May 30, 2018

Olivia Yu NMOCD District 1 1625 N. French Drive Hobbs, New Mexico 88240 **APPROVED** By Olivia Yu at 3:03 pm, Jun 11, 2018

NMOCD approves of the proposed remediation plan for 1RP-4723.

Re: Work Plan Pogo – East Caprock SWD No. 005 NMOCD Reference #'s: 1RP-4723

Ms. Olivia Yu:

RXSoil, Inc. is pleased to submit the work plan summarizing the on-site remediation of produced water impacted soil at the East Caprock SWD No. 005 site located in Lea County, New Mexico. Remediation work plan follows in the attached report.

Sincerely,

Jace Caraway Chief Operating Officer RXSoil, Inc. (940) 210-2051

Zach Robbins Technical and Engineering Analyst RXSoil, Inc. (210) 400-7645

Table of Contents

Ι.	Introduction	. 3
II.	Regulatory Guidelines	. 3
III.	Delineation Plan	. 4
IV.	Soil Remediation Work Plan	. 4

Figures

1.	Vicinity Map	7
2.		
3.	Spill Map	
	Treatment Cells Map	
	Confirmation Sample Plan	
6.	Cross-Sectional View of Cell	

Appendix

Α.	C-141, Release Notification and Corrective Action Document								
В.	Water Column/Average Depth to Water								
С.	Delineation Report								
	1.	Delineation Summary Table	19						
	2.	Delineation Laboratory Reports	26						

I. Introduction

On behalf of Pogo Resources, LLC ("Pogo"), RXSoil, Inc. ("RXSoil") has prepared this work plan that describes the assessment and action plan for remediation of the release of 1RP-4723 at the East Caprock SWD #005 site with API #30-025-40335.

The site is located in Unit Letter "B", Section 14, Township 12S, Range 32E (see *Figure 1* for Vicinity Map). The Release Notification and Corrective Action document (C-141, *Appendix A*), approved June 15, 2017, indicates a poly injection line parted at a valve near the well on June 11, causing a produced water release. It was reported that 1,700 barrels of produced water were released, and 1,020 barrels were recovered during the initial response. This was reported to have affected approximately 33,928 square feet on location and approximately 90,000 square feet east of location.

II. Regulatory Guidelines

Larson & Associates, Inc. ("Larson") reported no groundwater observed in all deep borings (SB-1, SB-10, SB-12 and SB-14) at approximately 50 feet below ground surface ("bgs"). The New Mexico Office of the State Engineer Water Column/Average Depth to Water lists the depth to water of wells in the range to be between 35 feet and 85 feet (See *Appendix B*). This information together results in a Depth to Ground Water score of 10.

The spill is within 1,000 feet but greater than 200 feet from surface water. *Figure 2* includes a 1,000-foot radius from the site showing no surface water within 1,000 feet of the release on the NM OCD Oil and Gas Map with Hydrology Layer, but a Google Earth image shows a playa lake approximately 700 feet from the eastern edge of the spill. The total ranking score for this site's threat to public health, ground water and environmental therefore is 20.

Depth to Ground Water:			
(Vertical distance from contaminants to seasonal	Less than 50 feet	20 points	
high water elevation of groundwater)	50 feet to 99 feet	10 points	Х
	>100 feet	0 points	
Wellhead Protection Area:			
(Less than 200 feet from a private domestic water	Yes	20 points	
source; or less than 1000 feet from all other water	No	0 points	Х
sources)			
Distance to Surface Water:			
(Horizontal distance to perennial lakes, ponds, rivers,	Less than 200 feet	20 points	
streams, creeks, irrigation canals and ditches)	200 feet to 1000 feet	10 points	Х
	>1000 feet	0 points	
RANKING SCORE (TOTAL POINTS)			20

The target cleanup levels are determined using *Guidelines for Remediation of Leaks, Spills and Releases* published by the NMOCD (August 13, 1993). The Recommended Remediation Action Levels (RRAL) are **10** parts per million (ppm) benzene, **50** ppm combined benzene, toluene, ethyl benzene, and total xylenes (BTEX), **100** ppm total petroleum hydrocarbons (TPH) and **600** ppm chlorides.

As discussed in the later portion of Section IV, post-remediation discrete confirmation samples will

be taken and properly packaged, preserved and transported to a third-party laboratory by chain of custody, and analyzed for BTEX (Method 8260 or 8021), TPH (Method 8015 extended range) and chlorides (Method 300) where appropriate. The results will be included in the closure report along with chain of custody and quality control.

III. Delineation Report

An initial delineation was performed by Larson on August 30, 2017. OCD requested further delineation on October 31, 2017. This request was fulfilled on January 3, 2018.

The full report confirmed chlorides below 600 mg/kg in a sufficient number of borings plus an additional five (5) feet below 600 mg/kg chlorides. This is attached as *Appendix C*.

IV. Soil Remediation Work Plan

RXSoil's core process of on-site remediation will be used to address the contamination. RXSoil will supervise all excavation with approval from area utilities owners via NM 811.

RXSoil will construct two in-ground treatment cells adjacent to the contaminated area, staying no less than 1000' away from any water bodies (specifically the playa lake southeast of the spill area). Once the final location of the treatment cells has been field verified, District 1 will be notified. These cells will be excavated to a depth of 4'. A 30-mil poly liner will be installed on the bottom and sides of cells to contain treatment (to be demarcated on map in Closure Report). A proprietary drainage and collection system will be installed. The background material (not affected by the release) will be staged away from any contaminated material to avoid cross-contamination. The cells are planned to cover an area of 150' by 300' each. Final dimensions will be included in the closure report and the area will be demarcated on a map.

Sidewall and bottom samples will be taken using a stainless-steel hand shovel while remediation samples will be taken using a stainless-steel bucket auger. All tools will be decontaminated before each sample, as specified in *Field Equipment Cleaning and Decontamination* (EPA, 2015). This includes wiping the equipment clean, water-rinsing the equipment, washing the equipment in detergent and water, and rinsing the equipment in water. Samples to be tested for TPH/BTEX will be carefully transferred directly to glass jars. Samples to be tested for chlorides will be temporarily transferred to a new plastic bag in the field. Once in a location safer for handling glass, the samples will be transferred to glass jars, supplied by an approved laboratory. The threads on all jars will be wiped clean to allow an air-tight seal. Samples will be placed on ice and transferred to a third-party laboratory within an appropriate time period. Samples to be tested for TPH or BTEX will be transferred within 48 hours (per ASTM *Standard Guide for Sampling Waste and Soils for Volatile Organic Compounds*) while samples to be tested for chlorides will be transferred to be tested within 28 days (as recommended in the EPA Method 300.0 handbook).

To prevent cross-contamination of TPH, RXBiotics (RXSoil's bioremediation solution) will be topically applied to the areas determined to be above threshold of TPH. These areas are **S-1**, **S-3** and **S-5**. Following this treatment, samples will be sent to a third-party laboratory with one sample representing no more than 50 cubic yards of material. Once confirmed below threshold, this material

then may be added to the treatment cells where treatment for the produced water contamination will take place.

The affected material (as reported by Larson) will be excavated and placed into the RXSoil treatment cells. For safety concerns, no excavation will occur within 10' of the disposal well in the center of the pad. Sidewall samples in each cardinal direction will be collected (with samples no further than 50' apart) and transferred to a third-party lab for confirmation (via Method 300.0 chloride tests) that all affected material has been excavated. Excavation will continue until all sidewall samples are below 600 ppm chlorides.

Based on the delineation table produced by Larson (map *Figure* 3, data *Appendix C*), there is evidence that the areas surrounding the following sample points must be excavated to at least the following depths to reach clean material:

S-1 (SB-1): 4'	S-5 : 4'	S-9: Surface	S-13 (SB-9): Surface
S-2 : 4'	S-6 (SB-2) (SB-12): 4'	S-10(SB-5)(SB-13): 2'	S-14 (SB-7) : >1'
S-3 (SB-11) : 4'	S-7 (SB-4) : 2'	S-11 (SB-6) : >3′	
S-4 : 4'	S-8 (SB-3) : N/A	S-12 (SB-8) : 2′	

The above depths will be used as guidelines for excavation, while the bottom samples will be used for confirmation.

Throughout excavation one bottom sample will be taken in the vicinity of each sample point labeled **S-X** on *Figure 3* where **X** is the sample number. This will determine the bottom of the plume in each area, protecting groundwater. Excavation occurs until testing provides evidence that the chloride levels are below thresholds listed in **Section II** or until excavation depth reaches 4'.

Whenever excavation depth changes, at least one bottom sample will be taken. If the bottom sampling should lead excavation to a depth of 4', excavation in that area will halt, a sample will be collected, and a 20-mil poly liner will be placed on the subsurface before backfilling (to be demarcated in Closure Report). These samples will be appropriately transferred to a third-party lab for confirmation that excavation was to the appropriate depth.

The clean material previously staged will be used to backfill the excavated area (see *Figure 3*). A proprietary delivery system will be installed in the treatment cell to apply RXSoil chemicals for remediation of the soil. RXSoil chemicals and biological agents will go through the profile of the soil before entering the collection system. RXSoil will collect this leachate and properly dispose of all collected leachate. No subsoil will be exposed to leachate from the treatment cells during remediation. No harmful or hazardous chemicals are used in the RXSoil Process.

Final discrete soil samples will be collected and tested for every 50 cubic yards of treated material at the end of treatment to confirm impacted soil has been remediated to required chloride levels directed by NMOCD standards, as specified in **Section II**. All samples will consist of enough material for at least one (1) field screening and two (2) laboratory tests in case a second laboratory test is required. A portion of each sample will be field screened and 50% of these samples will have a portion transferred to a third-party laboratory for confirmation that all soil passes NMOCD standards

utilizing EPA Method 300.0. Lab reports and a map with sample points from a GPS device will all be included in the final report.

The current proposed cell dimensions are approximately 150' by 300' by 4' depth each. This cell would hold 6,667 cubic yards, requiring no fewer than 134 samples per cell (6,667 cubic yards * 1 sample per 50 cubic yards). The planned sample grid will be an evenly spaced grid of 17 columns by 8 rows (136 samples) with samples taken at a depth of 36"-48". Due to the nature of the RXSoil Process, deeper samples tend to clean up last, since all contamination must push through the bottom of the profile. A diagram of the spacing can be seen in *Figure 5*, representing the sampling plan for one cell. A cross section view of the sampling can be seen in *Figure* 6.

Based on this cell size, 136 samples will be taken with 68 duplicates being sent to a third-party laboratory for EPA Method 300.0 testing. If the data indicates that there is sufficient correlation of precision between the lab analysis and field screenings, the lab analysis of samples can be reduced from 50% of all samples to 25% of all samples. This reduction will only take place with written approval from District 1 after review and analysis of the data from the first cell. Field screenings will continue to represent no more than 50 cubic yards unless District 1 determines that density of samples is not required. All samples that are collected and not submitted will be preserved for future analysis if required with the understanding that the recommended hold time of 28 days may be exceeded.

If any sample points test for a chloride concentration greater than 600 ppm, RXSoil will continue treatment in that area of the treatment cell. Following re-treatment, samples will be redrawn from any location that initially tested above regulations. This will be done until all sample locations test below threshold. All sample points throughout the project will be GPS located and demarcated on a final sampling map, provided in the closure report.

After completion of the remedial phase of the project a minimum of three five-point composite samples (one from each remedial cell and one from the restored area) will be collected for agricultural analysis (CEC, SAR, ESP, anions and cations). These results will be provided to an agronomist or reclamation specialist so that proper soil amendments can be determined to provide for the landowner approved vegetative cover. The amendments and seed will be applied in the following growing season.

A closure report summarizing all remediation activities, including scaled maps and all test results stated above, will be submitted upon completion of the project.

Figure 2 - Hydrology Map

2/16/2018, 1:22:25 PM	1:4,514
Points East Caprock SWD 5	0 0.0425 0.085 0.17 mi 0 0.075 0.15 0.3 km
Areas Override 1	Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL,
Well Locations - Large Scale	Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS
CO2 Active	New Mexico Oil Conservation Division

New Mexico OII Conservation Division NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/: New Mexico Oil Conservation Division

Figure 3 - Site Map Showing Soil Sample and Boring Locations

Figure 6. Cross-Sectional View of Cell

Section A-A

Legend
X - Sample at 36"- 48"

*diagram not to scale

APPENDIX A

C-141, RELEASE NOTIFICATION AND CORRECTIVE ACTION DOCUMENT

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

		OPERA	TOR		🕅 Initi	alD		D' IN
Name of Company: Paladin Energy Corporation		Contact: M		-	Initi	al Report		Final Rep
Address: 10290 Monroe Drive Suite 301, Dallas, TX 7	75229		No.: (214) 352-	7272		-	-	
Facility Name: East Caprock SWD No. 005			be: SWD Well	-1213			-	-
		100 million (100 m	be. SWD Well				-	-
	ral Owner				Lease N	No. API No.	30025	540335
		ON OF RE			1.1			
B 14 Township Range Feet from the section 12	he Nort	h/South Line North	Feet from the 2290	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	est Line	County	Lea	
Latitude: N33º 1			de: W103° 41'	13.20"			1	
Type of Release: Produced Water	ATURE	OF REL	Contraction in the second					
ource of Release: Poly line parted at valve near well	-	Volume of	Release: 1,700 b		Volume R	Recovered: 1	,020 b	bl
		Date and H 06-11-2011	lour of Occurrenc		Date and	Hour of Disc	overy:	
Vas Immediate Notice Given?	-	If YES, To			00-12-201	17; 08:00AM	h	
🛛 Yes 🗌 No 🗌 No	ot Required		Environmental S	pecialist.	OCD Dist	trict 1		
By Whom? Mickey Horn			lour 6/13/2017; 0			antes a	-	
Vas a Watercourse Reached?		If YES, Vo	lume Impacting t	he Water	course.	-	-	
🗌 Yes 🖾 No								
a watercourse was impacted, Describe Fully.*		RECE	IVED					
escribe Cause of Problem and Remedial Action Taken.* Po ill breached berm near southeast corner of location allowing and berm repaired to contain fluid to location. Vacuum truc escribe Area Affected and Cleanup Action Taken.* Affected proximately 90,000 square feet for a total of approximately urned to tanks. Affected area will be delineated to determin ereby certify that the information given above is true and co gulations all operators are required to report and/or file certain blic health or the environment. The acceptance of a C-141 r puld their operations have failed to adequately investigate an the environment. In addition, NMOCD acceptance of a C-1	area on loo 122,928 sq remediation report by the	By Olive a line parted at water to flow of atched to recover cation is appro- uare feet. App ion. he best of my la totifications an e NMOCD ma	valve near well c east into pasture a ver standing fluid ximately 33,928 s roximately 1,020 knowledge and ur d perform correct rked as "Final Re on that near a there	ausing pr pproxima on locati square fee bbl of pr nderstand ive action port doe	roduced w ately 950 f on. et. Affector roduced wa that pursu ns for relea es not relie	ater released feet. Injection ed area east o ater was reco hant to NMO ases which n eve the opera	onto ka n pump of locat overed a CD rul nay end tor of l	was shut ion is and es and langer iability
escribe Cause of Problem and Remedial Action Taken.* Popill breached berm near southeast corner of location allowing and berm repaired to contain fluid to location. Vacuum tructescribe Area Affected and Cleanup Action Taken.* Affected opproximately 90,000 square feet for a total of approximately turned to tanks. Affected area will be delineated to determine thereby certify that the information given above is true and co gulations all operators are required to report and/or file certainablic health or the environment. The acceptance of a C-141 r ould their operations have failed to adequately investigate and the environment. In addition, NMOCD acceptance of a C-1 deral, state, or local laws and/or regulations.	area on loo 122,928 sq remediation report by the	By Olive a line parted at water to flow of atched to recover cation is appro- uare feet. App ion. he best of my la totifications an e NMOCD ma	valve near well c east into pasture a ver standing fluid ximately 33,928 s roximately 1,020 knowledge and ur d perform correct rked as "Final Re on that near a there	ausing pr pproxima on locati square fee bbl of pr nderstand ive action port" doe at to grou esponsibi	roduced w ately 950 f on. et. Affecto roduced wa that pursu ns for relea s not relie ind water, lity for con	ater released feet. Injection ed area east of ater was reco hant to NMO ases which n eve the opera surface wate mpliance with	onto ka n pump of locat overed a CD rul hay end tor of l er, hum h any o	was shut ion is and es and anger iability
escribe Cause of Problem and Remedial Action Taken.* Popill breached berm near southeast corner of location allowing and berm repaired to contain fluid to location. Vacuum tructescribe Area Affected and Cleanup Action Taken.* Affected opproximately 90,000 square feet for a total of approximately turned to tanks. Affected area will be delineated to determine thereby certify that the information given above is true and co gulations all operators are required to report and/or file certain blic health or the environment. The acceptance of a C-141 rould their operations have failed to adequately investigate and the environment. In addition, NMOCD acceptance of a C-1 deral, state, or local laws and/or regulations.	area on loo 122,928 sq remediation report by the	By Olive a line parted at water to flow of atched to recover cation is appro- uare feet. App ion. he best of my la totifications an e NMOCD ma	valve near well c east into pasture a ver standing fluid ximately 33,928 s roximately 1,020 knowledge and ur d perform correct rked as "Final Re in that pose a thre the operator of re	ausing pr pproxima on locati square fee bbl of pr nderstand ive action port" doe at to grou esponsibi	roduced w ately 950 f on. et. Affecto roduced wa that pursu ns for relea s not relie ind water, lity for con	ater released feet. Injection ed area east of ater was reco hant to NMO ases which n eve the opera surface wate mpliance with	onto ka n pump of locat overed a CD rul hay end tor of l er, hum h any o	was shut ion is and es and anger iability
Fa Watercourse was Impacted, Describe Fully.* rescribe Cause of Problem and Remedial Action Taken.* Propill breached berm near southeast corner of location allowing and berm repaired to contain fluid to location. Vacuum truc- escribe Area Affected and Cleanup Action Taken.* Affected oproximately 90,000 square feet for a total of approximately turned to tanks. Affected area will be delineated to determine hereby certify that the information given above is true and co gulations all operators are required to report and/or file certain iblic health or the environment. The acceptance of a C-141 r ould their operations have failed to adequately investigate and the environment. In addition, NMOCD acceptance of a C-1 deral, state, or local laws and/or regulations. gnature: inted Name: George G. Fenton	ck was disp l area on loo 122,928 sq he remediation properties to t in release n report by the d remediat 41 report d	By Olive a line parted at water to flow of atched to recover cation is appro- uare feet. App ion. the best of my la totifications an e NMOCD ma e contamination loss not relieve	valve near well c east into pasture a ver standing fluid ximately 33,928 s roximately 1,020 knowledge and ur d perform correct rked as "Final Re in that pose a thre the operator of re	ausing pr pproxima on locati square fee bbl of pr nderstand ive action sport" doe at to grou esponsibi	roduced w ately 950 f on. et. Affecto roduced wa that pursu ns for relea s not relie ind water, lity for con	ater released feet. Injection ed area east of ater was reco hant to NMO ases which n eve the opera surface wate mpliance with	onto ka n pump of locat overed a CD rul hay end tor of l er, hum h any o	was shut ion is and es and anger iability
escribe Cause of Problem and Remedial Action Taken.* Popill breached berm near southeast corner of location allowing and berm repaired to contain fluid to location. Vacuum tructescribe Area Affected and Cleanup Action Taken.* Affected opproximately 90,000 square feet for a total of approximately turned to tanks. Affected area will be delineated to determine thereby certify that the information given above is true and co gulations all operators are required to report and/or file certainablic health or the environment. The acceptance of a C-141 r ould their operations have failed to adequately investigate and the environment. In addition, NMOCD acceptance of a C-1 deral, state, or local laws and/or regulations.	ck was disp larea on loo 122,928 sq te remediati in release n eport by th ad remediat 41 report d	By Olive a line parted at water to flow of atched to recover cation is appro- uare feet. App ion. the best of my la totifications an e NMOCD ma e contamination loss not relieve	via Yu at 9 valve near well c east into pasture a ver standing fluid ximately 33,928 s roximately 1,020 knowledge and ur d perform correct rked as "Final Re in that pose a thre the operator of re OIL CONS	ausing pr pproxima on locati square fee bbl of pr nderstand ive action port" doe at to grou esponsibi	roduced w ately 950 f on. et. Affecto roduced wa that pursu ns for relea s not relie ind water, lity for con	ater released feet. Injection ed area east of ater was reco lant to NMO ases which n eve the opera surface wate mpliance wite DIVISION	onto ka n pump of locat overed a CD rul hay end tor of l er, hum h any o	was shut ion is and es and anger iability
escribe Cause of Problem and Remedial Action Taken.* Popill breached berm near southeast corner of location allowing and berm repaired to contain fluid to location. Vacuum tructescribe Area Affected and Cleanup Action Taken.* Affected opproximately 90,000 square feet for a total of approximately turned to tanks. Affected area will be delineated to determine thereby certify that the information given above is true and congulations all operators are required to report and/or file certain blic health or the environment. The acceptance of a C-141 r ould their operations have failed to adequately investigate and the environment. In addition, NMOCD acceptance of a C-1 deral, state, or local laws and/or regulations.	ck was disp larea on loo 122,928 sq le remediati in release n report by th dd remediat 41 report d	By Olive a line parted at water to flow of atched to recover cation is appro- uare feet. App ion. the best of my has notifications an e NMOCD ma e contamination loes not relieve Approved by I	valve near well c east into pasture a ver standing fluid ximately 33,928 s roximately 1,020 knowledge and ur d perform correct rked as "Final Re in that pose a thre the operator of ro <u>OIL CONS</u> District Superviso	ausing pr pproxima on locati square fee bbl of pr nderstand ive action port" doe at to grou esponsibi	roduced w ately 950 f on. et. Affecto roduced wa that pursu ns for releas not relie and water, lity for con TION I	ater released feet. Injection ed area east of ater was reco lant to NMO ases which n eve the opera surface wate mpliance wite DIVISION	onto ka pump of locat vered a CD rul tor of l er, hum th any of N	was shut ion is and es and anger iability

.

Operator/Responsible Party,

The OCD has received the form C-141 you provided on _6/13/2017_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number _1RP-4723_ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _7/15/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

APPENDIX B

WATER COLUMN/AVERAGE DEPTH TO WATER

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD replaced, O=orphan C=the file closed)	ned,	(qı	arters a				E 3=SW argest)	<i>,</i>	3 UTM in meter	rs)	(In feet)	
POD Number	Code	POD Sub- basin	County	Q Q 64 16		Sec	Tws	Rng	Х	Y	DepthWellDe		ater lumn
<u>L 02000</u>		L	LE				12S	-	621945	3682756* 🌍	1	85	40
<u>L 02023</u>		L	LE	2	3	14	12S	32E	621945	3682756* 🌍	96	35	61
<u>L 09539</u>		L	LE	2	3	14	12S	32E	621945	3682756* 🌍	95		
									1	Average Depth t	o Water:	60 feet	t
										Minim	um Depth:	35 feet	t
										Maximu	ım Depth:	85 feet	t
Record Count: 3													
PLSS Search:													
Section(s): 14		Townshi	p: 12S	Ra	nge	: 32H	3						

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/16/18 11:35 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

APPENDIX C.1

DELINEATION SUMMARY TABLE

Delineatio Soil Sample Analytical Data Summary

Paladin Energy Corporation, East Caprock SWD Well #5

Lea County, New Mexico

1RP-4723

				1RP-4723				Page 1 of 6
Sample	Depth	Collection	Status	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:							100	*600
S-1	0 - 1	06/28/2017	In-Situ	<26.596	141.02	51.702	192.722	9,160
(SB-1)	1 - 2	06/28/2017	In-Situ	<28.409	69.670	<28.409	69.670	2,100
	3	07/06/2017	In-Situ	<31.6	<31.6	<31.6	<31.6	2,710
	5	07/06/2017	In-Situ					1,090
	7	07/06/2017	In-Situ					1,040
	10	07/06/2017	In-Situ					42.1
	15	07/06/2017	In-Situ					155
	20	07/06/2017	In-Situ					839
	25	07/06/2017	In-Situ					803
	30	01/03/2018	In-Situ					1,150
	35	01/03/2018	In-Situ					845
	40	01/03/2018	In-Situ					613
	45	01/03/2018	In-Situ					34.4
	50	01/03/2018	In-Situ					<1.14
S-2	0 - 1	06/28/2017	In-Situ	<34.722	<34.722	<34.722	<34.722	2,400
S-3	0 - 1	06/28/2017	In-Situ	<27.473	117.78	41.912	159.692	3,090
(SB-11)	0	08/09/2017	In-Situ					2,560
· · /	3	08/09/2017	In-Situ					1,960
	5	08/09/2017	In-Situ					30.8
	7	08/09/2017	In-Situ					46.8
	10	08/09/2017	In-Situ					23.7
	15	08/09/2017	In-Situ					28.9
	20	08/09/2017	In-Situ					30.1
S-4	0 - 1	06/28/2017	In-Situ	<27.174	46.337	29.576	75.913	1,650
S-5	0 - 1	06/28/2017	In-Situ	<32.468	67.455	48.481	115.936	<1.30
5-5	0 - I	08/09/2017	In-Situ	<27.5	<27.	<27.5	<27.5	

Delineatio Soil Sample Analytical Data Summary

Paladin Energy Corporation, East Caprock SWD Well #5

Lea County, New Mexico

1RP-4723

				1RP-4723				Page 2 of 6
Sample	Depth	Collection	Status	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:							100	*600
S-6	0 - 0.5	06/28/2017	In-Situ	<28.090	<28.090	<28.090	<28.090	6,130
(SB-2)	0.5 - 1.0	06/28/2017	In-Situ					2,690
(SB-12)	3	07/06/2017	In-Situ					1,050
	5	07/06/2017	In-Situ					11.3
	7	07/06/2017	In-Situ					<1.11
	10	07/06/2017	In-Situ					<1.06
	15	07/06/2017	In-Situ					49
	20	08/09/2017	In-Situ					29.9
	25	08/09/2017	In-Situ					942
	30	01/03/2018	In-Situ					1,080
	35	01/03/2018	In-Situ					828
	40	01/03/2018	In-Situ					345
	45	01/03/2018	In-Situ					52.4
	50	01/03/2018	In-Situ					18.0
S-7	0 - 0.5	06/28/2017	In-Situ	<28.736	56.839	43.276	100.415	2,630
(SB-4)	0.5 - 1.0	06/28/2017	In-Situ					1,940
	3	07/06/2017	In-Situ					61.4
	5	07/06/2017	In-Situ					<1.04
	7	07/06/2017	In-Situ					<1.03
	10	07/06/2017	In-Situ					<1.06
	15	07/06/2017	In-Situ					17.4
S-8	0 - 0.5	06/28/2017	In-Situ	<26.042	<26.042	<26.042	<26.042	2.26
(SB-3)	0.5 - 1.0	06/28/2017	In-Situ	1,445.3	4,413.3	540.78	6,399.38	1.29
	3	07/06/2017	In-Situ	<25.8	<25.8	<25.8	<25.8	1.11
	5	07/06/2017	In-Situ	<25.8	<25.8	<25.8	<25.8	<1.03
	7	07/06/2017	In-Situ					<1.04
	10	07/06/2017	In-Situ					45.9

Delineatio Soil Sample Analytical Data Summary

Paladin Energy Corporation, East Caprock SWD Well #5

Lea County, New Mexico

1RP-4723

				1RP-4723				Page 3 of 6
Sample	Depth	Collection	Status	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:				•		•	100	*600
S-9	0 - 0.5	06/28/2017	In-Situ	<26.042	<26.042	<26.042	<26.042	<1.04
	0.5 - 1.0	06/28/2017	In-Situ					<1.09
	7	07/07/2017	In-Situ					<1.02
	10	07/07/2017	In-Situ					<1.08
	15	07/07/2017	In-Situ					140
S-10	0 - 0.5	06/28/2017	In-Situ	<29.762	<29.762	<29.762	<29.762	3,930
(SB-5)	0.5 - 1.0	06/28/2017	In-Situ					1,570
(SB-13)	3	07/07/2017	In-Situ					22.4
	5	07/07/2017	In-Situ					<1.02
	7	07/07/2017	In-Situ					<1.02
	10	07/07/2017	In-Situ					<1.08
	15	07/07/2017	In-Situ					140
	20	08/09/2017	In-Situ					452
	25	08/09/2017	In-Situ					760
	30	01/03/2018	In-Situ					853
	35	01/03/2018	In-Situ					648
	40	01/03/2018	In-Situ					705
	45	01/03/2018	In-Situ					46.6
	50	01/03/2018	In-Situ					<1.12
S-11	0 - 0.5	06/28/2017	In-Situ	<30.864	<30.864	<30.864	<30.864	3,510
	7	07/07/2017	In-Situ					<1.02
	10	07/07/2017	In-Situ					<1.08
	15	07/07/2017	In-Situ					140
	20	08/09/2017	In-Situ					452
	25	08/09/2017	In-Situ					760
	30	01/03/2018	In-Situ					853
	35	01/03/2018	In-Situ					648
	40	01/03/2018	In-Situ					705

Delineatio Soil Sample Analytical Data Summary

Paladin Energy Corporation, East Caprock SWD Well #5

Lea County, New Mexico

1RP-4723

				1RP-4723				Page 4 of 6
Sample	Depth	Collection	Status	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:						•	100	*600
	45	01/03/2018	In-Situ					46.6
	50	01/03/2018	In-Situ					<1.12
S-11	0 - 0.5	06/28/2017	In-Situ	<30.864	<30.864	<30.864	<30.864	3,510
(SB-6)	0.5 - 1.0	06/28/2017	In-Situ					3,200
	1.0 - 1.5	06/28/2017	In-Situ	<30.120	<30.120	<30.120	<30.120	2,300
	1.5 - 2.0	06/28/2017	In-Situ					1,050
	3	07/07/2017	In-Situ					387
	5	07/07/2017	In-Situ					2.76
	7	07/07/2017	In-Situ					9.23
	10	07/07/2017	In-Situ					<1.05
	15	07/07/2017	In-Situ					<1.06
S-12	0 - 0.5	06/28/2017	In-Situ	<26.316	<26.316	<26.316	<26.316	1,140
(SB-8)	0.5 - 1.0	06/28/2017	In-Situ					848
	3	07/07/2017	In-Situ					75.0
	5	07/07/2017	In-Situ					<1.03
	7	07/07/2017	In-Situ					<1.05
	10	07/07/2017	In-Situ					2.82
	15	07/07/2017	In-Situ					98.5
S-13	0 - 0.5	06/28/2017	In-Situ	<26.596	<26.596	<26.596	<26.596	<1.06
(SB-9)	0.5 - 1.0	06/28/2017	In-Situ					<1.11
	3	07/07/2017	In-Situ					6.07
	5	07/07/2017	In-Situ					2.03
	7	07/07/2017	In-Situ					<1.02
	10	07/07/2017	In-Situ					<1.04
S-14	0 - 0.5	06/28/2017	In-Situ	<29.762	<29.762	<29.762	<29.762	2,040
(SB-7)	0 - 0.5	06/28/2017	In-Situ	<29.762	<29.762	<29.762	<29.762	2,040

Delineatio Soil Sample Analytical Data Summary

Paladin Energy Corporation, East Caprock SWD Well #5

Lea County, New Mexico

1RP-4723

				111-4/23				Page 5 of 6
Sample	Depth	Collection	Status	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
RRAL:							100	*600
	0.5 - 1.0	06/28/2017	In-Situ					845
	3	07/07/2017	In-Situ					83.6
	5	07/07/2017	In-Situ					<1.04
	7	07/07/2017	In-Situ					26.1
	10	07/07/2017	In-Situ					80.6
	15	07/07/2017	In-Situ					<1.18
SB-10	0-1	07/06/2017	In-Situ	<27.2	<27.2	<27.2	<27.2	<1.09
	3	07/06/2017	In-Situ	<25.5	<25.5	<25.5	<25.5	4.43
	5	07/06/2017	In-Situ					6.19
	7	07/06/2017	In-Situ					4.07
	10	07/06/2017	In-Situ					2.34
	20	08/09/2017	In-Situ					1,190
	25	08/09/2017	In-Situ					1,100
	30	01/03/2018	In-Situ					1,120
	35	01/03/2018	In-Situ					630
	40	01/03/2018	In-Situ					126
	45	01/03/2018	In-Situ					446
	50	01/03/2018	In-Situ					10.3
SB-14	0	01/03/2018	In-Situ					12.6
	5	01/03/2018	In-Situ					19.5
	10	01/03/2018	In-Situ					181
	15	01/03/2018	In-Situ					1,090
	20	01/03/2018	In-Situ					2,200
	25	01/03/2018	In-Situ					1,610
	30	01/03/2018	In-Situ					1,330
	35	01/03/2018	In-Situ					1,140
	40	01/03/2018	In-Situ					999
	45	01/03/2018	In-Situ					859

24

Page 5 of 6

Delineatio Soil Sample Analytical Data Summary

Paladin Energy Corporation, East Caprock SWD Well #5

Lea County, New Mexico

1DD //722

	1RP-4723 Page 6 of 6										
Sample	Depth	Collection	Status	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride			
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)			
RRAL:							100	*600			
	50	01/03/2018	In-Situ					106			

Notes: Laboratory analysis performed by Permian Basin Environmental Lab, Midland, Texas by EPA SW-846 Method 8015M (TPH) and 300 (chloride)

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

*: OCD delineation level

Exceeds OCD Recommended Remediation Action Level (RRAL)

APPENDIX C.2

DELINEATION LABORATORY REPORTS

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Pogo Fast Caprock 5 Project Number: 17-0158-01 Location: New Mexico

Lab Order Number: 8A05004

NELAP/TCEQ # T104704516-16-7

Report Date: 01/08/18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-13 30'-31'	8A05004-01	Soil	01/03/18 11:25	01-05-2018 09:10
SB-13 35'-36'	8A05004-02	Soil	01/03/18 11:27	01-05-2018 09:10
SB-13 40'-41'	8A05004-03	Soil	01/03/18 11:28	01-05-2018 09:10
SB-13 45'-46'	8A05004-04	Soil	01/03/18 11:32	01-05-2018 09:10
SB-13 50'-51'	8A05004-05	Soil	01/03/18 11:34	01-05-2018 09:10
SB-12 30'-31'	8A05004-06	Soil	01/03/18 12:29	01-05-2018 09:10
SB-12 35'-36'	8A05004-07	Soil	01/03/18 12:30	01-05-2018 09:10
SB-12 40'-41'	8A05004-08	Soil	01/03/18 12:31	01-05-2018 09:10
SB-12 45'-46'	8A05004-09	Soil	01/03/18 12:34	01-05-2018 09:10
SB-12 50'-51'	8A05004-10	Soil	01/03/18 12:36	01-05-2018 09:10
SB-1 30'-31'	8A05004-11	Soil	01/03/18 13:38	01-05-2018 09:10
SB-1 35'-36'	8A05004-12	Soil	01/03/18 13:30	01-05-2018 09:10
SB-1 40'-41'	8A05004-13	Soil	01/03/18 13:31	01-05-2018 09:10
SB-1 45'-46'	8A05004-14	Soil	01/03/18 13:35	01-05-2018 09:10
SB-1 50'-51'	8A05004-15	Soil	01/03/18 13:37	01-05-2018 09:10
SB-10 30'-31'	8A05004-16	Soil	01/03/18 14:10	01-05-2018 09:10
SB-10 35'-36'	8A05004-17	Soil	01/03/18 14:14	01-05-2018 09:10
SB-10 40'-41'	8A05004-18	Soil	01/03/18 14:16	01-05-2018 09:10
SB-10 45'-46'	8A05004-19	Soil	01/03/18 14:19	01-05-2018 09:10
SB-10 50'-51'	8A05004-20	Soil	01/03/18 14:22	01-05-2018 09:10
SB-14 0-1'	8A05004-21	Soil	01/03/18 14:55	01-05-2018 09:10
SB-14 5'-6'	8A05004-22	Soil	01/03/18 15:03	01-05-2018 09:10
SB-14 10'-11'	8A05004-23	Soil	01/03/18 15:05	01-05-2018 09:10
SB-14 15'-16'	8A05004-24	Soil	01/03/18 15:07	01-05-2018 09:10
SB-14 20'-21'	8A05004-25	Soil	01/03/18 15:08	01-05-2018 09:10
SB-14 25'-26'	8A05004-26	Soil	01/03/18 15:11	01-05-2018 09:10
SB-14 30'-31'	8A05004-27	Soil	01/03/18 15:13	01-05-2018 09:10
SB-14 35'-36'	8A05004-28	Soil	01/03/18 15:14	01-05-2018 09:10
SB-14 40'-41'	8A05004-29	Soil	01/03/18 15:15	01-05-2018 09:10
SB-14 45'-46'	8A05004-30	Soil	01/03/18 15:18	01-05-2018 09:10
SB-14 50'-51'	8A05004-31	Soil	01/03/18 15:20	01-05-2018 09:10

SB-13 30'-31'

8A05004-01 (Soil)										
		Reporting		D'1 (;	Dil					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Permian Basin Environmental Lab, L.P.									
General Chemistry Parameter	<u>s by EPA / Standard Methods</u>									
Chloride	853	1.12	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	11.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

Permian Basin Environmental Lab, L.P.

SB-13 35'-	-36'
------------	------

8A05004-02 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters h	oy EPA / Standard Methods									
Chloride	648	1.15	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

Permian Basin Environmental Lab, L.P.

SB-13 40'-41'

8A05004-03 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	705	1.15	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

Permian Basin Environmental Lab, L.P.

SB-13	45'-46'
--------------	---------

8A05004-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Eı	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	46.6	1.11	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0	
% Moisture	10.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

Permian Basin Environmental Lab, L.P.

SB-13 50'-51'

8A05004-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	ND	1.12	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	11.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

33

SB-12 30'-31'

8A05004-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	1080	1.15	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

SB-12	35'-36'
--------------	---------

8A05004-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	828	1.12	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	11.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

SB-12	40'-41'
-------	---------

8A05004-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters h	by EPA / Standard Methods									
Chloride	345	1.12	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	11.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

36
SB-12 4	5'-46'
---------	--------

8A05004-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	52.4	1.12	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	11.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

37

SB-12 50'-51'

8A05004-10 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters b	oy EPA / Standard Methods								
Chloride	18.0	1.15	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0	
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

38

SB-1 30'-31'

8A05004-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	1150	5.95	mg/kg dry	5	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	16.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

39

SB-1 35'-36'

8A05004-12 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters h	by EPA / Standard Methods									
Chloride	845	1.14	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	12.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

SB-1 40'-41'

8A05004-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	613	1.14	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	12.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

41

SB-1 45'-46'

8A05004-14 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	34.4	1.15	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

42

SB-1 50'-51'

8A05004-15 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters h	by EPA / Standard Methods								
Chloride	ND	1.14	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0	
% Moisture	12.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

SB-10 30'-31'

8A05004-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters by EPA / Standard Methods										
Chloride	1120	1.18	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	15.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

44

SB-10.	35'-36'
--------	---------

8A05004-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters	by EPA / Standard Methods									
Chloride	630	1.16	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	14.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

45

SB-10 40'-41'

8A05004-18 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Permian Basin Environmental Lab, L.P.									
General Chemistry Parameters b	y EPA / Standard Methods								
Chloride	126	1.15	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0	
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

46

SB-10	45'-46'

8A05004-19 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Ei	nvironmer	ntal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	446	1.18	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0	
% Moisture	15.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

SB-10 50'-51'

8A05004-20 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Permia	n Basin E	nvironmer	ıtal Lab, I	P .					
General Chemistry Parameters by EPA / Standard Methods										
Chloride	10.3	1.14	mg/kg dry	1	P8A0507	01/05/18	01/06/18	EPA 300.0		
% Moisture	12.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

48

SB-14	0-1'
--------------	------

8A05004-21 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	12.6	1.04	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0	
% Moisture	4.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

49

% Moisture

Project: Pogo Fast Caprock 5 Project Number: 17-0158-01 Project Manager: Mark Larson

01/08/18

ASTM D2216

SB-14 5'-6' 8A05004-22 (Soil)											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	Permi	an Basin E	nvironme	ntal Lab, I	P.						
General Chemistry Paramet	ers by EPA / Standard Methods										
Chloride	19.5	1.04	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0			

%

1

P8A0801

01/08/18

0.1

4.0

Permian Basin Environmental Lab, L.P.

SB-14 10'-11'

8A05004-23 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permiar	n Basin Ei	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	181	1.06	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0	
% Moisture	6.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

51

SB-14 15'-16'

8A05004-24 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Permia	n Basin E	nvironmer	ıtal Lab, I	P .					
General Chemistry Parameters by EPA / Standard Methods										
Chloride	1090	5.32	mg/kg dry	5	P8A0508	01/05/18	01/06/18	EPA 300.0		
% Moisture	6.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

52

SB-14 20'-21'

8A05004-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Permian Basin Environmental Lab, L.P.											
General Chemistry Parameters	by EPA / Standard Methods										
Chloride	2200	5.95	mg/kg dry	5	P8A0508	01/05/18	01/06/18	EPA 300.0			
% Moisture	16.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216			

53

SB-14	25'-26'
--------------	---------

8A05004-26 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Permian Basin Environmental Lab, L.P.										
General Chemistry Parameters by EPA / Standard Methods										
Chloride	1610	6.10	mg/kg dry	5	P8A0508	01/05/18	01/06/18	EPA 300.0		
% Moisture	18.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

54

SB-14 30'-31'

8A05004-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Permia	n Basin E	nvironmer	ıtal Lab, I	P.					
General Chemistry Parameters by EPA / Standard Methods										
Chloride	1330	5.88	mg/kg dry	5	P8A0508	01/05/18	01/06/18	EPA 300.0		
% Moisture	15.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216		

55

SB-14	35'-36'
--------------	---------

8A05004-28 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironmer	ıtal Lab, I	P .				
General Chemistry Parameters I	by EPA / Standard Methods								
Chloride	1140	1.16	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0	
% Moisture	14.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

56

SB-14 40'-41'

8A05004-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	nvironmer	ıtal Lab, I	P .				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	999	1.15	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0	
% Moisture	13.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

Permian Basin Environmental Lab, L.P.

SB-14	45'-46'

8A05004-30 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin Ei	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	s by EPA / Standard Methods								
Chloride	859	1.12	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0	
% Moisture	11.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

Permian Basin Environmental Lab, L.P.

SB-14 50'-51'

8A05004-31 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permiar	n Basin E	nvironmer	ıtal Lab, I	P.				
General Chemistry Parameters	by EPA / Standard Methods								
Chloride	106	1.10	mg/kg dry	1	P8A0508	01/05/18	01/06/18	EPA 300.0	
% Moisture	9.0	0.1	%	1	P8A0801	01/08/18	01/08/18	ASTM D2216	

59

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

	D L	Reporting	T T 1	Spike	Source	ANDEC	%REC		RPD	N T - (
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P8A0507 - *** DEFAULT PREP ***										
Blank (P8A0507-BLK1)				Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	ND	1.00	mg/kg wet							
LCS (P8A0507-BS1)				Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	413	1.00	mg/kg wet	400		103	80-120			
LCS Dup (P8A0507-BSD1)				Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	413	1.00	mg/kg wet	400		103	80-120	0.0218	20	
Duplicate (P8A0507-DUP1)					01/05/18 A	nalyzed: 0	1/06/18			
Chloride	857	1.12	mg/kg dry		853			0.403	20	
Duplicate (P8A0507-DUP2)	Sou	rce: 8A05004	-11	Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	1250	5.95	mg/kg dry		1150			8.31	20	
Matrix Spike (P8A0507-MS1)	Sou	rce: 8A05004	-01	Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	1960	1.12	mg/kg dry	1120	853	98.8	80-120			
Batch P8A0508 - *** DEFAULT PREP ***										
Blank (P8A0508-BLK1)				Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	ND	1.00	mg/kg wet							
LCS (P8A0508-BS1)				Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	414	1.00	mg/kg wet	400		104	80-120			
LCS Dup (P8A0508-BSD1)				Prepared: 0	01/05/18 A	nalyzed: 0	1/06/18			
Chloride	383	1.00	mg/kg wet	400		95.8	80-120	7.79	20	

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P8A0508 - *** DEFAULT PREP ***										
Duplicate (P8A0508-DUP1)	Sou	rce: 8A05004	-21	Prepared: (01/05/18 A	nalyzed: 01	/06/18			
Chloride	10.6	1.04	mg/kg dry		12.6			16.5	20	
Duplicate (P8A0508-DUP2)	Sou	rce: 8A05004	-31	Prepared: (01/05/18 A	nalyzed: 01	/06/18			
Chloride	109	1.10	mg/kg dry		106			3.01	20	
Matrix Spike (P8A0508-MS1)	Sou	rce: 8A05004	-21	Prepared: (01/05/18 A	nalyzed: 01	/06/18			
Chloride	1140	1.04	mg/kg dry	1040	12.6	108	80-120			
Batch P8A0801 - *** DEFAULT PREP ***										
Blank (P8A0801-BLK1)				Prepared &	& Analyzed:	01/08/18				
% Moisture	ND	0.1	%							
Duplicate (P8A0801-DUP1)	Sou	rce: 8A05003	-25	Prepared &	k Analyzed:	01/08/18				
% Moisture	13.0	0.1	%		12.0			8.00	20	
Duplicate (P8A0801-DUP2)	Sou	rce: 8A05004	-26	Prepared 8	k Analyzed:	01/08/18				
% Moisture	18.0	0.1	%		18.0			0.00	20	
Duplicate (P8A0801-DUP3)	Sou	rce: 8A05005	-22	Prepared &	k Analyzed:	01/08/18				
% Moisture	8.0	0.1	%	*	7.0			13.3	20	
Duplicate (P8A0801-DUP4)	Sour	rce: 8A05006	-02	Prepared &	د Analyzed	01/08/18				
% Moisture	1.0	0.1	%		2.0			66.7	20	1
Duplicate (P8A0801-DUP5)	Sou	rce: 8A05007	-10	Prepared &	k Analyzed:	01/08/18				
% Moisture	15.0	0.1	%		15.0			0.00	20	

Notes and Definitions

R2 The RPD exceeded the acceptance limit.

BULK Samples received in Bulk soil containers

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Sun Barron

Report Approved By:

Date: 1/8/2018

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

																					<u>C</u>	<u>H/</u>	\overline{N}	<u>1-C</u>)F	<u>-Cl</u>	JS	TC	
Aarson 8 Environmenta Data Reported to:	es, In al Consulto	C. ants			507 N N	۱idla	arien nd, T 2-687	(79	701		DA PO PR LAI	.te:)	ROJE	CT #	t: 1	1-1-	D	58	3	O	0RF 0 #	CC	RDEI 77 (2 DLLE	R #: <u></u> Дари	PA 3 A <u>20(</u> DR:	IGE 105 K	100	DF_1	Page 37 of
TRRP report?	S=SOL W=WATE A=AIR	R SL=	AINT SLUDGE OTHER		irs	PR		1	G			/						AN CO		20 20 20 20 20 20 20 20 20 20 20 20 20 2				CAPITO CAPITO CAPITO CAPITO		AND			7
MST /NM Field Sample I.D.	Lab #	Date	Time	Matrix	# of Containers	HCI	HNO ₃ H.SO. D. NaOH		UNPRESERVED	AMALY			100 100 100 100 100 100 100 100							2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					FII		OTES)
SB-13 30-31	1	13118	11:25	5	4				' 			_	_								-	V	_						
	2		11:27					╢	-			+-							_			$\left \right\rangle$	_		<u> </u> .				
40-41	3		11:32									+					-	·	+								· ·· · ·		
50:51	5.		11:34																										
SB-12 30'31'	6		12:29																		-				-				
35-30	N		12:30					\parallel				1								1									
40-41	4		12:31																							-			
45-410'	9		12:34																								·		
50-51	0)		12:36																										
5B-1 30'-31'	1		13:28																										
35-310	(N		13:30			<u> </u>																							
40-21	13		13:31						ļ																<u> </u>			<u> </u>	
45-40	(4		13:35						ļ											_									
50-51	15		13:37	طبہ 	1																	4					• •		
TOTAL	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -																												
RELINQUISHED BY:S			DATE/TIME RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)										NOF 1 DA			ID TIN	1E	REC	EIVI	NG T	EMP		3		1	// #:	. 🗇 NG	วา บร	89 SED
RELINQUISHED BY:(S	Signature)		DATE/TIME RECEIVED BY: (Signature)										ОТН	NY [] IER [] JSSY]					IER E	31LL :	# <u>.</u>			-				
$p_0 =$																					6	1	-						

Change

10

																								(<u>Cł</u>	-HA		1-0	<u> </u>	<u>-C</u>	<u>US</u>	TC	39
Aarson 8 ssociat	es, In	C.			and the second	507 ト 사	۱idla	nd,	nfeld TX 7 7-09	970		00	DA PC PF	ATE: D #: ROJ	: 	<u>J</u> 0		5	2	<u>01</u> R N	<i>B</i> AM	_ L/ E:	AB N PA						PA	GE	2	OF	
Data Reported to:		11115					431	<u>-</u> 00	07-07	701			LA	I PI	ROJI	ECI	ſ#:_	1-	1-0	215	50	0	1	<u> </u>		CO	LLE	CTC	DR:_	Ś)		
	S=SOR W=WATE A=AIR	R		AINT SLUDGE OTHER		6	PR	ESE	RVA		7						108	7	~ /	_	- /							CAPAND CAPAND					
Time zone/State:					1	ainer:			NaOH	FRVI		ć	G/	\ \ \	ž s		Y_	×.	\$/\$ \$}						3/3				<u>\$</u>	/ /			
MST / TX Field Sample I.D.	Lab #	D	ate	Time	Matrix	# of Containers	HCI	^{\$} CNH	H ₂ SO ₄	ICE INPRESERVED		MALTE STUR				8/1 8/0 5/			3/3 3/3 3/1				5/5 5/5 5/5		} } }			n C		FI		NOTE	S
SB-10 30:31'	16	1/3	118	14:10	S	1			1	v																1							
35-36	in			14:14)											<u>.</u>												
40-41	19			14:10													_																
45-46	19			14:19	_		ļ											-															
50'-51	20			14:22					_																		\perp						
SB-14 0'-1'	21			14:35	<u> </u>				\parallel								_				-								_				
5'-6'	22			15:03		+			{																	$\downarrow \downarrow$							
10'-11'	23			15:05					[]																				_				
15-16	24			15:07										_			_											_					
20-21	25			15:08															ļ									-	_				c.
25-26	- 2le			15:11	<u> </u>							_		_																			
30-31	27			15:13							_			_		_	_	ļ									_		_				
35-36	28			15:14			ļ					-			_		_																
40'-41'	29			15:15						$\left \right $						_											_						
45-46	<u>50</u>	<mark>له</mark> ا		15:10						<u>+</u>				_													-		_			:	
	Signature)				TE/TIME RECEIVED BY: (Signature)										- NC				L D T'IN	AE	RE	CEI	VING	FE	MP:		3						64
RELINQUISHED BY:(Signature)			DATE/TI	ME	REGE		BY:	(Sigr	nature 5-14	9	10		01	HEF		\				CAR	RIEI		_L#				il i				ISED	

TRUJOU

			-				-													(CH	AI	N-	-0	F-(CUS	STO	39	Y
Aarson & ssociates Environmental Co Data Reported to:	, Inc. nsultants				. Ma idlan 432-	d, T>	(79)	701	200	D. P [.] P.	ATE: O #: ROJ AI PF	: EC1		<u>ح</u> ATIC #:`	20 DN C) <u>e</u>)r N 0 i:	NAM SS	_ LA E:	ав V <i>РОД</i>	vof 70	rk C FC		ER I <i>LL</i>	#: #: #:	PAGE 2014 R:	<u>3</u> 5 5 5	_OF_	Page 39 of	-
TRRP report? Yes No TIME ZONE: Time zone/State: MST/NM Field	NATER SL=	AINT SLUDGE OTHER	Matrix	# of Containers				G	AMALY			10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 12 12 12 12 12 12 12 12 12 12 12 12 1	10 80 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	HI CONTRACTOR								ALL CARLES		101			
58-14 50-51 2	<u>) \/31 8</u>) 13:20 	S																										
RELINQUISHED BY (Signa RELINQUISHED BY (Signa RELINQUISHED BY (Signa) ture)	DATE/TIM DATE/TIM DATE/TIM	IE	RECEIV RECEIV	VED E	3Y: (S 3Y: (S	lignat	ure)	91	0		N(11 21		-0 L I		ME	RE CU	CEIV STO CARI	/ING DY S RIER	TEN SEAL R BILI	IP: (BF	2		ERM #:	CT 🗋	NOT U	ig ISE[)

DAMA-