|                            |                           | SIT                |                                             | ATION            |                |                      |                                             |  |  |  |  |  |
|----------------------------|---------------------------|--------------------|---------------------------------------------|------------------|----------------|----------------------|---------------------------------------------|--|--|--|--|--|
|                            | F                         | Report Type        | e: Work Pla                                 | ın <u>1F</u>     | RP-5001        |                      |                                             |  |  |  |  |  |
| General Site Info          | ormation:                 |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Site:                      |                           | Jefe BSJ Fed (     |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Company:                   |                           | EOG Resource       |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Section, Townsh            |                           | Unit O             | Sec. 32                                     | T 25S            | R 32E          |                      |                                             |  |  |  |  |  |
| Lease Number:              |                           | API No. 30-025     | -40722                                      |                  |                |                      |                                             |  |  |  |  |  |
| County:                    |                           | Lea County         |                                             |                  |                |                      |                                             |  |  |  |  |  |
| GPS:                       |                           |                    | 32.0806° N                                  |                  |                | 103.6                | 959º W                                      |  |  |  |  |  |
| Surface Owner:             |                           | State              |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Mineral Owner:             |                           | From the internet  | "                                           |                  |                | <u>00 4 fer 10 /</u> | 4                                           |  |  |  |  |  |
| Directions:                |                           |                    | ction of HWY 128 a<br>85 mi, turn north for |                  |                |                      | 4 miles, turn west onto<br>5 mi to location |  |  |  |  |  |
|                            |                           | lease load tor i.e |                                             | 0.9 mi, turn     | l tast and con |                      |                                             |  |  |  |  |  |
|                            |                           | J                  |                                             |                  |                |                      |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Release Data:              |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Date Released:             |                           | 3/21/2018          |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Type Release:              |                           | Produced Wate      | er                                          |                  |                |                      |                                             |  |  |  |  |  |
| Source of Contam           |                           | Water Line         |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Fluid Released:            |                           | 75 bbls            |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Fluids Recovered           | <u> </u>                  | 35 bbls            |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Official Commun            | nication:                 |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Name:                      | Zane Kurtz                |                    |                                             |                  | lke Tavarez    | ,<br>,               |                                             |  |  |  |  |  |
| Company:                   | EOG Resources             |                    |                                             |                  | Tetra Tech     | ·                    |                                             |  |  |  |  |  |
| Address:                   | 5509 Champions Dr         | rive               |                                             |                  | 4000 N. Big    | Spring               |                                             |  |  |  |  |  |
| Addr000.                   |                           |                    |                                             |                  | Ste 401        | oping                |                                             |  |  |  |  |  |
| 0.4                        |                           |                    | <b></b>                                     |                  | Midland, Tex   |                      |                                             |  |  |  |  |  |
| City:                      | Midland, TX 79706         |                    | <b></b>                                     |                  |                |                      |                                             |  |  |  |  |  |
| Phone number:              | (432) 425-2023            |                    |                                             |                  | (432) 687-8110 |                      |                                             |  |  |  |  |  |
| Fax:                       |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Email:                     | zane_kurtz@eogre          | esources.com       |                                             |                  | <u>h.com</u>   |                      |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Ranking Criteria           |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| Durit (= Oregonatio        |                           |                    | De titre Caara                              | <del></del>      |                | 011- Dete            |                                             |  |  |  |  |  |
| Depth to Groundw <50 ft    | ater:                     |                    | Ranking Score<br>20                         | <b></b>          |                | Site Data            |                                             |  |  |  |  |  |
| <50 n<br>50-99 ft          |                           |                    | 10                                          | +                |                |                      |                                             |  |  |  |  |  |
| >100 ft.                   |                           |                    | 0                                           |                  |                | 300' +               |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| WellHead Protection        |                           |                    | Ranking Score                               | T                |                | Site Data            |                                             |  |  |  |  |  |
|                            | 000 ft., Private <200 ft. |                    | 20                                          |                  |                |                      |                                             |  |  |  |  |  |
| Water Source >1,0          | 000 ft., Private >200 ft. |                    | 0                                           |                  |                | 0                    |                                             |  |  |  |  |  |
| Surface Pody of M          | V-104.                    |                    | Denking Score                               | <del></del>      |                | Site Data            |                                             |  |  |  |  |  |
| Surface Body of W <200 ft. | /ater:                    |                    | Ranking Score<br>20                         | <b> </b>         |                | Site Data            |                                             |  |  |  |  |  |
| 200 ft - 1,000 ft.         |                           |                    | 10                                          | +                |                |                      |                                             |  |  |  |  |  |
| >1,000 ft.                 |                           |                    | 0                                           |                  |                | 0                    |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
| То                         | otal Ranking Score        | :                  | 0                                           |                  |                |                      |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
|                            | ſ                         | Acceptal           | ble Soil RRAL (m                            | ig/kg)           |                |                      |                                             |  |  |  |  |  |
|                            |                           |                    |                                             |                  |                |                      |                                             |  |  |  |  |  |
|                            |                           | Benzene<br>10      | Total BTEX                                  | <b>TPH</b> 5,000 |                |                      |                                             |  |  |  |  |  |



## **APPROVED** By Olivia Yu at 2:10 pm, Jun 06, 2018

May 24, 2018

NMOCD approves of the vertical delineation conducted for 1RP-5001 and the proposed additional delineation for the areas represented by T4 & T5. See email correspondence for conditions regarding the proposed remediation.

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

#### Re: Work Plan for the EOG Resources, Jefe BSJ Fed Com #1H, Unit O, Section 32, Township 25 South, Range 32 East, Lea County, New Mexico. 1RP-5001.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources, Inc. (EOG) to investigate and assess a release that occurred at the Jefe BSJ Fed Com #1H, Unit O, Section 32, Township 25 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.0806 °, W 103.6959°. The site location is shown on Figures 1 and 2.

#### Background

According to the State of New Mexico C-141 Initial Report, the release was discovered on March 21, 2018, and released approximately seventy-five (75) barrels of produced water due to a ruptured water line. Vacuum trucks were dispatched to remove all freestanding fluids, recovering approximately thirty-five (35) barrels of produced water. The release occurred in the pasture and impacted an area measuring approximately 30' x 155' and 65' x 225'. The initial C-141 form is included in Appendix A.

#### Groundwater

No wells are listed within Section 32 in the New Mexico Office of the State Engineers (NMOSE) database, the USGS National Water Information System, or the Geology and Groundwater Conditions in Southern Lea County, NM (Report 6). However, the NMOSE database lists one well in Section 6, Township 26 South, Range 32 East, located approximately 1.65 miles southwest of the site, with a reported depth to groundwater of 350' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is greater than 300' below surface. The groundwater data is shown in Appendix B.

#### Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene



(collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

#### **Soil Assessment and Analytical Results**

On March 29, 2018, Tetra Tech personnel were onsite to evaluate and sample the release area with a backhoe. A total of six (6) sample trenches (T-1 through T-6) were installed in the spill footprint to total depths ranging from 2.0' and 10.0' below surface. Selected samples were analyzed for total petroleum hydrocarbons (TPH) by method 8015 extended, BTEX by method 8021, and chlorides by EPA method 300.0. Copies of the laboratory analysis and chain-of-custody documentation are included in Appendix D. The sampling results are summarized in Table 1. The trench locations are shown in Figure 3.

#### Benzene and Total BTEX

Referring to Table 1, all of the trenches did not show any benzene or total BTEX concentrations above the RRALs, with the exception of T-4. Trench (T-4) showed a benzene concentration of 12.6 mg/kg and a total BTEX concentration of 597 mg/kg at 0-1' below surface. The benzene and total BTEX concentrations in the area then declined with depth to below the RRALs at 2.0' below surface.

#### TPH

The areas of trenches (T-1 and T-4) did not showed TPH concentrations above the RRAL. The areas of T-2, T-3, T-5, and T-6 showed TPH impact to the shallow soils (0-1'), with TPH highs of 5,710 mg/kg, 10,900 mg/kg, 180,000 mg/kg, and 5,870 mg/kg, respectively. The TPH concentrations declined below the RRAL at 2.0' below surface.

#### Chloride

The areas of trenches (T-1, T-2, T-3, and T-6) showed elevated chloride concentrations to the shallow soils with concentrations of 4,960 mg/kg, 13,200 mg/kg, 16,600 mg/kg, and 3,960 mg/kg at 0-1' below surface, respectively. The chlorides in these areas then declined with depth to below the 600 mg/kg threshold at depths ranging from 2.0' and 6.0' below surface. However, the areas of trenches (T-4 and T-5) showed bottom trench concentrations of 1,900 mg/kg and 1,930 mg/kg at 4.0' below surface. Deeper samples were not collected due to a dense formation in the area and the chloride impact was not vertically defined.

#### Work Plan

Based on the laboratory results, EOG proposes to remove the impacted soils as shown on Figure 4 and highlighted (green) on Table 1. To remove the impacted soils above the RRALs, the areas of trenches (T-1 and T-3) will be excavated to approximately 1.0' to 2.0' below surface, the area of trench (T-2) will be excavated to approximately 6.0', and the areas of trenches (T-4, T-5, and T-6) will be excavated to approximately 4.0' below surface.



During the excavation activities, the chloride concentrations in the areas of trenches (T-4 and T-5) will be vertically defined. Based on the data, the areas will either be excavated to the appropriate depth or capped with a 40-mil liner to prevent vertical migration. However, if the chloride impact is not vertically defined during the excavation, the areas will be capped at 4.0' and then assessed with a drilling rig to define extents.

The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, EOG will excavate the impacted soils to the maximum extent practicable.

#### Revegetation Plan

The backfilled areas will be seeded in June 2018 in order to coincide with the rainy season in Southeastern New Mexico to aid in revegetation. Based on the soils at the site, the NMSLO Loamy (L) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix C.

#### Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

11 Congalos

Clair Gonzales, Project Manager

Ike Tavarez, Senior Project Manager, P.G.

Ryan Mann – NMSLO Jamone Hohensee - EOG

# Figures



Mapped By: Isabel Marmolejo







## Tables

#### Table 1 EOG Resources Jefe BSJ Fed. Com. 1H Lea County, New Mexico

| Commiss ID | Sample    | Sample     | BEB                  |         | Status  |        | TPH (I  | mg/kg) |         | Benzene   | Toluene   | Ethlybenzene | Xylene    | Total BTEX | Chloride |
|------------|-----------|------------|----------------------|---------|---------|--------|---------|--------|---------|-----------|-----------|--------------|-----------|------------|----------|
| Sample ID  | Date      | Depth (ft) | Sample<br>Depth (in) | In-Situ | Removed | GRO    | DRO     | ORO    | Total   | (mg/kg)   | (mg/kg)   | (mg/kg)      | (mg/kg)   | (mg/kg)    | (mg/kg)  |
| T-1        | 3/29/2018 | 0-1        | -                    | Х       |         | <15.0  | 34.3    | <15.0  | 34.3    | <0.00201  | < 0.00201 | <0.00201     | <0.00201  | <0.00201   | 4,960    |
|            | "         | 2          | -                    | Х       |         | <15.0  | 53.5    | <15.0  | 53.5    | <0.00199  | <0.00199  | <0.00199     | <0.00199  | <0.00199   | 454      |
| T-2        | 3/29/2018 | 0-1        | -                    | Х       |         | 124    | 4,390   | 1,200  | 5,710   | 0.00714   | 0.0172    | <0.00200     | 0.0133    | 0.0377     | 13,200   |
|            | "         | 2          | -                    | Х       |         | <14.9  | <14.9   | <14.9  | <14.9   | <0.00200  | <0.00200  | <0.00200     | <0.00200  | <0.00200   | 168      |
|            | "         | 4          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 1,080    |
|            | "         | 6          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 1,040    |
|            | "         | 8          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 346      |
|            | "         | 10         | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 61       |
| T-3        | 3/29/2018 | 0-1        | -                    | Х       |         | 84.2   | 8,690   | 2,170  | 10,900  | 0.00279   | 0.0116    | 0.00230      | 0.0191    | 0.0358     | 16,600   |
|            | "         | 2          | -                    | Х       |         | <15.0  | 25.9    | <15.0  | 88.5    | < 0.00199 | < 0.00199 | <0.00199     | < 0.00199 | < 0.00199  | 2,110    |
|            | "         | 4          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 289      |
|            | "         | 6          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 82.0     |
|            | "         | 8          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 114      |
| T-4        | 3/29/2018 | 0-1        | -                    | Х       |         | 51.4   | 929     | 141    | 1,120   | <0.00200  | 0.00354   | <0.00200     | 0.0642    | 0.0677     | 3,430    |
|            | "         | 2          | -                    | Х       |         | <15.0  | 21.8    | <15.0  | 21.8    | < 0.00202 | < 0.00202 | <0.00202     | < 0.00202 | <0.00202   | 1,810    |
|            | "         | 4          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 1,900    |
| T-5        | 3/29/2018 | 0-1        | -                    | Х       |         | 56,300 | 106,000 | 18,000 | 180,000 | 12.6      | 186       | 43.6         | 355       | 597        | 20,100   |
|            | "         | 2          | -                    | Х       |         | <15.0  | 22.4    | <15.0  | 22.4    | < 0.00200 | 0.00337   | <0.00200     | 0.00672   | 0.0101     | 6,720    |
|            | "         | 4          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 1,930    |
| T-6        | 3/29/2018 | 0-1        | -                    | Х       |         | 158    | 4,670   | 1,040  | 5,870   | < 0.00200 | 0.00388   | 0.00920      | 0.106     | 0.119      | 3,960    |
|            | "         | 2          | -                    | Х       |         | <15.0  | 72.9    | <15.0  | 72.9    | <0.00199  | < 0.00199 | <0.00199     | 0.00685   | 0.00685    | 3,850    |
|            | "         | 4          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 2,000    |
|            | "         | 6          | -                    | Х       |         | -      | -       | -      | -       | -         | -         | -            | -         | -          | 26.7     |

(-)

Not Analyzed

Proposed Excavation Depths

## Photos

EOG Resources El Jefe BSJ Fed Com #1H Lea County, New Mexico



View North – Area of AH-1 and AH-2



View South – Area of AH-3

EOG Resources El Jefe BSJ Fed Com #1H Lea County, New Mexico



View West – Area of AH-4



View West – Area of AH-5

EOG Resources El Jefe BSJ Fed Com #1H Lea County, New Mexico



View East – Area of AH-6

# Appendix A

#### State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit I Copy to appropriate District Office in accordance with 19.15.29 NMAC.

| 220 S. St. Francis Dr., Santa Fe, NM 87505 Santa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe, NM 87                                                                                                         | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | -                                                                           | _                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|
| Release Notificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on and C                                                                                                          | orrective A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ction                                                                                                            |                                                                             |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OPERA                                                                                                             | TOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 🖂 Initi                                                                                                          | al Report                                                                   | Final Rep                                          |
| Name of Company EOG Resources, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact Ja                                                                                                        | mon Hohensee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                                                             |                                                    |
| Address 5509 Champions Drive, Midland, Texas 79706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Telephone                                                                                                         | No. 432-556-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74                                                                                                               |                                                                             |                                                    |
| Facility Name: Jefe BSJ Fed Com 1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Facility Ty                                                                                                       | e: Production f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acility                                                                                                          |                                                                             |                                                    |
| Surface Owner State Mineral Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | State                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APINO                                                                                                            |                                                                             |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   | 1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | 30-02                                                                       | 5-40722                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ON OF RE                                                                                                          | Card and a line of a line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  | La                                                                          |                                                    |
| Unit Letter         Section         Township         Range         Feet from the         No           O         32         25S         32E         32E </td <td>rth/South Line</td> <td>Feet from the</td> <td>East/West Line</td> <td>County<br/>Lea</td> <td></td> | rth/South Line                                                                                                    | Feet from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | East/West Line                                                                                                   | County<br>Lea                                                               |                                                    |
| Latitude32.0806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Longitud                                                                                                          | e103.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 059                                                                                                              |                                                                             |                                                    |
| NATUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E OF REL                                                                                                          | EASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                             |                                                    |
| Type of Release PW flowline break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                   | Release 75bbls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume I                                                                                                         | Recovered 35                                                                | bbls                                               |
| Source of Release PW flowline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/21/18 3:                                                                                                        | 15.2.3 State and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/21/18                                                                                                          |                                                                             |                                                    |
| Was Immediate Notice Given? 🔲 Yes 🖾 No 🗌 Not Require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed If YES, To                                                                                                     | o Whom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                             |                                                    |
| By Whom?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date and I                                                                                                        | A REAL PROPERTY OF A REAL PROPER |                                                                                                                  |                                                                             |                                                    |
| Was a Watercourse Reached?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | If YES, V                                                                                                         | olume Impacting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the Watercourse.                                                                                                 |                                                                             |                                                    |
| Describe Cause of Problem and Remedial Action Taken.*<br>On 3/21/18 a produced water line burst and released approx. 75bbl to t<br>consultant will go out and delineate spill area and collect samples. Sam<br>impacted soil and properly remove and dispose of impacted soil. Then<br>Describe Area Affected and Cleanup Action Taken.*<br>Site is desert scrub with no water identified. Vacuum trucks removed f<br>I hereby certify that the information given above is true and complete t<br>regulations all operators are required to report and/or file certain releas<br>public health or the environment. The acceptance of a C-141 report by<br>should their operations have failed to adequately investigate and remed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | area will be ana<br>area will be bac<br>ree standing liqu<br>o the best of my<br>e notifications a<br>the NMOCD m | lyzed and a work<br>kfilled with clean<br>tids at location.<br>knowledge and u<br>nd perform correc<br>parked as "Final R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | plan will be submi<br>material to normal<br>understand that purs<br>ctive actions for rel<br>eport" does not rel | tted to go out<br>grade.<br>suant to NMC<br>eases which r<br>ieve the opera | CCD rules and<br>nay endanger<br>ator of liability |
| or the environment. In addition, NMOCD acceptance of a C-141 report<br>rederal, state, or local laws and/or regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t does not reliev                                                                                                 | e the operator of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | servation sibility for e                                                                                         | ompliance wi                                                                | ith any other                                      |
| Signature: Sa H. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approved by                                                                                                       | Environmental S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pecialist:                                                                                                       | -                                                                           |                                                    |
| Title: Environmental Representative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approval Da                                                                                                       | te: 3/28/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 Expiration                                                                                                     | Date:                                                                       |                                                    |
| E-mail Address: jamon_hohensee@eogresources.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conditions o                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Attached                                                                    |                                                    |
| Date: 3/27/18 Phone:4325568074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | see atta                                                                                                          | ched directiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ve                                                                                                               |                                                                             |                                                    |

1RP-5001

nOY1808740822

pOY1808741062

Appendix B

#### Water Well Data Average Depth to Groundwater (ft) EOG - Jefe BSJ Fed Com 1H Lea County, New Mexico

|    | 24 S         | outh          | 3  | I East |              |
|----|--------------|---------------|----|--------|--------------|
|    | 5            | 4             | 3  | 2      | 1            |
|    |              | Maljam        | ar | 192    |              |
| ,  | 8            | 9             | 10 | 11     | 12           |
|    |              |               |    |        |              |
| 18 | 17           | 16            | 15 | 14     | 13           |
| 19 | 20           | 21            | 22 | 23     | 24           |
| 30 | 29           | 28            | 27 | 26     | 25           |
| 31 | 32           | 33            | 34 | 35     | 36           |
| ,, | 52           | 55            | 54 | 55     | 50           |
|    | 25.0         | a4h           | 2  |        |              |
| 6  | <b>23 3</b>  | outh          | 3  | 2 East | 1            |
| 0  | 5            | 4             | 3  | 2      | 1            |
| 7  | 8            | 9             | 10 | 11     | 12           |
| 18 | 17           | 16            | 15 | 14     | 13           |
| 19 | 20           | 21 <b>390</b> | 22 | 23     | 24           |
|    |              | 290           |    |        |              |
| 30 | 29           | 28            | 27 | 26     | 25           |
| 31 | 32           | 33            | 34 | 35     | 36           |
|    |              |               |    |        |              |
| 6  |              | outh          |    | l East |              |
| 0  | 5            | 4             | 3  | 2      | 1 335<br>287 |
| 7  | 8 <b>295</b> | 9             | 10 | 11     | 12           |
|    | 275          |               |    |        |              |
| 18 | 17           | 16            | 15 | 14     | 13           |
| 19 | 20           | 21            | 22 | 23     | 24           |
|    |              |               |    |        |              |
| 30 | 29           | 28            | 27 | 26     | 25           |
|    |              |               |    |        |              |

|    | 24 Sc | outh                    | 33                | East                   |            |
|----|-------|-------------------------|-------------------|------------------------|------------|
| 6  | 5     | 4                       | 3                 | 2                      | 1          |
| 7  | 8     | 9                       | 10<br><b>24.6</b> | 11                     | 12         |
| 18 | 17    | 16                      | 15                | 14                     | 13         |
| 19 | 20    | 21                      | 22                | 23<br><mark>208</mark> | 24<br>16.9 |
| 30 | 29    | 28                      | 27                | 26                     | 25         |
| 31 | 32    | 33<br><mark>93.2</mark> | 34                | 35                     | 36         |

|                  | 25 Sc     | outh      | 33        | East      |           |
|------------------|-----------|-----------|-----------|-----------|-----------|
| 6                | 5         | 4         | 3 172     | 2         | 1         |
| 7                | 8         | 9         | 10        | 11<br>140 | 12<br>200 |
| 18               | 17        | 16        | 15        | 14        | 13        |
| 19               | 20<br>200 | 21<br>120 | 22        | 23        | 24        |
| 30               | 29        | 28        | 27<br>125 | 26        | 25        |
| 31<br><b>257</b> | 32        | 33        | 34        | 35        | 36        |

| _  | 26 Sc | outh | 33  | East |     |
|----|-------|------|-----|------|-----|
| 6  | 5     | 4    | 3   | 2    | 1   |
|    |       |      | 175 |      |     |
| 7  | 8     | 9    | 10  | 11   | 12  |
|    |       |      |     | 145  | 200 |
| 18 | 17    | 16   | 15  | 14   | 13  |
|    |       |      |     | 135  |     |
| 19 | 20    | 21   | 22  | 23   | 24  |
|    |       | 120  |     |      |     |
| 30 | 29    | 28   | 27  | 26   | 25  |
|    |       |      | 125 |      |     |
| 31 | 32    | 33   | 34  | 35   | 36  |
|    |       |      |     |      |     |

88 New Mexico State Engineers Well Reports

35

36

34

105 USGS Well Reports

33

32

31

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

32

31 **295**  33

34

35

36

- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD<br>replaced,<br>O=orphat<br>C=the file<br>closed) | ned,          | (qu    |    |   |   |     |     | E 3=SW<br>argest) | ,      | 3 UTM in meter | s) (         | In feet) |       |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|--------|----|---|---|-----|-----|-------------------|--------|----------------|--------------|----------|-------|
|                                                                                                                       |                                                          | POD           |        | 0  | 0 | 0 |     |     |                   |        |                |              |          |       |
| POD Number                                                                                                            | Code                                                     | Sub-<br>basin | County | -  | Q | - | Sec | Twe | Rna               | х      | Y              | DepthWellDep |          | /ater |
| <u>C 02271</u>                                                                                                        | R                                                        | CUB           | LE     | 04 |   | 3 |     |     | 32E               | 624449 | 3544111* 🧉     | 150          | 125      | 25    |
| <u>C 02271 POD2</u>                                                                                                   |                                                          | CUB           | LE     | 3  | 2 | 3 | 21  | 26S | 32E               | 624348 | 3544010* 🧉     | 270          | 250      | 20    |
| <u>C 02274</u>                                                                                                        |                                                          | CUB           | LE     | 2  | 1 | 2 | 31  | 26S | 32E               | 621742 | 3541730* 🌍     | 300          | 295      | 5     |
| <u>C 02323</u>                                                                                                        |                                                          | С             | LE     | 3  | 2 | 3 | 21  | 26S | 32E               | 624348 | 3544010* 🌍     | 405          | 405      | C     |
| <u>C 03537 POD1</u>                                                                                                   |                                                          | CUB           | LE     | 3  | 2 | 3 | 21  | 26S | 32E               | 624250 | 3543985 🌍      | 850          |          |       |
| <u>C 03595 POD1</u>                                                                                                   |                                                          | CUB           | LE     | 4  | 2 | 3 | 21  | 26S | 32E               | 624423 | 3544045 🌍      | 280          | 180      | 100   |
| <u>C 03829 POD1</u>                                                                                                   |                                                          | CUB           | LE     | 3  | 3 | 1 | 06  | 26S | 32E               | 620628 | 3549186 🌍      | 646          | 350      | 296   |
|                                                                                                                       |                                                          |               |        |    |   |   |     |     |                   |        | Average Depth  | to Water:    | 267 fee  | t     |
|                                                                                                                       |                                                          |               |        |    |   |   |     |     |                   |        | Minim          | um Depth:    | 125 fee  | t     |
|                                                                                                                       |                                                          |               |        |    |   |   |     |     |                   |        | Maximu         | ım Depth:    | 405 fee  | t     |

\*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/24/18 12:57 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Appendix C

### Lea County, New Mexico

#### PT—Pyote loamy fine sand

#### Map Unit Setting

National map unit symbol: dmqp Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 200 days Farmland classification: Farmland of statewide importance

#### Map Unit Composition

Pyote and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Pyote**

#### Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

#### **Typical profile**

A - 0 to 25 inches: loamy fine sand Bt - 25 to 60 inches: fine sandy loam

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Gypsum, maximum in profile: 1 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 2.0
Available water storage in profile: Low (about 5.3 inches)

#### Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

USDA

*Hydrologic Soil Group:* A *Ecological site:* Loamy Sand (R042XC003NM) *Hydric soil rating:* No

#### **Minor Components**

#### Maljamar

Percent of map unit: 8 percent Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

#### Palomas

Percent of map unit: 7 percent Ecological site: Loamy Sand (R042XC003NM) Hydric soil rating: No

### **Data Source Information**

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 14, Sep 10, 2017

#### LOAMY (L) SITES SEED MIXTURE:

| COMMON NAME                     | VARIETY            | APPLICATION<br>RATE (PLS/Acre) | DRILL<br>BOX |  |
|---------------------------------|--------------------|--------------------------------|--------------|--|
| Grasses:                        |                    |                                |              |  |
| Black grama                     | VNS, Southern      | 1.0                            | D            |  |
| Blue grama                      | Lovington          | 1.0                            | Ď            |  |
| Sideoats grama                  | Vaughn, El Reno    | 4.0                            | F            |  |
| Sand dropseed                   | VNS, Southern      | 2.0                            | s            |  |
| Alkali sacaton                  | VNS, Southern      | 1.0                            | -            |  |
| Little bluestem                 | Cimarron, Pastura  | 1.5                            | F            |  |
| Forbs:                          |                    |                                |              |  |
| Firewheel ( <i>Gaillardia</i> ) | VNS, Southern      | 1.0                            | D            |  |
| Shrubs:                         |                    |                                |              |  |
| Fourwing saltbush               | Marana, Santa Rita | 1.0                            | D            |  |
| Common winterfat                | VNS, Southern      | 0.5                            | F            |  |
|                                 | Total PLS/acre     | 18.0                           |              |  |

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at <a href="http://plants.usda.gov">http://plants.usda.gov</a>.



Appendix D

## **Analytical Report 581006**

for Tetra Tech- Midland

**Project Manager: Ike Tavarez** 

El Jefe BSJ Fed. Comm 1H

#### 212C-MD-01166

#### 13-APR-18

Collected By: Client





#### 1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176)



13-APR-18

SUP ACCREDIES

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **581006 El Jefe BSJ Fed. Comm 1H** Project Address: Lea County, New Mexico

#### Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 581006. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 581006 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America



## Sample Cross Reference 581006



### Tetra Tech- Midland, Midland, TX

El Jefe BSJ Fed. Comm 1H

| Sample Id  | Matrix | Date Collected | Sample Depth | Lab Sample Id |
|------------|--------|----------------|--------------|---------------|
| T-1 (0-1') | S      | 03-29-18 00:00 |              | 581006-001    |
| T-1 (2')   | S      | 03-29-18 00:00 |              | 581006-002    |
| T-2 (0-1') | S      | 03-29-18 00:00 |              | 581006-003    |
| T-2 (2')   | S      | 03-29-18 00:00 |              | 581006-004    |
| T-2 (4')   | S      | 03-29-18 00:00 |              | 581006-005    |
| T-2 (6')   | S      | 03-29-18 00:00 |              | 581006-006    |
| T-2 (8')   | S      | 03-29-18 00:00 |              | 581006-007    |
| T-2 (10')  | S      | 03-29-18 00:00 |              | 581006-008    |
| T-3 (0-1') | S      | 03-29-18 00:00 |              | 581006-009    |
| T-3 (2')   | S      | 03-29-18 00:00 |              | 581006-010    |
| T-3 (4')   | S      | 03-29-18 00:00 |              | 581006-011    |
| T-3 (6')   | S      | 03-29-18 00:00 |              | 581006-012    |
| T-3 (8')   | S      | 03-29-18 00:00 |              | 581006-013    |
| T-4 (0-1') | S      | 03-29-18 00:00 |              | 581006-014    |
| T-4 (2')   | S      | 03-29-18 00:00 |              | 581006-015    |
| T-4 (4')   | S      | 03-29-18 00:00 |              | 581006-016    |
| T-5 (0-1') | S      | 03-29-18 00:00 |              | 581006-017    |
| T-5 (2')   | S      | 03-29-18 00:00 |              | 581006-018    |
| T-5 (4')   | S      | 03-29-18 00:00 |              | 581006-019    |
| T-6 (0-1') | S      | 03-29-18 00:00 |              | 581006-020    |
| T-6 (2')   | S      | 03-29-18 00:00 |              | 581006-021    |
| T-6 (4')   | S      | 03-29-18 00:00 |              | 581006-022    |
| T-6 (6')   | S      | 03-29-18 00:00 |              | 581006-023    |



### CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: El Jefe BSJ Fed. Comm 1H

Project ID: 212C-MD-01166 Work Order Number(s): 581006 Report Date: 13-APR-18 Date Received: 04/02/2018

Sample receipt non conformances and comments:

Client took Sample 017 & 018 off hold 04/09/18 JKR

Sample receipt non conformances and comments per sample:

None

#### Analytical non conformances and comments:

Batch: LBA-3045521 Inorganic Anions by EPA 300/300.1

Lab Sample ID 581006-011 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 581006-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3045540 TPH By SW8015 Mod

Diesel Range Organics (DRO), Gasoline Range Hydrocarbons (GRO) RPD was outside laboratory control limits.

Samples in the analytical batch are: 581006-001, -002, -003, -004, -009, -010, -014, -015, -020, -021

Batch: LBA-3045673 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3045718 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3046232 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3046412 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.



Ike Tavarez

Lea County, New Mexico

**Contact:** 

**Project Location:** 

Certificate of Analysis Summary 581006

Tetra Tech- Midland, Midland, TX Project Name: El Jefe BSJ Fed. Comm 1H



Date Received in Lab:Mon Apr-02-18 11:31 amReport Date:13-APR-18Project Manager:Kelsey Brooks

|                                   | Lab Id:    | 581006-   | 001             | 581006-0        | 002     | 581006-0        | 003     | 581006-   | 004     | 581006-0  | 005   | 581006-0    | 06    |
|-----------------------------------|------------|-----------|-----------------|-----------------|---------|-----------------|---------|-----------|---------|-----------|-------|-------------|-------|
|                                   | Field Id:  | T-1 (0-   | 1')             | T-1 (2          | )       | T-2 (0-         | 1')     | T-2 (2    | ')      | T-2 (4'   | )     | T-2 (6')    | )     |
| Analysis Requested                | Depth:     |           |                 |                 |         |                 |         |           |         |           |       |             |       |
|                                   | Matrix:    | SOIL      |                 | SOIL            |         | SOIL            |         | SOIL      |         | SOIL      |       | SOIL        |       |
|                                   | Sampled:   | Mar-29-18 | 00:00           | Mar-29-18       | 00:00   | Mar-29-18       | 00:00   | Mar-29-18 | 00:00   | Mar-29-18 | 00:00 | Mar-29-18 ( | 00:00 |
| BTEX by EPA 8021B                 | Extracted: | Apr-03-18 | Apr-03-18 17:00 |                 | 12:00   | Apr-04-18       | 12:00   | Apr-04-18 | 12:00   |           |       |             |       |
|                                   | Analyzed:  | Apr-03-18 | Apr-03-18 22:33 |                 | 20:38   | Apr-04-18       | 20:57   | Apr-04-18 | 21:16   |           |       |             |       |
|                                   | Units/RL:  | mg/kg     | RL              | mg/kg           | RL      | mg/kg           | RL      | mg/kg     | RL      |           |       |             |       |
| Benzene                           |            | < 0.00201 | 0.00201         | < 0.00199       | 0.00199 | 0.00714         | 0.00200 | < 0.00200 | 0.00200 |           |       |             |       |
| Toluene                           |            | < 0.00201 | 0.00201         | < 0.00199       | 0.00199 | 0.0172          | 0.00200 | < 0.00200 | 0.00200 |           |       |             |       |
| Ethylbenzene                      |            | < 0.00201 | 0.00201         | < 0.00199       | 0.00199 | < 0.00200       | 0.00200 | < 0.00200 | 0.00200 |           |       |             |       |
| m,p-Xylenes                       |            | < 0.00402 | 0.00402         | < 0.00398       | 0.00398 | 0.00949         | 0.00399 | < 0.00401 | 0.00401 |           |       |             |       |
| o-Xylene                          |            | < 0.00201 | 0.00201         | < 0.00199       | 0.00199 | 0.00383         | 0.00200 | < 0.00200 | 0.00200 |           |       |             |       |
| Total Xylenes                     |            | < 0.00201 | 0.00201         | < 0.00199       | 0.00199 | 0.0133          | 0.00200 | < 0.00200 | 0.00200 |           |       |             |       |
| Total BTEX                        |            | < 0.00201 | 0.00201         | < 0.00199       | 0.00199 | 0.0377          | 0.00200 | < 0.00200 | 0.00200 |           |       |             |       |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Apr-02-18 | 17:30           | Apr-02-18 17:30 |         | Apr-02-18 17:30 |         | Apr-02-18 | 17:30   | Apr-02-18 | 17:30 | Apr-02-18 1 | 17:30 |
|                                   | Analyzed:  | Apr-03-18 | 05:33           | Apr-03-18       | 05:17   | Apr-03-18       | 05:38   | Apr-03-18 | 05:44   | Apr-03-18 | 05:49 | Apr-03-18 0 | 06:05 |
|                                   | Units/RL:  | mg/kg     | RL              | mg/kg           | RL      | mg/kg           | RL      | mg/kg     | RL      | mg/kg     | RL    | mg/kg       | RL    |
| Chloride                          |            | 4960      | 49.5            | 454             | 4.98    | 13200           | 99.0    | 168       | 4.96    | 1080      | 4.98  | 1040        | 4.97  |
| TPH By SW8015 Mod                 | Extracted: | Apr-03-18 | 09:00           | Apr-03-18       | 09:00   | Apr-03-18       | 09:00   | Apr-03-18 | 09:00   |           |       |             |       |
|                                   | Analyzed:  | Apr-03-18 | 13:55           | Apr-03-18       | 14:20   | Apr-03-18       | 14:45   | Apr-03-18 | 15:08   |           |       |             |       |
|                                   | Units/RL:  | mg/kg     | RL              | mg/kg           | RL      | mg/kg           | RL      | mg/kg     | RL      |           |       |             |       |
| Gasoline Range Hydrocarbons (GRO) |            | <15.0     | 15.0            | <15.0           | 15.0    | 124             | 15.0    | <14.9     | 14.9    |           |       |             |       |
| Diesel Range Organics (DRO)       |            | 34.3      | 15.0            | 53.5            | 15.0    | 4390            | 15.0    | <14.9     | 14.9    |           |       |             |       |
| Oil Range Hydrocarbons (ORO)      |            | <15.0     | 15.0            | <15.0           | 15.0    | 1200            | 15.0    | <14.9     | 14.9    |           |       |             |       |
| Total TPH                         |            | 34.3      | 15.0            | 53.5            | 15.0    | 5710            | 15.0    | <14.9     | 14.9    |           |       |             |       |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager



Certificate of Analysis Summary 581006

Tetra Tech- Midland, Midland, TX Project Name: El Jefe BSJ Fed. Comm 1H



Project Id:212C-MD-01166Contact:Ike TavarezProject Location:Lea County, New Mexico

Date Received in Lab:Mon Apr-02-18 11:31 amReport Date:13-APR-18Project Manager:Kelsey Brooks

|                                   | Lab Id:    | 581006-0  | 007   | 581006-0    | 0.8   | 581006-0  | 000     | 581006-   | 010     | 581006-0    | 11    | 581006-0    | 12    |
|-----------------------------------|------------|-----------|-------|-------------|-------|-----------|---------|-----------|---------|-------------|-------|-------------|-------|
|                                   | Field Id:  | T-2 (8'   |       | T-2 (10     |       | T-3 (0-1  |         | T-3 (2    |         | T-3 (4)     |       | T-3 (6      |       |
| Analysis Requested                |            | 1-2 (8    | /     | 1-2 (10     | ,     | 1-3 (0-   | .)      | 1-3 (2    | .)      | 1-5 (4)     | ,     | 1-5 (0      | )     |
|                                   | Depth:     |           |       |             |       |           |         |           |         |             |       |             |       |
|                                   | Matrix:    | SOIL      |       | SOIL        |       | SOIL      |         | SOII      | -       | SOIL        |       | SOIL        |       |
|                                   | Sampled:   | Mar-29-18 | 00:00 | Mar-29-18 ( | 00:00 | Mar-29-18 | 00:00   | Mar-29-18 | 00:00   | Mar-29-18 ( | 00:00 | Mar-29-18   | 00:00 |
| BTEX by EPA 8021B                 | Extracted: |           | 1     |             |       | Apr-04-18 | 12:00   | Apr-04-18 | 12:00   |             |       |             |       |
|                                   | Analyzed:  |           |       |             |       | Apr-04-18 | 21:36   | Apr-04-18 | 21:55   |             |       |             |       |
|                                   | Units/RL:  |           |       |             |       | mg/kg     | RL      | mg/kg     | RL      |             |       |             |       |
| Benzene                           |            |           |       |             |       | 0.00279   | 0.00201 | < 0.00199 | 0.00199 |             |       |             |       |
| Toluene                           |            |           |       |             |       | 0.0116    | 0.00201 | < 0.00199 | 0.00199 |             |       |             |       |
| Ethylbenzene                      |            |           |       |             |       | 0.00230   | 0.00201 | < 0.00199 | 0.00199 |             |       |             |       |
| m,p-Xylenes                       |            |           |       |             |       | 0.0142    | 0.00402 | < 0.00398 | 0.00398 |             |       |             |       |
| o-Xylene                          |            |           |       |             |       | 0.00486   | 0.00201 | < 0.00199 | 0.00199 |             |       |             |       |
| Total Xylenes                     |            |           |       |             |       | 0.0191    | 0.00201 | < 0.00199 | 0.00199 |             |       |             |       |
| Total BTEX                        |            |           |       |             |       | 0.0358    | 0.00201 | < 0.00199 | 0.00199 |             |       |             |       |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Apr-02-18 | 17:30 | Apr-02-18 1 | 7:30  | Apr-02-18 | 17:30   | Apr-02-18 | 17:30   | Apr-02-18 1 | 17:30 | Apr-02-18   | 17:30 |
|                                   | Analyzed:  | Apr-03-18 | 06:10 | Apr-03-18 ( | )6:15 | Apr-03-18 | 06:21   | Apr-03-18 | 06:26   | Apr-03-18 ( | 06:31 | Apr-03-18 ( | 06:47 |
|                                   | Units/RL:  | mg/kg     | RL    | mg/kg       | RL    | mg/kg     | RL      | mg/kg     | RL      | mg/kg       | RL    | mg/kg       | RL    |
| Chloride                          |            | 346       | 4.99  | 60.6        | 4.99  | 16600     | 250     | 2110      | 24.9    | 289         | 4.96  | 82.0        | 5.00  |
| TPH By SW8015 Mod                 | Extracted: |           |       |             |       | Apr-03-18 | 09:00   | Apr-03-18 | 09:00   |             |       |             |       |
|                                   | Analyzed:  |           |       |             |       | Apr-04-18 | 08:35   | Apr-03-18 | 16:43   |             |       |             |       |
|                                   | Units/RL:  |           |       |             |       | mg/kg     | RL      | mg/kg     | RL      |             |       |             |       |
| Gasoline Range Hydrocarbons (GRO) |            |           |       |             |       | 84.2      | 74.7    | <15.0     | 15.0    |             |       |             |       |
| Diesel Range Organics (DRO)       |            |           |       |             |       | 8690      | 74.7    | 25.9      | 15.0    |             |       |             |       |
| Oil Range Hydrocarbons (ORO)      |            |           |       |             |       | 2170      | 74.7    | <15.0     | 15.0    |             |       |             |       |
| Total TPH                         |            |           |       |             |       | 10900     | 74.7    | 88.5      | 15.0    |             |       |             |       |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager



Certificate of Analysis Summary 581006

Tetra Tech- Midland, Midland, TX Project Name: El Jefe BSJ Fed. Comm 1H



Project Id:212C-MD-01166Contact:Ike TavarezProject Location:Lea County, New Mexico

Date Received in Lab:Mon Apr-02-18 11:31 amReport Date:13-APR-18Project Manager:Kelsey Brooks

|                                   | Lab Id:    | 581006-0    | 013   | 581006-0        | 014     | 581006-015      |         | 581006-016  |       | 581006-017      |       | 581006-0        | 018     |
|-----------------------------------|------------|-------------|-------|-----------------|---------|-----------------|---------|-------------|-------|-----------------|-------|-----------------|---------|
| Analysis Requested                | Field Id:  | T-3 (8)     | )     | T-4 (0-1        | )       | T-4 (2')        | )       | T-4 (4)     | )     | T-5 (0-1        | )     | T-5 (2          | ')      |
| marysis Requested                 | Depth:     |             |       |                 |         |                 |         |             |       |                 |       |                 |         |
|                                   | Matrix:    | SOIL        |       | SOIL            |         | SOIL            |         | SOIL        |       | SOIL            |       | SOIL            | ,       |
|                                   | Sampled:   | Mar-29-18 ( | 00:00 | Mar-29-18       | 00:00   | Mar-29-18 (     | 00:00   | Mar-29-18 ( | 00:00 | Mar-29-18 (     | 00:00 | Mar-29-18       | 00:00   |
| BTEX by EPA 8021B                 | Extracted: |             |       | Apr-04-18       | 12:00   | Apr-04-18 1     | 12:00   |             |       | Apr-11-18 (     | )8:15 | Apr-10-18       | 08:00   |
|                                   | Analyzed:  |             |       | Apr-04-182      | 22:14   | Apr-04-18 2     | 22:33   |             |       | Apr-11-18 1     | 2:35  | Apr-10-18       | 15:50   |
|                                   | Units/RL:  |             |       | mg/kg           | RL      | mg/kg           | RL      |             |       | mg/kg           | RL    | mg/kg           | RL      |
| Benzene                           |            |             |       | < 0.00200       | 0.00200 | < 0.00202       | 0.00202 |             |       | 12.6            | 0.996 | < 0.00200       | 0.00200 |
| Toluene                           |            |             |       | 0.00354         | 0.00200 | < 0.00202       | 0.00202 |             |       | 186             | 0.996 | 0.00337         | 0.00200 |
| Ethylbenzene                      |            |             |       | < 0.00200       | 0.00200 | < 0.00202       | 0.00202 |             |       | 43.6            | 0.996 | < 0.00200       | 0.00200 |
| m,p-Xylenes                       |            |             |       | 0.0218          | 0.00399 | < 0.00403       | 0.00403 |             |       | 257             | 1.99  | 0.00438         | 0.00400 |
| o-Xylene                          |            |             |       | 0.0424          | 0.00200 | < 0.00202       | 0.00202 |             |       | 97.7            | 0.996 | 0.00234         | 0.00200 |
| Total Xylenes                     |            |             |       | 0.0642          | 0.00200 | < 0.00202       | 0.00202 |             |       | 355             | 0.996 | 0.00672         | 0.00200 |
| Total BTEX                        |            |             |       | 0.0677          | 0.00200 | < 0.00202       | 0.00202 |             |       | 597             | 0.996 | 0.0101          | 0.00200 |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Apr-02-18   | 17:30 | Apr-02-18       | 17:30   | Apr-02-18 1     | 17:30   | Apr-02-18 1 | 7:30  | Apr-02-18 1     | 7:30  | Apr-02-18       | 17:30   |
|                                   | Analyzed:  | Apr-03-18 ( | 06:53 | Apr-03-18 (     | 07:08   | Apr-03-18 (     | 07:14   | Apr-03-18 ( | 7:19  | Apr-03-18 0     | 07:24 | Apr-03-18       | 07:30   |
|                                   | Units/RL:  | mg/kg       | RL    | mg/kg           | RL      | mg/kg           | RL      | mg/kg       | RL    | mg/kg           | RL    | mg/kg           | RL      |
| Chloride                          |            | 114         | 4.98  | 3430            | 24.9    | 1810            | 24.8    | 1900        | 24.9  | 20100           | 249   | 6720            | 49.9    |
| TPH By SW8015 Mod                 | Extracted: |             |       | Apr-03-18 09:00 |         | Apr-03-18 09:00 |         |             |       | Apr-09-18 12:00 |       | Apr-09-18 12:00 |         |
|                                   | Analyzed:  |             |       | Apr-03-18       | 17:07   | Apr-03-18 17:29 |         |             |       | Apr-09-18 18:41 |       | Apr-09-18 18:20 |         |
|                                   | Units/RL:  |             |       | mg/kg           | RL      | mg/kg           | RL      |             |       | mg/kg           | RL    | mg/kg           | RL      |
| Gasoline Range Hydrocarbons (GRO) |            |             |       | 51.4            | 15.0    | <15.0           | 15.0    |             |       | 56300           | 748   | <15.0           | 15.0    |
| Diesel Range Organics (DRO)       |            |             |       | 929             | 15.0    | 21.8            | 15.0    |             |       | 106000          | 748   | 22.4            | 15.0    |
| Oil Range Hydrocarbons (ORO)      |            |             |       | 141             | 15.0    | <15.0           | 15.0    |             |       | 18000           | 748   | <15.0           | 15.0    |
| Total TPH                         |            |             |       | 1120            | 15.0    | 21.8            | 15.0    |             |       | 180000          | 748   | 22.4            | 15.0    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager



Certificate of Analysis Summary 581006

Tetra Tech- Midland, Midland, TX Project Name: El Jefe BSJ Fed. Comm 1H



Project Id:212C-MD-01166Contact:Ike TavarezProject Location:Lea County, New Mexico

Date Received in Lab:Mon Apr-02-18 11:31 amReport Date:13-APR-18Project Manager:Kelsey Brooks

|                                   | Lab Id:    | 581006-0  | )19   | 581006-0  | 020     | 581006-0    | 021     | 581006-0  | 022   | 581006-0    | 23    |  |
|-----------------------------------|------------|-----------|-------|-----------|---------|-------------|---------|-----------|-------|-------------|-------|--|
| Analysis Requested                | Field Id:  | T-5 (4'   | )     | T-6 (0-1  | )       | T-6 (2'     | )       | T-6 (4'   | )     | T-6 (6')    |       |  |
| Anuiysis Requesteu                | Depth:     |           |       |           |         |             |         |           |       |             |       |  |
|                                   | Matrix:    | SOIL      |       | SOIL      |         | SOIL        |         | SOIL      |       | SOIL        |       |  |
|                                   | Sampled:   | Mar-29-18 | 00:00 | Mar-29-18 | 00:00   | Mar-29-18   | 00:00   | Mar-29-18 | 00:00 | Mar-29-18 ( | 00:00 |  |
| BTEX by EPA 8021B Extracted:      |            |           |       | Apr-04-18 | 12:00   | Apr-04-18   | 12:00   |           |       |             |       |  |
|                                   | Analyzed:  |           |       | Apr-04-18 | 22:53   | Apr-04-182  | 23:12   |           |       |             |       |  |
|                                   | Units/RL:  |           |       | mg/kg     | RL      | mg/kg       | RL      |           |       |             |       |  |
| Benzene                           |            |           |       | < 0.00200 | 0.00200 | < 0.00199   | 0.00199 |           |       |             |       |  |
| Toluene                           |            |           |       | 0.00388   | 0.00200 | < 0.00199   | 0.00199 |           |       |             |       |  |
| Ethylbenzene                      |            |           |       | 0.00920   | 0.00200 | < 0.00199   | 0.00199 |           |       |             |       |  |
| m,p-Xylenes                       |            |           |       | 0.0721    | 0.00401 | 0.00447     | 0.00398 |           |       |             |       |  |
| o-Xylene                          |            |           |       | 0.0336    | 0.00200 | 0.00238     | 0.00199 |           |       |             |       |  |
| Total Xylenes                     |            |           |       | 0.106     | 0.00200 | 0.00685     | 0.00199 |           |       |             |       |  |
| Total BTEX                        |            |           |       | 0.119     | 0.00200 | 0.00685     | 0.00199 |           |       |             |       |  |
| Inorganic Anions by EPA 300/300.1 | Extracted: | Apr-02-18 | 17:30 | Apr-02-18 | 17:30   | Apr-03-18   | 15:05   | Apr-03-18 | 15:05 | Apr-03-18 1 | 5:05  |  |
|                                   | Analyzed:  | Apr-03-18 | 07:35 | Apr-03-18 | 07:40   | Apr-03-18   | 15:46   | Apr-03-18 | 15:51 | Apr-03-18 1 | 5:30  |  |
|                                   | Units/RL:  | mg/kg     | RL    | mg/kg     | RL      | mg/kg       | RL      | mg/kg     | RL    | mg/kg       | RL    |  |
| Chloride                          |            | 1930      | 24.9  | 3960      | 25.0    | 3850        | 25.0    | 2000      | 25.0  | 26.7        | 4.95  |  |
| TPH By SW8015 Mod                 | Extracted: |           |       | Apr-03-18 | 09:00   | Apr-03-18 ( | 09:00   |           |       |             |       |  |
|                                   | Analyzed:  |           |       | Apr-03-18 | 17:53   | Apr-03-18   | 18:14   |           |       |             |       |  |
|                                   | Units/RL:  |           |       | mg/kg     | RL      | mg/kg       | RL      |           |       |             |       |  |
| Gasoline Range Hydrocarbons (GRO) |            |           |       | 158       | 15.0    | <15.0       | 15.0    |           |       |             |       |  |
| Diesel Range Organics (DRO)       |            |           |       | 4670      | 15.0    | 72.9        | 15.0    |           |       |             |       |  |
| Oil Range Hydrocarbons (ORO)      |            |           |       | 1040      | 15.0    | <15.0       | 15.0    |           |       |             |       |  |
| Total TPH                         |            |           |       | 5870      | 15.0    | 72.9        | 15.0    |           |       |             |       |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager



## **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- \*\* Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

| SMP Clie | ent Sample                              | BLK       | Method Blank               |                                 |
|----------|-----------------------------------------|-----------|----------------------------|---------------------------------|
| BKS/LCS  | S Blank Spike/Laboratory Control Sample | BKSD/LCSD | Blank Spike Duplicate/Labo | ratory Control Sample Duplicate |
| MD/SD    | Method Duplicate/Sample Duplicate       | MS        | Matrix Spike               | MSD: Matrix Spike Duplicate     |

+ NELAC certification not offered for this compound.

\* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation



## Form 2 - Surrogate Recoveries

## Project Name: El Jefe BSJ Fed. Comm 1H

| Work Orde<br>Lab Batch #: |         | Sample: 581006-001 / SMP             | Bate                   |                       | : 212C-MD-0<br>: Soil |                         |       |
|---------------------------|---------|--------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| U <b>nits:</b>            | mg/kg   | Date Analyzed: 04/03/18 13:55        | SU                     | URROGATE R            | ECOVERY S             | STUDY                   |       |
|                           | TPH F   | By SW8015 Mod                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                           |         | Analytes                             |                        |                       | [D]                   |                         |       |
| 1-Chlorooctane            | e       |                                      | 91.4                   | 99.7                  | 92                    | 70-135                  |       |
| o-Terphenyl               |         |                                      | 47.5                   | 49.9                  | 95                    | 70-135                  |       |
| Lab Batch #:              | 3045540 | Sample: 581006-002 / SMP             | Bate                   | ch: 1 Matrix          | : Soil                |                         |       |
| Units:                    | mg/kg   | Date Analyzed: 04/03/18 14:20        | SU                     | URROGATE R            | ECOVERY S             | STUDY                   |       |
|                           |         | By SW8015 Mod Analytes               | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flage |
| 1-Chlorooctane            |         | Analytes                             | 91.8                   | 99.9                  | 92                    | 70-135                  |       |
| o-Terphenyl               |         |                                      | 48.9                   | 50.0                  | 98                    | 70-135                  |       |
| Lab Batch #:              | 3045540 | Sample: 581006-003 / SMP             | Bate                   |                       |                       | 10 100                  |       |
| Units:                    | mg/kg   | Date Analyzed: 04/03/18 14:45        |                        | URROGATE R            |                       | STUDY                   |       |
|                           | TPH B   | By SW8015 Mod                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |
|                           |         | Analytes                             |                        |                       | [D]                   |                         |       |
| 1-Chlorooctane            | e       |                                      | 89.1                   | 99.8                  | 89                    | 70-135                  |       |
| o-Terphenyl               |         |                                      | 42.6                   | 49.9                  | 85                    | 70-135                  |       |
| Lab Batch #:              | 3045540 | Sample: 581006-004 / SMP             | Bate                   | ch: 1 Matrix          | : Soil                |                         |       |
| Units:                    | mg/kg   | Date Analyzed: 04/03/18 15:08        | SU                     | URROGATE R            | ECOVERY S             | STUDY                   |       |
|                           |         | By SW8015 Mod Analytes               | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1-Chlorooctane            |         |                                      | 89.0                   | 99.6                  | 89                    | 70-135                  |       |
| o-Terphenyl               |         |                                      | 45.2                   | 49.8                  | 91                    | 70-135                  |       |
| Lab Batch #:              | 3045540 | Sample: 581006-010 / SMP             | Bate                   |                       |                       |                         |       |
| Units:                    | mg/kg   | <b>Date Analyzed:</b> 04/03/18 16:43 | SU                     | URROGATE R            | ECOVERY S             | STUDY                   |       |
|                           |         | By SW8015 Mod                        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |
|                           |         | Analytes                             |                        |                       | [D]                   |                         |       |
| 1-Chlorooctane            | e       |                                      | 89.8                   | 99.9                  | 90                    | 70-135                  |       |
| o-Terphenyl               |         |                                      | 46.7                   | 50.0                  | 93                    | 70-135                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.



## Form 2 - Surrogate Recoveries

## Project Name: El Jefe BSJ Fed. Comm 1H

| Lab Batch #:   |                                                          | Sample: 581006-014 / SMP      | Batc                   |                       |                       |                         |       |
|----------------|----------------------------------------------------------|-------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Units:         | mg/kg                                                    | Date Analyzed: 04/03/18 17:07 | SU                     | <b>RROGATE R</b>      | ECOVERY S             | STUDY                   |       |
|                | TPH F                                                    | By SW8015 Mod                 | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |                                                          | Analytes                      |                        |                       | [D]                   |                         |       |
| 1-Chlorooctane | e                                                        |                               | 108                    | 99.7                  | 108                   | 70-135                  |       |
| o-Terphenyl    |                                                          |                               | 53.5                   | 49.9                  | 107                   | 70-135                  |       |
| Lab Batch #:   | 3045540                                                  | Sample: 581006-015 / SMP      | Batc                   | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg                                                    | Date Analyzed: 04/03/18 17:29 | SU                     | STUDY                 |                       |                         |       |
|                |                                                          | By SW8015 Mod Analytes        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1-Chlorooctane |                                                          | 1111119 000                   | 108                    | 99.8                  | 108                   | 70-135                  |       |
| o-Terphenyl    |                                                          |                               | 55.7                   | 49.9                  | 112                   | 70-135                  |       |
| Lab Batch #:   | 3045540                                                  | Sample: 581006-020 / SMP      | Batc                   | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg Date Analyzed: 04/03/18 17:53 SURROGATE RECOVERY S |                               |                        |                       |                       |                         |       |
|                | TPH F                                                    | By SW8015 Mod                 | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |                                                          | Analytes                      |                        |                       | [D]                   |                         |       |
| 1-Chlorooctane | e                                                        |                               | 99.4                   | 99.7                  | 100                   | 70-135                  |       |
| o-Terphenyl    |                                                          |                               | 48.3                   | 49.9                  | 97                    | 70-135                  |       |
| Lab Batch #:   | 3045540                                                  | Sample: 581006-021 / SMP      | Batc                   | h: 1 Matrix           | : Soil                |                         |       |
| Units:         | mg/kg                                                    | Date Analyzed: 04/03/18 18:14 | st                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                |                                                          | By SW8015 Mod Analytes        | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1-Chlorooctane | e                                                        |                               | 92.8                   | 99.9                  | 93                    | 70-135                  |       |
| o-Terphenyl    |                                                          |                               | 47.0                   | 50.0                  | 94                    | 70-135                  |       |
| Lab Batch #:   | 3045673                                                  | Sample: 581006-001 / SMP      | Batc                   | h: 1 Matrix           | : Soil                | 1                       | 1     |
| Units:         | mg/kg                                                    | Date Analyzed: 04/03/18 22:33 | su                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|                |                                                          | C by EPA 8021B                | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 140.0          |                                                          | Analytes                      | 0.0177                 |                       |                       |                         |       |
| 1,4-Difluorobe |                                                          |                               | 0.0272                 | 0.0300                | 91                    | 70-130                  |       |
| 4-Bromofluoro  | oenzene                                                  |                               | 0.0288                 | 0.0300                | 96                    | 70-130                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B

All results are based on MDL and validated for QC purposes.


## Project Name: El Jefe BSJ Fed. Comm 1H

|              | #: 3045540        | Sample: 581006-009 / SMP      | Batc                     | ch: 1 Matrix          | : Soil                |                         |          |  |  |  |
|--------------|-------------------|-------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|----------|--|--|--|
| Units:       | mg/kg             | Date Analyzed: 04/04/18 08:35 | SURROGATE RECOVERY STUDY |                       |                       |                         |          |  |  |  |
|              | TPH I             | By SW8015 Mod                 | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flag     |  |  |  |
|              |                   | Analytes                      |                          |                       | [D]                   |                         |          |  |  |  |
| 1-Chlorooct  | tane              |                               | 91.8                     | 99.6                  | 92                    | 70-135                  |          |  |  |  |
| o-Terpheny   | 1                 |                               | 50.4                     | 49.8                  | 101                   | 70-135                  |          |  |  |  |
| Lab Batch    | <b>#:</b> 3045718 | Sample: 581006-002 / SMP      | Batch: 1 Matrix: Soil    |                       |                       |                         |          |  |  |  |
| Units:       | mg/kg             | Date Analyzed: 04/04/18 20:38 | SU                       | URROGATE R            | ECOVERY S             | STUDY                   |          |  |  |  |
|              |                   | X by EPA 8021B<br>Analytes    | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flag     |  |  |  |
| 1,4-Difluoro |                   |                               | 0.0266                   | 0.0300                | 89                    | 70-130                  |          |  |  |  |
| 4-Bromoflu   |                   |                               | 0.0278                   | 0.0300                | 93                    | 70-130                  |          |  |  |  |
| Lab Batch    | #: 3045718        | Sample: 581006-003 / SMP      | Batc                     |                       |                       |                         |          |  |  |  |
| Units:       | mg/kg             | Date Analyzed: 04/04/18 20:57 | st                       | URROGATE R            | ECOVERY S             | STUDY                   |          |  |  |  |
|              | BTEX              | X by EPA 8021B                | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flag     |  |  |  |
|              | Analytes          |                               |                          |                       | [D]                   |                         |          |  |  |  |
| 1,4-Difluor  | obenzene          |                               | 0.0282                   | 0.0300                | 94                    | 70-130                  |          |  |  |  |
| 4-Bromoflu   | orobenzene        |                               | 0.0253                   | 0.0300                | 84                    | 70-130                  |          |  |  |  |
| Lab Batch    | #: 3045718        | Sample: 581006-004 / SMP      | Batch: 1 Matrix: Soil    |                       |                       |                         |          |  |  |  |
| Units:       | mg/kg             | Date Analyzed: 04/04/18 21:16 | SURROGATE RECOVERY STUDY |                       |                       |                         |          |  |  |  |
|              | ВТЕХ              | K by EPA 8021B<br>Analytes    | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flage    |  |  |  |
| 1,4-Difluor  | obenzene          |                               | 0.0290                   | 0.0300                | 97                    | 70-130                  |          |  |  |  |
| ·            | orobenzene        |                               | 0.0310                   | 0.0300                | 103                   | 70-130                  |          |  |  |  |
| 4-Diomonu    | #: 3045718        | Sample: 581006-009 / SMP      | Batc                     |                       |                       |                         | <u> </u> |  |  |  |
|              |                   | Date Analyzed: 04/04/18 21:36 | SU                       | URROGATE R            | ECOVERY S             | STUDY                   |          |  |  |  |
| Lab Batch    | mg/kg             |                               |                          |                       | 1                     |                         |          |  |  |  |
|              | BTEX              | A polytos                     | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flag     |  |  |  |
| Lab Batch    | BTEX              | X by EPA 8021B Analytes       | Found                    | Amount                | •                     | Limits                  | Flags    |  |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

| Taster              | m a /l             | Data Analyzada 04/04/19 21.55 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |  |  |
|---------------------|--------------------|-------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|--|--|
| Units:              | mg/kg              | Date Analyzed: 04/04/18 21:55 | SUKKOGATE KECOVEKY STUDY |                       |                       |                         |       |  |  |  |  |
|                     | BTEX               | L by EPA 8021B                | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |  |  |  |  |
|                     |                    | Analytes                      |                          |                       | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluor         | obenzene           |                               | 0.0277                   | 0.0300                | 92                    | 70-130                  |       |  |  |  |  |
| 4-Bromoflu          | orobenzene         |                               | 0.0279                   | 0.0300                | 93                    | 70-130                  |       |  |  |  |  |
| Lab Batch           | <b>#:</b> 3045718  | Sample: 581006-014 / SMP      | P Batch: 1 Matrix: Soil  |                       |                       |                         |       |  |  |  |  |
| Units:              | mg/kg              | Date Analyzed: 04/04/18 22:14 | SU                       | RROGATE R             | ECOVERY S             | STUDY                   |       |  |  |  |  |
|                     |                    | L by EPA 8021B                | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flage |  |  |  |  |
| 1.4-Difluor         |                    | Analytes                      | 0.0257                   | 0.0300                |                       | 70.120                  |       |  |  |  |  |
| 4-Bromoflu          |                    |                               | 0.0257                   | 0.0300                | 86                    | 70-130                  |       |  |  |  |  |
|                     | #: 3045718         | Sample: 581006-015 / SMP      | Batcl                    |                       |                       | 70-150                  |       |  |  |  |  |
| Lab Datch<br>Units: | mg/kg              | Date Analyzed: 04/04/18 22:33 |                          |                       | -                     |                         |       |  |  |  |  |
| Units:              | mg/kg              | Date Analyzed: 04/04/18 22.55 | SU                       | RROGATE R             | ECOVERY S             | STUDY                   |       |  |  |  |  |
|                     | BTEX               | by EPA 8021B                  | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage |  |  |  |  |
|                     |                    | Analytes                      |                          |                       | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluor         | obenzene           |                               | 0.0286                   | 0.0300                | 95                    | 70-130                  |       |  |  |  |  |
| 4-Bromoflu          | orobenzene         |                               | 0.0288                   | 0.0300                | 96                    | 70-130                  |       |  |  |  |  |
| Lab Batch           | #: 3045718         | Sample: 581006-020 / SMP      | Batcl                    | h: 1 Matrix           | : Soil                |                         |       |  |  |  |  |
| Units:              | mg/kg              | Date Analyzed: 04/04/18 22:53 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |  |  |
|                     |                    | L by EPA 8021B                | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |  |
| 1,4-Difluor         |                    | Analytes                      | 0.0250                   | 0.0300                | 83                    | 70-130                  |       |  |  |  |  |
| 4-Bromoflu          |                    |                               | 0.0230                   | 0.0300                | 129                   | 70-130                  |       |  |  |  |  |
|                     | #: 3045718         | Sample: 581006-021 / SMP      | Batcl                    |                       |                       | /0-130                  |       |  |  |  |  |
| Units:              | mg/kg              | Date Analyzed: 04/04/18 23:12 |                          | RROGATE R             |                       | STUDY                   |       |  |  |  |  |
|                     | BTEX by EPA 8021B  |                               | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |  |
|                     | Analytes           |                               | r1                       | [~]                   | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluor         |                    |                               | 0.0279                   | 0.0300                | 93                    | 70-130                  |       |  |  |  |  |
| 4 Dromofly          | Bromofluorobenzene |                               |                          | 0.0300                | 86                    | 70-130                  |       |  |  |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

| Lab Batch #       | lers : 58100<br>: 3046091 | Sample: 581006-018 / SMP             | Bate                             | -                     | : 212C-MD-0<br>: Soil |                         |           |  |  |  |
|-------------------|---------------------------|--------------------------------------|----------------------------------|-----------------------|-----------------------|-------------------------|-----------|--|--|--|
| Units:            | mg/kg                     | Date Analyzed: 04/09/18 18:20        | SURROGATE RECOVERY STUDY         |                       |                       |                         |           |  |  |  |
|                   | TPH I                     | 3y SW8015 Mod                        | Amount<br>Found<br>[A]           | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage     |  |  |  |
|                   |                           | Analytes                             |                                  |                       | [D]                   |                         |           |  |  |  |
| 1-Chloroocta      | ne                        |                                      | 100                              | 99.9                  | 100                   | 70-135                  |           |  |  |  |
| o-Terphenyl       |                           |                                      | 52.0                             | 50.0                  | 104                   | 70-135                  |           |  |  |  |
| Lab Batch #       | <b>:</b> 3046091          | Sample: 581006-017 / SMP             | IP   Batch:   1   Matrix:   Soil |                       |                       |                         |           |  |  |  |
| Units:            | mg/kg                     | Date Analyzed: 04/09/18 18:41        | SURROGATE RECOVERY STUDY         |                       |                       |                         |           |  |  |  |
|                   |                           | By SW8015 Mod                        | Amount<br>Found<br>[A]           | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags     |  |  |  |
| 1-Chloroocta      |                           | Analytes                             | 122                              | 99.7                  | 122                   | 70-135                  |           |  |  |  |
| o-Terphenyl       |                           |                                      | 49.4                             | 49.9                  | 99                    | 70-135                  |           |  |  |  |
| Lab Batch #       | • 3046232                 | Sample: 581006-018 / SMP             | Bate                             |                       |                       | 70-155                  |           |  |  |  |
| Units:            | mg/kg                     | <b>Date Analyzed:</b> 04/10/18 15:50 |                                  | URROGATE R            |                       | STUDY                   |           |  |  |  |
| BTEX by EPA 8021B |                           |                                      | Amount<br>Found<br>[A]           | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage     |  |  |  |
|                   | Analytes                  |                                      |                                  |                       | [D]                   |                         |           |  |  |  |
| 1,4-Difluorol     | benzene                   |                                      | 0.0235                           | 0.0300                | 78                    | 70-130                  |           |  |  |  |
| 4-Bromofluo       | robenzene                 |                                      | 0.0256                           | 0.0300                | 85                    | 70-130                  |           |  |  |  |
| Lab Batch #       | <b>:</b> 3046412          | Sample: 581006-017 / SMP             | P Batch: 1 Matrix: Soil          |                       |                       |                         |           |  |  |  |
| Units:            | mg/kg                     | Date Analyzed: 04/11/18 12:35        | SU                               | URROGATE R            | ECOVERY S             | STUDY                   |           |  |  |  |
|                   | ВТЕХ                      | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A]           | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags     |  |  |  |
| 1,4-Difluorol     | enzene                    |                                      | 0.0232                           | 0.0300                | 77                    | 70-130                  |           |  |  |  |
| 4-Bromofluo       | robenzene                 |                                      | 0.0219                           | 0.0300                | 73                    | 70-130                  |           |  |  |  |
| Lab Batch #       | <b>:</b> 3045540          | Sample: 7641929-1-BLK / B            | LK Bate                          | ch: 1 Matrix          | : Solid               | 1                       | I <u></u> |  |  |  |
| Units:            | mg/kg                     | Date Analyzed: 04/03/18 09:35        | SU                               | URROGATE R            | ECOVERY               | STUDY                   |           |  |  |  |
|                   | TPH By SW8015 Mod         |                                      |                                  | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flage     |  |  |  |
|                   |                           | Analytes                             |                                  |                       | [D]                   |                         |           |  |  |  |
| 1-Chloroocta      | ne                        |                                      | 88.3                             | 100                   | 88                    | 70-135                  |           |  |  |  |
| o-Terphenyl       | p-Terphenyl               |                                      |                                  | 50.0                  | 93                    | 70-135                  |           |  |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

|             | r <b>ders :</b> 58100<br>#: 3045673 | 6,<br>Sample: 7642030-1-BLK / | BLK Batch              | -                     | 212C-MD-0<br>Solid    | 01166                   |       |
|-------------|-------------------------------------|-------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| Units:      | mg/kg                               | Date Analyzed: 04/03/18 22:13 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|             | BTEX                                | X by EPA 8021B                | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|             |                                     | Analytes                      |                        |                       | [D]                   |                         |       |
| 1,4-Difluor |                                     |                               | 0.0288                 | 0.0300                | 96                    | 70-130                  |       |
| 4-Bromoflu  |                                     |                               | 0.0266                 | 0.0300                | 89                    | 70-130                  |       |
| Lab Batch   | #: 3045718                          | Sample: 7642055-1-BLK /       | BLK Batch              | h: 1 Matrix           | : Solid               |                         |       |
| Units:      | mg/kg                               | Date Analyzed: 04/03/18 22:13 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|             | BTEX                                | K by EPA 8021B<br>Analytes    | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluor | obenzene                            |                               | 0.0288                 | 0.0300                | 96                    | 70-130                  |       |
|             | lorobenzene                         |                               | 0.0266                 | 0.0300                | 89                    | 70-130                  |       |
|             | #: 3046091                          | Sample: 7642268-1-BLK /       |                        |                       |                       | 70 150                  |       |
| Units:      | mg/kg                               | Date Analyzed: 04/09/18 09:14 |                        | RROGATE R             |                       | STUDY                   |       |
|             | TPH                                 | By SW8015 Mod                 | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
|             |                                     | Analytes                      |                        |                       | [IJ]                  |                         |       |
| 1-Chlorooc  |                                     |                               | 96.0                   | 100                   | 96                    | 70-135                  |       |
| o-Terpheny  |                                     |                               | 49.8                   | 50.0                  | 100                   | 70-135                  |       |
| Lab Batch   | #: 3046232                          | Sample: 7642361-1-BLK /       | BLK Batch              | h: 1 Matrix           | : Solid               |                         |       |
| Units:      | mg/kg                               | Date Analyzed: 04/10/18 10:06 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|             | BTEX                                | K by EPA 8021B<br>Analytes    | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluor | obenzene                            |                               | 0.0252                 | 0.0300                | 84                    | 70-130                  |       |
| 4-Bromoflu  | orobenzene                          |                               | 0.0243                 | 0.0300                | 81                    | 70-130                  |       |
| Lab Batch   | #: 3046412                          | Sample: 7642454-1-BLK /       | BLK Batcl              | h: 1 Matrix           | : Solid               |                         |       |
| Units:      | mg/kg                               | Date Analyzed: 04/11/18 10:25 | SU                     | RROGATE R             | ECOVERY S             | STUDY                   |       |
|             | BTEX                                | X by EPA 8021B<br>Analytes    | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluor | obenzene                            |                               | 0.0297                 | 0.0300                | 99                    | 70-130                  |       |
| 4 Promofly  | orobenzene                          |                               | 0.0224                 | 0.0300                | 75                    | 70-130                  |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

| Units:            | malka              | Data Analyzad: 01/02/19 00.59        | SURROGATE RECOVERY STUDY    |                       |                       |                         |       |  |  |  |  |
|-------------------|--------------------|--------------------------------------|-----------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|--|--|
| Units:            | mg/kg              | <b>Date Analyzed:</b> 04/03/18 09:58 | SURROGATE RECOVERY STUDY    |                       |                       |                         |       |  |  |  |  |
|                   | TPH F              | By SW8015 Mod                        | Amount<br>Found<br>[A]      | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |  |
|                   |                    | Analytes                             |                             |                       | [D]                   |                         |       |  |  |  |  |
| 1-Chloroocta      | ne                 |                                      | 109                         | 100                   | 109                   | 70-135                  |       |  |  |  |  |
| o-Terphenyl       |                    |                                      | 47.3                        | 50.0                  | 95                    | 70-135                  |       |  |  |  |  |
| Lab Batch #       | : 3045673          | Sample: 7642030-1-BKS / B            | /BKS Batch: 1 Matrix: Solid |                       |                       |                         |       |  |  |  |  |
| Units:            | mg/kg              | Date Analyzed: 04/03/18 20:17        | SU                          | JRROGATE R            | ECOVERY               | STUDY                   |       |  |  |  |  |
|                   |                    | A by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A]      | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |  |
| 1,4-Difluorob     |                    |                                      | 0.0305                      | 0.0300                | 102                   | 70-130                  |       |  |  |  |  |
| 4-Bromofluor      | obenzene           |                                      | 0.0283                      | 0.0300                | 94                    | 70-130                  |       |  |  |  |  |
| Lab Batch #       | : 3045718          | Sample: 7642055-1-BKS / I            | BKS Bate                    | h: 1 Matrix           | : Solid               |                         |       |  |  |  |  |
| Units:            | mg/kg              | Date Analyzed: 04/03/18 20:17        | SU                          | JRROGATE R            | ECOVERY               | STUDY                   |       |  |  |  |  |
| BTEX by EPA 8021B |                    |                                      | Amount<br>Found<br>[A]      | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |  |
|                   | Analytes           |                                      |                             |                       | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluorob     | enzene             |                                      | 0.0305                      | 0.0300                | 102                   | 70-130                  |       |  |  |  |  |
| 4-Bromofluor      | robenzene          |                                      | 0.0283                      | 0.0300                | 94                    | 70-130                  |       |  |  |  |  |
| Lab Batch #       | : 3046091          | Sample: 7642268-1-BKS / H            | BKS Bate                    | h: 1 Matrix           | : Solid               |                         |       |  |  |  |  |
| Units:            | mg/kg              | Date Analyzed: 04/09/18 09:35        | SU                          | JRROGATE R            | ECOVERY S             | STUDY                   |       |  |  |  |  |
|                   |                    | By SW8015 Mod<br>Analytes            | Amount<br>Found<br>[A]      | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |  |
| 1-Chloroocta      | ne                 | -                                    | 129                         | 100                   | 129                   | 70-135                  |       |  |  |  |  |
| o-Terphenyl       |                    |                                      | 60.9                        | 50.0                  | 122                   | 70-135                  |       |  |  |  |  |
| Lab Batch #       | : 3046232          | Sample: 7642361-1-BKS / H            | BKS Batc                    | h: 1 Matrix           | : Solid               | 1                       |       |  |  |  |  |
| Units:            | mg/kg              | Date Analyzed: 04/10/18 08:10        | SU                          | JRROGATE R            | ECOVERY S             | STUDY                   |       |  |  |  |  |
|                   | BTEX by EPA 8021B  |                                      | Amount<br>Found<br>[A]      | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |  |
|                   |                    | Analytes                             |                             |                       | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluorob     | enzene             |                                      | 0.0305                      | 0.0300                | 102                   | 70-130                  |       |  |  |  |  |
|                   | Bromofluorobenzene |                                      |                             | 0.0300                | 106                   | 70-130                  |       |  |  |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

| Units:         | mg/kg             | Date Analyzed: 04/11/18 08:17        | CT                     | RROGATE R             | FCOVEDV               | TUDV                    |       |
|----------------|-------------------|--------------------------------------|------------------------|-----------------------|-----------------------|-------------------------|-------|
| cints.         | mg/kg             |                                      | 50                     | KKUGAIE K             |                       | STUDY                   |       |
|                | BTEX              | 5 by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |                   | Analytes                             |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobe | nzene             |                                      | 0.0324                 | 0.0300                | 108                   | 70-130                  |       |
| 4-Bromofluoro  | benzene           |                                      | 0.0289                 | 0.0300                | 96                    | 70-130                  |       |
| Lab Batch #:   | 3045540           | Sample: 7641929-1-BSD / 1            | BSD Bate               | h: 1 Matrix           | : Solid               |                         |       |
| Units:         | mg/kg             | Date Analyzed: 04/03/18 10:21        | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                |                   | By SW8015 Mod<br>Analytes            | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1-Chlorooctane |                   | Analytes                             | 129                    | 100                   |                       | 70-135                  |       |
| o-Terphenyl    |                   |                                      | 62.1                   | 50.0                  | 129                   | 70-135                  |       |
| Lab Batch #:   | 3045673           | Sample: 7642030-1-BSD / 1            |                        |                       |                       | /0-135                  |       |
| Units:         | mg/kg             | Date Analyzed: 04/03/18 20:37        |                        |                       |                       |                         |       |
| Units:         | mg/kg             | Date Analyzeu: 04/03/18 20.37        | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                | BTEX              | 5 by EPA 8021B                       | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |
|                |                   | Analytes                             |                        |                       | [D]                   |                         |       |
| 1,4-Difluorobe | nzene             |                                      | 0.0300                 | 0.0300                | 100                   | 70-130                  |       |
| 4-Bromofluoro  | benzene           |                                      | 0.0282                 | 0.0300                | 94                    | 70-130                  |       |
| Lab Batch #:   | 3045718           | Sample: 7642055-1-BSD / 1            | BSD Bate               | h: 1 Matrix           | : Solid               |                         |       |
| Units:         | mg/kg             | Date Analyzed: 04/03/18 20:37        | SU                     | RROGATE R             | ECOVERY               | STUDY                   |       |
|                |                   | A by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A] | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |
| 1,4-Difluorobe |                   | Anarytes                             | 0.0300                 | 0.0300                | 100                   | 70-130                  |       |
| 4-Bromofluoro  |                   |                                      | 0.0300                 | 0.0300                | 94                    | 70-130                  |       |
| Lab Batch #:   |                   | Sample: 7642268-1-BSD / 1            |                        |                       | -                     | /0-150                  |       |
| Units:         | mg/kg             | <b>Date Analyzed:</b> 04/09/18 09:57 |                        | RROGATE R             |                       | STUDY                   |       |
|                | TPH By SW8015 Mod |                                      |                        | True                  |                       | Control                 | F     |
|                | Analytes          |                                      | Found<br>[A]           | Amount<br>[B]         | Recovery<br>%R<br>[D] | Limits<br>%R            | Flage |
| 1-Chlorooctane |                   | •                                    | 97.3                   | 100                   | 97                    | 70-135                  |       |
|                | -Terphenyl        |                                      |                        | 1                     | 1                     | I                       |       |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

|                              |                    | Sample: 7642361-1-BSD / BS    |                              |                       |                       |                         |          |  |  |  |
|------------------------------|--------------------|-------------------------------|------------------------------|-----------------------|-----------------------|-------------------------|----------|--|--|--|
| Units:                       | mg/kg              | Date Analyzed: 04/10/18 08:30 | SURROGATE RECOVERY STUDY     |                       |                       |                         |          |  |  |  |
|                              | BTEX               | L by EPA 8021B                | Amount<br>Found<br>[A]       | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags    |  |  |  |
|                              |                    | Analytes                      |                              |                       | [D]                   |                         |          |  |  |  |
| 1,4-Difluorol                | benzene            |                               | 0.0281                       | 0.0300                | 94                    | 70-130                  |          |  |  |  |
| 4-Bromofluo                  |                    |                               | 0.0307                       | 0.0300                | 102                   | 70-130                  |          |  |  |  |
| Lab Batch #                  | <b>:</b> 3046412   | Sample: 7642454-1-BSD / BS    | / BSD Batch: 1 Matrix: Solid |                       |                       |                         |          |  |  |  |
| Units:                       | mg/kg              | Date Analyzed: 04/11/18 08:37 | SU                           | RROGATE R             | ECOVERYS              | STUDY                   |          |  |  |  |
|                              |                    | by EPA 8021B Analytes         | Amount<br>Found<br>[A]       | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags    |  |  |  |
| 1,4-Difluorol                |                    |                               | 0.0320                       | 0.0300                | 107                   | 70-130                  |          |  |  |  |
| 4-Bromofluo                  | robenzene          |                               | 0.0299                       | 0.0300                | 100                   | 70-130                  | <u> </u> |  |  |  |
| Lab Batch #                  | <b>:</b> 3045540   | Sample: 580999-001 S / MS     | Batc                         | h: 1 Matrix           | : Soil                |                         |          |  |  |  |
| Units:                       | mg/kg              | Date Analyzed: 04/03/18 11:42 | SURROGATE RECOVERY STUDY     |                       |                       |                         |          |  |  |  |
| TPH By SW8015 Mod            |                    |                               | Amount<br>Found<br>[A]       | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags    |  |  |  |
|                              |                    | Analytes                      |                              |                       | [D]                   |                         |          |  |  |  |
| 1-Chloroocta                 | ne                 |                               | 104                          | 99.9                  | 104                   | 70-135                  |          |  |  |  |
| o-Terphenyl                  |                    |                               | 46.0                         | 50.0                  | 92                    | 70-135                  |          |  |  |  |
| Lab Batch #                  | <b>:</b> 3045673   | Sample: 581006-001 S / MS     | Batc                         | h: 1 Matrix           | : Soil                |                         |          |  |  |  |
| Units:                       | mg/kg              | Date Analyzed: 04/03/18 20:56 | SURROGATE RECOVERY STUDY     |                       |                       |                         |          |  |  |  |
|                              |                    | by EPA 8021B                  | Amount<br>Found<br>[A]       | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flage    |  |  |  |
| 1 4 D'flue                   |                    | Analytes                      | 0.0217                       | 0.0200                |                       | 70.100                  |          |  |  |  |
| 1,4-Difluorol<br>4-Bromofluo |                    |                               | 0.0317                       | 0.0300                | 106                   | 70-130                  |          |  |  |  |
| 4-Bromofluo                  |                    | Sample: 581267-002 S / MS     | 0.0288<br>Bate               | 0.0300<br>h: 1 Matrix | 96                    | 70-130                  |          |  |  |  |
| Lab Batch +<br>Units:        |                    | Date Analyzed: 04/04/18 14:43 |                              |                       |                       |                         |          |  |  |  |
| Units:                       | mg/kg              | Date Analyzeu: 04/04/18 14:43 | SU                           | RROGATE R             | ECOVERYS              | STUDY                   | -        |  |  |  |
|                              | BTEX by EPA 8021B  |                               |                              | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flag     |  |  |  |
| [                            |                    | Analytes                      |                              |                       | [D]                   |                         |          |  |  |  |
| 1,4-Difluorol                |                    |                               | 0.0295                       | 0.0300                | 98                    | 70-130                  |          |  |  |  |
| 4-Bromofluo                  | Bromofluorobenzene |                               |                              | 0.0300                | 97                    | 70-130                  |          |  |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



## Project Name: El Jefe BSJ Fed. Comm 1H

| r T •4        | л                  | D-4. A                               | MS Batch: 1 Matrix: Soil |                       |                       |                         |       |  |  |  |  |
|---------------|--------------------|--------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|--|--|
| Units:        | mg/kg              | <b>Date Analyzed:</b> 04/09/18 10:40 | SURROGATE RECOVERY STUDY |                       |                       |                         |       |  |  |  |  |
|               | TPH I              | By SW8015 Mod                        | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |  |
|               |                    | Analytes                             |                          |                       | [D]                   |                         |       |  |  |  |  |
| 1-Chlorooctar | ne                 |                                      | 94.5                     | 99.7                  | 95                    | 70-135                  |       |  |  |  |  |
| o-Terphenyl   |                    |                                      | 42.8                     | 49.9                  | 86                    | 70-135                  |       |  |  |  |  |
| Lab Batch #   | <b>:</b> 3046232   | Sample: 581763-004 S / MS            | MS Batch: 1 Matrix: Soil |                       |                       |                         |       |  |  |  |  |
| Units:        | mg/kg              | Date Analyzed: 04/10/18 08:49        | SU                       | JRROGATE R            | ECOVERYS              | STUDY                   |       |  |  |  |  |
|               |                    | X by EPA 8021B<br>Analytes           | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |  |
| 1,4-Difluorob |                    | 1111119105                           | 0.0305                   | 0.0300                | 102                   | 70-130                  |       |  |  |  |  |
| 4-Bromofluor  | obenzene           |                                      | 0.0333                   | 0.0300                | 111                   | 70-130                  |       |  |  |  |  |
| Lab Batch #   | : 3046412          | Sample: 581765-012 S / MS            | Batc                     | h: 1 Matrix           | : Soil                |                         |       |  |  |  |  |
| Units:        | mg/kg              | <b>Date Analyzed:</b> 04/11/18 09:07 | su                       | JRROGATE R            | ECOVERY               | STUDY                   |       |  |  |  |  |
|               | BTEX               | X by EPA 8021B                       | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |  |
|               |                    | Analytes                             |                          |                       | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluorob | enzene             |                                      | 0.0314                   | 0.0300                | 105                   | 70-130                  |       |  |  |  |  |
| 4-Bromofluor  |                    |                                      | 0.0293                   | 0.0300                | 98                    | 70-130                  |       |  |  |  |  |
| Lab Batch #   | : 3045540          | Sample: 580999-001 SD / M            | SD Batc                  | h: 1 Matrix           | : Soil                |                         |       |  |  |  |  |
| Units:        | mg/kg              | Date Analyzed: 04/03/18 12:05        | SU                       | JRROGATE R            | ECOVERY S             | STUDY                   |       |  |  |  |  |
|               |                    | By SW8015 Mod<br>Analytes            | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |  |
| 1-Chlorooctar | ie                 |                                      | 93.3                     | 99.9                  | 93                    | 70-135                  |       |  |  |  |  |
| o-Terphenyl   |                    |                                      | 42.6                     | 50.0                  | 85                    | 70-135                  |       |  |  |  |  |
| Lab Batch #   | : 3045673          | Sample: 581006-001 SD / M            | SD Batc                  | h: 1 Matrix           | : Soil                | 1                       |       |  |  |  |  |
| Units:        | mg/kg              | Date Analyzed: 04/03/18 21:15        | su                       | JRROGATE R            | ECOVERY               | STUDY                   |       |  |  |  |  |
|               | BTEX by EPA 8021B  |                                      |                          | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flag  |  |  |  |  |
|               |                    | Analytes                             |                          |                       | [D]                   |                         |       |  |  |  |  |
| 1,4-Difluorob | enzene             |                                      | 0.0293                   | 0.0300                | 98                    | 70-130                  |       |  |  |  |  |
| AD C          | Bromofluorobenzene |                                      |                          | 0.0300                | 120                   | 70-130                  |       |  |  |  |  |

\* Surrogate outside of Laboratory QC limits

\*\* Surrogates outside limits; data and surrogates confirmed by reanalysis

\*\*\* Poor recoveries due to dilution

Surrogate Recovery [D] = 100 \* A / B



Project Name: El Jefe BSJ Fed. Comm 1H

| Work Ore<br>Lab Batch # | <b>lers :</b> 58100 |                                                            | ASD Batcl                |                       | : 212C-MD-0           | )1166                   |       |  |  |  |
|-------------------------|---------------------|------------------------------------------------------------|--------------------------|-----------------------|-----------------------|-------------------------|-------|--|--|--|
| Lab Batch #<br>Units:   | mg/kg               | Sample: 581267-002 SD / M<br>Date Analyzed: 04/04/18 15:09 |                          | RROGATE R             |                       | STUDY                   |       |  |  |  |
|                         | BTEX                | X by EPA 8021B                                             | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |
|                         |                     | Analytes                                                   |                          |                       | [D]                   |                         |       |  |  |  |
| 1,4-Difluorol           | benzene             |                                                            | 0.0311                   | 70-130                |                       |                         |       |  |  |  |
| 4-Bromofluo             | robenzene           |                                                            | 0.0310 0.0300 103 70-130 |                       |                       |                         |       |  |  |  |
| Lab Batch #             | <b>:</b> 3046091    | Sample: 581762-001 SD / N                                  | MSD Batcl                | h: 1 Matrix           | : Soil                |                         |       |  |  |  |
| Units:                  | mg/kg               | Date Analyzed: 04/09/18 11:01                              | SU                       | RROGATE R             | ECOVERY               | STUDY                   |       |  |  |  |
|                         | TPH ]               | By SW8015 Mod<br>Analytes                                  | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |
| 1-Chloroocta            | ne                  | Anarytes                                                   | 102                      | 99.8                  | 102                   | 70-135                  |       |  |  |  |
| o-Terphenyl             |                     |                                                            | 47.1                     | 49.9                  | 94                    | 70-135                  |       |  |  |  |
| Lab Batch #             | <b>:</b> 3046232    | Sample: 581763-004 SD / M                                  |                          |                       |                       | 10 100                  |       |  |  |  |
| Units:                  | mg/kg               | Date Analyzed: 04/10/18 09:08                              |                          | RROGATE R             | ECOVERY               | STUDY                   |       |  |  |  |
|                         | BTEX                | X by EPA 8021B                                             | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R        | Control<br>Limits<br>%R | Flags |  |  |  |
|                         |                     | Analytes                                                   | [A]                      | լոյ                   | [D]                   | 701                     |       |  |  |  |
| 1,4-Difluorol           | benzene             |                                                            | 0.0323                   | 0.0300                | 108                   | 70-130                  |       |  |  |  |
| 4-Bromofluo             | robenzene           |                                                            | 0.0334                   | 0.0300                | 111                   | 70-130                  |       |  |  |  |
| Lab Batch #             | <b>:</b> 3046412    | Sample: 581765-012 SD / N                                  | MSD Batch                | h: 1 Matrix           | : Soil                | 11                      |       |  |  |  |
| Units:                  | mg/kg               | Date Analyzed: 04/11/18 09:27                              | SU                       | RROGATE R             | ECOVERY               | STUDY                   |       |  |  |  |
|                         | BTEX                | X by EPA 8021B<br>Analytes                                 | Amount<br>Found<br>[A]   | True<br>Amount<br>[B] | Recovery<br>%R<br>[D] | Control<br>Limits<br>%R | Flags |  |  |  |
| 1,4-Difluorol           | oenzene             | rinary ws                                                  | 0.0325                   | 0.0300                | 108                   | 70-130                  |       |  |  |  |
| 4-Bromofluo             |                     |                                                            | 0.0325                   | 0.0300                | 98                    | 70-130                  |       |  |  |  |
|                         |                     |                                                            | 0.0275                   | 0.0500                |                       | /0-150                  |       |  |  |  |

\* Surrogate outside of Laboratory QC limits

- \*\* Surrogates outside limits; data and surrogates confirmed by reanalysis
- \*\*\* Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 \* A / B





### Project Name: El Jefe BSJ Fed. Comm 1H

| Work Order   | •#: 581006                  |                               |                          |                                 |                             |                                        |                                           | Proj                          | ect ID:    | 212C-MD-(               | )1166                     |      |
|--------------|-----------------------------|-------------------------------|--------------------------|---------------------------------|-----------------------------|----------------------------------------|-------------------------------------------|-------------------------------|------------|-------------------------|---------------------------|------|
| Analyst:     | ALJ                         | D                             | ate Prepar               | red: 04/03/201                  | 8                           |                                        |                                           | Date A                        | nalyzed: ( | 04/03/2018              |                           |      |
| Lab Batch ID | : 3045673 Sample: 7642030-1 | -BKS                          | Batch #: 1 Matrix: Solid |                                 |                             |                                        |                                           |                               |            |                         |                           |      |
| Units:       | mg/kg                       |                               | BLAN                     | K/BLANK                         | SPIKE / ]                   | / BLANK SPIKE DUPLICATE RECOVERY STUDY |                                           |                               |            |                         |                           |      |
| Analy        | BTEX by EPA 8021B           | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B]    | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E]                  | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Benzene      |                             | < 0.00202                     | 0.101                    | 0.116                           | 115                         | 0.101                                  | 0.121                                     | 120                           | 4          | 70-130                  | 35                        |      |
| Toluene      |                             | < 0.00202                     | 0.101                    | 0.108                           | 107                         | 0.101                                  | 0.114                                     | 113                           | 5          | 70-130                  | 35                        |      |
| Ethylbenz    | ene                         | < 0.00202                     | 0.101                    | 0.102                           | 101                         | 0.101                                  | 0.109                                     | 108                           | 7          | 70-130                  | 35                        |      |
| m,p-Xyler    | nes                         | < 0.00403                     | 0.202                    | 0.212                           | 105                         | 0.202                                  | 0.224                                     | 111                           | 6          | 70-130                  | 35                        |      |
| o-Xylene     |                             | < 0.00202                     | 0.101                    | 0.107                           | 106                         | 0.101                                  | 0.113                                     | 112                           | 5          | 70-130                  | 35                        |      |
| Analyst:     | ALJ                         | D                             | ate Prepar               | red: 04/04/201                  | 8                           |                                        |                                           | Date A                        | nalyzed: ( | 04/03/2018              |                           |      |
| Lab Batch ID | : 3045718 Sample: 7642055-1 | -BKS                          | Batcl                    | <b>h #:</b> 1                   |                             | Matrix: Solid                          |                                           |                               |            |                         |                           |      |
| Units:       | mg/kg                       |                               | BLAN                     | K/BLANK                         | SPIKE / ]                   | BLANK S                                | SPIKE DUP                                 | LICATE                        | RECOV      | ERY STUI                | DY                        |      |
| Analy        | BTEX by EPA 8021B           | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B]    | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E]                  | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Benzene      | 105                         | <0.00200                      | 0.0998                   | 0.115                           | 115                         | 0.100                                  | 0.120                                     | 120                           | 4          | 70-130                  | 35                        |      |
| Toluene      |                             | <0.00200                      | 0.0998                   | 0.115                           | 115                         | 0.100                                  | 0.120                                     | 120                           | 5          | 70-130                  | 35                        |      |
| Ethylbenz    | ene                         | <0.00200                      | 0.0998                   | 0.107                           | 107                         | 0.100                                  | 0.109                                     | 113                           | 8          | 70-130                  | 35                        |      |
| m,p-Xyler    |                             | <0.00200                      | 0.200                    | 0.210                           | 101                         | 0.201                                  | 0.223                                     | 105                           | 6          | 70-130                  | 35                        |      |
| o-Xylene     |                             | <0.00200                      | 0.0998                   | 0.106                           | 105                         | 0.100                                  | 0.113                                     | 113                           | 6          | 70-130                  | 35                        |      |
|              |                             |                               |                          |                                 |                             |                                        |                                           |                               |            |                         | ļ                         |      |





### Project Name: El Jefe BSJ Fed. Comm 1H

| Work Order   | <b>:#:</b> 581006                          |                               |                       |                                 |                             |                       |                                           | Proj                          | ect ID:    | 212C-MD-(               | )1166                     |      |
|--------------|--------------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|------------|-------------------------|---------------------------|------|
| Analyst:     | ALJ                                        | D                             | ate Prepar            | ed: 04/10/201                   | 18                          |                       |                                           | Date A                        | nalyzed: ( | 04/10/2018              |                           |      |
| Lab Batch ID | <b>:</b> 3046232 <b>Sample:</b> 7642361-1- | BKS                           | Batcl                 | n#: 1                           |                             |                       |                                           |                               | Matrix: S  | Solid                   |                           |      |
| Units:       | mg/kg                                      |                               | BLAN                  | K /BLANK S                      | SPIKE / 1                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOVI     | ERY STUI                | ЭY                        |      |
| Analy        | BTEX by EPA 8021B                          | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Benzene      |                                            | <0.00198                      | 0.0990                | 0.118                           | 119                         | 0.0994                | 0.116                                     | 117                           | 2          | 70-130                  | 35                        |      |
| Toluene      |                                            | <0.00198                      | 0.0990                | 0.115                           | 116                         | 0.0994                | 0.111                                     | 112                           | 4          | 70-130                  | 35                        |      |
| Ethylbenz    | ene                                        | <0.00198                      | 0.0990                | 0.115                           | 116                         | 0.0994                | 0.112                                     | 113                           | 3          | 70-130                  | 35                        |      |
| m,p-Xyler    | nes                                        | < 0.00396                     | 0.198                 | 0.240                           | 121                         | 0.199                 | 0.230                                     | 116                           | 4          | 70-130                  | 35                        |      |
| o-Xylene     |                                            | <0.00198                      | 0.0990                | 0.119                           | 120                         | 0.0994                | 0.115                                     | 116                           | 3          | 70-130                  | 35                        |      |
| Analyst:     | ALJ                                        | D                             | ate Prepar            | ed: 04/11/201                   | 18                          |                       |                                           | Date A                        | nalyzed: ( | 04/11/2018              |                           |      |
| Lab Batch ID | <b>:</b> 3046412 <b>Sample:</b> 7642454-1- | BKS                           | Batcl                 | <b>h #:</b> 1                   |                             | Matrix: Solid         |                                           |                               |            |                         |                           |      |
| Units:       | mg/kg                                      |                               | BLAN                  | K/BLANK S                       | SPIKE / 1                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOVI     | ERY STUI                | DY                        |      |
|              | BTEX by EPA 8021B                          | Blank<br>Sample Result<br>[A] | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Analy        | vtes                                       |                               |                       |                                 |                             |                       |                                           |                               |            |                         |                           |      |
| Benzene      |                                            | <0.00201                      | 0.101                 | 0.118                           | 117                         | 0.101                 | 0.118                                     | 117                           | 0          | 70-130                  | 35                        |      |
| Toluene      |                                            | <0.00201                      | 0.101                 | 0.115                           | 114                         | 0.101                 | 0.114                                     | 113                           | 1          | 70-130                  | 35                        |      |
| Ethylbenz    |                                            | <0.00201                      | 0.101                 | 0.116                           | 115                         | 0.101                 | 0.114                                     | 113                           | 2          | 70-130                  | 35                        |      |
| m,p-Xyler    | nes                                        | <0.00402                      | 0.201                 | 0.237                           | 118                         | 0.202                 | 0.232                                     | 115                           | 2          | 70-130                  | 35                        |      |
| o-Xylene     |                                            | < 0.00201                     | 0.101                 | 0.118                           | 117                         | 0.101                 | 0.116                                     | 115                           | 2          | 70-130                  | 35                        |      |





### Project Name: El Jefe BSJ Fed. Comm 1H

| Work Order #: 581006                          |                                                           |                       |                                 |                             |                       |                                           | Pro                           | ject ID: 💈 | 212C-MD-0               | )1166                     |      |
|-----------------------------------------------|-----------------------------------------------------------|-----------------------|---------------------------------|-----------------------------|-----------------------|-------------------------------------------|-------------------------------|------------|-------------------------|---------------------------|------|
| Analyst: OJS                                  | D                                                         | ate Prepar            | red: 04/02/201                  | 18                          |                       |                                           | Date A                        | nalyzed: ( | 04/03/2018              |                           |      |
| Lab Batch ID: 3045521 Sample: 7641896-1       | BKS                                                       | Batc                  | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix: S  | Solid                   |                           |      |
| Units: mg/kg                                  |                                                           | BLAN                  | K /BLANK S                      | SPIKE / ]                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOVI     | ERY STUI                | DY                        |      |
| Inorganic Anions by EPA 300/300.1<br>Analytes | Blank<br>Sample Result<br>[A]                             | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Chloride                                      | <5.00                                                     | 250                   | 273                             | 109                         | 250                   | 267                                       | 107                           | 2          | 90-110                  | 20                        |      |
| Analyst: OJS                                  | D                                                         | ate Prepar            | red: 04/03/201                  | 18                          | •                     |                                           | Date A                        | nalyzed: ( | 4/03/2018               | 1                         | ·'   |
| Lab Batch ID: 3045644 Sample: 7641963-1       | BKS                                                       | Bate                  | <b>h #:</b> 1                   |                             |                       |                                           |                               | Matrix: S  | Solid                   |                           |      |
| Units: mg/kg                                  | BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY |                       |                                 |                             |                       |                                           |                               |            |                         |                           |      |
| Inorganic Anions by EPA 300/300.1             | Blank<br>Sample Result<br>[A]                             | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Chloride                                      | <5.00                                                     | 250                   | 256                             | 102                         | 250                   | 246                                       | 98                            | 4          | 90-110                  | 20                        |      |
| Analyst: ARM                                  |                                                           |                       | red: 04/03/201                  |                             | 200                   |                                           |                               |            | 04/03/2018              |                           |      |
| Lab Batch ID: 3045540 Sample: 7641929-1       |                                                           | -                     | <b>h #:</b> 1                   |                             |                       |                                           | Dutt                          | Matrix: S  |                         |                           |      |
| Units: mg/kg                                  |                                                           | BLAN                  | K /BLANK S                      | SPIKE / 1                   | BLANK S               | SPIKE DUP                                 | LICATE                        | RECOVI     | ERY STUI                | DY                        |      |
| TPH By SW8015 Mod<br>Analytes                 | Blank<br>Sample Result<br>[A]                             | Spike<br>Added<br>[B] | Blank<br>Spike<br>Result<br>[C] | Blank<br>Spike<br>%R<br>[D] | Spike<br>Added<br>[E] | Blank<br>Spike<br>Duplicate<br>Result [F] | Blk. Spk<br>Dup.<br>%R<br>[G] | RPD<br>%   | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|                                               | 1                                                         | 1                     | 1                               | 1                           |                       | 1                                         | 1                             | 1          | 1                       |                           | 1    |
| Gasoline Range Hydrocarbons (GRO)             | <15.0                                                     | 1000                  | 901                             | 90                          | 1000                  | 1150                                      | 115                           | 24         | 70-135                  | 20                        | F    |





### Project Name: El Jefe BSJ Fed. Comm 1H

| Work Order    | #: 581006                |                               |                |                          |                      |                |                             | Proj                   | ect ID:   | 212C-MD-0               | )1166                     |      |  |  |
|---------------|--------------------------|-------------------------------|----------------|--------------------------|----------------------|----------------|-----------------------------|------------------------|-----------|-------------------------|---------------------------|------|--|--|
| Analyst:      | ARM                      | D                             | ate Prepar     | red: 04/09/201           | 18                   |                | Date A                      | Analyzed: 04/09/2018   |           |                         |                           |      |  |  |
| Lab Batch ID: | <b>Sample:</b> 7642268-1 | -BKS                          | Batcl          | <b>h #:</b> 1            |                      |                |                             |                        | Matrix: S | fatrix: Solid           |                           |      |  |  |
| Units:        | mg/kg                    |                               | BLAN           | K /BLANK S               | SPIKE / 1            | BLANK S        | SPIKE DUPI                  | LICATE                 | RECOV     | ERY STUE                | ΟY                        |      |  |  |
|               | TPH By SW8015 Mod        | Blank<br>Sample Result<br>[A] | Spike<br>Added | Blank<br>Spike<br>Result | Blank<br>Spike<br>%R | Spike<br>Added | Blank<br>Spike<br>Duplicate | Blk. Spk<br>Dup.<br>%R | RPD<br>%  | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |  |  |
| Analy         | tes                      |                               | [B]            | [C]                      | [D]                  | [E]            | Result [F]                  | [G]                    |           |                         |                           |      |  |  |
| Gasoline F    | Range Hydrocarbons (GRO) | <15.0                         | 1000           | 1060                     | 106                  | 1000           | 995                         | 100                    | 6         | 70-135                  | 20                        |      |  |  |
| Diesel Rar    | age Organics (DRO)       | <15.0                         | 1000           | 1160                     | 116                  | 1000           | 1130                        | 113                    | 3         | 70-135                  | 20                        |      |  |  |



#### Project Name: El Jefe BSJ Fed. Comm 1H



| Work Order # :          | 581006                       |                                                      |                       |                                |                               |                       | Project II                               | <b>):</b> 212C-1            | MD-0116  | 6                       |                           |      |
|-------------------------|------------------------------|------------------------------------------------------|-----------------------|--------------------------------|-------------------------------|-----------------------|------------------------------------------|-----------------------------|----------|-------------------------|---------------------------|------|
| Lab Batch ID:           | 3045673                      | QC- Sample ID:                                       | 581006                | -001 S                         | Ba                            | tch #:                | 1 Matrix                                 | <b>k:</b> Soil              |          |                         |                           |      |
| Date Analyzed:          | 04/03/2018                   | Date Prepared:                                       | 04/03/2               | 2018                           | An                            | alyst: A              | ALJ                                      |                             |          |                         |                           |      |
| <b>Reporting Units:</b> | mg/kg                        |                                                      | N                     | IATRIX SPIK                    | E / MAT                       | RIX SPI               | KE DUPLICA                               | TE REC                      | OVERY    | STUDY                   |                           |      |
| В                       | TEX by EPA 8021B             | Parent<br>Sample<br>Result                           | Spike<br>Added        | Spiked Sample<br>Result        | Sample                        | Spike                 |                                          | Spiked<br>Dup.<br>%R        | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|                         | Analytes                     | [A]                                                  | [B]                   | [C]                            | %R<br>[D]                     | Added<br>[E]          | Result [F]                               | 56K<br>[G]                  | 70       | 70K                     | 70KPD                     |      |
| Benzene                 |                              | <0.00199                                             | 0.0994                | 0.109                          | 110                           | 0.0998                | 0.0915                                   | 92                          | 17       | 70-130                  | 35                        |      |
| Toluene                 |                              | <0.00199                                             | 0.0994                | 0.101                          | 102                           | 0.0998                | 0.0887                                   | 89                          | 13       | 70-130                  | 35                        |      |
| Ethylbenzene            |                              | <0.00199                                             | 0.0994                | 0.0917                         | 92                            | 0.0998                | 0.0813                                   | 81                          | 12       | 70-130                  | 35                        |      |
| m,p-Xylenes             |                              | <0.00398                                             | 0.199                 | 0.188                          | 94                            | 0.200                 | 0.162                                    | 81                          | 15       | 70-130                  | 35                        |      |
| o-Xylene                |                              | < 0.00199                                            | 0.0994                | 0.0993                         | 100                           | 0.0998                | 0.0875                                   | 88                          | 13       | 70-130                  | 35                        |      |
| Lab Batch ID:           | 3045718                      | QC- Sample ID:                                       | 581267                | -002 S                         | Ba                            | tch #:                | 1 Matrix                                 | <b>k:</b> Soil              |          |                         |                           |      |
| Date Analyzed:          | 04/04/2018                   | Date Prepared:                                       | 04/04/2               | 2018                           | An                            | alyst: A              | ALJ                                      |                             |          |                         |                           |      |
| <b>Reporting Units:</b> | mg/kg                        | MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY |                       |                                |                               |                       |                                          |                             |          |                         |                           |      |
| В                       | TEX by EPA 8021B<br>Analytes | Parent<br>Sample<br>Result<br>[A]                    | Spike<br>Added<br>[B] | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R<br>[D] | Spike<br>Added<br>[E] | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Benzene                 |                              | <0.00201                                             | 0.100                 | 0.0839                         | 84                            | 0.0998                | 0.0996                                   | 100                         | 17       | 70-130                  | 35                        |      |
| Toluene                 |                              | <0.00201                                             | 0.100                 | 0.0779                         | 78                            | 0.0998                | 0.0943                                   | 94                          | 19       | 70-130                  | 35                        |      |
| Ethylbenzene            |                              | <0.00201                                             | 0.100                 | 0.0720                         | 72                            | 0.0998                | 0.0882                                   | 88                          | 20       | 70-130                  | 35                        |      |
| m,p-Xylenes             |                              | <0.00402                                             | 0.201                 | 0.151                          | 75                            | 0.200                 | 0.181                                    | 91                          | 18       | 70-130                  | 35                        |      |
| o-Xylene                |                              | < 0.00201                                            | 0.100                 | 0.0755                         | 76                            | 0.0998                | 0.0920                                   | 92                          | 20       | 70-130                  | 35                        |      |

Matrix Spike Percent Recovery  $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD =  $200^{*}|(C-F)/(C+F)|$  Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E



#### Project Name: El Jefe BSJ Fed. Comm 1H



| <b>Work Order # :</b> 581006     |                                                      |                       |                                |                               |                       | Project II                               | <b>D:</b> 212C-N            | MD-0116  | 6                       |                           |      |
|----------------------------------|------------------------------------------------------|-----------------------|--------------------------------|-------------------------------|-----------------------|------------------------------------------|-----------------------------|----------|-------------------------|---------------------------|------|
| Lab Batch ID: 3046232            | QC- Sample ID:                                       | 581763                | -004 S                         | Ba                            | tch #:                | 1 Matrix                                 | <b>x:</b> Soil              |          |                         |                           |      |
| <b>Date Analyzed:</b> 04/10/2018 | Date Prepared:                                       | 04/10/2               | 018                            | An                            | alyst: A              | ALJ                                      |                             |          |                         |                           |      |
| <b>Reporting Units:</b> mg/kg    |                                                      | N                     | IATRIX SPIK                    | E / MAT                       | RIX SPI               | KE DUPLICA                               | TE REC                      | OVERY    | STUDY                   |                           |      |
| BTEX by EPA 8021B                | Parent<br>Sample<br>Result                           | Spike<br>Added        | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R        | Spike<br>Added        | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R        | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Analytes                         | [A]                                                  | [B]                   |                                | [D]                           | [E]                   | Kesun [F]                                | [G]                         | /0       | 70K                     | 70KI D                    |      |
| Benzene                          | < 0.00200                                            | 0.100                 | 0.0887                         | 89                            | 0.101                 | 0.107                                    | 106                         | 19       | 70-130                  | 35                        |      |
| Toluene                          | < 0.00200                                            | 0.100                 | 0.0819                         | 82                            | 0.101                 | 0.101                                    | 100                         | 21       | 70-130                  | 35                        |      |
| Ethylbenzene                     | < 0.00200                                            | 0.100                 | 0.0764                         | 76                            | 0.101                 | 0.100                                    | 99                          | 27       | 70-130                  | 35                        |      |
| m,p-Xylenes                      | < 0.00401                                            | 0.200                 | 0.157                          | 79                            | 0.202                 | 0.205                                    | 101                         | 27       | 70-130                  | 35                        |      |
| o-Xylene                         | < 0.00200                                            | 0.100                 | 0.0787                         | 79                            | 0.101                 | 0.103                                    | 102                         | 27       | 70-130                  | 35                        |      |
| Lab Batch ID: 3046412            | QC- Sample ID:                                       | 581765                | -012 S                         | Ba                            | tch #:                | 1 Matrix                                 | x: Soil                     |          |                         |                           |      |
| <b>Date Analyzed:</b> 04/11/2018 | Date Prepared:                                       | 04/11/2               | 018                            | An                            | alyst: A              | ALJ                                      |                             |          |                         |                           |      |
| Reporting Units: mg/kg           | MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY |                       |                                |                               |                       |                                          |                             |          |                         |                           |      |
| BTEX by EPA 8021B<br>Analytes    | Parent<br>Sample<br>Result<br>[A]                    | Spike<br>Added<br>[B] | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R<br>[D] | Spike<br>Added<br>[E] | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R<br>[G] | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
| Benzene                          | < 0.00200                                            | 0.100                 | 0.0867                         | 87                            | 0.0998                | 0.0956                                   | 96                          | 10       | 70-130                  | 35                        |      |
| Toluene                          | < 0.00200                                            | 0.100                 | 0.0809                         | 81                            | 0.0998                | 0.0896                                   | 90                          | 10       | 70-130                  | 35                        |      |
| Ethylbenzene                     | <0.00200                                             | 0.100                 | 0.0805                         | 81                            | 0.0998                | 0.0868                                   | 87                          | 8        | 70-130                  | 35                        |      |
| m,p-Xylenes                      | < 0.00401                                            | 0.200                 | 0.165                          | 83                            | 0.200                 | 0.177                                    | 89                          | 7        | 70-130                  | 35                        |      |
| o-Xylene                         | < 0.00200                                            | 0.100                 | 0.0810                         | 81                            | 0.0998                | 0.0888                                   | 89                          | 9        | 70-130                  | 35                        |      |

Matrix Spike Percent Recovery [D] = 100\*(C-A)/BRelative Percent Difference RPD = 200\*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E



#### Project Name: El Jefe BSJ Fed. Comm 1H



| Work Order # :          | 581006                                  |                                                      |                   |                                                     |                    |                | Project II                               | : 212C-              | MD-0116  | 6                       |                           |      |  |
|-------------------------|-----------------------------------------|------------------------------------------------------|-------------------|-----------------------------------------------------|--------------------|----------------|------------------------------------------|----------------------|----------|-------------------------|---------------------------|------|--|
| Lab Batch ID:           | 3045521                                 | QC- Sample ID:                                       | 581006            | -002 S                                              | Ba                 | tch #:         | 1 Matrix                                 | : Soil               |          |                         |                           |      |  |
| Date Analyzed:          | 04/03/2018                              | Date Prepared:                                       | 04/02/2           | 018                                                 | Ar                 | alyst: (       | OJS                                      |                      |          |                         |                           |      |  |
| <b>Reporting Units:</b> | mg/kg                                   |                                                      | N                 | ATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY |                    |                |                                          |                      |          |                         |                           |      |  |
| Inorgai                 | nic Anions by EPA 300/300.1             | Parent<br>Sample<br>Result                           | Spike             | Spiked Sample<br>Result                             | Sample             |                | Duplicate<br>Spiked Sample               | Spiked<br>Dup.       | RPD      | Control<br>Limits       | Control<br>Limits         | Flag |  |
|                         | Analytes                                | [A]                                                  | Added<br>[B]      | [C]                                                 | %R<br>[D]          | Added<br>[E]   | Result [F]                               | %R<br>[G]            | %        | %R                      | %RPD                      |      |  |
| Chloride                |                                         | 454                                                  | 249               | 715                                                 | 105                | 249            | 722                                      | 108                  | 1        | 90-110                  | 20                        |      |  |
| Lab Batch ID:           | 3045521                                 | QC- Sample ID:                                       | 581006            | -011 S                                              | Ba                 | tch #:         | 1 Matrix                                 | : Soil               |          |                         |                           |      |  |
| Date Analyzed:          | 04/03/2018                              | Date Prepared:                                       | 04/02/2           | 018                                                 | Ar                 | alyst: (       | OJS                                      |                      |          |                         |                           |      |  |
| <b>Reporting Units:</b> | mg/kg                                   |                                                      | Ν                 | IATRIX SPIK                                         | E / MAT            | RIX SPI        | KE DUPLICA                               | ГЕ REC               | OVERY    | STUDY                   |                           |      |  |
| Inorgai                 | nic Anions by EPA 300/300.1             | Parent<br>Sample<br>Result                           | Spike<br>Added    | Spiked Sample<br>Result                             | Sample             | Spike          | Duplicate<br>Spiked Sample               | Spiked<br>Dup.       | RPD      | Control<br>Limits       | Control<br>Limits         | Flag |  |
|                         | Analytes                                | [A]                                                  | Added<br>[B]      | [C]                                                 | %R<br>[D]          | Added<br>[E]   | Result [F]                               | %R<br>[G]            | %        | %R                      | %RPD                      |      |  |
| Chloride                |                                         | 289                                                  | 248               | 553                                                 | 106                | 248            | 571                                      | 114                  | 3        | 90-110                  | 20                        | Х    |  |
| Lab Batch ID:           | 3045644                                 | QC- Sample ID:                                       | 581006            | -023 S                                              | Ba                 | tch #:         | 1 Matrix                                 |                      |          |                         |                           |      |  |
| Date Analyzed:          | 04/03/2018                              | Date Prepared:04/03/2018Analyst:OJS                  |                   |                                                     |                    |                |                                          |                      |          |                         |                           |      |  |
| <b>Reporting Units:</b> | mg/kg                                   | MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY |                   |                                                     |                    |                |                                          |                      |          |                         |                           |      |  |
| Inorga                  | nic Anions by EPA 300/300.1<br>Analytes | Parent<br>Sample<br>Result                           | Spike<br>Added    | Spiked Sample<br>Result<br>[C]                      | Sample<br>%R       | Spike<br>Added | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |  |
| Chloride                | Analytes                                | [A]<br>26.7                                          | <b>[B]</b><br>248 | 272                                                 | [ <b>D</b> ]<br>99 | [E]<br>248     | 270                                      | [ <b>G</b> ]<br>98   | 1        | 90-110                  | 20                        |      |  |

Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E



#### Project Name: El Jefe BSJ Fed. Comm 1H



| Work Order # :          | 581006                       |                                                      |                |                                |                        |                | Project II                               | <b>):</b> 212C-1     | MD-0116  | б                       |                           |      |
|-------------------------|------------------------------|------------------------------------------------------|----------------|--------------------------------|------------------------|----------------|------------------------------------------|----------------------|----------|-------------------------|---------------------------|------|
| Lab Batch ID:           | 3045644                      | QC- Sample ID:                                       | 581057         | -003 S                         | Ba                     | tch #:         | 1 Matrix                                 | <b>x:</b> Soil       |          |                         |                           |      |
| Date Analyzed:          | 04/03/2018                   | Date Prepared:                                       | 04/03/2        | 018                            | Ar                     | alyst: (       | OJS                                      |                      |          |                         |                           |      |
| <b>Reporting Units:</b> | mg/kg                        |                                                      | N              | IATRIX SPIK                    | E / MAT                | RIX SPI        | KE DUPLICA                               | TE REC               | OVERY    | STUDY                   |                           |      |
| Inorga                  | anic Anions by EPA 300/300.1 | Parent<br>Sample<br>Result                           | Spike<br>Added | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R | Spike<br>Added | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|                         | Analytes                     | [A]                                                  | [ <b>B</b> ]   |                                | [D]                    | [E]            |                                          | [G]                  |          |                         |                           |      |
| Chloride                |                              | 370                                                  | 248            | 603                            | 94                     | 248            | 607                                      | 96                   | 1        | 90-110                  | 20                        |      |
| Lab Batch ID:           | 3045540                      | QC- Sample ID:                                       | 580999         | -001 S                         | Ba                     | tch #:         | 1 Matrix                                 | <b>k:</b> Soil       |          |                         |                           |      |
| Date Analyzed:          | 04/03/2018                   | Date Prepared:                                       | 04/03/2        | 018                            | Ar                     | alyst: A       | ARM                                      |                      |          |                         |                           |      |
| <b>Reporting Units:</b> | mg/kg                        |                                                      | Ν              | IATRIX SPIK                    | E / MAT                | RIX SPI        | KE DUPLICA                               | TE REC               | OVERY    | STUDY                   |                           |      |
|                         | TPH By SW8015 Mod            | Parent<br>Sample<br>Result                           | Spike<br>Added | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R | Spike<br>Added | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|                         | Analytes                     | [A]                                                  | [B]            | [C]                            | [D]                    | [E]            | Kesun [F]                                | [G]                  | /0       | 70K                     | /oki D                    |      |
| Gasoline Rang           | e Hydrocarbons (GRO)         | <15.0                                                | 999            | 1020                           | 102                    | 999            | 926                                      | 93                   | 10       | 70-135                  | 20                        |      |
| Diesel Range (          | Organics (DRO)               | <15.0                                                | 999            | 1100                           | 110                    | 999            | 1040                                     | 104                  | 6        | 70-135                  | 20                        |      |
| Lab Batch ID:           | 3046091                      | QC- Sample ID:                                       | 581762         | -001 S                         | Ba                     | tch #:         | 1 Matrix                                 | <b>k:</b> Soil       |          |                         |                           |      |
| Date Analyzed:          | 04/09/2018                   | Date Prepared:04/09/2018Analyst:ARM                  |                |                                |                        |                |                                          |                      |          |                         |                           |      |
| <b>Reporting Units:</b> | mg/kg                        | MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY |                |                                |                        |                |                                          |                      |          |                         |                           |      |
|                         | TPH By SW8015 Mod            | Parent<br>Sample<br>Result                           | Spike<br>Added | Spiked Sample<br>Result<br>[C] | Spiked<br>Sample<br>%R | Spike<br>Added | Duplicate<br>Spiked Sample<br>Result [F] | Spiked<br>Dup.<br>%R | RPD<br>% | Control<br>Limits<br>%R | Control<br>Limits<br>%RPD | Flag |
|                         | Analytes                     | [A]                                                  | [B]            | [V]                            | /0K<br>[D]             | [E]            | Acsunt [F]                               | [G]                  | /0       |                         | /0111                     |      |
| Gasoline Rang           | e Hydrocarbons (GRO)         | <15.0                                                | 997            | 810                            | 81                     | 998            | 831                                      | 83                   | 3        | 70-135                  | 20                        |      |
| Diesel Range (          | Organics (DRO)               | 30.4                                                 | 997            | 848                            | 82                     | 998            | 922                                      | 89                   | 8        | 70-135                  | 20                        |      |

Matrix Spike Percent Recovery  $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD =  $200^{\circ}|(C-F)/(C+F)|$  Matrix Spike Duplicate Percent Recovery [G] = 100\*(F-A)/E

| annyler Signature:<br>Sampler Signature:<br>Sampler Signature:<br>Nike Carmona           Sampler Signature:<br>Nate: Nite Carmona           Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ECG         Number Supervision         Service Supervision         Circle Supervision           ELGE         Tetra Tech, Inc.         Indexpose Supervision         212C-MD-O1166         Circle           Tetra Tech, Inc.         Senoo Middand Tx         Nike Camona         212C-MD-O1166         Circle           Tetra Tech, Inc.         Senoo Middand Tx         Senoo Middand Tx         Mike Camona         Circle           Xenoo Middand Tx         Senoo Middand Tx         Mike Camona         Circle         Circle           Senoo Middand Tx         Senoo Middand Tx         Mike Camona         Circle         Circle           Somplex Supplex Supervises         Mike Camona         212C-MD-O1166         Circle         Circle           Tetra Tech, Inc.         Senoo Middand Tx         Senoo Middand Tx         Mike Camona         Circle         Circle           Somplex Supervises         Senoo Middand Tx         Senoo Mike Supervises         Mike Camona         Circle         Circle           (0:1)         Somplex Supervises         Senoo Middand Tx         Senoo Mike Supervises         Senoo Mike Sup                                                                                                                                                                                                                                   | $\begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Containers     Image: Containers     Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Sample Temperature       Image: | Image: Sample Temperature       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: Containers     Image: Containers     Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image: Containers     Image: Containers       Image: Containers     Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image: Sample Temperature       Image: | Image: Sample Temperature       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Image: State | Image: Sample Temperature       Image: | Image: Sample Temperature       Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TCLP Metals Ag As Ba Cd Cr Pb Se Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCLP Metals Ag As Ba Cd Cr Pb Se Hg       Image: Comparison of the transmitted of the tr |

(6-23: +0.2°C) Corrected Temp: 4-

| Tetra Tech, Inc.       On Magne Same         Term       El de BS Fed. Comm HH       Tara Tech, Inc.       Name       Anno         Terman       El de BS Fed. Comm HH       Terman       Name       Citic Common       Name         Terman       Tetra Tech, Inc.       Terman       Name       Name       Citic Common       Name       Citic Common       Name         Terman       Tetra Tech, Inc.       Tetra Tech, Inc.       Same       Name       Name       Citic Common       Citic Common       Name       Citic Common       Name       Citic Common       Citic Common       Citic Common       Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECR         ECR         International system<br>in recommendation         Service and system<br>in recommendatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K     K     BTEX 8021B     BTEX 8260B       TPH TX1005 (Ext to C35)     TPH TX1005 (Ext to C35)     (Circle)       WIDD DELIVERD     Y     TPH 8015M (GRO - DRO - ORO - MRO)       PAH 8270C     PAH 8270C     (Circle or Pb Se Hg       TCLP Metals Ag As Ba Cd Cr Pb Se Hg     TCLP Volatiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANALYSIS RECUENT<br>ANALYSIS RECUENT<br>Circle or Specify Method No.)<br>PAH 8270C<br>PAH 8270C<br>PAH 8270C<br>Total Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Metals Ag As Ba Cd Cr Pb Se Hg<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Remarks:<br>Rem                 |
| K     X     BTEX 8021B     BTEX 8260B       TPH TX1005 (Ext to C35)     TPH TX1005 (Ext to C35)     (Circle of Circle of C | ANALYSIS REQUEST<br>Circle or Specify Method No.)<br>ANALYSIS REQUEST<br>(Circle or Specify Method No.)<br>ANALYSIS REQUEST<br>(Circle or Specify Method No.)<br>PAH 8270C<br>TPH 8015M (GRO - DRO - ORO - MRO)<br>PAH 8270C<br>TOLP Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Volatiles<br>TCLP Volatiles<br>TCLP Volatiles<br>REMARKS:<br>TCLP Volatiles<br>REMARKS:<br>REMARKS:<br>Circle of Specify Method No.<br>REMARKS:<br>STANDARD<br>RUSH: Same Day 24 hr 48 hr<br>Special Report Limits of TRHP Repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| K     X     BTEX 8021B     BTEX 8260B       TPH TX1005 (Ext to C35)     TPH TX1005 (Ext to C35)     (Circle or Circle or C | ANALYSIS REQUEST<br>Circle or Specify Method No.)<br>PAH 8270C<br>TPH 8015M (GRO - DRO - ORO - MRO)<br>PAH 8270C<br>TOLP Metals Ag As Ba Cd Cr Pb Se Hg<br>TCLP Volatiles<br>TCLP Volatiles<br>TCLP Volatiles<br>TCLP Volatiles<br>TCLP Volatiles<br>TCLP Semi Volatiles<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>REMARKS:<br>RE |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SIS REQUEST<br>ecity Method No.)<br>SIS RECUEST<br>ecity Method No.)<br>SIS RECUEST<br>ecity Method No.)<br>STANDARD<br>SH: Same Day 24 hr 48 hr<br>sh Charges Authorized<br>IR ID:R-8<br>IR ID:R-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

)

Corrected Temp: U. I

|                                                                                                                                     | Relinquished by:                     | Relinquished by:                                    | mila                  | Relinquished by: |  |           |           |           | ( LAB USE )                                                                                                                                                                                                                                    | LAB #                                                                                                             |                                                                                            |                                                                                                                | Comments:                       | Docision Labor   | Project Location:<br>state)     | Project Name:                  |                  |                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|-----------------------|------------------|--|-----------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|---------------------------------|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------|
|                                                                                                                                     | : Date: Time:                        | : Date: Time:                                       | Corner 4.             | Date             |  | T-6 (6')  | T-6 (4')  | T-6 (2')  |                                                                                                                                                                                                                                                | SAMPLE IDENTIFICATION                                                                                             |                                                                                            | Run deeper samples if TPH exceeds 5,000 mg/kg. Run deeper samples if benzene exceeds 10 mg/kg or Tota 50 mg/kg | Xenco Midland Tx                | Tetra Tech, Inc. | (county, Lea County, New Mexico |                                | EOG              | Tetra Tech, Inc.                                                                                       |
| ORIGINAL COPY                                                                                                                       | Received by:                         | Received by:                                        | Marked By:            |                  |  | 3/29/2018 | 3/29/2018 | 3/29/2018 | DATE.                                                                                                                                                                                                                                          | YEAR: 2017                                                                                                        | SAMPLING                                                                                   | eper samples if benze                                                                                          | Sampler Signature:              |                  | Project #:                      |                                | Site Manager:    |                                                                                                        |
| Y                                                                                                                                   | Date: Time:                          | Date: Time:                                         | Het SIAVE (           |                  |  | ×         | ×         | ×         | WATER<br>SOIL<br>HCL<br>HNO <sub>3</sub><br>ICE<br>None                                                                                                                                                                                        | _                                                                                                                 | MATRIX PRESERVATIVE<br>METHOD                                                              | _                                                                                                              | Mike Carmona                    |                  | 212C-MD-01166                   |                                | Ike Tavarez      | 4000 N. Big Spring Street, Ste<br>401 Midland, Texas 79705<br>Tel (432) 682-4559<br>Fax (432) 682-3946 |
| 6                                                                                                                                   |                                      | Se                                                  | 1:31                  |                  |  | 1<br>N    | 1 N       | 1 N       | # CONTA                                                                                                                                                                                                                                        | D (Y/                                                                                                             | RS<br>N)                                                                                   | BTEX exceeds                                                                                                   | B                               |                  |                                 |                                |                  |                                                                                                        |
| Circle) HAND DELIVENER FERREX LIPS Trankinn #:<br>Temp: 4. 3 IR ID:R-8<br>CF:(0-6: -0.2°C)<br>(6-23: +0.2°C)<br>Corrected Temp: 4 1 | Special Report Limits or TRRP Report | Sample Temperature RUSH: Same Day 24 hr 48 hr 72 hr | LAB USE ONLY STANDARD |                  |  |           |           |           | BTEX 80;<br>TPH TX1<br>TPH 8019<br>PAH 8270<br>Total Meta<br>TCLP Meta<br>TCLP Vola<br>TCLP Vola<br>TCLP Sen<br>RCI<br>GC/MS Vol<br>GC/MS Vol<br>GC/MS Se<br>PCB's 800<br>NORM<br>PLM (Asbit<br>Chloride<br>Chloride<br>General V<br>Anion/Cat | 005 (I<br>5M ( C<br>0C<br>als Ag<br>atiles<br>mi Vol<br>bl. 82<br>bl. 82<br>bl. 82<br>c<br>estos;<br>Sul<br>Vater | Ext to<br>GRO -<br>As B<br>g As B<br>atiles<br>60B /<br>fol. 82<br>08<br>)<br>fate<br>Cher | DRO -<br>a Cd Cr<br>3a Cd C<br>624<br>270C/62<br>TDS<br>mistry (s                                              | ORO -<br>Pb Se<br>r Pb Se<br>25 | Hg<br>Hg         | ist)                            | (Circle or Specify Method No.) | ANALYSIS REQUEST | 281006                                                                                                 |
| 1                                                                                                                                   |                                      | hr                                                  |                       |                  |  |           | ige (     |           | Hold                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                            |                                                                                                                |                                 | Final            | 1.000                           | -                              |                  |                                                                                                        |



## **XENCO** Laboratories



**ENCO ENCO ENCO** 

| Client: Tetra Tech- Midland                             | Acceptable Temperature Range: 0 - 6 degC        |
|---------------------------------------------------------|-------------------------------------------------|
| Date/ Time Received: 04/02/2018 11:31:00 AM             | Air and Metal samples Acceptable Range: Ambient |
| Work Order #: 581006                                    | Temperature Measuring device used : R8          |
| Sample Recei                                            | pt Checklist Comments                           |
| #1 *Temperature of cooler(s)?                           | 4.1                                             |
| #2 *Shipping container in good condition?               | Yes                                             |
| #3 *Samples received on ice?                            | Yes                                             |
| #4 *Custody Seals intact on shipping container/ cooler? | N/A                                             |
| #5 Custody Seals intact on sample bottles?              | N/A                                             |
| #6*Custody Seals Signed and dated?                      | N/A                                             |
| #7 *Chain of Custody present?                           | Yes                                             |
| #8 Any missing/extra samples?                           | Νο                                              |
| #9 Chain of Custody signed when relinquished/ received? | Yes                                             |
| #10 Chain of Custody agrees with sample labels/matrix?  | Yes                                             |
| #11 Container label(s) legible and intact?              | Yes                                             |
| #12 Samples in proper container/ bottle?                | Yes                                             |
| #13 Samples properly preserved?                         | Yes                                             |
| #14 Sample container(s) intact?                         | Yes                                             |
| #15 Sufficient sample amount for indicated test(s)?     | Yes                                             |
| #16 All samples received within hold time?              | Yes                                             |
| #17 Subcontract of sample(s)?                           | Νο                                              |

#18 Water VOC samples have zero headspace?

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: 04/02/2018

N/A

Checklist reviewed by: Jessica Vramer Jessica Kramer

Date: 04/02/2018