SITE INFORMATION

		Report Typ	e: Work Pl	an 1RP	-4970						
General Site Info	ormation:										
Site:		ARU #14									
Company:		Grand Banks E	nergy Co								
Section, Towns	hip and Range	Unit I	Sec. 02	T 16S	R 32E						
Lease Number:		API No. 30-025	-00365								
County:		Lea County									
GPS:		;	32.948710º N			103.73	0674º W				
Surface Owner:		State	tate								
Mineral Owner:											
Directions:							urn north onto Mendel Rd				
			east onto Patterson	Rd and cont	inue for 2 mi	, turn west o	nto lease road for 0.10				
		mi to location.									
Release Data:											
Date Released:		5/16/2017									
Type Release:		Oil									
Source of Contar	mination:	Flowline									
Fluid Released:	_	4 bbls									
Fluids Recovered		0 bbls	bbls								
Official Commu	nication:										
Name:	Denise Jones				Ike Tavarez						
Company:	Grand Banks Energ	y Co.			Tetra Tech						
Address:	10 Desta Dr, Ste 30	•			4000 N. Big	Sprina					
					Ste 401	3					
City:	Midland Texas, 797	05			Midland, Te	×00					
		05									
Phone number:	(432) 620-9181			(432) 687-8	110						
Fax:											
Email:	djones@cambriar	<u>imgmt.com</u>			Ike. Tavare	z@tetratecl	h.com				
Ranking Criteria											
				1							
Depth to Groundy	vater:		Ranking Score			Site Data					
<50 ft 50-99 ft			20 10								
>100 ft.			0			250'-275'					
2100 11.			Ŭ			200-210					
WellHead Protect	ion:		Ranking Score			Site Data					
	000 ft., Private <200 ft		20								
Water Source >1,0	000 ft., Private >200 ft	-	0			0					
Surface Body of V	Vater:		Ranking Score			Site Data					
<200 ft.			20								
200 ft - 1,000 ft. >1,000 ft.			10 0			0					
>1,000 n.			U			U					
T	otal Ranking Score		0								
		•	0								
		Accentab	le Soil RRAL (m	a/ka)	1						
		Benzene	Total BTEX	TPH	1						
		10	50	5,000	1						
		10	00	0,000							

May 29, 2018

NMOCD approves of the preliminary
 delineation completed and proposed
 vertical delineation at T-1 for 1RP-4970.
 See email correspondence for
 remediation proposal and conditions.

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Work Plan for the Grand Banks Energy Co., ARU #14, Unit I, Section 02, Township 16 South, Range 32 East, Lea County, New Mexico. 1RP-4970.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by Cambrian Management (Cambrian) on behalf of Grand Banks Energy Co. (Grand Banks) to evaluate and assess a release that occurred at the ARU #14, Unit I, Section 2, Township 16 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.948710°, W 103.730674°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release was discovered on May 16, 2017, and released approximately four (4) barrels of oil due to a pinhole leak in a flowline. None of the fluids were recovered. The release occurred on the pad area impacting an area measuring approximately 115' x 130' and migrated into the adjacent pasture impacting an area measuring approximately 1' x 225'. The initial C-141 form is included in Appendix A.

Groundwater

Three (3) water wells are listed within Section 2 on the New Mexico Office of the State Engineer's (NMOSE) database with reported depths to groundwater ranging from 250' to 275' below ground surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in this area is greater than 200' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per

kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On April 4, 2018, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of seven (7) backhoe trenches (T-1 through T-7) were installed to collect soil samples in the release area to total depths ranging from 1.5' to 4.0' below surface. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The trench locations are shown on Figure 3.

Referring to Table 1, all of the samples showed benzene concentrations below the laboratory reporting limit. However, the area of trench (T-4) did show a total BTEX concentration of 115 mg/kg at 2.0' below surface, which declined with depth to 27.5 mg/kg at 3.0' below surface. The samples collected at trenches (T-1, T-2, T-3, T-5, T-6 and T-7) did not show any total BTEX concentrations above the RRALs. Additionally, none of the samples analyzed showed TPH concentrations above 5,000 mg/kg, with concentrations ranging from 26.4 mg/kg to 1,830 mg/kg.

The area of trench (T-1) detected chloride concentrations above the 600 mg/kg threshold at 0-1' (1,030 mg/kg) and 2.0' (730 mg/kg). Deeper samples were not collected due to a dense formation in the area. None of the remining trenches showed any chloride concentrations above the 600 mg/kg threshold.

Work Plan

Based on the laboratory results, Grand Banks proposes to remove the impacted material as highlighted (green) in Table 1 and shown on Figure 4. The areas of trenches (T-1 and T-4) will be excavated to approximately 1.0'-2.0' below surface. For the area of T-1, the area will be excavated to depth of approximately 2.0' below surface and sampled. If needed, the area will be vertically defined and the area will be excavated to the appropriate depth. The impacted soil from the area will be transported offsite for proper disposal.

In the area of T-4, the excavated material will be stockpiled onsite and worked to remediate the elevated total BTEX in the soil. Once worked, composite samples will be collected every 50 cubic yards and analyzed for total BTEX. If the laboratory analysis shows concentrations below the RRALS, the stockpile material will be placed back into the excavation. If the soil stockpile material exceeds the RRAL, the stockpile material will be hauled for proper disposal. Once the areas are excavated to the appropriate depths, the areas will be backfilled with clean material to surface grade.

As shown in Figure 3, buried electric lines are located in the area of trench (T-4). The electric lines will need to be spotted prior to beginning excavation activities to verify the location for safety concerns and lines may hinder the excavation for the area. In addition, the proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. The impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, Grand Banks will excavate the impacted soils to the maximum extent practicable.

Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

Clair Gonzales, Project Manager

cc: Ryan Mann - SLO

Ike Tavarez, Senior Project Manager, P.G.

Figures

Mapped By: Isabel Marmolejo

Mapped By: Isabel Marmolejo

Tables

Table 1 Grand Banks Energy ARU Well #14 Lea County, New Mexico

Sample ID	Sample	Sample	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	C6-C10	C10-C28	C28-C35	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
T-1	4/4/2018	0-1	Х		<15.0	1,670	42.0	1,710	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	1,030
		2	Х		<15.0	215	<15.0	215	<0.00201	<0.00201	0.00289	0.0381	0.0410	730
T-2	4/4/2018	0-1	Х		<15.0	57.0	<15.0	57.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	60.6
		1-1.5	Х		<14.9	238	<14.9	238	<0.00199	<0.00199	0.00233	<0.00199	0.00233	26.7
T-3	4/4/2018	0-1	Х		<15.0	58.8	<15.0	58.8	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	218
	"	2	Х		<14.9	123	<14.9	123	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	340
	"	2.5	Х		-	-	-	-	-	-	-	-	-	544
T-4	4/4/2018	0-1	Х		<15.0	58.3	<15.0	58.3	<0.00200	< 0.00200	<0.00200	<0.00200	<0.00200	201
		2	Х		528	1,300	<15.0	1,830	<0.201	5.8	7.0	102	115	183
	"	3	Х		-	-	-	-	<0.200	1.40	1.84	24.3	27.5	555
T-5	4/4/2018	0-1	Х		<15.0	777	33.4	810	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	32.5
	=	2	Х		52.0	1,410	22.4	1,480	<0.00199	<0.00199	0.00420	0.0312	0.0354	10.7
	"	3	Х		-	-	-	-	-	-	-	-	-	<4.91
T-6	4/4/2018	0-1	Х		17.0	174	<15.0	191	<0.00200	<0.00200	<0.00200	0.00425	0.00425	5.28
	"	2	Х		<14.9	26.4	<14.9	26.4	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<4.95
	"	3	Х		-	-	-	-	-	-	-	-	-	42.5
		4	Х		-	-	-	-	-	-	-	-	-	<5.00
T-7	4/4/2018	0-1	Х		16.4	1,010	16.1	1,040	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	258
	"	2	Х		<15.0	61.0	<15.0	61.0	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	412
	"	3	Х		-	-	-	-	-	-	-	-	-	18.5
	"	4	Х		-	-	-	-	-	-	-	-	-	<5.00

Not Analyzed (-)

Proposed Excavation Depths

Photos

View West – Area of T-1

View North – Area of T-2

View South – Area of T-3

View Southeast – Area of T-4

View Northeast – Area of T-5

View Southwest – Area of T-6

View Northeast – Area of T-7

Appendix A

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Form C-141

Revised April 3, 2017

				0	una 1 0, 11.	IVI 07.	505					
			Rel	ease Notifi	cation ar	nd C	orrective A	ction	Ľ			
-					0	PERA	TOR		X Initi	al Report	П	Einel Dana
Name of C	ompany G	rand Banks	Energy C	ompany	Cont		ike Anthony		A min	ar report	<u> </u>	Final Report
Address 1	0 Desta Dr	ive, Suite 30	0-E, Mid	land, TX 79705			No. 432-631-4	398				
Facility Name ARU # 14					the second se		pe Production d		ration			
							se rioudenon e	2 Explo	ation		_	
Surface Ov	vner State			Minaral	Owner State				1.122.0		-	-
				winicial (Jwher State	-			API No	0.30-025-0	0365	
								_				
				LOCA	ATION O	FRE	LEASE					
Unit Letter	Section	Township	Range	Feet from the	North/South		Feet from the	East/W	est Line	County		
	2	16S	32E	1980	South		660 East			Lea		
			Latitu	de_32.948710_	Longit	ude	03.730674	NAD83	3			
				NAT	URE OF	REL	EASE					
Type of Rele							Release 4 bbls		Volume R	Recovered 0		
	Source of Release Flowline at well location					Date and Hour of Occurrence 05/16/2017			Date and Hour of Discovery 8:00 AM 05/16/2017			1
Vas Immediate Notice Given?					If Y quired	If YES To Whom?						
By Whom?					Dat	e and H	our			-	-	
Was a Water	course Reac	and the second sec					lume Impacting t	he Water	course.			
			Yes X	No								

If a Watercourse was Impacted, Describe Fully.*

Describe Cause of Problem and Remedial Action Taken.* Pinhole in line caused a leak, strong winds caused overspray in pasture

Describe Area Affected and Cleanup Action Taken.*

The released fluid and overspray affected an area of the caliche pad and access road measuring approximately 11,000 sq ft. Runoff from the release affected an area of the pasture to the west of the tank measuring approximately 1,000 sq ft. The overspray also affected an area of the pasture north of the pad measuring approximately 600 sq ft. Delineation of the release is currently underway. Remediation of the impacted area will be conducted in accordance with NMOCD and NMSLO guidelines. This is a revised C-141 to that which was submitted on 05/25/2017.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Signature: Denise Jones	OIL CONSERVATION DIVISION						
Printed Name: Denise Jones	Approved by Environmental Specialist:						
Title: Regulatory Analyst	Approval Date:	Expiration Date:					
E-mail Address: djones@cambrianmgmt.com	Conditions of Approval:						
Date: 02/06/2018 Phone: 432-620-9181		Attached					

Appendix B

Water Well Data Average Depth to Groundwater (ft) Grand Banks Energy - ARU #14 Lea County, New Mexico

	15 Sc	outh	31	East	
6	5	4	3	2	1
7	8	9 280	10	11 264	12
18	17	16	15	14	13
19	20 67	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	15 Sc	outh	32	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	16 Sc	outh	31	East	
6	5	4	3	2 290	1
7	8	9	10	11	12 288
18	17	16	15	14 113 314	13 299
19	20	21	22	23	24
30	29	28	27	26	25
31 290	32	33	34	35	36

	17 Sc	outh	31	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34 271	35	36

	16	South		32 E	East		
6	5	4	3	65 <mark>2</mark>	275	1	265
7	8	9 248	10	1	1 75	12 215	
18	17	16 221	15	1	4	13 215	
19 220	20	21 210	22	2 2	3 10	24	
30	29	28	27	2 2	6 43	25	
31	32	33	34	3	5	36 260	1

	17 Sc	outh	32	East	
6	5	-	3	2 179	1 200
	N	laljama	175	60	
7	8	9	10 132	11 70	12 120
				88	
18	17	16	15	14	13
19	20	21	22	23	24
30 180	29	28 <mark>81</mark>	27	26	25
dry					
dry 31	32	33	34	35	36

	16 Sc	outh	33	East	
6	5 180	4 150	3 <mark>130</mark>	2	1 142
				148	
7	8	9	10	11	12
	200		182		142
18	17	16	15	14	13
	182	180	175	143	110
19	20	21	22	23	24
				120	
30	29	28	27	26	25
191		190	130	143	120
31	32	33	34	35	36
190	168		160		

		17	So	outh		33	Ea	st		
6 <mark>9</mark>	0	5		4	3	155	2	158	1	150
7 16	57	8	173	9 161	10		11		12	
18 188		17 <mark>180</mark>		16	15		14		13 165	;
19		20 190		21	22		23 115	;	24	
30 🤅	59	29	60	28	27		26		25	
31		32		33 120	34		35 1 55	5	36	

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

34 NMOCD - Groundwater Data

123 Tetra Tech installed temporary wells and field water level

143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	replaced, O=orpha C=the fil	ned,							E 3=SW			X		
	closed)	POD	(qu	lart	ers a	are	small	est to I	argest)	(NAD8	3 UTM in meters)	(In feet)	
POD Number <u>L 02381</u>	Code	Sub-	County LE			4		Tws 16S	Rng 32E	X 619086	Y 3643515* 🌍	DepthWellDe 308	pthWater 215	Water Column 93
<u>L 02434</u>		L	LE				01	16S	32E	619661	3646531* 🌍	337		
<u>L 02449</u>		L	LE				01	16S	32E	619661	3646531* 🌍	330	265	65
<u>L 02467</u>		L	LE		1	4	02	16S	32E	618250	3646322* 🌍	328	275	53
<u>L 02617</u>		L	LE		4	4	02	16S	32E	618656	3645924* 🌍	322	270	52
<u>L 02752</u>		L	LE		1	3	26	16S	32E	617521	3639880* 🌍	324	280	44
<u>L 02846</u>		L	LE	4	2	1	11	16S	32E	617956	3645413* 🌍	328	275	53
<u>L 02846</u>	R	L	LE	4	2	1	11	16S	32E	617956	3645413* 🌍	328	275	53
<u>L 02847</u>		L	LE	1	4	2	11	16S	32E	618564	3645219* 🌍	317	220	97
<u>L 02847</u>	R	L	LE	1	4	2	11	16S	32E	618564	3645219* 🌍	317	220	97
<u>L 02954</u>		L	LE		2	4	03	16S	32E	617043	3646310* 🌍	120	65	55
<u>L 02993</u>		L	LE	3	3	2	15	16S	32E	616572	3643391* 🌍	100		
<u>L 03405</u>		L	LE	1	1	2	25	16S	32E	619824	3640790 🌍	298	190	108
<u>L 03587</u>		L	LE	1	2	4	35	16S	32E	618647	3638383* 🌍	282	210	72
<u>L 03587 S</u>		L	LE	3	4	2	35	16S	32E	618642	3638586* 🌍	269	215	54
<u>L 03587 S2</u>		L	LE		2	2	35	16S	32E	618738	3639089* 🌍	299	192	107
<u>L 03587 S4</u>		L	LE	1	4	4	26	16S	32E	618632	3639590* 🌍	289	220	69
<u>L 03631</u>		L	LE		1	2	02	16S	32E	618240	3647126* 🌍	315	250	65
L 04737 POD3		L	LE		3	3	36	16S	32E	619048	3637777 🌍	304	214	90
<u>L 04930</u>		L	LE			1	23	16S	32E	617698	3642092* 🌍	307	210	97
<u>L 05494</u>		L	LE				36	16S	32E	619758	3638489* 🌍	303	200	103
<u>L 06400</u>		L	LE	1	3	3	36	16S	32E	619054	3637985* 🌍	330		
<u>L 06557</u>		L	LE		1	4	21	16S	32E	615089	3641466* 🌍	295	210	85
<u>L 06807</u>		L	LE	1	4	4	09	16S	32E	615356	3644383* 🌍	290	248	42
<u>L 07823</u>		L	LE	2	2	2	16	16S	32E	615561	3643981* 🌍	269	247	22
<u>L 08084</u>		L	LE	1	1	1	16	16S	32E	614157	3643970* 🌍	317	260	57
L 08084 POD4		L	LE			2	26	16S	32E	618522	3640492* 🌍	303	233	70
L 08084 POD5		L	LE	4	1	4	26	16S	32E	618425	3639788* 🌍	296	165	131
<u>L 08084 S3</u>		L	LE			2	26	16S	32E	618522	3640492* 🌍	305	205	100
<u>L 08241</u>		L	LE		4	4	02	16S	32E	618656	3645924* 🌍	316		
<u>L 10204</u>		L	LE	4	2	2	04	16S	32E	615524	3646993* 🌍	319		
<u>L 10205</u>		L	LE		4	1	08	16S	32E	613038	3645066* 🌍	330		
<u>L 11189</u>		L	LE	1	1	4	04	16S	32E	614932	3646391* 🌍	350		

Page	2	of	2
	_		_

Average Depth to Water:	224 feet
Minimum Depth:	65 feet
Maximum Depth:	280 feet

Record Count: 33

PLSS Search:

Township: 16S Range: 32E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/25/18 12:42 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Appendix C

Analytical Report 581425

for Tetra Tech- Midland

Project Manager: Ike Tavarez

Grand Banks-ARU Well #14

TBD

11-APR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176)

11-APR-18

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **581425** Grand Banks-ARU Well #14 Project Address: Lea County NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 581425. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 581425 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 581425

Tetra Tech- Midland, Midland, TX

Grand Banks-ARU Well #14

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	04-04-18 00:00		581425-001
S	04-04-18 00:00		581425-002
S	04-04-18 00:00		581425-003
S	04-04-18 00:00		581425-004
S	04-04-18 00:00		581425-005
S	04-04-18 00:00		581425-006
S	04-04-18 00:00		581425-007
S	04-04-18 00:00		581425-008
S	04-04-18 00:00		581425-009
S	04-04-18 00:00		581425-010
S	04-04-18 00:00		581425-011
S	04-04-18 00:00		581425-012
S	04-04-18 00:00		581425-013
S	04-04-18 00:00		581425-014
S	04-04-18 00:00		581425-015
S	04-04-18 00:00		581425-016
S	04-04-18 00:00		581425-017
S	04-04-18 00:00		581425-018
S	04-04-18 00:00		581425-019
S	04-04-18 00:00		581425-020
S	04-04-18 00:00		581425-021
	S S S S S S S S S S S S S S S S S S S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Grand Banks-ARU Well #14

Project ID: TBD Work Order Number(s): 581425 Report Date:11-APR-18Date Received:04/05/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3046073 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3046089 TPH By SW8015 Mod Surrogate 1-Chlorooctane, Surrogate o-Terphenyl recovered below QC limits. Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 581425-009.

Batch: LBA-3046223 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Lab Sample ID 581425-012 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 581425-006, -008, -012, -014, -015, -018, -019.

The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3046232 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Certificate of Analysis Summary 581425

Tetra Tech- Midland, Midland, TX Project Name: Grand Banks-ARU Well #14

Date Received in Lab:Thu Apr-05-18 10:00 amReport Date:11-APR-18Project Manager:Kelsey Brooks

	Lab Id:	581425-	001	581425-	002	581425-0	003	581425-	004	581425-	005	581425-	006
Aran busin Domesonto d	Field Id:	T-1 0-	1	T-1 2	2	T-2 0-	1	T-2 1-1	.5	T-3 0-	1	T-3 2	
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL	,	SOIL	,
	Sampled:	Apr-04-18	00:00										
BTEX by EPA 8021B	Extracted:	Apr-06-18	16:50	Apr-09-18	17:00								
	Analyzed:	Apr-06-18	23:45	Apr-07-18	01:39	Apr-07-18	01:58	Apr-07-18	02:17	Apr-07-18	02:36	Apr-09-18	22:42
	Units/RL:	mg/kg	RL										
Benzene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199
Toluene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199
Ethylbenzene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200	0.00233	0.00199	< 0.00199	0.00199	< 0.00199	0.00199
m,p-Xylenes		< 0.00399	0.00399	< 0.00402	0.00402	< 0.00401	0.00401	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00398	0.00398
o-Xylene		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199
Total Xylenes		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199
Total BTEX		< 0.00200	0.00200	< 0.00201	0.00201	< 0.00200	0.00200	0.00233	0.00199	<0.00199	0.00199	< 0.00199	0.00199
Inorganic Anions by EPA 300/300.1	Extracted:	Apr-06-18	09:30										
	Analyzed:	Apr-06-18	13:11	Apr-06-18	12:55	Apr-06-18	13:16	Apr-06-18	13:32	Apr-06-18	13:37	Apr-06-18	13:42
	Units/RL:	mg/kg	RL										
Chloride		1030	24.9	730	4.95	60.6	4.98	26.7	4.94	218	4.93	340	5.00
TPH By SW8015 Mod	Extracted:	Apr-07-18	13:00										
	Analyzed:	Apr-08-18	23:05	Apr-08-18	23:32	Apr-08-18	23:58	Apr-08-18	01:20	Apr-08-18	01:46	Apr-08-18	02:15
	Units/RL:	mg/kg	RL										
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0	<14.9	14.9
Diesel Range Organics (DRO)		1670	15.0	215	15.0	57.0	15.0	238	14.9	58.8	15.0	123	14.9
Oil Range Hydrocarbons (ORO)		42.0	15.0	<15.0	15.0	<15.0	15.0	<14.9	14.9	<15.0	15.0	<14.9	14.9
Total TPH		1710	15.0	215	15.0	57.0	15.0	238	14.9	58.8	15.0	123	14.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 581425

Tetra Tech- Midland, Midland, TX Project Name: Grand Banks-ARU Well #14

Date Received in Lab:Thu Apr-05-18 10:00 amReport Date:11-APR-18Project Manager:Kelsey Brooks

	Lab Id:	581425-0	07	581425-0	008	581425-0	09	581425-0	010	581425-0	011	581425-	012
Ara aluaia Do anosta d	Field Id:	T-3 2.5	;	T-4 0-	1	T-4 2		T-4 3		T-5 0-	1	T-5 2	
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	,
	Sampled:	Apr-04-18 (00:00	Apr-04-18	00:00	Apr-04-18 (00:00	Apr-04-18	00:00	Apr-04-18	00:00	Apr-04-18	00:00
BTEX by EPA 8021B	Extracted:			Apr-09-18	17:00	Apr-10-18 (08:00			Apr-10-18	08:00	Apr-09-18	17:00
	Analyzed:			Apr-09-18	23:01	Apr-10-18 1	4:32			Apr-10-18	11:31	Apr-09-18	23:58
	Units/RL:			mg/kg	RL	mg/kg	RL			mg/kg	RL	mg/kg	RL
Benzene				< 0.00200	0.00200	< 0.201	0.201			< 0.00200	0.00200	< 0.00199	0.00199
Toluene				< 0.00200	0.00200	5.81	0.201			< 0.00200	0.00200	< 0.00199	0.00199
Ethylbenzene				< 0.00200	0.00200	7.00	0.201			< 0.00200	0.00200	0.00420	0.00199
m,p-Xylenes				< 0.00399	0.00399	70.2	0.402			< 0.00399	0.00399	0.0221	0.00398
o-Xylene				< 0.00200	0.00200	31.5	0.201			< 0.00200	0.00200	0.00906	0.00199
Total Xylenes				< 0.00200	0.00200	102	0.201			< 0.00200	0.00200	0.0312	0.00199
Total BTEX				< 0.00200	0.00200	115	0.201			< 0.00200	0.00200	0.0354	0.00199
Inorganic Anions by EPA 300/300.1	Extracted:	Apr-06-18 (09:30	Apr-06-18	09:30	Apr-06-18 (9:30	Apr-06-18 ()9:30	Apr-06-18	16:00	Apr-06-18	16:00
	Analyzed:	Apr-06-18	13:48	Apr-06-18	13:53	Apr-06-18 1	3:58	Apr-06-18	16:21	Apr-06-18	17:01	Apr-06-18	17:16
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		544	4.96	201	4.93	183	4.96	555	4.90	32.5	5.00	10.7	4.95
TPH By SW8015 Mod	Extracted:			Apr-07-18	13:00	Apr-07-18 1	3:00			Apr-07-18	13:00	Apr-07-18	13:00
	Analyzed:			Apr-08-18	03:35	Apr-08-18 (04:03			Apr-08-18	04:31	Apr-08-18	04:56
	Units/RL:			mg/kg	RL	mg/kg	RL			mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)				<15.0	15.0	528	15.0			<15.0	15.0	52.0	15.0
Diesel Range Organics (DRO)				58.3	15.0	1300	15.0			777	15.0	1410	15.0
Oil Range Hydrocarbons (ORO)				<15.0	15.0	<15.0	15.0			33.4	15.0	22.4	15.0
Total TPH				58.3	15.0	1830	15.0			810	15.0	1480	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 581425

Tetra Tech- Midland, Midland, TX Project Name: Grand Banks-ARU Well #14

Date Received in Lab:Thu Apr-05-18 10:00 amReport Date:11-APR-18Project Manager:Kelsey Brooks

	Lab Id:	581425-0	13	581425-0	014	581425-0	015	581425-0)16	581425-0	17	581425-0	018
A stall as in Decase and a I	Field Id:	T-5 3		T-6 0-1	L	T-6 2		T-6 3		T-6 4		T-7 0-	1
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Apr-04-18 (00:00	Apr-04-18 (00:00	Apr-04-18	00:00	Apr-04-18	00:00	Apr-04-18 (00:00	Apr-04-18	00:00
BTEX by EPA 8021B	Extracted:			Apr-09-18 1	17:00	Apr-09-18	17:00					Apr-09-18	17:00
	Analyzed:			Apr-10-18 (00:17	Apr-10-18 (00:36					Apr-10-18	00:56
	Units/RL:			mg/kg	RL	mg/kg	RL					mg/kg	RL
Benzene				<0.00200	0.00200	< 0.00200	0.00200					< 0.00202	0.00202
Toluene				<0.00200	0.00200	< 0.00200	0.00200					< 0.00202	0.00202
Ethylbenzene				< 0.00200	0.00200	< 0.00200	0.00200					< 0.00202	0.00202
m,p-Xylenes				0.00425	0.00399	< 0.00401	0.00401					< 0.00403	0.00403
o-Xylene				< 0.00200	0.00200	< 0.00200	0.00200					< 0.00202	0.00202
Total Xylenes				0.00425	0.00200	< 0.00200	0.00200					< 0.00202	0.00202
Total BTEX				0.00425	0.00200	< 0.00200	0.00200					< 0.00202	0.00202
Inorganic Anions by EPA 300/300.1	Extracted:	Apr-06-18	16:00	Apr-06-18 1	16:00	Apr-06-18	16:00	Apr-06-18	16:00	Apr-06-18 1	6:00	Apr-06-18	16:00
	Analyzed:	Apr-06-18	17:22	Apr-06-18 1	17:27	Apr-06-18	17:32	Apr-06-18	17:48	Apr-06-18 1	7:53	Apr-06-18	17:59
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		<4.91	4.91	5.28	4.95	<4.95	4.95	42.5	4.99	<5.00	5.00	258	5.00
TPH By SW8015 Mod	Extracted:			Apr-07-18 1	13:00	Apr-07-18	13:00					Apr-07-18	13:00
	Analyzed:			Apr-08-18 (05:25	Apr-08-18 (05:51					Apr-08-18	06:20
	Units/RL:			mg/kg	RL	mg/kg	RL					mg/kg	RL
Gasoline Range Hydrocarbons (GRO)				17.0	15.0	<14.9	14.9					16.4	15.0
Diesel Range Organics (DRO)				174	15.0	26.4	14.9					1010	15.0
Oil Range Hydrocarbons (ORO)				<15.0	15.0	<14.9	14.9					16.1	15.0
Total TPH				191	15.0	26.4	14.9					1040	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 581425

Tetra Tech- Midland, Midland, TX Project Name: Grand Banks-ARU Well #14

Date Received in Lab:Thu Apr-05-18 10:00 amReport Date:11-APR-18Project Manager:Kelsey Brooks

	Lab Id:	581425-0)19	581425-0	20	581425-02	21		
Analysis Boay ostad	Field Id:	T-7 2		T-7 3		T-7 4			
Analysis Requested	Depth:								
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Apr-04-18	00:00	Apr-04-18 0	00:00	Apr-04-18 0	0:00		
BTEX by EPA 8021B	Extracted:	Apr-09-18	17:00						
	Analyzed:	Apr-10-18	01:15						
	Units/RL:	mg/kg	RL						
Benzene		< 0.00198	0.00198						
Toluene		< 0.00198	0.00198						
Ethylbenzene		< 0.00198	0.00198						
m,p-Xylenes		< 0.00397	0.00397						
o-Xylene		< 0.00198	0.00198						
Total Xylenes		< 0.00198	0.00198						
Total BTEX		< 0.00198	0.00198						
Inorganic Anions by EPA 300/300.1	Extracted:	Apr-06-18	16:00	Apr-06-18 1	6:00	Apr-06-18 1	6:00		
	Analyzed:	Apr-06-18	18:04	Apr-06-18 1	8:09	Apr-06-18 1	8:15		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		412	5.00	18.5	4.98	< 5.00	5.00		
TPH By SW8015 Mod	Extracted:	Apr-07-18	13:00						
	Analyzed:	Apr-08-18	06:46						
	Units/RL:	mg/kg	RL						
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0						
Diesel Range Organics (DRO)		61.0	15.0						
Oil Range Hydrocarbons (ORO)		<15.0	15.0						
Total TPH		61.0	15.0						

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Grand Banks-ARU Well #14

Tastar	#: 3046073	Sample: 581425-001 / SMP	Batc				
Units:	mg/kg	Date Analyzed: 04/06/18 23:45	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0276	0.0300	92	70-130	
4-Bromoflu	orobenzene		0.0257	0.0300	86	70-130	
Lab Batch	#: 3046073	Sample: 581425-002 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/07/18 01:39	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	benzene	Anaryus	0.0284	0.0300	95	70-130	
4-Bromoflu			0.0284	0.0300	93	70-130	
	#: 3046073	Sample: 581425-003 / SMP	Batc			70-150	
Units:	mg/kg	Date Analyzed: 04/07/18 01:58		RROGATE R	-	TUDV	
c must			50	KKUGAIE K			
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	hanzana	Analytes	0.0206	0.0200		70.120	
4-Bromoflu			0.0306	0.0300	102	70-130	
	#: 3046073	Sample: 581425-004 / SMP	Batc			/0-130	
Units:	mg/kg	Date Analyzed: 04/07/18 02:17					
Onits.	iiig/ Kg	Date Analyzed. 04/07/10/02.17	SL	RROGATE R	ECOVERYS	STUDY	
	BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluor	obenzene		0.0290	0.0300	97	70-130	
4-Bromoflu	orobenzene		0.0294	0.0300	98	70-130	
Lab Batch	#: 3046073	Sample: 581425-005 / SMP	Batc	h: 1 Matrix	: Soil	1 1	
Units:	mg/kg	Date Analyzed: 04/07/18 02:36	su	RROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
		Analytac					
1,4-Difluoro		Analytes	0.0279	0.0300	93	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

Lab Batch #:	3046089	Sample: 581425-004 / SMP	Bate	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 01:20	SU	URROGATE R	ECOVERY S	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	•		92.4	99.6	93	70-135	
o-Terphenyl			47.5	49.8	95	70-135	
Lab Batch #:	3046089	Sample: 581425-005 / SMP	Bate	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 01:46	SU	URROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chlorooctane		Analytes	95.2	99.7	95	70-135	
o-Terphenyl			48.7	49.9	93	70-135	
Lab Batch #:	3046089	Sample: 581425-006 / SMP	Bate			/0-135	
Units:	mg/kg	Date Analyzed: 04/08/18 02:15		URROGATE R		STUDV	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	•		100	99.6	100	70-135	
o-Terphenyl			50.9	49.8	102	70-135	
Lab Batch #:	3046089	Sample: 581425-008 / SMP	Bate	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 03:35	SU	URROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag
1-Chlorooctane		Anaryus	96.6	99.9	97	70-135	
o-Terphenyl			49.3	50.0	99	70-135	
Lab Batch #:	3046089	Sample: 581425-009 / SMP	Bate				
Units:	mg/kg	Date Analyzed: 04/08/18 04:03		URROGATE R		STUDY	
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	,		24.9	99.9	25	70-135	**
o-Terphenyl			10.3	50.0	21	70-135	**

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

	: 3046089	Sample: 581425-011 / SMP					
U nits:	mg/kg	Date Analyzed: 04/08/18 04:31	SU	RROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chloroocta	ne		107	99.7	107	70-135	
o-Terphenyl			54.7	49.9	110	70-135	
Lab Batch #	: 3046089	Sample: 581425-012 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 04:56	st	RROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chloroocta		Analytes	98.6	100	99	70-135	
o-Terphenyl			53.4	50.0	107	70-135	
Lab Batch #	: 3046089	Sample: 581425-014 / SMP	Batc			10 100	
Units:	mg/kg	Date Analyzed: 04/08/18 05:25		JRROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chloroocta	ne		88.7	99.8	89	70-135	
o-Terphenyl			43.7	49.9	88	70-135	
Lab Batch #	: 3046089	Sample: 581425-015 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 05:51	st	JRROGATE R	ECOVERY S	STUDY	
	TPH I	By SW8015 Mod	Amount	True	Recovery	Control Limits	Flage
		Analytes	Found [A]	Amount [B]	%R [D]	%R	
1-Chloroocta		Analytes				%R 70-135	
1-Chloroocta o-Terphenyl		Analytes	[A]	[B]	[D]		
o-Terphenyl	ne	Analytes Sample: 581425-018 / SMP	[A] 96.3	[B] 99.6 49.8	[D] 97 96	70-135	
o-Terphenyl Lab Batch #	ne		[A] 96.3 47.9 Bate	[B] 99.6 49.8	[D] 97 96 : Soil	70-135 70-135	
o-Terphenyl Lab Batch #	ne #: 3046089 mg/kg TPH H	Sample: 581425-018 / SMP Date Analyzed: 04/08/18 06:20 By SW8015 Mod	[A] 96.3 47.9 Bate	[B] 99.6 49.8 h: 1 Matrix	[D] 97 96 : Soil ECOVERY S Recovery %R	70-135 70-135	Flag
	ne #: 3046089 mg/kg TPH H	Sample: 581425-018 / SMP Date Analyzed: 04/08/18 06:20	[A] 96.3 47.9 Batc SU Amount Found	[B] 99.6 49.8 h: 1 Matrix JRROGATE R True Amount	[D] 97 96 : Soil ECOVERY S Recovery	70-135 70-135 STUDY Control Limits	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

Units:	malka	Sample: 581425-019 / SMP	~-		FOOTER		
Units:	mg/kg	Date Analyzed: 04/08/18 06:46	SURROGATE RECOVERY STUDY				
	TPH E	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane	e		96.2	99.9	96	70-135	
o-Terphenyl			50.1	50.0	100	70-135	
Lab Batch #:	3046089	Sample: 581425-001 / SMP	Bato	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 23:05	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		Anarytes	108	99.7	108	70-135	
o-Terphenyl	-		64.6	49.9	108	70-135	
Lab Batch #:	3046089	Sample: 581425-002 / SMP	Bate			10-155	
Units:	mg/kg	Date Analyzed: 04/08/18 23:32	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes				[1]	[D]	/01	
1-Chlorooctane	2		96.6	99.7	97	70-135	
o-Terphenyl			50.4	49.9	101	70-135	
Lab Batch #:	3046089	Sample: 581425-003 / SMP	Bate	ch: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 23:58	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
Analytes			05.0	00.0		70.125	
1-Chlorooctane			95.0	99.9	95	70-135	
o-Terphenyl Lab Batch #:	3046223	Sample: 581425-006 / SMP	48.9 Bate	50.0 50.0 50.0	98	70-135	
Lab Daten #. Units:	mg/kg	Date Analyzed: 04/09/18 22:42		URROGATE R		STUDY	
BTEX by EPA 8021B			Amount	True		Control	F
		Analytes	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	Flag
1,4-Difluorobenzene			0.0298	0.0300	99	70-130	
4-Bromofluorobenzene			0.0311	0.0300	104	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

	r ders : 58142: #: 3046223	5, Sample: 581425-008 / SMP	Bate	Project ID h: 1 Matrix								
Units:	mg/kg	Date Analyzed: 04/09/18 23:01	SU	RROGATE R	ECOVERY	STUDY						
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			[D]							
1,4-Difluor	obenzene		0.0275	0.0300	92	70-130						
	orobenzene		0.0281	0.0300	94	70-130						
Lab Batch	#: 3046223	Sample: 581425-012 / SMP	Batc	h: 1 Matrix	: Soil							
Units:	mg/kg	Date Analyzed: 04/09/18 23:58	SU	RROGATE R	RECOVERY	STUDY						
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1,4-Difluor		Anarytes	0.0262	0.0200		70-130						
, 	orobenzene			0.0300	87							
	#: 3046223	Sample: 581425-014 / SMP	0.0328		109	70-130						
		-	AP Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY									
Units:	mg/kg	Date Analyzed: 04/10/18 00:17	SU	RROGATE R	ECOVERY	STUDY						
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			[D]							
1,4-Difluor	obenzene		0.0290	0.0300	97	70-130						
4-Bromoflu	orobenzene		0.0326	0.0300	109	70-130						
Lab Batch	#: 3046223	Sample: 581425-015 / SMP	Batc	h: 1 Matrix	: Soil							
Units:	mg/kg	Date Analyzed: 04/10/18 00:36	su	RROGATE R	ECOVERY	STUDY						
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.4-Difluor	ahanzana	Analytes	0.0207	0.0200		70.120						
,	orobenzene		0.0306	0.0300	102	70-130						
	#: 3046223	Sample: 581425-018 / SMP	0.0312 Batc	0.0300 h: 1 Matrix	104 r: Soil	70-130						
Units:	mg/kg	Date Analyzed: 04/10/18 00:56		RROGATE R		STUDY						
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			[D]							
1,4-Difluor		Analytes	0.0292	0.0300	[D] 97	70-130						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

Lab Batch	#: 3046223	Sample: 581425-019 / SMP	Batc	Project ID h: 1 Matrix			
U nits:	mg/kg	Date Analyzed: 04/10/18 01:15	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0293	0.0300	98	70-130	
4-Bromoflu	orobenzene		0.0283	0.0300	94	70-130	
Lab Batch	#: 3046232	Sample: 581425-011 / SMP	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/10/18 11:31	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor		Analytes	0.0300	0.0200		70-130	
4-Bromoflu				0.0300	100		
	#: 3046232	Sample: 581425-009 / SMP	0.0311 Batc	0.0300 h: 1 Matrix	104	70-130	
Lab Batch Units:		-					
Units:	mg/kg	Date Analyzed: 04/10/18 14:32	SU	RROGATE R	ECOVERYS	STUDY	
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluoro	obenzene		0.0259	0.0300	86	70-130	
4-Bromoflu	orobenzene		0.0317	0.0300	106	70-130	
Lab Batch	#: 3046073	Sample: 7642269-1-BLK / 1	BLK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/06/18 21:13	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor			0.0278	0.0300	93	70-130	
4-Bromoflu			0.0223	0.0300	74	70-130	
	#: 3046089	Sample: 7642265-1-BLK / 1					
Units:	mg/kg	Date Analyzed: 04/07/18 21:43		RROGATE R		STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes	r -1		[D]		
1-Chlorooct	ane		98.7	100	99	70-135	
o-Terpheny	1		50.4	50.0	101	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

Units:	mg/kg	Date Analyzed: 04/09/18 22:23	SI	RROGATE R	ECOVERY	STUDY	
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0265	0.0300	88	70-130	
4-Bromofluor	obenzene		0.0229	0.0300	76	70-130	
Lab Batch #:	3046232	Sample: 7642361-1-BLK / B	BLK Batc	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/10/18 10:06	SU	RROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobe		Analytes	0.0252	0.0200		70.120	
4-Bromofluoro			0.0252	0.0300	84	70-130 70-130	
Lab Batch #:		Sample: 7642269-1-BKS / E				/0-130	
Lab Daten #. Units:	mg/kg	Date Analyzed: 04/06/18 19:18					
onns.	mg/kg	Date Analyzed. 04/00/10 19:10	SU	RROGATE R	ECOVERYS	STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes		-	[D]		
1,4-Difluorobe	enzene		0.0285	0.0300	95	70-130	
4-Bromofluor			0.0260	0.0300	87	70-130	
Lab Batch #:		Sample: 7642265-1-BKS / E	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/07/18 22:12	SU	RROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctan		-	118	100	118	70-135	
o-Terphenyl			57.9	50.0	116	70-135	
Lab Batch #:	3046223	Sample: 7642314-1-BKS / E	SKS Batc	h: 1 Matrix	Solid	I I	
Units:	mg/kg	Date Analyzed: 04/09/18 20:30	SU	RROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobe	enzene		0.0308	0.0300	103	70-130	
4-Bromofluoro							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

Units:	mg/kg	Sample: 7642361-1-BKS / E Date Analyzed: 04/10/18 08:10	CT	RROGATE R	FCOVEDV	TUDV			
e must	<u>8</u> /		50	KKUGAIE K					
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluorol	oenzene		0.0305	0.0300	102	70-130			
4-Bromofluo	robenzene		0.0317	0.0300	106	70-130			
Lab Batch #	: 3046073	Sample: 7642269-1-BSD / E	BSD Bate	h: 1 Matrix	: Solid	11			
Units:	mg/kg	Date Analyzed: 04/06/18 19:37	SU	RROGATE R	ECOVERY S	STUDY			
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1.4 D'flage and		Analytes	0.0210	0.0200		70.120			
1,4-Difluorol 4-Bromofluo			0.0310	0.0300	103	70-130			
4-Bromonuo		Sample: 7642265-1-BSD / E	0.0285 3SD Batc	0.0300 h: 1 Matrix	95	70-130			
		-							
Units:	mg/kg	Date Analyzed: 04/07/18 22:37	SU	RROGATE R	ECOVERY S	STUDY			
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chloroocta	ne		120	100	120	70-135			
o-Terphenyl			59.0	50.0	118	70-135			
Lab Batch #	: 3046223	Sample: 7642314-1-BSD / E	BSD Bate	h: 1 Matrix	: Solid				
Units:	mg/kg	Date Analyzed: 04/09/18 20:49	SU	RROGATE R	ECOVERY S	STUDY			
		by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
4 4 5 1 7 1		Analytes							
1,4-Difluorol			0.0310	0.0300	103	70-130			
'	ropenzene		0.0304 BSD Bate	0.0300	101	70-130			
4-Bromofluo		Somples 7(102(1 1 DOD / T	NNU KATC	: 1 Matrix: Solid					
4-Bromofluo Lab Batch #	#: 3046232	Sample: 7642361-1-BSD / E							
4-Bromofluo Lab Batch #		Sample: 7642361-1-BSD / E Date Analyzed: 04/10/18 08:30		RROGATE R	ECOVERY S	STUDY			
4-Bromofluo Lab Batch #	#: 3046232 mg/kg BTEX	Date Analyzed: 04/10/18 08:30		RROGATE R True Amount [B]	Recovery %R	STUDY Control Limits %R	Flags		
'	#: 3046232 mg/kg BTEX	Date Analyzed: 04/10/18 08:30	SU Amount Found	True Amount	Recovery	Control Limits	Flags		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

Units:	#: 3046073	Sample: 581330-001 S / MS Date Analyzed: 04/06/18 19:57	~~		POOL POIL		
Units:	mg/kg	Date Analyzed: 04/06/18 19:57	SU	RROGATE R	ECOVERYS	STUDY	
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluoro	benzene		0.0302	0.0300	101	70-130	
4-Bromofluc			0.0272	0.0300	91	70-130	
Lab Batch	#: 3046089	Sample: 581425-003 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/08/18 00:26	SU	RROGATE R	ECOVERY S	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1-Chloroocta		Analytes	110	99.8	110	70-135	
o-Terphenyl			52.4	49.9	105	70-135	
1 5	#: 3046223	Sample: 581425-012 S / MS	Batc			10-155	
Units:	mg/kg	Date Analyzed: 04/09/18 21:06		RROGATE R		STUDY	
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes	נהן	[0]	[D]	701	
1,4-Difluoro	benzene		0.0301	0.0300	100	70-130	
4-Bromofluc	orobenzene		0.0373	0.0300	124	70-130	
Lab Batch	#: 3046232	Sample: 581763-004 S / MS	Batc	h: 1 Matrix	: Soil	<u> </u>	
Units:	mg/kg	Date Analyzed: 04/10/18 08:49	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1.4-Difluoro		Analytes	0.0205	0.0200		70-130	
4-Bromofluc			0.0305	0.0300	102		
4-DIOINOIIU		Sample: 581425-003 SD / M	0.0333 SD Bate	0.0300 h: 1 Matrix	111 •• Soil	70-130	
	II. JU+0007	-		RROGATE R		TUDV	
Lab Batch	mø/kø		કા	ARUGAIE K	LCOVERIS		
Lab Batch	mg/kg	Date Analyzed: 04/08/18 00:52		1	1		
Lab Batch	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
Lab Batch : Units: 1-Chloroocta	TPH F	-	Amount Found	Amount	•	Limits	Flag

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Grand Banks-ARU Well #14

MSD Bate				
SU	JRROGATE R	ECOVERY S	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
0.0261	0.0300	87	70-130	
0.0292	0.0300	97	70-130	
MSD Batc	h: 1 Matrix	: Soil		
SU	JRROGATE R	ECOVERY S	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
0.0270	0.0300	90	70-130	
0.0333	0.0300	111	70-130	
MSD Batc	h: 1 Matrix	: Soil	·	
SU	JRROGATE R	ECOVERY S	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
0.0323	0.0300	108	70-130	
<u> </u>				
	Amount Found [A] 0.0261 0.0292 MSD Batc SU Amount Found [A] 0.0270 0.0333 MSD Batc SU Amount Found [A]	MSD Batch: 1 Matrix SURROGATE R Amount True Found Image: Comparison of the second of the	SURROGATE RECOVERY SAmount Found [A]True Amount [B]Recovery %R [D]0.02610.0300870.02920.030097MSDBatch:1Matrix:SoilSURROGATE RECOVERY SAmount Found [A]True (B]Recovery %R [D]0.02700.0300900.03330.0300111MSDBatch:1Matrix:SoilSURROGATE RECOVERY SAmount [A]True (B]Recovery %R [D]0.02700.0300900.03330.0300111MSDBatch:1Matrix:SoilSURROGATE RECOVERY SAmount Found [A]True (B]Recovery %R [D]	MSDBatch:1Matrix:SoilSURROGATE RECOVERY STUDYAmount Found [A]True Amount [B]Recovery %R [D]Control Limits %R %R0.02610.03008770-1300.02920.03009770-130MSDBatch:1Matrix:SoilSURROGATE RECOVERY STUDYAmount

* Surrogate outside of Laboratory QC limits

- ** Surrogates outside limits; data and surrogates confirmed by reanalysis
- *** Poor recoveries due to dilution
- Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: Grand Banks-ARU Well #14

Work Order #: 581425							Proj	ect ID:	TBD		
Analyst: ALJ	D	ate Prepai	red: 04/06/202	18			Date A	nalyzed: (04/06/2018		
Lab Batch ID: 3046073 Sample: 7642269-1-	BKS	Bate	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00201	0.101	0.106	105	0.100	0.120	120	12	70-130	35	
Toluene	<0.00201	0.101	0.101	100	0.100	0.116	116	14	70-130	35	
Ethylbenzene	<0.00201	0.101	0.0994	98	0.100	0.113	113	13	70-130	35	
m,p-Xylenes	< 0.00402	0.201	0.206	102	0.200	0.233	117	12	70-130	35	
o-Xylene	<0.00201	0.101	0.103	102	0.100	0.118	118	14	70-130	35	
Analyst: ALJ	D	ate Prepai	ed: 04/09/20	18			Date A	nalyzed: (04/09/2018		
Lab Batch ID: 3046223 Sample: 7642314-1-	BKS	Batc	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.100	0.109	109	0.101	0.114	113	4	70-130	35	
Toluene	<0.00200	0.100	0.103	103	0.101	0.108	107	5	70-130	35	
Ethylbenzene	<0.00200	0.100	0.103	103	0.101	0.109	108	6	70-130	35	
m,p-Xylenes	<0.00401	0.200	0.211	106	0.201	0.226	112	7	70-130	35	
o-Xylene	<0.00200	0.100	0.107	107	0.101	0.113	112	5	70-130	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Grand Banks-ARU Well #14

Work Order #: 581425							Proj	ject ID:	TBD		
Analyst: ALJ	D	ate Prepar	red: 04/10/20	18			Date A	nalyzed:	04/10/2018		
Lab Batch ID: 3046232 Sample: 7642361-1	-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	<0.00198	0.0990	0.118	119	0.0994	0.116	117	2	70-130	35	
Toluene	< 0.00198	0.0990	0.115	116	0.0994	0.111	112	4	70-130	35	
Ethylbenzene	< 0.00198	0.0990	0.115	116	0.0994	0.112	113	3	70-130	35	
m,p-Xylenes	< 0.00396	0.198	0.240	121	0.199	0.230	116	4	70-130	35	
o-Xylene	< 0.00198	0.0990	0.119	120	0.0994	0.115	116	3	70-130	35	
Analyst: SCM	D	ate Prepar	red: 04/06/20	18			Date A	nalyzed: (04/06/2018		
Lab Batch ID: 3045932 Sample: 7642190-1	-BKS	Batcl	h #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<5.00	250	275	110	250	273	109	1	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Grand Banks-ARU Well #14

Work Order #: 581425							Proj	ject ID: ˈ	TBD		
Analyst: SCM	D	ate Prepar	ed: 04/06/201	18			Date A	nalyzed: (04/06/2018		
Lab Batch ID: 3046064 Sample: 7642209-1	-BKS	Batcl	n #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes											
Chloride	< 5.00	250	229	92	250	239	96	4	90-110	20	
						1					
Analyst: ARM	D	ate Prepar	ed: 04/07/201	18		I	Date A	nalyzed: (04/07/2018		ا
Analyst: ARM Lab Batch ID: 3046089 Sample: 7642265-1		-	ed: 04/07/201	18	4	1		nalyzed: (Matrix: S		ł	
		Batcl			BLANKS	SPIKE DUP		Matrix: S	Solid	DY	·
Lab Batch ID: 3046089 Sample: 7642265-1		Batcl	h #: 1		BLANK S Spike Added [E]	SPIKE DUP Blank Spike Duplicate Result [F]		Matrix: S	Solid	DY Control Limits %RPD	Flag
Lab Batch ID: 3046089 Sample: 7642265-1 Units: mg/kg TPH By SW8015 Mod	-BKS Blank Sample Result	Batcl BLAN Spike Added	n #: 1 K /BLANK S Blank Spike Result	SPIKE / 1 Blank Spike %R	Spike Added	Blank Spike Duplicate	LICATE Blk. Spk Dup. %R	Matrix: S RECOV	Solid ERY STUI Control Limits	Control Limits	Flag

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Grand Banks-ARU Well #14

Work Order #: 581425						Project II): TBD				
Lab Batch ID: 3046073	QC- Sample ID:	581330	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/06/2018	Date Prepared:	04/06/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	<0.00202	0.101	0.105	104	0.100	0.0954	95	10	70-130	35	
Toluene	<0.00202	0.101	0.0989	98	0.100	0.0923	92	7	70-130	35	
Ethylbenzene	<0.00202	0.101	0.0966	96	0.100	0.0893	89	8	70-130	35	
m,p-Xylenes	<0.00403	0.202	0.197	98	0.201	0.183	91	7	70-130	35	
o-Xylene	< 0.00202	0.101	0.0986	98	0.100	0.0897	90	9	70-130	35	
Lab Batch ID: 3046223	QC- Sample ID:	581425	-012 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/09/2018	Date Prepared:	04/09/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.0998	0.0833	83	0.100	0.0710	71	16	70-130	35	
Toluene	<0.00200	0.0998	0.0642	64	0.100	0.0559	56	14	70-130	35	X
Ethylbenzene	0.00420	0.0998	0.0571	53	0.100	0.0492	45	15	70-130	35	X
m,p-Xylenes	0.0221	0.200	0.107	42	0.200	0.0927	35	14	70-130	35	X
o-Xylene	0.00906	0.0998	0.0512	42	0.100	0.0447	36	14	70-130	35	X

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Grand Banks-ARU Well #14

Work Order # :	581425						Project II): TBD				
Lab Batch ID:	3046232	QC- Sample ID:	581763	-004 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/10/2018	Date Prepared:	04/10/2	018	An	alyst: A	ALJ					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
]	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	itesuite [1]	[G]		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Benzene		<0.00200	0.100	0.0887	89	0.101	0.107	106	19	70-130	35	
Toluene		<0.00200	0.100	0.0819	82	0.101	0.101	100	21	70-130	35	
Ethylbenzene		<0.00200	0.100	0.0764	76	0.101	0.100	99	27	70-130	35	
m,p-Xylenes		<0.00401	0.200	0.157	79	0.202	0.205	101	27	70-130	35	
o-Xylene		<0.00200	0.100	0.0787	79	0.101	0.103	102	27	70-130	35	
Lab Batch ID:	3045932	QC- Sample ID:	581273	-035 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2018	Date Prepared:	04/06/2	018	An	alyst: S	SCM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		7.10	247	252	99	247	253	100	0	90-110	20	
Lab Batch ID:	3045932	QC- Sample ID:	581425	-002 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2018	Date Prepared:	04/06/2	018	An	alyst: S	SCM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgar	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	result [r]	[G]				
Chloride		1		1					1	1	1	1

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Grand Banks-ARU Well #14

Work Order # :	581425						Project II): TBD				
Lab Batch ID:	3046064	QC- Sample ID:	581425	-011 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/06/2018	Date Prepared:	04/06/2	018	Ar	alyst: S	SCM					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[0]	[D]	[E]	incount [1]	[G]		/011		
Chloride		32.5	250	272	96	250	271	95	0	90-110	20	
Lab Batch ID:	3046064	QC- Sample ID:	581425	-021 S	Ba	tch #:	1 Matrix	k: Soil				•
Date Analyzed:	04/06/2018	Date Prepared:	04/06/2	018	Ar	alyst: S	SCM					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[C]	[D]	[E]	Kesun [F]	70K [G]	70	70K	70KF D	
Chloride		<5.00	250	242	97	250	240	96	1	90-110	20	
Lab Batch ID:	3046089	QC- Sample ID:	581425	-003 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	04/08/2018	Date Prepared:	04/07/2	018	Ar	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	e Hydrocarbons (GRO)	<15.0	998	978	98	998	984	99	1	70-135	20	
Diesel Range O	Organics (DRO)	57.0	998	1080	103	998	1080	103	0	70-135	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

AFLU Weil #14 Annu Weil #14 Carl Banks MALVISIS REQUE Teles colspan="2">Carl Conzoles AFLU Weil #14 Carl Conzoles Manon MALVISIS REQUE Carl Conzoles Manon Carl Conzoles Manon Carl Conzoles And Weil #14 MALVISIS REQUE Carl Conzoles Manon Carl Conzoles Romoleger samples II TPH exceeds Southings Southings Southings Carl Conzoles Southings Carl Conzoles Find conzoles Conzoles Southings Southings Southings Southings Southings Southings Concerts workeds So mylds, fun desper samples II TPH exceeds Southings Southings Southings Southings Concerts workeds So mylds, fun desper samples II TPH exceeds Southings Southings Southings Southings Concoc do So to Conc		Relinquished by:		Relinquished by:	Relinguished by:										(LAB USE)	LAB #		comments:		Receiving Laboratory:	Project Location: (county, state) Invoice to:	Project Name:	cilent Name:	
Circle HAVE Circle HAVE Circle HAVE Circle HAVE Circle OF Circle HAVE CIRCLE HA				8	3 Date:											SAMPLE IDENTIFICATION		Run deeper samples if benzene exceeds 10 mg/kg or tots 5,000 mg/kg		Tetra Tech			Grand Banks	Tetra Tech, Inc.
Image: Circle HANE Image: Ci	ORIGINAL COP	Received by:	Received by:	MOS ON	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	04/04/18	4/4/2018		YEAR:	SAMPLING	al BTEX exceeds 50 m	Sampler Signature:		Project #:		Site Manager:	
Image: Circle HANE Image:	×			5/18				_							WATER SOIL HCL HNO3			g/kg. Run deeper samples	Clair Gonzales		TBD		Ike Tavarez	4000 N, Big Spring Street, 401 Midland, Texas 797 Tel (432) 682-4559 Fax (432) 682-3946
C T CLP Volatiles	(Cir			0.	1	-	1 . X							-	FILTERED) (Y	RS /N)	PH exceeds						Ste 05
-0.2°C) IR ID:F	Tem CF:(×					×	<	×	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Semi Volatiles						e or	ANA		
	-0.2°C)	Rush Charges Authorized Special Report Limits or TR	RUSH: Same Day 24 hr	Sim	×	× >	× >	< >	× >	< >	< >	× >	×		GC/MS Vol GC/MS Ser PCB's 808 NORM PLM (Asber Chloride	mi. \ 2 / 6 stos	/ol. 827 608)	20C/625					YSIS REQUEST	

Image: Proper Name: Grand Banks Set Manager: Image: Proper Name Proper Name: AFU Well #14 Proper Name: Lea County, New Mexico Proper Name Image: Test Number Samples Test a Tech, Inc. Nampler Signature: Calif Conzales Round doubt Yenco Sampler Signature: Calif Conzales Image: ULAB # Test a Tech, Inc. Sampler Signature: Calif Conzales South and analysis Yenco Sampler Signature: Calif Conzales Comments: Test a Tech, Inc. Sampler Signature: Calif Conzales Comments: Nu deoper samples if benzene exceeds 10 mg/kg or total BTEX exceeds 50 mg/kg. Run deoper samples if TP South and analysis Sample IDENTIFICATION Sample IDENTIFICATION Matter Network In-6 Sample IDENTIFICATION Image: Regionality Run deoper samples if benzene exceeds 10 mg/kg or total BTEX exceeds 50 mg/kg. Run deoper samples if PE In-6 Sample IDENTIFICATION Image: Regionality Run deoper samples if PE In-6 Sample IDENTIFICATION Image: Regionality Run deoper samples if PE In-6 Sample IDENTIFICATION Image: Regionality Run deoper samples if PE In-6 Sample IDENTIFICATION Image: Regionality Run deoper samples if PE	Tetra Tech, Inc. and Banks New Mexico	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Outra Tech, Inc. and Banks Service Sources Clair Gonzales APU Well #14 Clair Gonzales Lea County, New Mexico Tela Tech, Inc. Tela Tech, Inc. Clair Gonzales Source exceeds 50 mg/kg. Fun deeper samples ITPH exceededs Source supplies if benzene exceeds 50 mg/kg. Fun deeper samples ITPH exceededs Source supplies if benzene exceeds 50 mg/kg. Fun deeper samples ITPH exceededs Source supplies if benzene exceeds 50 mg/kg. Fun deeper samples ITPH exceeded Source supplies if benzene exceeds 50 mg/kg. Fun deeper samples ITPH exceeded Source in the intervent of the intervent o	Market Banks Manuscription of the Manuscripticon of the Manuscription of the Manuscripticon of the Man	Tetra Tech, Inc. and suggest sets and	Tetra Tech, Inc. International and a state of the favore in
4000 N. Big Spring Street, Str 407 Midland Texas 79705 Far (432) 682-4359 Far (432) 682-4359 Run deeper samples if Run deeper samples if MATRIX PRESERVATI METHOD X C Ø X C Ø X C Ø X C Ø X C V X C V C V C V X C V	4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Fixel (432) 682:3946 IKe Tavarez Clair Gonzales Run deeper samples if TPH exceeds MATRIX PRESERVATIVE MATRIX PRESERVATIVE METHOD SSO L O SSO L	4000 N. Big Spring Street, Ste Ter (432) 682:3469 Fax (432) 682:346 Fax (432)	4000 N. Big Spring Street, Ste Tell (Addiand, Tease 78705) Far (423) 682-5946 Ike Tavarez Far (423) 682-5946 Clair Gonzales Run deeper samples if TPH exceeds Present/or allos Matrix Present/or allos Run deeper samples if TPH exceeds Present/or allos Matrix Present/or allos Allos A	400 N Big Street, Ster Street (Street Street Stree	dom Weig Steet, Ste Ter (KB) ober Steet, Ste Clair Gonzales ANALYSIS RED Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzal	endition street, set in degree samples if TPH exceeds Clair Gonzales Clair Colspan="2">Clair Gonzales Clair Clair Matala Ag As Ba Cd Cr Pb Se Hg ToLP Ma	and the light of seven is for the light of the light o
4000 N. Big Spring Street, Str 407 Midland Texas 79705 Far (432) 682-4359 Far (432) 682-4359 Run deeper samples if Run deeper samples if MATRIX PRESERVATI METHOD X C Ø X C Ø X C Ø X C Ø X C V X C V C V C V X C V	4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Fixel (432) 682:3946 IKe Tavarez Clair Gonzales Run deeper samples if TPH exceeds MATRIX PRESERVATIVE MATRIX PRESERVATIVE METHOD SSO L O SSO L	4000 N. Big Spring Street, Ste Ter (432) 682:3469 Fax (432) 682:346 Fax (432)	4000 N. Big Spring Street, Ste Tell (Addiand, Tease 78705) Far (423) 682-5946 Ike Tavarez Far (423) 682-5946 Clair Gonzales Run deeper samples if TPH exceeds Present/or allos Matrix Present/or allos Run deeper samples if TPH exceeds Present/or allos Matrix Present/or allos Allos A	400 N Big Street, Ster Street (Street Street Stree	dom Weig Steet, Ste Ter (KB) ober Steet, Ste Clair Gonzales ANALYSIS RED Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzales Clair Gonzal	endition street, set in degree samples if TPH exceeds Clair Gonzales Clair Colspan="2">Clair Gonzales Clair Clair Matala Ag As Ba Cd Cr Pb Se Hg ToLP Ma	endown Bigseine steuers TBD Clair Gonzales MARYSIS REDUEST Clair Gonzales Clair Gonzales Clair Gonzales MARYSIS REDUEST Clair Gonzales Clair Colspan="2">Convoltage and colspan="2">Clair Colspan="2">Clair Colspan="2">Clair Colspan="2">Clair Colspan="2">Clair Colspan="2">Clair Colspan="2">Clair Colspan="2">Clair Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspa
	O O Image: Sector Sec	Image: Containers Image: Contain	Image: Control of the second	Image: Construction of the second s	Image: Sample Temperature TH and	AMALYSIS RECUEST Image: Sample Temperature Image: Sample Temperature Image: Sample Temperature Image: Sample Temperature </td <td>ANALYSIS RECUEST Grade Grad</td>	ANALYSIS RECUEST Grade Grad
		FILTERED (Y/N)	Sample Temperature VX X X BTEX 8021B BTEX 8260B Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature Image: Completing temperature <td>Circle of the second se</td> <td>Circle of Sample Temperature FILTERED (Y/N) Image: Sample Temperature X X X X BTEX 8021B BTEX 8260B Image: Sample Temperature Image: Sample Temper</td> <td>Temp: Remarks: In ID:R-8</td> <td>FILTERED (Y/N) FILTERED (Y/N) ANALYSIS RECUEST Circle or Specify Method No.) Circle or Specify Method No.) ONLY Sample Temperature Temperature Temperature PAH 8270C TOtal Metals Ag As Ba Cd Cr Pb Se Hg TOLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Volatiles PAH 8270C TOLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Volatiles PCD S 8082 / 608 NORM PCB's 8082 / 608 NORM NORM Authorized PLM (Asbestos) X X X X X X X X X Chloride PLM (Asbestos) X X X X X X X X X X Chloride PLM (Asbestos) X X X X X X X X X X Chloride MIDTRE</td>	Circle of the second se	Circle of Sample Temperature FILTERED (Y/N) Image: Sample Temperature X X X X BTEX 8021B BTEX 8260B Image: Sample Temperature Image: Sample Temper	Temp: Remarks: In ID:R-8	FILTERED (Y/N) FILTERED (Y/N) ANALYSIS RECUEST Circle or Specify Method No.) Circle or Specify Method No.) ONLY Sample Temperature Temperature Temperature PAH 8270C TOtal Metals Ag As Ba Cd Cr Pb Se Hg TOLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Volatiles PAH 8270C TOLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles TCLP Volatiles PCD S 8082 / 608 NORM PCB's 8082 / 608 NORM NORM Authorized PLM (Asbestos) X X X X X X X X X Chloride PLM (Asbestos) X X X X X X X X X X Chloride PLM (Asbestos) X X X X X X X X X X Chloride MIDTRE

Tetra Tech, Inc. Investigation Tetra Tech, Inc. Investigation Team Grand Barles Team of the factor Team of the factor Team Grand Barles Team of the factor Team of the factor Team of the factor Team Carol Barles Team of the factor Team of the factor Team of the factor Team Team of the factor Team of the factor Team of the factor Team of the factor Team Team of the factor Team of the factor Team of the factor Team of the factor Team Team of the factor Team of the factor Team of the factor Team of the factor Team Team of the factor Team of the factor Team of the factor Team of the factor Team Team of the factor Team of the factor Team of the factor Team of the factor Team Team of the factor Team of the factor Team of the factor Team of the factor Team Team Team of the factor Team of the factor Team of the factor State Team Team of the factor Team of the factor Team of the factor State Team Team of the factor Team of the factor Team of the factor State Team Team </th
Image: Sample Temperature Image:
Image: Concept HANDE Image: Concept Hande <td< td=""></td<>
Image: Semple Temperature Image:
Image: Construction of the second state s
Chloride Sulfate TDS
Chloride Sulfate TDS
72 hr

XENCO Laboratories

ATORIES Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC						
Date/ Time Received: 04/05/2018 10:00:00 AM	Air and Metal samples Acceptable Range: Ambie						
Work Order #: 581425	Temperature Measuring device used : R8						
Sample Recei	pt Checklist Comments						
#1 *Temperature of cooler(s)?	8.6						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes						
#4 *Custody Seals intact on shipping container/ cooler?	N/A						
#5 Custody Seals intact on sample bottles?	N/A						
#6*Custody Seals Signed and dated?	N/A						
#7 *Chain of Custody present?	Yes						
#8 Any missing/extra samples?	Νο						
#9 Chain of Custody signed when relinquished/ received?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#11 Container label(s) legible and intact?	Yes						
#12 Samples in proper container/ bottle?	Yes						
#13 Samples properly preserved?	Yes						
#14 Sample container(s) intact?	Yes						
#15 Sufficient sample amount for indicated test(s)?	Yes						
#16 All samples received within hold time?	Yes						
#17 Subcontract of sample(s)?	N/A						
#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Biulta Tal Brianna Teel

Date: 04/05/2018

Checklist reviewed by: Jession Vramer

Jessica Kramer

Date: 04/05/2018