every twenty (20) samples collected were split for laboratory analysis, and these results are included on Table 2 in Appendix D for review. KJE personnel used dedicated nitrile gloves that were changed frequently during the sampling activities.

The soil samples were then placed in a cooling chest with adequate ice, providing a 4°C environment for sufficient preservation until delivery to Xenco Laboratory (a third-party, independent, and licensed environmental laboratory in Midland, Texas). The sample collection and handling activities were conducted in accordance with USEPA Standard Operating Procedures and strict chain-of-custody protocols. The drilling equipment, sampling equipment, and tools were decontaminated before and between each sampling location.

Chain-of-Custody forms were completed in the field at the time of sample collection. When custody of the samples changed, signatures of personnel handling the sample exchange were noted on the form along with the date and time. A copy of the form was retained prior to sample delivery, and stored in the project files. A signed and completed copy of the chain-of-custody form was returned from Xenco Laboratory with the laboratory report, and is included in Appendix D of this report.

The soil samples were analyzed for Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) by EPA Method 8260, and TPH (Total Petroleum Hydrocarbons) by EPA Method 8015 modified with extended range, and Chlorides by EPA Method 300. These analytical methods are the EPA, OCD, and industry-approved standards used to determine the potential for soil contamination.

4.0 Summary of Analytical Results

Soil Action Limits

The OCD required delineation of Benzene, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), TPH (Total Petroleum Hydrocarbons), and Chlorides for the spill areas. Published values for BTEX and TPH were obtained from the OCD document "Guidelines for Remediation of Leaks, Spills, and Releases, 1993". Horizontal and vertical delineation values were determined to be 10 ppm Benzene, 50 ppm BTEX, and 5,000 ppm TPH since no groundwater or surface water is present in the site area. Verbal directives issued by OCD representatives Ms. Kristen Lynch and Mr. Tomáš Oberding were that horizontal delineation for chlorides is 600 ppm and vertical delineation is 250 ppm. Figure A2 in Appendix A illustrates areas which are fully delineated and areas with one or more constituent exceedance. Analytical results are

included on Table 2 in Appendix D for review. Laboratory reports are also included in Appendix D. Based on the laboratory analytical results, delineation of affected soils has been completed for the majority of both spill areas.

Soil Delineation - Analytical Results

For Spill Area 1, Benzene concentrations in soil samples ranged from BDL (Below Detection Limits) to 7.57 mg/kg (ppm) while BTEX concentrations ranged from BDL to 304 mg/kg (ppm). The TPH results ranged from BDL to 10,900 mg/kg (ppm) and Chloride concentrations ranged from BDL to 11,900 mg/kg (ppm).

For Spill Area 2, Benzene and BTEX concentrations were all BDL. The TPH results ranged from BDL to 818 mg/kg (ppm), and Chloride concentrations ranged from BDL to 8,790 mg/kg (ppm). The affected soil depths in Spill Area 1 range from verified depths of 0 to 26 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 6.40 feet. The estimated area of affected soils is 1.21 acres (52,708 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 1 is 12,494 cubic yards.

The affected soil depths in Spill Area 2 range from verified depths of 0 to greater than 14 feet, and the average depth of hydrocarbon and chloride affected soils is estimated to be 5.64 feet. The estimated area of affected soils is 2.38 acres (103,673 square feet), and the estimated area of contaminated soil contour line is illustrated on Figure A2 in Appendix A. Therefore, the estimated volume of affected soils in Spill Area 2 is 21,656 cubic yards.

Groundwater

Groundwater was not encountered in any of the soil borings which were installed. According to records available from the New Mexico Office of the State Engineers database, a water well which is located approximately 4.75 miles southwest of the spill areas recorded the shallowest depth to water in the site vicinity at 214 feet.

KJE recommends the installation of a groundwater monitoring well to evaluate the depth to groundwater and presence of impacts. It is not anticipated that groundwater will be encountered during drilling; however, if groundwater is encountered, it will be sampled in accordance with the attached workplan (Appendix F).

5.0 Risk Screening

Analytical results from soil boring SB4 in Spill Area 1 are included on the table below and are compared to the OCD Action Limits, Pit and Recycling Containment Closures, and the New Mexico Environmental Department (NMED) Soil Screening Levels issued December 2014 and July 2015. These soil samples exhibited the highest Benzene, BTEX, and TPH concentrations. All Chloride levels for the analyzed samples are less than the OCD requirements for Pit Closures and Recycling Containment Closures as illustrated in the table below and in Table 2 in Appendix D. All constituents except for TPH levels are less than one or more OCD or NMED regulatory guidelines. The TPH soil screening levels are based solely on human health considerations related to direct soil exposure, not ecological risk considerations, protection of surface or groundwater, or potential soil vapor impacts from soil vapor. Since there is no noticeable impact to wildlife, no surface water in the site area, groundwater depth is believed to be greater than 100 feet, and there are no buildings on site, these TPH considerations should not be a factor.

			SPILL AREA	1			
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	Chlorides	TPH
SB4 (0'-2')	<0.099	6.03	0.766	52.8	59.6	3,000	4,150
SB4 (2'-4')	<0.200	2.15	0.715	153	155	1,590	10,900
SB4 (4'-6')	0.731	6.72	<0.198	105	112	1,330	7,510
SB4 (6'-8')	7.51	97.9	8.20	190	304	1,780	10,400
SB4 (8'-10')	0.51	12.9	5.74	29.5	48.7	5,970	2,740
SB4 (10'-12')	6.27	99.2	30.9	156	292	3,670	8,540
SB4 (14'-16')	1.38	42.5	17.0	79.3	140	2,460	4,460
Split	0.247	13.8	9.63	49.3	73	2,050	3,910
SB4 (16'-18')	<0.001	<0.001	<0.001	0.00352	0.003	2430	22.2
OCD Action Limits 1993 Guideline	10				50	Horiz. – 600 Vert 250	5,000
OCD Rule 19.15.17.13 Pit Closures	10				50	20,000	1,000
OCD Rule 19.15.34.14 Recycling Containment Closures	10				50	20,000	1,000
NMED Soil Screening Levels, December 2014 and July 2015 Const. Worker	142	14,000	1,770	798			5,000
Action Limits and Closure Re	Action Limits and Closure Requirements Assumes Depth To Water is > 100 feet						

6.0 Photographs

Photographic documentation of the drilling and sampling activities is included in Appendix B.

7.0 Conclusions/Recommendations

KJE has concluded that the majority of each spill area has been delineated, and that there would be no beneficial outcome of installing five to ten additional soil borings in the spill areas. KJE feels that we would only replicate analytical results from other nearby soil borings.

According to the records acquired from the New Mexico Office of the State Engineers database, it appears that there is at least 185 feet between the zones of affected soils and groundwater. KJE feels that the chance of groundwater contamination from the affected soils is highly unlikely.

Based on the following reasoning, KJE requests that the affected soils be allowed to remain in place if groundwater is determined to be at a depth unlikely to be impacted by the releases:

- the majority of the impacted soils are located adjacent to, or below one of three operating pipelines (OWL produced water, City of Jal drinking water, and nearby ranch drinking water). Excavation in these areas could adversely affect the structural integrity of one or all of these pipelines.
- adverse environmental impacts are minimal,
 - land owner has approved the soil to remain in place
 - little vegetation was present in the area due to the sandy soils, and the right of way (ROW) is being used as the route for 24-hour OWL pipeline inspectors
 - o there is no noticeable impact to wildlife
 - there are no residences in the site area
 - there are no buildings in the site area for vapor intrusion consideration
 - there is no ongoing air quality impact
 - construction worker exposure would be primarily chlorides
- the large total volume (34,150 cubic yards) of impacted soil in both spill areas would make remediation efforts economically infeasible.

A small area of TPH affected soils was identified within Spill Area 1 with analytical results above the OCD action levels for TPH. KJE proposes that quarterly soil sampling be completed in this area for soil monitoring, and soil samples will be submitted to the laboratory for TPH sample analysis. These areas with TPH exceedances in soil will be monitored quarterly and resampled until the levels decrease to below the action limits.

In order to confirm that shallow groundwater is not present in the site area, KJE is proposing to install one soil boring to a depth of 100 feet and allow it to remain open for 24 hours to determine if groundwater is present. If no groundwater is present after this time period, then the soil boring will be properly plugged as required. If groundwater is present, then the soil boring will be converted to a 2-inch monitoring well. The well would then be gauged, purged, and sampled for analysis of Volatile Organic Compounds (VOCs) Method 8260 full list, (TPH) by

Method 8015 extended range (GRO+DRO+MRO; C6 thru C36), Total Dissolved Solids (TDS) by Method 2540, pH by Method 9040, major anions and cations including chloride and sulfate by Method 9056, dissolved iron and manganese by Method 6010. The proposed location of the soil boring is shown on Figure A3 in Appendix A. The proposal and associated workplan is included in Appendix F for your review. If groundwater analytical results confirm that groundwater is impacted, a separate workplan will be submitted to conduct quarterly sampling for one year to monitor the affected groundwater.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. Thank you for the opportunity to provide professional environmental consulting services. It has been a pleasure working with you.

8.0 Qualifications of Environmental Professional

This is to certify that the Environmental Investigation that was completed at the two produced water spill sites located approximately five miles southwest of Jal in Lea County, New Mexico were conducted using EPA, OCD, and industry-approved standards/protocols. This field work was conducted from December 5 through December 21, 2016 for OWL, and all field activities were completed under the supervision of Ms. Dena M. Vandenberg, REM, LEED AP. Mr. Ware's, Ms. Vandenberg's, Mr. Bessire's, and Mr. Fox's credentials are included in Appendix E for review.

9.0 Signature of Environmental Professional

algondenting

2/16/2017

Dena M. Vandenberg, REM, LEED AP Environmental Professional Date

2/16/2017

Kevin J. Ware, QEP, REM Principal Date

APPENDIX A

Figure A1 – General View of Spill Areas Figure A2 – Detailed View of Soil Borings Installed Figure A3 – Proposed Soil Boring / Monitoring Well Location

April 14, 2017

Tomáš 'Doc' Oberding, PhD Hydrologist, Adv-District 1 Oil Conservation Division, EMNRD

Phone: (505) 476-3403 E-Mail: <u>tomas.oberding@state.nm.us</u>

RE: Addendum to Remediation Plan – Oilfield Water Logistics (OWL) Produced Water Pipeline Release (Spill Delineation Report & Remediation Plan - Case Nos. 1RP 4497 & 1RP 4498)

KJ Environmental Management, Inc. (KJE) is pleased to submit the following Addendum to the Spill Delineation Report & Remediation Plan - Case Nos. 4497 & 4498, to summarize the plan of action discussed on our conference call on April 12, 2017.

Per your verbal authorization over our conference call on April 12, 2017, OWL has begun excavation of the soil in the areas where chlorides exceed 600 ppm up to a depth of four (4) feet. The affected soil is being placed on poly liner, and OWL is laying 20 mil poly sheeting in the 4-foot deep excavation to block the wicking-up of Chlorides. Trench anchors will be used to secure the poly sheeting.

No excavation will be completed of the soil located above, beneath, between, and extending ten (10) feet horizontally from the extents of the pipelines, in order to maintain structural stability of the pipelines in the spill areas.

OWL will blend the affected soil with clean native soil by either skid steer or pug mill, and KJE will collect one sample for every 20 cubic yards of blended soil to demonstrate the effectiveness of the remediation. Each sample will be field-screened with a Horiba D-73 Portable Multiparameter Chloride Meter, for chloride content. Every 10th sample will be submitted for laboratory analysis. KJE will submit to NMOCD field meter readings for the first ten (10) soil samples sent for laboratory analysis, to confirm the accuracy of the meter. After that time, NMOCD will evaluate the meter readings and the laboratory analytical results to determine the appropriateness for lessening the required frequency of sampling.

The field screening and laboratory sampling will be completed to ensure compliance with landfarm standards per Title 19, Chapter 15, Part 36.15, for landfarms where groundwater is 100 feet or more below the lowest elevation at which the operator will place oilfield waste, which states that Chloride levels may not exceed 1,000 mg/kg.

OWL will return the blended soil to the poly-lined excavation. Any additional blended soil will be used for berm construction at OWL's nearby SWD facilities.

Disturbed areas outside of the easement will be reseeded with BLM mix to reestablish growth; however, due to vegetative growth restrictions imposed by the pipeline owners, the pipeline easement will not be seeded.

Should you have any questions regarding this Amendment, please do not hesitate to contact us at your first convenience.

Sincerely,

Almatradenting_

Dena M. Vandenberg, REM, LEED AP Director of Environmental Services

Heather Leven

From:	Oberding, Tomas, EMNRD <tomas.oberding@state.nm.us></tomas.oberding@state.nm.us>
Sent:	Tuesday, April 18, 2017 4:31 PM
То:	Dena Vandenberg
Cc:	'Kevin Ware'; 'Prefontaine, Aaron'; Phillip Sanders; 'Nevin Bannister';
	james@kjenvironmental.com
Subject:	RE: Addendum to Remediation Plan- Case Nos. 4497 & 4498

Aloha all,

Thank you for the addendum.

Based upon the discussion and the documentation provided, the OCD approved the remediation plan.

Please keep us informed and let me know if you have further questions. Mahalo -Doc

Tomáš 'Doc' Oberding PhD Hydrologist, Adv-District 1 Oil Conservation Division, EMNRD (505) 476-3403 E-Mail: <u>tomas.oberding@state.nm.us</u> 一期一会 OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local

From: Dena Vandenberg [mailto:dena@kjenvironmental.com]
Sent: Monday, April 17, 2017 3:53 PM
To: Oberding, Tomas, EMNRD <Tomas.Oberding@state.nm.us>
Cc: 'Kevin Ware' <kevin@kjenvironmental.com>; 'Prefontaine, Aaron' <Aaron.Prefontaine@yorkrsg.com>; Phillip
Sanders <psanders@oilfieldwaterlogistics.com>; 'Nevin Bannister' <nbannister@oilfieldwaterlogistics.com>; james@kjenvironmental.com
Subject: Addendum to Remediation Plan- Case Nos. 4497 & 4498

Good afternoon, Doc!

laws and/or regulations.

Attached is the Addendum to the Remediation Plan for OWL (Case Nos. 4497 & 4498). Please let me know if you have any questions. Thank you!

DENA M. VANDENBERG, REM, LEED AP Director of Environmental Services 500 Moseley Road Cross Roads, Texas 76227 M (214)364-7627 O (940)387-0805 F (940)387-0830

Ms. Amber Groves New Mexico State Land Office 2827 North Dal Paso, Suite 117 Hobbs, New Mexico 88260

Re: OWL SWD Operating, LLC October 28, 2016 Spill Jal, New Mexico 1RP 4497

At the SLO's request, in an effort to "achieve native plant cover and diversity levels equal to or exceeding the natural potential levels in undisturbed soils adjacent to the project area", OWL will comply with the following Revegetation and Noxious Weed Plan.

Revegetation and Noxious Weed Plan

OWL, or their contractor, will broadcast apply BLM mix No. 2, for sandy soil, on the remediation area outside of the road right-of-way. The mix will be modified to replace the Lovegrass and will include Sand Dropseed, Plains Bristlegrass, and Sideoats Grama. The seed mix will be applied at the rate specified by the supplier (8 lbs of seed/acre; consisting of 2 lbs Sand Dropseed, 2 lbs Sideoats Grama, and 4 lbs Plains Bristlegrass). A certification of purity from Curtis & Curtis, Inc. is being submitted concurrently with this Plan for your review. OWL will complete a one-time watering with a water truck to help establish growth, if a sufficient rainfall event is not forecast within 72 hours after application. The site will be monitored on a monthly basis to visually assess the establishment of growth and the absence of noxious weeds. The seed mix will contain no primary or secondary noxious weeds; however, if noxious weeds are observed during the monitoring events, the weeds will be mechanically removed. Pictures will be taken for documentation of the monitoring. If no growth is present after one year, the site will be reseeded and monitored until revegetation is achieved. A final report will be submitted once revegetation is complete, which will document the seeding and monitoring efforts and will include pictures of the seeding process, monitoring efforts, and revegetated area.

If we can be of further assistance, please do not hesitate to contact us at 940-387-0805. We look forward to proceeding with the remediation efforts and site closure.

Regards,

Dena M. Vandenberg, REM, LEED AP Director of Environmental Services

Kevin J. Ware, QEP, REM Principal

IRRIGATED PASTURE GRASSES MOUNTAIN PASTURE GRASSES NATIVE PASTURE GRASSES SORGHUMS

Curtis & Curtis, Inc.

4500 N. Prince St. PHONE (575) 762-4759 / FAX (575) 763-4213 seed@curtisseed.com www.curtisseed.com

CLOVIS, NEW MEXICO 88101

YARD AND PLAYGROUND GRASSES GOLF COURSE GRASSES ALFALFA / CLOVERS FORAGES

SUBMITTAL

November 16, 2017

3.5 Acre Modified BLM #2

To Whom It May Concern:

Curtis & Curtis, Inc certifies that each container of seed is mixed and labeled in accordance with the Federal Seed Act and is at least equal to the requirements indicated below.

				Germ &			
Kind	Origin	Lot #	Purity X	Dormant	=	PLS %	
Sand Dropseed Not Stated	Colorado	19557	99.44%	90.00%		89.50%	
Sideoats Grama El Reno	Texas	18990	85.69%	98.00%		83.98%	
Plains Bristlegrass Not Stated	Oklahoma	19495	90.60%	98.00%		88.79%	

Sincerely,

temp yler Stuemky

CURTIS & CURTIS, INC.

4500 North Prince, Clovis, New Mexico 88101 PH: 575-762-4759 FAX: 575-763-4213

Irrigated Pasture Grasses Mountain Pasture Grasses Native Pasture Grasses

PRICE QUOTATION

TO:	KJ Environmental	DATE:	November 16, 2017
ATTENTION:	Dena	SALESPERSON:	Tyler Stuemky
PHONE:	940-387-0805	SHIPPING DATE:	As Directed
EMAIL:	dena@kjenvironmental.com	FOB:	Clovis
PROJECT:	3.5 Acre Modified BLM #2	TERMS:	TBD

DESCRIPTION	PRICE	AMOUNT
Modified BLM #2: ***Broadcast Rates***	\$100.00/Acre	\$350.00
<u>COMMON NAME</u>	BOTANICAL NAME	PLS/ACRE
Sand Dropseed	Sporobolus cryptandrus	2.0
Sand Lovegrass	Bouteloua curtipendula	2.0
Sub. Sideoats Grama		
Plains Bristlegrass	Setaria leucopila	4.0

THIS QUOTE IS GOOD FOR 10 DAYS ***ALL PRICES SUBJECT TO AVAILABILITY**SUBJECT TO BEING UNSOLD***

Here is our quotation on the goods named, subject to the conditions noted:

The prices and terms on this quotation are not subject to verbal changes or other agreements unless approved in writing by the Home Office of the Seller. All quotations and agreements are contingent upon strikes, accidents, fires, availability of materials and all other causes beyond our control. Prices are based on costs and conditions existing on date of quotation and are subject to change by the Seller before final acceptance.

Typographical and stenographic errors are subject to correction. Purchaser agrees to accept either overage or shortage not in excess of ten percent to be charged for prorata. Purchaser assumes liability for patent and copyright infringement when goods are made to Purchaser's specifications. When quotation specifies material to be furnished by the purchaser, ample allowance must be made for reasonable spoilage and material must be of suitable quality to facilitate efficient production. Conditions not specifically stated herein shall be governed by established trade customs. Terms inconsistent with those stated herein, which may appear on Purchaser's formal order will not be binding on the Seller.

THIS AGREEMENT IS BETWEEN:

 Buyer:
 Date:
 Seller:
 Date: November 16, 2017

Yard and Playground Grasses Golf Course Grasses Alfalfa/Clovers