

Jason Michelson Project Manager Chevron Environmental Management Company 1400 Smith Street, #07084 Houston, Texas 77002 Work: 713-372-0289 Cell: 281-660-8564 jmichelson@chevron.com

APPROVED By Olivia Yu at 2:40 pm, Jul 25, 2018

NMOCD approves of the delineation completed thus far for 1RP-4239. The proposed additional monitoring well locations are approved pending concurrence of NMOCD Hydrologist.

May 21, 2018

Olivia Yu Environmental Specialist New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Chevron New Mexico East State NCT-1 007 2017 Site Assessment Report Case No. 1RP-4239 Lea County, New Mexico

Dear Ms. Yu,

Please find enclosed for your files copies of the following report:

 New Mexico East State NCT-1 007 – 2017 Site Assessment Report, Unit N, Section 1, Township 20 South, Range 36 East; Lea County New Mexico.

The report was prepared by GHD Services (GHD) on behalf of Chevron Environmental Management Company (CEMC) to document on-going assessment activities throughout 2017 at the Site.

Please do not hesitate to call Scott Foord with GHD at 713-734-3090 or myself at 713-372-0289, should you have any questions.

Sincerely,

Jan Mil

Jason Michelson

Encl. New Mexico East State NCT-1 007 - 2017 Site Assessment Report

C.C. Amy Barnhill, Chevron/MCBU

Site Assessment Report

New Mexico East State NCT-1007 (1RP-4239) Wellhead Release Lea County, New Mexico

Chevron Environmental Management Company

Table of Contents

1.	Introd	duction	1
2.	Back	ground	1
3.	Rem	ediation Standards	2
4.	Geop	hysical Survey – EM31 and ER	3
	4.1	EM31 Survey Methodology	3
	4.2	EM31 Survey Results	3
	4.3	ER Survey Methodology	4
	4.4	ER Survey Results	4
	4.5	Geophysical Survey Correlations/Conclusions	4
5.	Drillir	ng and Sampling	5
	5.1	Analytical Results	5
6.	Grou	ndwater Assessment	5
	6.1	Monitoring Well Installation	5
	6.2	Groundwater Sampling	6
	6.3	Groundwater Gradient	7
	6.4	Analytical Results	7
7.	Sumi	mary of Findings	7
8.	2018	Assessment Activities	8

Figure Index

Figure 1	Site Location Map
Figure 2	Site Aerial Map
Figure 3	Site Details and Soil Boring and Well Location Map
Figure 4	EM31 Geophysical Survey Map
Figure 5	Electrical Resistivity Survey Results
Figure 6	Soil Analytical Results Map
Figure 7	Potentiometric Surface Map – December 2017
Figure 8	Groundwater Analytical Results Map

Table Index

- Table 1Summary of Soil Analytical Results
- Table 2 Summary of Groundwater Elevations
- Table 3
 Summary of Groundwater Analytical Results

Appendix Index

- Appendix A Boring Logs and State Well Reports
- Appendix B Laboratory Analytical Reports
- Appendix C Waste Disposal Documentation
- Appendix D 2018 Work Plan

1. Introduction

On behalf of Chevron Environmental Management Company (CEMC), GHD Services Inc. (GHD) has prepared this Site Assessment Report summarizing soil boring and monitoring well installation and sampling activities conducted at the New Mexico East State NCT-1 007 site (hereafter referred to as the "Site"). The Site is located in Unit N, Section 1, Township 20 South, Range 36 East, approximately 3.2 miles southwest of Monument, in eastern Lea County, New Mexico (refer to Figure 1 and Figure 2). Geographic coordinates are 32° 35' 51.56" N latitude, 103° 18' 38.72" W longitude.

2. Background

On November 17, 2010, well NM E NCT-1 007 was in the process of being plugged and abandoned when unexpected wellhead pressure caused tubing in the well to damage the wellhead nipple connection resulting in a release of gas and well fluids around the well pad and tank battery location. The volume of fluids released was estimated at 5 to 10 barrels of an unknown fluid. Chevron submitted an initial Form C-141 to the New Mexico Oil Conservation Division (NMOCD) on November 18, 2010 which reported zero volume of fluids recovered. The wellhead and deadman anchors have been removed and surface casing cut off several feet below surface grade. GHD understands the surface land owner is the State of New Mexico.

Seven soil borings were installed to a depth of one foot on November 19, 2010 to investigate the release. Soil samples were collected at 0"- 6" and 6"- 12" intervals and analyzed for benzene, ethylbenzene, toluene, and xylenes (BTEX), total petroleum hydrocarbons (TPH), chlorides, semi-volatile organic compounds (SVOCs), and Resource Conservation and Recovery Act (RCRA) 8 metals. Concentrations above NMOCD Recommended Remediation Action Levels (RRALs) for chloride and TPH were reported.

In September 2015, Chevron contracted GHD to perform a soil assessment at the Site. GHD advanced eight shallow soil borings (SB-1 through SB-8) to depths ranging from approximately 0.5 feet to 4 feet below ground surface (bgs). The soil samples were analyzed for TPH gasoline range organics (GRO) and diesel range organics (DRO) and chlorides. Soil boring samples collected from the Site for laboratory analyses were reported at concentrations below the Site RRALs for TPH (1,000 milligrams per kilogram [mg/kg]). Soil boring samples SB-3, SB-4, SB-6, SB-7, and SB-8 collected for laboratory analyses were below the Site RRALs for chloride concentrations (250 mg/kg). Soil boring samples SB-1, SB-2, and SB-5 exceeded the Site RRAL for chloride concentrations at all sampled intervals within each boring (maximum depth of 4 feet bgs). Concentrations exceeding the RRAL for chlorides ranged from 508 mg/kg (SB-5 - 1') to 17,000 mg/kg (SB-2 - 0') at these locations.

In order to further define the vertical and horizontal extent of chloride impact, four deep soil borings (SB-9 through SB-12) were advanced in August 2016 and analyzed for chlorides. The four soil borings were located to the north, east and west of the facility, and advanced to total depths of 30 feet bgs (just above the water table). Chloride concentrations in SB-10 peak at 15 feet bgs (847

mg/kg) before declining to 506 mg/kg at 30 feet bgs. Chloride concentrations in the 2016 borings SB-9, SB-11, and SB-12 exceeded the RRAL in most intervals sampled down to the total depths of 30 feet bgs.

The analytical data obtained from the 2015 and 2016 soil assessment activities indicated that vertical and horizontal delineation of chloride impacts in soil was not achieved at the Site. Assessment activities were continued in 2017 and included the advancement of six additional soil borings (SB-13 through SB-18) to 30 feet bgs, and three monitoring wells (MW-1 through MW-3) were installed to assess potential groundwater impact. Soil borings and well locations are depicted on Figure 3. The findings of the 2017 soil and groundwater investigation are presented in this report.

3. Remediation Standards

Soil

Information available on the Petroleum Recovery Research Center (PRRC) Mapping Portal, current (GHD) managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation indicate:

- The depth to groundwater at the Site is less than 50-feet bgs.
- The nearest private domestic water source is greater than 200-feet from the release site.
- The nearest public/municipal water source is greater than 1,000-feet from the release site.
- The release site lies more than 1,000 horizontal feet from the nearest surface water body.

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site. The site-specific RRALs applied to this location by the NMOCD are 10 milligrams per kilogram (mg/kg) for benzene; 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX); 100 mg/kg for total petroleum hydrocarbons (TPH); and an NMOCD accepted 600 mg/kg for horizontal delineation and 250 mg/kg for vertical delineation of chlorides.

Groundwater

The guidance also requires remediation of groundwater to human health standards of the New Mexico Water Quality Control Commission (NMWQCC) established in New Mexico Administrative Code Section 20.6.2.3103. Standards for chloride and total dissolved solids (TDS) are listed below.

Analyte	NMWQCC Standard for Groundwater (mg/L)
Chloride	250
TDS	1,000

4. Geophysical Survey – EM31 and ER

In September 2017, GHD completed a two-phase geophysical investigation at the Site. The purpose of the investigation was to delineate areas of elevated conductivity in order to map the extent of suspected chloride impacts to soil at the Site. The first phase of the investigation consisted of an electromagnetic (EM) survey to delineate the footprint of the suspected impacts. Based on the EM survey results, an electrical resistivity (ER) survey was completed to determine the vertical distribution of the suspected impacts. Survey coverage data are presented on attached Figures 4 and 5.

The EM survey was completed with an EM31 terrain conductivity meter. Prior to conducting the EM31 survey, a grid consisting of parallel lines was established over the proposed area of investigation indicated on Figure 4. Measurements of EM31 data were collected along 30-foot spaced grid lines over the area of investigation, with station spacings of approximately 4 feet on all grid lines. The ER survey line location was chosen based on the EM31 survey results, and transected the EM31 conductivity anomaly. The configuration of the electrodes (also called an array) and the electrode spacings were optimized to achieve an approximate depth of investigation of approximately 70 feet bgs, and the electrode spacing on all grid lines was on the order of 6.6 feet (i.e. 2 meters).

4.1 EM31 Survey Methodology

The EM31 survey was completed to determine the horizontal extent or limits of chloride impacts in the shallow subsurface soils at the Site. The EM31 consists of transmitter and receiver coils located at opposite ends of a rigid boom. The coil separation for the EM31 is approximately 13 feet, which yields an approximate depth of penetration of 18 feet bgs in vertical dipole mode. Measurements of terrain conductivity from the EM31 were used to assess the extent of chloride impacts at the Site. The data for the EM31 survey were then processed as a colored contour plot. The plot was superimposed on an aerial image of the Site plan, and is used to locate elevated conductivity responses indicative of chloride-impacted areas relative to the Site features. Figure 4 depicts the EM31 survey results.

4.2 EM31 Survey Results

The colored contour conductivity plot presented on Figure 4 reveals that the highest intensity conductivity responses are colored red to purple, while areas of low response are colored blue. All remaining intermediate responses correspond to the color scale presented on the figure. Results from non-impacted areas within the survey coverage indicate that background conductivity responses were approximately 25 milliSiemens/meter (mS/m). Anomalous responses relative to background were generally 2 to 7 times higher, and ranged from approximately 50 to 175 mS/m. The EM31 survey results delineated one main area of suspected brine-impacted soils beginning on the northern section of the well pad, and continuing north/northwest off of the pad. A second smaller conductive zone was detected further south, directly north of the above ground storage tanks (ASTs) located along the southern boundary of the well pad.

4.3 ER Survey Methodology

The ER survey profile was completed in September 2017 to determine the vertical extent of chloride-impact in soil on one selected survey line located along the northern boundary of the well pad. This area exhibited the strong responses during the EM31 survey (see Figure 4). The ER survey was conducted with a dual-function resistivity meter, which operates simultaneously as a transmitter and receiver. The survey utilized two multi-electrode cables yielding a total spread of 72 electrodes. The receiver was programmed to automatically "switch" between measured quadripoles, yielding a pseudosection of apparent resistivity. The apparent resistivity data were then imported into an inversion software program, and processed to yield a modeled profile section of resistivity.

4.4 ER Survey Results

The electrical resistivity results for the survey line are presented on Figure 5. These results are based on the measured apparent resistivity values for various depths along the survey line. Calculations of measured apparent resistivity values include the type of ER array (Wenner), the electrode spacing, and raw field data (i.e., applied current and measured voltage for each data point).

The measured apparent resistivity data were processed with the inversion program RES2DINV to yield the modeled resistivity section presented on Figure 5. The modeled section represents the resistance of earth materials in the shallow subsurface, and thus provides an interpretation of the overburden sequences and areas of suspected brine impacts along the survey line. The highest resistivity values are colored dark blue, while areas of low resistivity (or conversely, high conductivity) are colored yellow to red. All remaining intermediate responses correspond to the color scale presented on the bottom of each section.

The colored plot reveals that the contour intervals ranged from 1.25 to 425 Ohm.meters (Ohm.m). The intermediate contour intervals were determined by applying a normalized distribution curve to the data such that the entire range of responses could be identified by discrete colors. The interpreted colored contoured plot suggests that suspected brine-impacted soils can be likely characterized by modeled responses of approximately 1.25 to 45 Ohm.m.

4.5 Geophysical Survey Correlations/Conclusions

- The geophysical investigation successfully delineated the horizontal extent of suspected brineimpacted areas in the shallow subsurface.
- The suspected brine impacts appear to correlate well with soil sample analytical results for chlorides from soil assessment activities.
- In general, the ER survey results indicate the zone of suspected brine impact affecting soils extends beyond 40 feet bgs (i.e., groundwater table results were subsequently confirmed with groundwater laboratory sample analysis).

5. Drilling and Sampling

In order to further define the vertical and horizontal extent of chloride impact, six soil borings (SB-13 through SB-18) and three monitoring wells (MW-1 through MW-3) were advanced using a hollow stem auger drill rig. Prior to mobilizing drilling equipment to the Site, the boring locations were marked and an initial New Mexico One Call utility locate ticket was submitted on November 9, 2017. GHD's contracted service provider, Envirotech Drilling Services, LLC (Envirotech) (a New Mexico-licensed water well driller) of Houston, Texas, and GHD mobilized to the Site to begin drilling activities on November 13, 2017. Each boring location was cleared for underground utilities with the use of a hand probe and advancement of a hand auger to 1 foot depth, followed by a hydroexcavator to a depth of 4.0 feet bgs. Soil borings SB-13 through SB-18 were advanced to 30 feet bgs, just above the first groundwater bearing unit. Monitor wells MW-1 through MW-3 were advanced to depths ranging from 40-45 feet bgs. Site details and boring locations are shown on Figure 3. During drilling, a GHD geologist observed soil cuttings at 5-foot intervals and recorded subsurface lithology on boring logs.

The soil types observed during drilling of SB-13 through SB-18 and MW-1 through MW-3 consisted primarily of very fine grained, silty sands. The soils were logged in accordance with the Unified Soil Classification System, and soil boring logs are provided in Appendix A.

Soil samples were collected from each boring at 5-foot intervals beginning at the surface, were screened with a photoionization detector (PID), and then placed into laboratory-supplied jars and stored in a cooler with ice. The soil samples were sent to Xenco Laboratories (Xenco) in Midland, Texas for analysis of chlorides by EPA Method 300. Soil samples were additionally field screened for chlorides. The chloride screening was accomplished in the field by mixing soil samples with distilled water, then testing the rinsate using Hach chloride test strips.

5.1 Analytical Results

Soil analytical results are summarized in Table 1 and the distribution of analytical results is presented in map view on Figure 5. Chloride concentrations in all 2017 soil borings (SB-13 through SB-18 and MW-1 through MW-3) exceeded the RRAL in most intervals sampled down to the total depths (30-40 feet bgs). Chloride concentrations in recent samples range up to 9,280 mg/kg (SB-16, 15').

The laboratory analytical report is provided in Appendix B.

6. Groundwater Assessment

Chloride impact to groundwater was not previously evaluated. As such, three monitoring wells were installed during recent assessment activities.

6.1 Monitoring Well Installation

Monitoring wells MW-1, MW-2, and MW-3 were installed on November 15 and 16, 2017 along the northern and western boundaries of the well pad. The monitoring wells were installed concurrently

with the soil investigation detailed in Section 4.0. A hollow stem auger drilling rig operated by Envirotech, advanced MW-1 and MW-3 to total depths of 40 feet bgs, and MW-2 was advanced to 45 feet bgs. During drilling, a GHD geologist logged the soils in accordance with the Unified Soil Classification System; boring logs, well construction diagrams, and the State Well Reports are provided in Appendix A. Chloride/PID field screening, and soil sample collection and analysis were performed as detailed previously during monitoring well drilling activities. Groundwater was encountered during drilling at depths ranging from 33 to 38 feet bgs.

The groundwater monitoring wells were installed with 15 feet of 2.0-inch diameter, 0.010-inch slotted, polyvinyl chloride (PVC) screen. A graded sand filter-pack was placed around the screen and extending 2-feet above the top of the screen interval. A two foot bentonite seal was placed above the sand pack. After hydration of the bentonite seal with potable water, the remainder of the well bore annulus was filled with Portland cement/bentonite grout. The well was completed at the surface with a stick-up protective casing set in an approximate 2 feet by 2 feet concrete pad.

The wells were developed by removal of water to clear the well casing and annulus of sediment. Turbid water was removed from each monitoring well with 2-inch diameter bailers. After bailing, well development was completed with a submersible pump. Approximately 20 gallons of water were removed during well development activities.

Soil cuttings, drilling fluids, and well development water were contained in a lined mudbox. The drill cuttings/fluids and development water were transported as non-hazardous, exploration and production (E&P) exempt waste to Sundance Services, Inc., near Eunice New Mexico. Waste management documentation is provided in Appendix C.

6.2 Groundwater Sampling

Groundwater gauging was conducted on December 13, 2017, and the vertical conductivity profile was assessed through the water column prior to sampling activities. Water levels were measured to the nearest hundredth of a foot and conductivity was measured at 2-foot intervals within the water column of the monitoring wells. After setting the pump at the depth of the highest conductivity reading in each well, the wells were purged and sampled using low-flow methodology. Temperature, conductivity, and pH were monitored during purging with a YSI 556 MP meter, and groundwater samples were collected after the parameters were stabilized. A peristaltic pump with new downhole polyethylene tubing was used at each well to minimize the potential for cross contamination between wells. Field equipment was decontaminated with an Alconox[™] wash and distilled water rinse before beginning field activities and between wells.

All groundwater samples were labeled, recorded on a chain-of-custody form, and placed on ice in a cooler to maintain a temperature of 40°F (4°C) or lower. The groundwater samples were delivered to Xenco in Midland, Texas, for analysis of dissolved chloride according to method EPA 300 and for TDS by method SM 2540C. Proper chain of custody documentation was maintained throughout sampling and analytical processes.

6.3 Groundwater Gradient

Groundwater level measurements collected during 2017 are summarized in Table 1. The potentiometric surface map for the December 2017 monitoring event is presented in map view on Figure 7.

Groundwater elevations during the December event ranged from 3531.89 feet above mean sea level (ft msl) in MW-1 to 3531.65 ft msl in MW-3, a difference of 0.24 feet across the Site with an average gradient of 0.0015ft/ft toward the southeast.

6.4 Analytical Results

Analytical results are summarized in Table 3 and the distribution of analytical results is presented in map view on Figure 7. Exceedances of NMWQCC standards for chlorides (250 milligrams per liter (mg/L)) and TDS (1,000 mg/L) were reported in all three monitor wells. Chloride concentrations ranged from 10,900 mg/L to 11,400 mg/L. TDS concentrations ranged from 12,000 mg/L to 18,600 mg/L.

The laboratory analytical report is provided in Appendix B.

7. Summary of Findings

Findings of soil delineation and groundwater monitoring activities conducted at the Site in 2017 are summarized below.

- Chloride concentrations exceeding the RRAL were reported for soil samples collected in all borings and monitoring wells installed in 2017 (SB-13 through SB-18 and MW-1 through MW-3). Concentrations ranged from non-detect in the shallow samples (0-1 feet bgs) to 9,280 mg/kg in SB-16, at 15 feet bgs.
- Chlorides exceeded the RRAL in all samples collected from the soil borings at total depths (30 feet bgs).
- Monitoring wells MW-1, MW-2, and MW-3 were installed in November 2017 to further assess soil investigation results from activities conducted in 2015 and 2016.
- A groundwater monitoring event was conducted in December 2017. Groundwater elevations during the December event ranged from 3531.89 ft msl in MW-1 to 3531.65 ft msl in MW-3 with a gradient toward the southeast.
- Chloride and TDS concentrations exceeded NMWQCC standards in all three monitoring wells.

The analytical data obtained from the assessment and delineation activities performed in 2017 indicates that the vertical and horizontal extent of chloride impacts in soil and groundwater are not delineated. The horizontal extent of chloride impact is not yet defined to the north, east and west of the Site. Chloride exceeds the RRAL in all soil borings at total depth (30 feet bgs) installed in 2017, and exceeds the NMWQCC standards in the groundwater samples collected from MW-1 through MW-3. As such, additional horizontal and vertical delineation of chloride impacts is warranted at the Site.

8. 2018 Assessment Activities

On February 13, 2018, GHD and Chevron representatives met with NMOCD and New Mexico State Land Office (NMSLO) to discuss further assessment activities addressing the presence of elevated chloride and TDS concentrations at the Site. Recommended additional assessment activities for 2018 are detailed in the 2018 Work Plan attached as Appendix D.

Submitted by: GHD

N

Scott Foord Project Manager

, U. Pali

Raaj Patel Program Manager

Figures

CAD File: I:\CAD\Files\08----\089861-CEMC-New Mexico E State\089861-00\089861-00(003)\089861-00(003)GN-DL001.dwg

250 500ft Coordinate System: NAD 1983 StatePlane-New Mexico East (US Feet)

LEA COUNTY, NEW MEXICO NEW MEXICO E STATE NCT-1 007 Feb 6, 2018

SITE AERIAL MAP

CAD File: I:\CAD\Files\08----\089861-CEMC-New Mexico E State\089861-00\089861-00(003)\089861-00(003)GN-DL001.dwg

CEMC LEA COUNTY, NEW MEXICO NEW MEXICO E STATE NCT-1 007 SITE DETAILS AND SOIL BORING AND WELL LOCATION MAP

CAD File: I:\CAD\Files\089---\089861-CEMC-New Mexico E State\089861-00\089861-00(003)\089861-00(003)\089861-00(003)

089861-00 Apr 26, 2018

EM31 GEOPHYSICAL SURVEY MAP

CAD File: P:\drawings\89000s\89861\89861-PRES\89861-2017(PRES001)\89861-2017(PRES001)GN\89861-2017(PRES001)GN-WA003.dwg

NM E STATE - LINE 1 INVERSE MODEL RESISTIVITY SECTION

CEMC LEA COUNTY, NEW MEXICO NEW MEXICO E STATE NCT-1 007 **GEOPHYSICAL INVESTIGATION** ELECTRICAL RESISTIVITY SURVEY RESULTS

CAD File: P:\drawings\89000s\89861\89861-PRES\89861-2017(PRES001)\89861-2017(PRES001)GN\89861-2017(PRES001)GN-WA004.dwg

FIGURE 5

89861-2017.2 Apr 12, 2018

CEMC LEA COUNTY, NEW MEXICO NEW MEXICO E STATE NCT-1 007

SOIL ANALYTICAL RESULTS MAP

CAD File: I:\CAD\Files\08----\089861-CEMC-New Mexico E State\089861-00\089861-00(003)\089861-00(003)GN-DL001.dwg

100 M	
and the start	A state of the second state
5' 30'	and the second second second
18 <u>629</u>	
44/44/47	and the BELL - Patient and an inter a
11/14/17 15' 20' 25'	30'
873 324 433	719
and repaired in a	the second second
Car Heller and the	A CALL STATE
A STATISTICS AND THE REAL PROPERTY OF	AND AND A CARD
" A " U. B. S.	
08/24/16	Contraction Contraction
5' 20' 25' 30' 47 276 381 506	The second by and
NAME OF GROOM STOCK	and the set of a state of the
Participation in some	the way that we are a second
4'	A REAL PROPERTY AND A REAL PROPERTY.
<10.3	Land Real Contract
1,330	The share a said and
1/15/17	「たい」の「大田」」
10' 15' 30' 659 677 1,940	and the second of the
STATE STATES	A CARLES AND
09/17/15	
<pre></pre>	SALE SALE OF ASSALES
140 14.6 12.6	ALC A CONTRACTOR OF A CONTRACTOR
LAN STREET	The second second to be the second se
25 Mar Berner	NY TRACE ROOM TO PARTY
LANGE DU ALCO	
E 22 1 43.67	and the state of the second second
15. 5 4 5 3 6	and a second a second as
14-22 A 13-24	
the second	
A CANADA AND	and a state of the state of the
MALY SE & S	A REAL PROPERTY OF THE REAL PR
The sea of the said	
Contraction and the second	A REAL PROPERTY AND A REAL
S. S. E. C. M. L. M.	And the Born of David
A CONTRACTOR OF THE REAL	
ALCO DECEMBER	CASE & SALE & CASE OF
ALTERNA TO ALLER	
A COLOR DO TO THE	LEGEND
	Soil Boring Location - 2015 and 2016
10100 1 200 100	Soil Boring Location - 2017
A STATE OF THE STA	 Monitoring Well Location New Mexico E State NCT-1 007 Well Marker
a serie addition of a	 Approximate Site Boundary
and the state of the	Depth Depth of Sample (ft)
STATE STATE	TPH Total Petroleum Hydrocarbons Concentration (mg/kg)
CO.C. STREET	DRO TPH as Diesel Range Organics
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO TPH as Gasoline Range Organics
The second and the	ND Indicates Non Detect
Charles Martin Charles	CONTRACTOR DESCRIPTION OF THE OWNER

Šæe£Š[}*kÁrHGĚLJÏÏCÌ»Á⊅[¦c@ÄAFCIÈLFCIÌÌ»ÁY^∙c

089861-00 Apr 26, 2018

CEMC LEA COUNTY, NEW MEXICO NEW MEXICO E STATE NCT-1 007

POTENTIOMETRIC SURFACE MAP - DECEMBER 2017

CAD File: I:\CAD\Files\08----\089861-CEMC-New Mexico E State\089861-00\089861-00(003)\089861-00(003)GN-DL001.dwg

089861-00 Mar 27, 2018

089861-00 Mar 28, 2018

Tables

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY NEW MEXICO EAST STATE NCT-1 007 LEA COUNTY, NEW MEXICO

Dro Bro GRO+ BRO GRO+ BRO WMOCD Recurrended Remediation Action Lavels 100 250 SB-1 0 9/17/15 <10.1 <10.1 <10.1 111700 SB-2 0 9/17/15 <10.1 <10.1 <10.1 210.2 210.2 210.1 <th>0</th> <th>Denth</th> <th></th> <th>TPH</th> <th>Chlorides</th>	0	Denth		TPH	Chlorides		
Image is a set of the			Date	DRO	GRO	GRO+DRO	Chiorides
Action Levels 100 250SB-109/17/15<10.6<10.1<10.1<10.111300SB-209/17/15<10.1<10.1<10.1<10.111700229/17/15<10.9<10.9<10.9<10.9292029/17/15<10.8<10.8<10.8<10.81170039/17/15<10.3<10.3<10.3<10.3117039/17/15<10.3<10.3<10.3<10.3117039/17/15<10.3<10.3<10.3<10.3117029/17/15<10.3<10.3<10.3<10.314039/17/15<10.3<10.3<10.314039/17/15<10.1<10.1<10.112.629/17/15<10.2<10.2<10.222.29/17/15<10.6<10.6<10.6<10.639/17/15<10.6<10.6<10.6<10.629/17/15<10.6<10.6<10.6<10.639/17/15<10.6<10.6<10.6<10.6<10.629/17/15<10.1<10.1<10.1<10.1<10.199/17/15<10.6<10.6<10.6<10.6<10.619/17/15<10.1<10.1<10.1<10.1<10.129/17/15<10.1<10.1<10.1<10.1<10.12 <td< th=""><th></th><th>(,</th><th></th><th>mg/kg</th><th>mg/kg</th><th>mg/kg</th><th>mg/kg</th></td<>		(,		mg/kg	mg/kg	mg/kg	mg/kg
SB-1 0 9/17/15 <10.1	NMOCD Reco	mmended R	emediation				
0.5 9/17/15 <10.6	A	ction Levels				100	250
SB-2 0 9/17/15 <10.1	SB-1	0	9/17/15	<10.1	<10.1	<10.1	11300
1 9'17/15 <10.7		0.5	9/17/15	<10.6	<10.6	<10.6	11700
1 9'17/15 <10.7							
2 9/17/15 <10.9	SB-2						
3 9/17/15 <10.8							
4 9/17/15 <10.3							
SB-309/17/15<10.3							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3/11/10	\$10.0	\$10.0	10.0	1000
2 9/17/15 <10.3	SB-3	0	9/17/15	<10.3	<10.3	<10.3	11.7
3 9/17/15 <10.0		1	9/17/15	<10.2	<10.2	<10.2	137
4 9/17/15 <10.1		2	9/17/15	<10.3	<10.3	<10.3	140
SB-4 0 9/17/15 <10.2		3	9/17/15				
1 9/17/15 <10.4		4	9/17/15	<10.1	<10.1	<10.1	12.6
1 9/17/15 <10.4			0/1=/:-	40.0	40.0		00.0
2 9/17/15 <10.6	SB-4			-			
3 4 9/17/15 9/17/15 <10.6 <10.6							
4 9/17/15 <10.6							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3/11/10	\$10.0	\$10.0	10.0	4.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SB-5	0	9/17/15	<10.1	<10.1	<10.1	569
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	9/17/15	<10.1	<10.1	<10.1	508
4 9/17/15 <10.2		2	9/17/15	<10.1	<10.1	<10.1	600
SB-6 0 9/17/15 <9.88		3	9/17/15	<10.1	<10.1	<10.1	581
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	9/17/15	<10.2	<10.2	<10.2	598
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0/47/45	0.00	0.00	0.00	01.0
2 9/17/15 <10.0	SB-6						
3 9/17/15 <9.95							
4 9/17/15 <10.0							
SB-7 0 9/17/15 <9.91							
1 9/17/15 <9.99							
2 9/17/15 <9.99	SB-7	0	9/17/15	<9.91	<9.91	<9.91	1.79
3 9/17/15 <10.0		1		<9.99	<9.99	<9.99	23.2
4 9/17/15 <9.96							
SB-8 0 9/17/15 <9.96							
1 9/17/15 <10.1		4	9/17/15	<9.96	<9.96	<9.96	8.73
1 9/17/15 <10.1	SB-8	0	9/17/15	<9.96	<9.96	<9.96	2.23
2 9/17/15 <10.2	02.0						
3 9/17/15 <10.3							
4 9/17/15 <11.2							
10 8/24/16 NT NT NT 615			9/17/15	<11.2	<11.2	<11.2	83.3
10 8/24/16 NT NT NT 615							
	SB-9						
15 8/24/16 NT NT NT <mark>854</mark> 20 8/24/16 NT NT NT 174							
20 8/24/16 NT NT NT 174 25 8/24/16 NT NT NT 597							
30 8/24/16 NT NT NT 888							
			5,27,10				

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY NEW MEXICO EAST STATE NCT-1 007 LEA COUNTY, NEW MEXICO

			TPH			
Sample ID	Depth (feet)	Date	DRO	DRO GRO GRO+DRO		Chlorides
	(leet)		mg/kg	mg/kg	mg/kg	mg/kg
NMOCD Reco	mmended R	emediation				
	ction Levels				100	250
SB-10	5	8/24/16	NT	NT	NT	22.9
	10	8/24/16	NT	NT	NT	507
	15	8/24/16	NT	NT	NT	847
	20	8/24/16	NT	NT	NT	276
	25	8/24/16	NT	NT	NT	381
	30	8/24/16	NT	NT	NT	506
SB-11	5	8/24/16	NT	NT	NT	340
	10	8/24/16	NT	NT	NT	929
	15	8/24/16	NT	NT	NT	17
	20	8/24/16	NT	NT	NT	1770
	25	8/24/16	NT	NT	NT	<10
	30	8/24/16	NT	NT	NT	858
SB-12	5	8/24/16	NT	NT	NT	118
_ · · -	10	8/24/16	NT	NT	NT	1680
	15	8/24/16	NT	NT	NT	3770
	20	8/24/16	NT	NT	NT	2710
	25	8/24/16	NT	NT	NT	263
	30	8/24/16	NT	NT	NT	337
		0,2 1,10				
SB-13	0-1	11/13/17	NT	NT	NT	<4.92
	10	11/13/17	NT	NT	NT	331
	15	11/13/17	NT	NT	NT	728
	20	11/13/17	NT	NT	NT	739
	25	11/13/17	NT	NT	NT	963
	30	11/13/17	NT	NT	NT	1950
SB-14	0-1	11/13/17	NT	NT	NT	<5.00
	5	11/13/17	NT	NT	NT	339
	10	11/13/17	NT	NT	NT	688
	15	11/13/17	NT	NT	NT	1330
	20	11/13/17	NT	NT	NT	935
	25	11/13/17	NT	NT	NT	432
	30	11/13/17	NT	NT	NT	705
SB-15	0-1	11/14/17	NT	NT	NT	<4.99
00-13	5	11/14/17	NT	NT	NT	<4.99 163
	10	11/14/17	NT	NT	NT	51.9
	10	11/14/17	NT	NT	NT	966
	20	11/14/17	NT	NT	NT	900 947
	20 25	11/14/17	NT	NT	NT	642
	30	11/14/17	NT	NT	NT	629
						020
SB-16	0-1	11/14/17	NT	NT	NT	<4.99
	5	11/14/17	NT	NT	NT	482
	10	11/14/17	NT	NT	NT	996
	15	11/14/17	NT	NT	NT	9280
	20	11/14/17	NT	NT	NT	2090
	25	11/14/17	NT	NT	NT	518
	30	11/14/17	NT	NT	NT	629

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY NEW MEXICO EAST STATE NCT-1 007 LEA COUNTY, NEW MEXICO

0 - mm la	Denth		TPH	I (SW 8015 N	lodified)	Chlorides
Sample ID	Depth (feet)	Date	DRO	DRO GRO GRO+DRO		Chiondes
10	(1001)		mg/kg	mg/kg	mg/kg	mg/kg
NMOCD Recommended Remediation			-			
A	Action Levels				100	250
SB-17	0-1	11/14/17	NT	NT	NT	<4.98
	5	11/14/17	NT	NT	NT	5.19
	10	11/14/17	NT	NT	NT	73.3
	15	11/14/17	NT	NT	NT	873
	20	11/14/17	NT	NT	NT	324
	25	11/14/17	NT	NT	NT	433
	30	11/14/17	NT	NT	NT	719
SB-18	0-1	11/15/17	NT	NT	NT	331
	5	11/15/17	NT	NT	NT	552
	10	11/15/17	NT	NT	NT	659
	15	11/15/17	NT	NT	NT	677
	30	11/15/17	NT	NT	NT	1940
MW-1	0-1	11/15/17	NT	NT	NT	<5.00
	5	11/15/17	NT	NT	NT	216
	10	11/15/17	NT	NT	NT	2880
	15	11/15/17	NT	NT	NT	1070
	20	11/15/17	NT	NT	NT	577
	25	11/15/17	NT	NT	NT	469
	30	11/15/17	NT	NT	NT	794
MW-2	0-1	11/15/17	NT	NT	NT	106
	5	11/15/17	NT	NT	NT	2120
	10	11/15/17	NT	NT	NT	1680
	15	11/15/17	NT	NT	NT	1990
	20	11/15/17	NT	NT	NT	1180
	25	11/15/17	NT	NT	NT	476
	30	11/15/17	NT	NT	NT	472
	35	11/15/17	NT	NT	NT	975
	40	11/15/17	NT	NT	NT	1040
MW-3	0-1	11/16/17	NT	NT	NT	<4.99
	5	11/16/17	NT	NT	NT	208
	10	11/16/17	NT	NT	NT	285
	15	11/16/17	NT	NT	NT	948
	20	11/16/17	NT	NT	NT	693
	25	11/16/17	NT	NT	NT	861
	30	11/16/17	NT	NT	NT	881

Notes:

- Chloride analyses by Method EPA 300
- TPH analysis by Method SW 8015B Modified
- bgs below ground surface
- Bold numbers indicate detected concentrations.
- '<' indicates below laboratory Reporting Limit (RL)
- 'NT' indicated constituent was not tested.
- 'SB' indicates soil boring.
- Highlighted cells indicate exceedance of NMOCD RRALs

TABLE 2 SUMMARY OF GROUNDWATER ELEVATIONS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY NEW MEXICO EAST STATE NCT-1 007 LEA COUNTY, NEW MEXICO

Well ID	Collection Date	Casing Elevation (ft)	Depth to Groundwater (ft TOC)	Groundwater Elevation (ft)	Total Depth (ft TOC)	Casing Diameter (in)	Well Screen Interval (ft bgs)
MW-1	12/13/17	3569.59	37.70	3531.89	43.18	2	25-40
MW-2	12/13/17	3569.16	37.28	3531.88	48.24	2	30-45
MW-3	12/13/17	3568.39	36.74	3531.65	43.42	2	25-40

Notes:

TOC - Top of Casing.

bgs - below ground surface.

TABLE 3

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY NEW MEXICO EAST STATE NCT-1 007 LEA COUNTY, NEW MEXICO

Well ID	Date	Chloride	Total Dissolved Solids
NMWQCC St	andards	250	1,000
		mg/L	mg/L
MW-1	12/13/17	10,900	16,900
MW-1 Duplicate	12/13/17	11,400	16,500
MW-2	12/13/17	11,300	12,000
MW-3	12/13/17	11,100	18,600

NOTES:

NMWQCC - New Mexico Water Quality Control Commission

'mg/L' indicates milligrams per liter

Yellow-shaded cells indicate that concentration exceeds NMWQCC standard.

- BTEX analysis by EPA Method 8021B.

- Chlorides analyzed by EPA Method 300.1

Appendices

Appendix A Boring Logs and State Well Reports

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

DRILLING COMPANY: Envirotech

HOLE DESIGNATION: MW-1 DATE COMPLETED: 15 November 2017 DRILLING METHOD: Hollow Stem FIELD PERSONNEL: Tom Kalinowski

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	WELL CONSTRUCTION			SAMF	PLE	
ft BGS		ft BGS		DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)
							д	CH CH
	SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, dry	4.00		0-1		1.0		0.6
5 	SILTY SAND (SM); tan, olive, fine grained, moist	1.00		4-5	\times	1.0		2.8
10	- olive, orange, fine grained, moist - tan, dry		Grout Riser - 2	9-10	\times	1.0		5.4
15	SAND (SP), tan, orange, dry	15.00	diameter PVC	14-15	\times	1.0		5.6
20	- orange, dry			19-20	\times	1.0		1.8
	- tan, moist		Bentonite Chip	24-25	\sim	1.0		2.4
-								
- 30	- tan, saturated at 33 feet bgs, caliche cobbles, no samples taken		↓ ↓ Sand Pack - ↓ ↓ ↓ ↓ ↓ ↓	29-30	\times	1.0		4
35	- brown, tan, with caliche cobbles		Screen - 2 diameter PVC, 0.01					
40	END OF BOREHOLE @ 40.0ft BGS	40.00	WELL DETAILS					
45 			Screened interval: 40.00 to 25.00ft BGS Length: -15ft					
50			Diameter: 0in Slot Size: PVC Material: 23					
55			Seal: 23.00ft BGS Sand Pack:					
60			40.00ft BGS Material: 23					
65			BOREHOLE DIAMETER 2					
E								
°[− 75 - -								
80 80 80 80 80 80 80 80 80 80								
5 								
£90								
	NOTES: Stratigraphy descriptions are based on split spoon sam	iples.	1	<u> </u>				
	WATER FOUND ♀ LABORATORY ANALYSIS							
	\smile							

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

DRILLING COMPANY: Envirotech

HOLE DESIGNATION: MW-2 DATE COMPLETED: 15 November 2017 DRILLING METHOD: Hollow Stem FIELD PERSONNEL: Tom Kalinowski

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	WELL CONSTRUCTION			SAMF	PLE	
ft BGS		ft BGS	WELL CONSTRUCTION	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)
-	SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, trace caliche, dry			0.1	×	1.0	-	0.8
5	SILTY SAND (SM); brown, orange gray, fine grained, dry - brown, dry	- 4.00		4-5	\times	1.0		6
10	- tan, white, dry		Grout	9-10	\times	1.0		5.2
- 15	- tan, orange, dry		Riser - 2 diameter PVC	14-15	\times	1 .0		7.8
20	- brown, dry			19-20	\times	1.0		4.6
25	- brown, orange, trace caliche, moist		Bentonite	24-25	\times	1.0		3.4
- 30	- brown, light gray, trace caliche, saturated at 33 feet bgs		222 222 Chip	29-30	\times	1.0		4.4
- 35	- brown, tan, with trace caliche		Sand Pack -	34-35	\times	1.0		5.2
40	- tan, orange, gray		Screen - 2 diameter PVC, 0.01 slotted	39-40	\times	1.0		6
- 45 -	END OF BOREHOLE @ 45.0ft BGS	45.00	WELL DETAILS Screened interval:					
50 			45.00 to 30.00ft BGS Length: -15ft Diameter: 0in					
55			Slot Size: PVC Material: 28 Seal:					
60			28.00ft BGS Sand Pack: 45.00ft BGS					
65			Material: 28					
- 70			BOREHOLE DIAMETER 2					
° - 75								
80								
85 90 90 95 95 95 95 95 95 95 95 95 95								
90								
95 91 92								
	NOTES: Stratigraphy descriptions are based on split spoon san WATER FOUND ♀	nples.	1					

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

DRILLING COMPANY: Envirotech

HOLE DESIGNATION: MW-3 DATE COMPLETED: 16 November 2017 DRILLING METHOD: Hollow Stem FIELD PERSONNEL: Tom Kalinowski

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	WELL CONSTRUCTION		SAMPLE	
ft BGS		ft BGS		DEPTH (ft) INTERVAL	REC (ft)	0
-	SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, moist			0-1	1.0	0.4
5	SILTY SAND (SM); olive, fine grained, moist - orange, moist	- 4.00		4-5	1.0	2.6
- 10	- tan, dry		Grout Riser - 2		1.0	2
- 15	- orange, dry		diameter PVC	14-15	1.0	5
20	- brown, moist		Bentonite	19-20	1.0	3.8
- 25	- red, moist		Chip	24-25	1.0	4.6
- 30	- tan, trace caliche cobbles, saturated, no samples taken		Sand Pack -	29-30	1.0	3.4
	- tan, with trace caliche, no samples taken					
40	END OF BOREHOLE @ 40.0ft BGS	40.00	WELL DETAILS Screened interval:			
45 			40.00 to 25.00ft BGS Length: -15ft Diameter: 0in			
50			Slot Size: PVC Material: 23 Seal:			
55			23.00ft BGS Sand Pack: 40.00ft BGS			
60			Material: 23 BOREHOLE DIAMETER 2			
65						
- 70						
75						
80						
00 - 85 - 85 						
06						
OVERBURDEN LOG 089861 GPJ CRA_CORP.GDT 601 101 101 101 101 101 101 101 101 101						
	NOTES: Stratigraphy descriptions are based on split spoon same water FOUND $\[mathbb{T}\]$	nples.				
OVEF						

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-13 DATE COMPLETED: 13 November 2017

DRILLING METHOD: Hollow Stem

FIELD PERSONNEL: Tom Kalinowski

DRILLING COMPANY: Envirotech

DEPTH			SAMPLE				
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	(ft)	'AL	ft)	£	DE DE
			рертн	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)
				LT L		┏	풍희
_	SILTY SAND (SM); Hand Augur to 4 feet bgs, brown, medium to fine grained, dry		0-0.1		- 0.1		0.4
-5	SILTY SAND (SM); brown, fine to medium grained, dry	4.00					
		8.00					
- 10	Sandstone, white, dry SILTY SAND (SM); brown, fine grained, some fine gravel, dry	10.00	9-10	>	1.0		0
E							
15 _	- brown, orange, fine grained, some fine gravel, dry		14-15	\times	1.0		3.8
20	- brown, orange, fine grained, some fine gravel, dry		19-20	>	1.0		3.4
25	- brown, orange, fine grained, some fine gravel, moist		24-25	>	1.0		3.8
		30.00	29-30	>	1.0		5.9
E	END OF BOREHOLE @ 30.0ft BGS						
35							
<u> </u>							
- 50							
-							
55							
60 							
65							
- 70							
-							
⁸ -75							
₩							
109-4 9-4							
85							
CRA							
g 90							
1111							
OVERBURDEN LOG 089861.GPJ CRA CORP.GDT 11/4/18 66 06 98 98 08 08 08 08 08 08 08 08 08 08 08 08 08							
BURD	NOTES: Stratigraphy descriptions are based on split spoon samples.						
VER	LABORATORY ANALYSIS						

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-14 DATE COMPLETED: 14 November 2017

DRILLING METHOD: Hollow Stem

FIELD PERSONNEL: Tom Kalinowski

DRILLING COMPANY: Envirotech

SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS CHLORIDE (mg/kg) ft BGS ft BGS DEPTH (ft) INTERVAL PP (tsf) ŧ REC (0-1 0.5 1.0 SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, moist 4.00 4-5 1.0 2.8 SILTY SAND (SM); light grey, fine grained, dry 5 - light gray, fine grained, some fine gravel, dry 3.8 9-10 1.0 - 10 - tan, orange, fine grained, some fine gravel, dry 14-15 **____** 1.0 6 — 15 - tan, orange, fine grained, some fine gravel, dry 19-20 **____** 1.0 3.4 - 20 - tan, fine grained, some fine gravel, dry 24-15 ── 1.0 3 25 - tan, fine grained, some fine gravel, dry 29-30 >>> 1.0 4 30 30.00 END OF BOREHOLE @ 30.0ft BGS 35 40 -45 50 - 55 60 - 65 - 70 11/4/18 NOTES: Stratigraphy descriptions are based on split spoon samples. LABORATORY ANALYSIS

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-15 DATE COMPLETED: 14 November 2017

DRILLING METHOD: Hollow Stem

FIELD PERSONNEL: Tom Kalinowski

DRILLING COMPANY: Envirotech

DEPTH		DEPTH	SAMPLE				
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft BGS	(ft)	<u>)</u>	CHLORIDE (mg/kg)		
			DEPTH (ft) INTERVAL	PP (tsf)	-ORI ng/kg		
					CH CH		
_	SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, moist		0-1	.0	0.2		
5	SANDSTONE, white, dry	4.00	4-5 1	.0	1.8		
Ē	SILTY SAND (SM); light gray, brown, fine grained, dry						
10	- light gray, orange, fine grained, dry		9-10	.0	0.8		
-							
- 15	- orange, fine grained, dry		14-15 1	.0	4.8		
E		사망. 사망 사망			4.0		
20	- orange, fine grained, dry	용함. 전기	19-20	.0	4.8		
			24-25 1	0	3.6		
25 	- orange, fine grained, moist				0.0		
- 30		30.00	29-30		3.6		
E	END OF BOREHOLE @ 30.0ft BGS	00.00					
E							
40							
-							
45							
50 							
-							
55 _							
60							
_							
65							
_							
- 70							
È							
2 — 75 t ⊑							
E ac							
80							
2 - 							
ç F90							
95							
	<u>NOTES:</u> Stratigraphy descriptions are based on split spoon samples.						
;	LABORATORY ANALYSIS						

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-16 DATE COMPLETED: 14 November 2017 DRILLING METHOD: Hollow Stem

FIELD PERSONNEL: Tom Kalinowski

DRILLING COMPANY: Envirotech

DEPTH		MPANY: Envirotech		SAMPLE					
ft BGS		STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	(ŧ)	/AL	ft)	if)	g)	
				DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)	
	SII	TY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, moist	5 2			1 .0	_	0.8	
			- 4.00	4-5	>	1 0		0.6	
5 	SIL	_TY SAND (SM); tan, fine grained, trace fine gravel, dry		40				0.0	
10	- ta	an, orange, fine grained, some fine gravel, dry		9-10	\geq	1 .0		0.4	
15	- ta	an, orange, fine grained, some fine gravel, dry		14-15	>	1 .0		7.5	
20	- ta	an, orange, fine grained, some fine gravel, dry		19-20	>	1 .0		10	
25	- ta	an, orange, fine grained, some fine gravel, dry		24-25	\sim	1 .0		3.8	
- 30	- ta	an, orange, fine grained, some fine gravel, moist	30.00	29-30	>	1 .0		3.8	
	EN	ID OF BOREHOLE @ 30.0ft BGS	00.00						
35									
-40									
45									
- 									
50 									
55 									
60									
65									
- 70									
º — 75 ₹ _									
3 85 5									
5 F 90									
95 95									
80 1 1 1 80 80 85 85 90 90 95	NOTES:	Stratigraphy descriptions are based on split spoon samples.							
		LABORATORY ANALYSIS							
·		<u>~</u>							

STRATIGRAPHIC LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

DATE COMPLETED: 14 November 2017

DRILLING METHOD: Hollow Stem

HOLE DESIGNATION: SB-17

FIELD PERSONNEL: Tom Kalinowski

DRILLING COMPANY: Envirotech

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	ft)	1	SAMF		Е
			DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE
	SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, dry				⊡ 201.0	-	HO 0.2
5	SILTY SAND (SM); tan, fine grained, dry - brown, fine grained, dry	4.00	4-5	>	1.0		0.2
10	- brown, tan, fine grained, dry		9-10	\times	1.0		1.6
15	- tan, orange, fine grained, dry		14-15	\times	1.0		4.6
20	- tan, orange, fine grained, dry		19-20	>	1 .0		3
25	- tan, orange, fine grained, moist		24-25	\times	1 .0		4
30 —	END OF BOREHOLE @ 30.0ft BGS	30.00	29-30	>	1.0		5
35	<u> </u>						
40							
45							
50							
55							
60							
65							
70							
.75							
80							
85							
90							
95							
	DTES: Stratigraphy descriptions are based on split spoon samples.			1			

This log should not be used separately from the original report.

STRATIGRAPHIC LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: New Mexico East State NCT-1 007

PROJECT NUMBER: 89861

CLIENT: Chevron Environmental Management Company

LOCATION: Lea County, New Mexico

HOLE DESIGNATION: SB-18 DATE COMPLETED: 15 November 2017

DRILLING METHOD: Hollow Stem

FIELD PERSONNEL: Tom Kalinowski

DRILLING COMPANY: Envirotech

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH			SAMF	PLE	
ft BGS		ft BGS	H (ft)	RVAL	(t)	tsf)	CHLORIDE (mg/kg)
			DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	/fm)
_	SILTY SAND (SM); Hydrovac to 4 feet bgs, brown, fine grained, dry		0-1	Ż	1.0		1.8
5	SILTY SAND (SM); tan, fine grained, dry - tan, orange, fine grained, dry	4.00	4-5	>	1 .0		3.4
10	- tan, orange, fine grained, some caliche, dry		9-10	>	1 .0		4.2
15	- tan, orange, fine grained, dry		14-15	>	1 .0		4
20	- tan, orange, fine grained, some caliche, dry		19-20	>	1 .0		3
25	- tan, orange, fine grained, moist		24-25	\geq	1 .0		3
	END OF BOREHOLE @ 30.0ft BGS	30.00	29-30	~	1 .0		5.8
35							
40							
45							
50							
55							
60							
65							
70							
2-75							
80							
- 75 - 80 - 85 - 90 - 95 - 95							
90							
90							
95							
	NOTES: Stratigraphy descriptions are based on split spoon samples.	1		1			

This log should not be used separately from the original report.

LOCATION

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	ose pod no MW-1	. (WELL NO	D.)	Ŷ	VELL TAG ID NO.			OSE FILF	E NO(S	5).			
GENERAL AND WELL LOCATION	WELL OWNE Chevron M			1				PHONE (OPTIC	DNAL)			
ΓC	WELL OWNE	P MAILIN	GADDRESS					CITY			STATE		ZIP
WELL	6320 Rothy							Houstor	n	-	Tx	77040	- -
£	WELL		DE	GREES	MINUTES	SECONI	DS						
ΓV	LOCATIO	ΝΙΔ	ATITUDE	32	35	51.59	40 N	* ACCUI	RACY	REQUIRED: ONE TENT	TH OF A SE	COND	
RA	(FROM GP	S)		103	18	38.81		* DATU	M REC	UIRED: WGS 84			
ENE			JNGITUDE										
1. G			NG WELL LOCATION TO ection 1, T-20-S, R-3		S AND COMMON	LANDMA	RKS – PLS	S (SECTIO)	N, TO'	WNSHJIP, RANGE) WHI	ERE A VAIL	ABLE	
	LICENSE NO	L.	NAME OF LICENSED	DRILLER						NAME OF WELL DRI	LLING CO	MPANY	
	WD-1	757		Da	wid Draybuck					Envirote	ech Drillin	g Services	
	DRILLING S	TARTED	DRILLING ENDED	DEPTH OF COM	PLETED WELL (FT	<u> </u>	BORE HOI	LE DEPTH	(FT)	DEPTH WATER FIRS	T ENCOUN	TERED (FT)	
	11/15/		11/15/2017		40ft.	,		40ft.	()				
			1]				STATIC WATER LEV	FL IN COM	PLETED WE	LL (FT)
_	COMPLETE	WELL IS:	ARTESIAN	DRY HOLE	SHALLOV	W (UNCON	FINED)						
CASING INFORMATION	DRILLING FI		AIR	MUD		ES – SPECI	FY						
(A)				have a second									
OR	DRILLING M	ETHOD:	ROTARY	HAMMER	CABLE TO	JOL	OTHE	R – SPECIF	·Y:				•
ŝ	DEPTH	(feet bgl)	BORE HOLE		ATERIAL AND	/OR	CA	SING		CASING	CASIN	G WALL	SLOT
Ģ	FROM	TO	DIAM	1	GRADE	J		VECTION	I	INSIDE DIAM.		KNESS	SIZE
ASI			(inches)		ch casing string, ctions of screen)		. T	YPE ling diamet	er)	(inches)	(in	ches)	(inches)
С ж	0	25	8.1/4		Riser Flush					2	0	.40	
2. DRILLING &	25	40	8.1/4		Screen		Flu	sh Joint		2	0	.40	0.010
TLD													
RI											-		
2. L													
	·												
							•	3. <u>.</u>					
					· · ·					· · · ·			
	ЛЕРТЦ	(feet bgl)		1			א דאדמקוי		<u>.</u>		l		I
F	FROM	TO	BORE HOLE DIAM. (inches)		TANNULAR SE EL PACK SIZE-					AMOUNT (cubic feet)		METHO PLACEM	
ANNULAR MATERIAL	0	2	8.1/4					· · · · · ·		Poure	ed		
ATF	2	21	8.1/4							Poure			
۶M	21	23	8.1/4			tonite						Poure	
LAF	21	40	8.1/4			1 20/40						Poure	
INU.		τυ	0.1/4						1 0410	~			
			· · · · · · · · · · · · · · · · · · ·										
ų.				-									
			·	l									
FOR	OSE INTER	NAL USI	<u>E</u>							0 WELL RECORD &	& LOG (V	ersion 06/3	0/17)
FILF	E NO.				POD NO			Г	RN 1	NO.			

PAGE 1 OF 2

WELL TAG ID NO.

	DEPTH (1 FROM	TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL EN R-BEARING CAVITIES OF plemental sheets to fully de	R FRAC	TURE ZONE	s	WATH BEARII (YES / I	VG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)		
	0	1			FN. SILTY SAND - Brown	Dry.			Y	N			
	1	4			HYDRO-VAC				Y	N			
	4	5		FN	. SILTY SAND - Tan Olive	Moist.			Y	N			
	5	10			SILTY SAND - Olive, Orang		t.		Y	N			
	10	15			FN. SILTY SAND - Tan D				Y	N			
	15	20			FN. SAND- Tan, Orange, I	•	1		Y	N			
4. HYDROGEOLOGIC LOG OF WELL	20	25			FN. SAND- Orange, Dry	-			Y	N			
OF V	25	30			FN. SAND - Tan, Moist				Y	N			
000	30	35		FN. SAND - Tar	, Wet @ 33ft. No sample tal		che Cabbles)		✓ Y	N			
CL	35	40			FN. SAND - Brow/tan, W				✓ Y	N			
(DO)									 Y	N			
EOL									Y	N			
sog									Ŷ	N			
IUX									Y	N			
4. B					·				Y	N			
									Y	N			
					 Y	N							
					-		Ŷ	N					
									 Y	N			
									Y	N			
	-								Ŷ	N			
	METHODI	L	I TIMATE VIELD	OF WATER-BEARING	ት STR Δ Τ Δ ·			тот	AL ESTIM				
	PUM				HER – SPECIFY:				L YIELD		0.00		
NOISI	WELL TES				A COLLECTED DURING IOWING DISCHARGE AN								
ISI	MISCELLA	NEOUS INI	FORMATION:										
ER													
TEST; RIG SUPERVI				,				4					
RIG													
EST;	DDINTENIAN				VIDED ONSITE SUPERVIS		TWELL CON	CTDI	CTION OT	וודם דו	ANT ICENSEE.		
5. TI			KILL KIG SUFER	CVISOR(S) IHAI FRO	VIDED ONSITE SUPERVI		WELL CON	SIKU			AN LICENSEE.		
	Mario Moy	a											
6. SIGNATURE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:												
<u> </u>		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME]	DATE			
							WD 20 N				i 0(/20/2017)		
	<u>R OSE INTER</u> E NO.	INAL USE			POD NO.		TRN NO.	ll RE	CORD & L	UG (Vei	sion 06/30/2017)		
	CATION				· · · · ·	WEIT	TAG ID NO.				PAGE 2 OF 2		
L													

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	000000000000000000000000000000000000000	AUD7	\	r				0.017				
Z	OSE POD NO. MW-2	(WELL NO.)	WEL	L TAG ID NO.			OSE FILE NO(S	5).			
[OI]	WELL OWNER								, 	•		
GENERAL AND WELL LOCATION	Chevron Mi		nt, L.P.					PHONE (OPTIC	JNAL)			
TC	WELL OWNE							CITY	-	STATE		ZIP
ELI	6320 Rothw							Houston		Tx	77040	,
A Q				GREES M	INUTES	SECONDS		1				
AN	WELL			32	35	51.594)		REQUIRED: ONE TENT	THOFASE		
RAL	LOCATION (FROM GPS	LAI	ITUDE	103	18		IN		QUIRED: WGS 84	1101 1100	CORD	
INE		LON	GITUDE			38.8110		1				
1. G			G WELL LOCATION TO		ND COMMON L	ANDMARI	CS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAII	ABLE	
Η	NW/4 OI SE	v/4 of Sec	tion 1, T-20-S, R-3	б-Е								
	LICENSE NO.		NAME OF LICENSED						NAME OF WELL DRI	LLING CO	MPANY	
	WD-17	757		David	l Draybuck				Envirot	ech Drillir	ig Services	
	DRILLING ST		DRILLING ENDED	DEPTH OF COMPLE	• •	В		LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUN	TERED (FT)	
	11/15/2	.017	11/15/2017	45	ift.		4	45ft.				
	COMPLETED	WELLIS	ARTESIAN	DRY HOLE	SHALLOW		NED)		STATIC WATER LEV	EL IN COM	IPLETED WE	LL (FT)
NO		WEELS 10.	Laud ARTESIAN		J. SHALLOW							
ATIC	DRILLING FL	UID:	AIR	MUD	ADDITIVES	S – SPECIF	ζ:					
2. DRILLING & CASING INFORMATION	DRILLING MI	ETHOD:	7 ROTARY	HAMMER	CABLE TOO	ol [OTHE	R-SPECIFY:				
NFO	DEPTH (feet bgl)	BORE HOLE	CASING MAT	ERIAL AND/(OR		(D) (2)	CASING		C WALL	
(G I	FROM	TO	DIAM	GRADE CONN.				ASING √ECTION	INSIDE DIAM.		G WALL KNESS	SLOT SIZE
ASIC			(inches)		asing string, an ns of screen)		T dd coup	YPE ling diameter)	(inches)	(in	ches)	(inches)
С Ж	0	30	8.1/4	R	iser	`	-	sh Joint	2	0	.40	
ŊC	30	45	8.1/4	Sc	reen		Flu	sh Joint	2	0	.40	0.010
TLLI												
DRI												
3												
	· ·											
				l		I		······································	L	<u> </u>		<u> </u>
د	DEPTH (BORE HOLE DIAM. (inches)		NNULAR SEA				AMOUNT		METHO PLACEM	
RIAJ	FROM	TO		GKAVEL	PACK SIZE-R		1 11915	UKVAL	(cubic feet)			
NTE	0	2 26	8.1/4		Cem Gro						Poure	
3. ANNULAR MATERIAL	26	28	8.1/4		Bento						Poure	
LAF	28	45	8.1/4		Sand 2						Pour	
NU.					Dund Z		<u>.</u>					
J. A.												
				<u>.</u>				1170.0				0/17)
	E OSE INTERN E NO.	NAL USE			POD NO.			WR-2 TRN 1	0 WELL RECORD (x LUG (V	ersion 06/3	0/17)
	CATION				1		1	WELL TAG I			PAGE	1 OF 2

WELL TAG ID NO.

	DEPTH (1	feet bgl) TO	THICKNESS (feet)	INCLUDE WATER-	TYPE OF MATERIAL E -BEARING CAVITIES O lemental sheets to fully d	R FRACTI	JRE ZONES	WATH BEARII (YES/)	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	1		FN. SILT	Y SAND - Brown Traces	Caliche Dr	у.	Ŷ	N	
	. 1	4			HYDRO-VAC		<u> </u>	Y	N	· · · · · · · · · · · · · · · · · · ·
	4	5		FN. SILT	Y SAND - Brown, Orang	e, Gray, Dr	у.	Y	N	
	5	10		FN. S	SILTY SAND - Brown, G	ay, Dry.		Y	N	
	10	15		· · ·	SILTY SAND - Tan, Whi			Y	N	
ا د	15	20			SILTYSAND- Tan, Oran			Y	N	
4. HYDROGEOLOGIC LOG OF WELL	20	25			N. SILTY SAND- Brown,			Y	N	
OF V	25	30			- Brown, Orange, Traces		oist @30ft.	Y	N	
000	30	35			D - Brown, Gray, Traces (0	✓ Y	N	
CL	35	40			ND - Brow, tan, Traces Ca			v vy	N	
0GI	40	45			AND - Tan, Orange, Gray			V I V Y	N	
EOL		10			······································	, , , , , , , , , , , , , , , , , , , ,		Y	N	
SOG	,		-					Y	N	
XDF		-			· · ·			Y	N	
4. H								Y	N	
								Y	N	
					Y	N				
								Y	N	
								Y	N	
								Y	N	
								Y	N	
	METHOD I		 STIMATE VIELD	OF WATER-BEARING	STD V T V		тот	TAL ESTIM		· .
				· · · ·	ER – SPECIFY:			LL YIELD		0.00
NO	WELL TES			ACH A COPY OF DATA ME, AND A TABLE SHO						
TEST; RIG SUPERVISI	START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER									
5. TES'	PRINT NAM Mario Moy		PRILL RIG SUPER	RVISOR(S) THAT PROV	IDED ONSITE SUPERVI	SION OF V	WELL CONSTRU	JCTION OT	HER TH	IAN LICENSEE:
6. SIGNATURE	CORRECT	RECORD C	F THE ABOVE I	FIES THAT, TO THE BE DESCRIBED HOLE AND 30 DAYS AFTER COMPI	THAT HE OR SHE WII	L FILE TH				
		SIGNAT	TURE OF DRILLE	ER / PRINT SIGNEE N.	AME				DATE	
	ם משידות אוידיביי געשידות אוידיביי	NAL TICE					ימידדראא אור איז	ECOPD & T	06.02~	rsion 06/30/2017)
	<u>r ose inter</u> je no.	TAL USE			POD NO.		<u>WR-20 WELL RI</u> FRN NO.			(1, <u>101,00,00,001,01</u>
LO	CATION			·····		· · · · · · ·				PAGE 2 OF 2

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NO.	(WELL NO.)	WELL	TAG ID NO.	• .	OSE FILE NO	0(S).		
NOL	MW-3							· · ·		
GENERAL AND WELL LOCATION	WELL OWNE Chevron M						PHONE (OPI	IONAL)		
TL	WELL OWNE	R MAILING	ADDRESS				CITY		STATE	ZIP
WEL	6320 Rothy	way St, St	e. 100				Houston		Tx 77040	
Ę	WELL		DE			ONDS				
ALA	LOCATIO	N LAT	TITUDE	32	35 51.	9432 N	* ACCURAC	Y REQUIRED: ONE TEN	TH OF A SECOND	
NER	(FROM GP	S) LOP	IGITUDE	103	18 36.	3348 W	* DATUM RI	EQUIRED: WGS 84		
			IG WELL LOCATION TO		D COMMON LAND	MARKS – PL	SS (SECTION, T	OWNSHJIP, RANGE) WH	ERE AVAILABLE	
ŗ	NW/4 of S	E/4 of Sec	ction 1, T-20-S, R-3	6-E						
	LICENSE NO		NAME OF LICENSED					NAME OF WELL DR		
	WD-1	757			Draybuck				ech Drilling Services	
	DRILLING ST 11/16/2		DRILLING ENDED 11/16/2017	DEPTH OF COMPLET 40f			LE DEPTH (FT) 40ft.	DEPTH WATER FIR	ST ENCOUNTERED (FT)	
	11/10/.	2017	11/10/2017				1011.	STATIC WATER LEV	/EL IN COMPLETED WE	TT (FT)
Z	COMPLETE	WELL IS:	ARTESIAN	DRY HOLE	SHALLOW (UNG	CONFINED)		STATIC WATER DE		
IOIT	DRILLING FI	LUID:	AIR	MUD	ADDITIVES SP	ECIFY:				
DRILLING & CASING INFORMATION	DRILLING M	ETHOD:	F ROTARY	HAMMER	CABLE TOOL	Отн	ER – SPECIFY:			
NFO	DEPTH	(feet bgl)	BORE HOLE	CASING MATE			ASING	CASING	CASING WALL	SLOT
NG I	FROM	ТО	DIAM	GRA (include each ca		CON	NECTION	INSIDE DIAM.	THICKNESS	SIZE
ISASI			(inches)	note section	s of screen)	(add cou	TYPE pling diameter)	(inches)	(inches)	(inches)
\$ & C	0	25	8.1/4		Riser Flush			2	0.40	0.010
SUL	25	40	8.1/4	Scr		Fn	1sh Joint	2	0.40	0.010
RILI							<u> </u>	•		
2. D							· · · · ·			
	DEDITI	(foot 1 - 1)							<u> </u>	
Ę	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM. (inches)		NULAR SEAL M ACK SIZE-RAN			AMOUNT (cubic feet)	METHO PLACEM	
ERIA	0	2	8.1/4		Cement				Pour	ed
[AT]	2	21	8.1/4		Grout				Pour	ed
AR IV	21	23	8.1/4	· ·	Bentonite				Pour	ed
ANNULAR MATERIAL	23	40	8.1/4		Sand 20/40)			Pour	ed
ANA										
э.								,		
				I						0/17
	<u>e ose inter</u> e no.	NAL USE			POD NO.			20 WELL RECORD	& LOG (Version 06/3	0/17)
	CATION						WELL TAG		PAGE	1 OF 2

								· · · · · · · · · · · · · · · · · · ·		
-	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATERIAL E BR-BEARING CAVITIES O oplemental sheets to fully do	R FRACTU	RE ZONES	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	1			FN. SILTY SAND - Brown I	Moist		Y	N	ZOLIDD (Ebill)
	1	4			HYDRO-VAC			Y	N	
	4	5			FN. SILTY SAND - Olive, N	Moist		Y	N	
	5	10			FN. SILTY SAND - Orange,			Y	N	•
	10	15			FN. SILTY SAND - Tan I			Y	N	
. 1	15	20			FN. SILTY SAND - Orange			Y	N	:
4. HYDROGEOLOGIC LOG OF WELL	20	25			FN. SILTY SAND- Brown,			Y	N	
DF W	25	30			N. SILTY SAND - Red, Very			Y	N	
0.96	30	35	· · · · ·		Y SAND - Tan, Some Calich		Wet	✓ Y	N	
CEC	35	40			SILTY SAND - Tan, Some Caller		WCL	✓ 1 ✓ Y	N	
OGI		+0			ILTT SAND - Tail, Some C			Y	N	
EOL								Y	N	
00								Y	N N	
YDR						<u></u>		Y	N	
4. H								Y	N	
								Y	N	
					•			Y	N	
		-						Y	N	
						•		Y	N	
								Y	N	
						· .		Y	N	
	METHODI			OF WATER-BEARIN	C 6 TD & T & .			TAL ESTIM		
								ELL YIELD		0.00
	PUM		IR LIFT	BAILER	THER – SPECIFY:					
ISION	WELL TES				TA COLLECTED DURING HOWING DISCHARGE AN					
SIV	MISCELLA	NEOUS INF	FORMATION:		·					
PER										
GSL										
R										
TEST; RIG SUPERV	PRINT NAM	AE(S) OF D	RILL RIG SUPEF	RVISOR(S) THAT PRO	VIDED ONSITE SUPERVI	SION OF W	ELL CONSTR	UCTION OT	HER TH	IAN LICENSEE:
5.7	Mario Moy									
SIGNATURE	CORRECT	RECORD O	F THE ABOVE I	DESCRIBED HOLE AN	BEST OF HIS OR HER KNO ND THAT HE OR SHE WIL IPLETION OF WELL DRIL	L FILE TH				
و .		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME		4		DATE	
FO	OSE INITED	NAT USE		· · · ·		11	יי זים או		06.07-	raion 06/30/2017)
	<u>R OSE INTER</u> E NO.	INAL USE	<u> </u>		POD NO.		<u>R-20 WELL R</u> RN NO.	LCUKD & I	JUU(Ve	rsion 06/30/2017)
LO	CATION			· ·		WELL TA				PAGE 2 OF 2

Appendix B Laboratory Analytical Reports

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0	01	568958-0	002	568958-0	03	568958-0	004	568958-0	005	568958-0	06
Analysis Requested	Field Id:	SB-13-S-0-1-1	171113	SB-13-S-1.0-1	171113	SB-13-S-15-1-	171113	SB-13-S-20-1-	171113	SB-13-S-25-1	71113	SB-13-S-30-1	71113
Analysis Kequeslea	Depth:	0-1		10-		15-		20-		25-		30-	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
			Nov-13-17 13:30		Nov-13-17 13:50		Nov-13-17 14:05		Nov-13-17	14:20	Nov-13-17	14:45	
Chloride by EPA 300	PA 300 Extracted: Dec-06-17 15:00 Dec		Dec-06-17 15:00		Nov-30-17 17:40		Nov-30-17 17:40		Nov-30-17	17:40	Nov-30-17	17:40	
	Analyzed:	Dec-06-17			Dec-06-17 17:36		22:21	Nov-30-17 22:27		Nov-30-17	22:33	Nov-30-17	22:57
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		<4.92	4.92	331	5.00	728	29.2	739	5.73	963	5.44	1950	31.7
Percent Moisture	Extracted:												
	Analyzed:					Nov-28-17 (09:00	Nov-28-17	09:00	Nov-28-17	09:00	Nov-28-17	09:00
	Units/RL:					%	RL	%	RL	%	RL	%	RL
Percent Moisture						15.6	1.00	13.0	1.00	9.87	1.00	21.0	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0	07	568958-0	08	568958-0	09	568958-0	010	568958-0	11	568958-0	012
Analysis Requested	Field Id:	SB-14-S-0-17	1113	SB-14-S-5-17	71113	SB-14-S-10-1	71113	SB-14-S-15-1	171113	SB-14-S-20-1	71113	SB-14-S-25-1	71113
Analysis Kequesieu	Depth:	0-1		5-		10-		15-		20-		25-	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-13-17 1	5:15	Nov-13-17	16:10	Nov-13-17 16:20		Nov-13-17	16:30	Nov-13-17	16:40	Nov-14-17	07:50
Chloride by EPA 300 Extracted		Dec-06-17 1	Dec-06-17 15:00		Dec-06-17 15:00		Nov-30-17 17:40		17:40	Dec-01-17 ()9:00	Dec-06-17	15:00
	Analyzed:	Dec-06-17 17:42		Dec-06-17 17:48		Nov-30-17 2	22:39	Nov-30-17	23:03	Dec-01-17	3:10	Dec-06-17	17:54
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		< 5.00	5.00	339	4.90	688	5.74	1330	29.8	935	29.1	432	4.95
Percent Moisture	Extracted:												
	Analyzed:					Nov-28-17 (09:00	Nov-28-17	09:00	Nov-28-17 (09:00		
	Units/RL:					%	RL	%	RL	%	RL		
Percent Moisture						14.5	1.00	16.1	1.00	15.7	1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0	013	568958-0	14	568958-0	15	568958-0	016	568958-0	17	568958-0	18
Analysis Requested	Field Id:	SB-14-S-30-1	171113	SB-15-S-0-1-1	71113	SB-15-S-5-17	71113	SB-15-S-10-1	71113	SB-15-S-15-1	71113	SB-15-S-20-1	71113
Analysis Kequestea	Depth:	30-		0-1		5-		10-		15-		20-	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
			08:05	Nov-14-17 (Nov-14-17 08:45		Nov-14-17 09:30		09:40	Nov-14-17 ()9:55	Nov-14-17	10:05
Chloride by EPA 300	Chloride by EPA 300 Extracted: Dec-01-17		09:00	Dec-06-17 15:00		Dec-06-17 15:00		Dec-06-17	15:00	Dec-01-17 (9:00	Dec-01-17 ()9:00
	Analyzed:	Dec-01-17	c-01-17 13:16 Dec-		Dec-06-17 18:11		Dec-06-17 18:17		18:23	Dec-01-17 1	3:22	Dec-01-17 1	1:11
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		705	5.30	<4.99	4.99	163	4.95	51.9	4.81	966	5.73	947	5.58
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	09:00							Nov-28-17 (9:00	Nov-28-17 (09:00
	Units/RL:	%	RL							%	RL	%	RL
Percent Moisture		7.05	1.00							12.8	1.00	12.2	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0)19	568958-0	20	568958-0	21	568958-0	22	568958-0	23	568958-0	24
Analysis Requested	Field Id:	SB-15-S-25-1	71113	SB-15-S-30-1	71113	SB-16-S-0-1-1	71113	SB-16-S-5-17	71113	SB-16-S-10-1	71113	SB-16-S-15-1	71113
Analysis Kequestea	Depth:	25-		30-		0-1		5-		10-		15-	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-14-17	10:25	Nov-14-17	Nov-14-17 10:40		Nov-14-17 11:05		12:30	Nov-14-17	2:40	Nov-14-17	12:50
Chloride by EPA 300 Extracted: Dec-01		Dec-01-17	Dec-01-17 09:00		Dec-01-17 09:00		Dec-06-17 15:00		15:00	Dec-06-17 1	5:00	Dec-01-17 ()9:00
	Analyzed:	Dec-01-17	c-01-17 11:17 Dec		Dec-01-17 11:35		Dec-06-17 18:29		18:35	Dec-06-17 1	8:59	Dec-01-17 1	1:41
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		642	5.53	629	5.73	<4.99	4.99	482	4.97	996	24.8	9280	58.2
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	09:00	Nov-28-17	11:20							Nov-28-17 1	11:20
	Units/RL:	%	RL	%	RL							%	RL
Percent Moisture		11.1	1.00	13.7	1.00							15.8	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0)25	568958-0	26	568958-0	27	568958-0	28	568958-0	29	568958-0	30
Analysis Requested	Field Id:	SB-16-S-20-1	171113	SB-16-S-25-171113		SB-16-S-30-1	71113	SB-17-S-0-1-1	71113	SB-17-S-5-1	71113	SB-17-S-10-1	71113
Analysis Kequestea	Depth:	20-		25-		30-		0-1		5-		10-	
	Matrix:	SOIL	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Nov-14-17	Jov-14-17 13:00		13:15	Nov-14-17 13:30		Nov-14-17 14:00		Nov-14-17 14:45		Nov-14-17	14:55
Chloride by EPA 300	Extracted:	Dec-01-17	Dec-01-17 09:00		9:00	Dec-01-17 09:00		Dec-06-17 15:00		Dec-06-17 15:00		Dec-01-17 (09:00
	Analyzed:	Dec-01-17	11:47	Dec-01-17 11:53		Dec-01-17 1	1:59	Dec-06-17 1	8:41	Dec-06-17 19:05		Dec-01-17 12:05	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		2090	28.0	518	5.43	629	5.52	<4.98	4.98	5.19	4.97	73.3	5.57
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	Nov-28-17 11:20		1:20	Nov-28-17	11:20					Nov-28-17 1	11:20
	Units/RL:	%	RL	%	RL	%	RL					%	RL
Percent Moisture 12		12.0	1.00	9.03	1.00	9.91	1.00					11.1	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0	031	568958-0	32	568958-0	33	568958-0)34	568958-0	35	568958-0	36
Analysis Requested	Field Id:	SB-17-S-15-1	171113	SB-17-S-20-171113		SB-17-S-25-1	71113	SB-17-S-30-1	71113	SB-18-S-0-1-2	171113	SB-18-S-5-1	71113
Analysis Kequeslea	Depth:	15-		20-		25-		30-		0-1		5-	
Matri		SOIL	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Nov-14-17	ov-14-17 15:10		Nov-14-17 15:20		Nov-14-17 15:40		15:55	Nov-15-17 07:35		Nov-15-17	08:00
Chloride by EPA 300	Extracted:	Dec-01-17	Dec-01-17 09:00		5:00	Dec-01-17 09:00		Dec-01-17 09:00		Dec-06-17 15:00		Dec-01-17 (09:00
	Analyzed:	Dec-01-17	12:23	Dec-06-17 19:22		Dec-01-17 1	2:29	Dec-01-17	12:46	Dec-06-17 19:28		Dec-01-17 12:52	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		873	5.92	324	4.99	433	5.59	719	5.60	331	4.93	552	5.47
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	Nov-28-17 11:20			Nov-28-17 1	1:20	Nov-28-17	11:20			Nov-28-17	11:20
	Units/RL:	%	RL			%	RL	%	RL			%	RL
Percent Moisture		15.6	1.00			11.8	1.00	10.8	1.00			8.55	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0)37	568958-0	38	568958-0	41	568958-0	42	568958-0	43	568958-0	44
Analysis Requested	Field Id:	SB-18-S-10-1	171113	SB-18-S-15-171113		SB-18-S-30-171113		MW-2-S-0-1-171115		MW-2-S-5-171115		MW-2-S-10-1	71115
Anaiysis Kequesieu	Depth:	10-		15-		30-	30-			5-		10-	
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Nov-15-17	ov-15-17 08:05 N		Nov-15-17 08:15		Nov-15-17 08:50		09:15	Nov-15-17 09:45		Nov-15-17 10:00	
Chloride by EPA 300	Extracted:	Dec-01-17	Dec-01-17 09:00)9:00	Dec-01-17 11:00		Dec-06-17 15:00		Dec-01-17 11:00		Dec-01-17	1:00
	Analyzed:	Dec-01-17	Dec-01-17 12:58		Dec-01-17 13:04		6:31	Dec-06-17 19:34		Dec-01-17 16:37		Dec-01-17 16:43	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		659	5.43	677	5.76	1940	30.9	106	4.93	2120	27.0	1680	26.7
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	Nov-28-17 11:20		11:20	Nov-28-17 1	11:20			Nov-28-17	11:20	Nov-28-17	11:20
	Units/RL:	%	RL	%	RL	%	RL			%	RL	%	RL
Percent Moisture		8.96	1.00	14.6	1.00	20.7	1.00			9.06	1.00	8.29	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0)45	568958-0	46	568958-0	47	568958-0	48	568958-0	49	568958-0	50
Analysis Requested	Field Id:	MW-2-S-15-	171115	MW-2-S-20-171115		MW-2-S-25-1	71115	MW-2-S-30-1	71115	MW-2-S-35-1	71115	MW-2-S-40-1	71115
Analysis Kequeslea	Depth:	15-		20-		25-		30-		35-		40-	
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Nov-15-17	Nov-15-17 10:15		10:25	Nov-15-17 10:40		Nov-15-17 11:05		Nov-15-17 11:35		Nov-15-17	12:05
Chloride by EPA 300	Extracted:	Dec-01-17	Dec-01-17 11:00		1:00	Dec-01-17 11:00		Dec-01-17 11:00		Dec-01-17 11:00		Dec-01-17 1	1:00
	Analyzed:	Dec-01-17	14:27	Dec-01-17 14:33		Dec-01-17 13:57		Dec-01-17 14:15		Dec-01-17 14:21		Dec-01-17 14:51	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1990	27.8	1180	27.5	476	5.30	472	5.30	975	5.49	1040	28.1
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	Nov-28-17 11:20		1:20	Nov-28-17 1	1:20	Nov-28-17 11:20		Nov-28-17 11:20		Nov-28-17	11:20
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture 11.7 1.00		1.00	11.0	1.00	7.53	1.00	7.52	1.00	9.43	1.00	12.0	1.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0	51	568958-0	52	568958-0	53	568958-0	54	568958-0	55	568958-0)56
Analysis Requested	Field Id:	MW-1-S-0-1-1	171115	MW-1-S-5-1	71115	MW-1-S-10-1	71115	MW-1-S-15-1	71115	MW-1-S-20-1	71115	MW-1-S-25-1	71115
Analysis Kequeslea	Depth:	0-1		5-		10-		15-		20-		25-	
	Matrix:	SOIL	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Nov-15-17	ov-15-17 14:20		14:55	Nov-15-17 15:05		Nov-15-17 15:15		Nov-15-17 15:20		Nov-15-17	15:50
Chloride by EPA 300	Extracted:	Dec-06-17	Dec-06-17 15:00		5:00	Dec-01-17 11:00		Dec-01-17 11:00		Dec-06-17 15:00		Dec-06-17	15:00
	Analyzed:	Dec-06-17	19:40	Dec-06-17 19:46		Dec-01-17 1	4:57	Dec-01-17	15:03	Dec-06-17 19:52		Dec-06-17	19:58
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		< 5.00	5.00	216	4.93	2880	37.1	1070	28.3	577	4.96	469	4.91
Percent Moisture	Extracted:												
	Analyzed:					Nov-28-17 1	1:20	Nov-28-17	11:20				
	Units/RL:					%	RL	%	RL				
Percent Moisture						32.7	1.00	12.8	1.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

SUP ACCREDING

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0)57	568958-0	58	568958-0	59	568958-0	60	568958-0	61	568958-0)62
Analysis Requested	Field Id:	MW-1-S-30-2	171115	MW-3-S-0-1-171115		MW-3-S-5-1	71115	MW-3-S-10-1	71115	MW-3-S-15-1	71115	MW-3-S-20-1	171115
Analysis Kequestea	Depth:	30-		0-1		5-		10-		15-		20-	
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Nov-15-17	lov-15-17 16:05		Nov-16-17 08:20		Nov-16-17 09:10		09:25	Nov-16-17 09:35		Nov-16-17	09:45
Chloride by EPA 300	Extracted:	Dec-01-17	Dec-01-17 11:00		6:20	Dec-06-17 16:20		Dec-06-17 16:20		Dec-01-17 11:00		Dec-01-17	11:00
	Analyzed:	Dec-01-17	15:08	Dec-06-17 20:34		Dec-06-17 2	20:51	Dec-06-17 2	20:57	Dec-01-17 15:14		Dec-01-17 15:20	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		794	5.47	<4.99	4.99	208	4.96	285	4.95	948	30.6	693	5.61
Percent Moisture	Extracted:												
	Analyzed:	Nov-28-17	Nov-28-17 11:20							Nov-28-17	11:20	Nov-28-17	11:20
	Units/RL:	%	% RL							%	RL	%	RL
Percent Moisture		9.21	1.00							18.6	1.00	11.7	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 568958

GHD Services, INC- Midland, Midland, TX

Project Name: New Mexico East State

Date Received in Lab:Sat Nov-18-17 09:00 amReport Date:08-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	568958-0	63	568958-0	64		
Analysis Paguested	Field Id:	MW-3-S-25-1	71115	MW-3-S-30-1	71115		
Analysis Requested	Depth:	25-		30-			
	Matrix:	SOIL		SOIL			
	Sampled:	Nov-16-17	10:00	Nov-16-17 1	10:10		
Chloride by EPA 300	Extracted:	Dec-01-17	11:00	Dec-01-17 1	1:00	Î	
	Analyzed:	Dec-01-17	15:38	Dec-01-17 1	6:02		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		861	5.48	881	5.48		
Percent Moisture	Extracted:						
	Analyzed:	Nov-28-17	11:20	Nov-28-17 1	1:20		
	Units/RL:	%	RL	%	RL		
Percent Moisture		10.2	1.00	10.6	1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Analytical Report 568958

for GHD Services, INC- Midland

Project Manager: Scott Foord

New Mexico East State

089861

08-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

08-DEC-17

SUP ACCREDING

Project Manager: **Scott Foord GHD Services, INC- Midland** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 568958 New Mexico East State Project Address: HOBBS NM

Scott Foord:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 568958. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 568958 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Mileti

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 568958

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-13-S-0-1-171113	S	11-13-17 12:30	0 - 1	568958-001
SB-13-S-1.0-171113	S	11-13-17 13:30	10	568958-002
SB-13-S-15-1-171113	S	11-13-17 13:50	15	568958-003
SB-13-S-20-1-171113	S	11-13-17 14:05	20	568958-004
SB-13-S-25-171113	S	11-13-17 14:20	25	568958-005
SB-13-S-30-171113	S	11-13-17 14:45	30	568958-006
SB-14-S-0-171113	S	11-13-17 15:15	0 - 1	568958-007
SB-14-S-5-171113	S	11-13-17 16:10	5	568958-008
SB-14-S-10-171113	S	11-13-17 16:20	10	568958-009
SB-14-S-15-171113	S	11-13-17 16:30	15	568958-010
SB-14-S-20-171113	S	11-13-17 16:40	20	568958-011
SB-14-S-25-171113	S	11-14-17 07:50	25	568958-012
SB-14-S-30-171113	S	11-14-17 08:05	30	568958-013
SB-15-S-0-1-171113	S	11-14-17 08:45	0 - 1	568958-014
SB-15-S-5-171113	S	11-14-17 09:30	5	568958-015
SB-15-S-10-171113	S	11-14-17 09:40	10	568958-016
SB-15-S-15-171113	S	11-14-17 09:55	15	568958-017
SB-15-S-20-171113	S	11-14-17 10:05	20	568958-018
SB-15-S-25-171113	S	11-14-17 10:25	25	568958-019
SB-15-S-30-171113	S	11-14-17 10:40	30	568958-020
SB-16-S-0-1-171113	S	11-14-17 11:05	0 - 1	568958-021
SB-16-S-5-171113	S	11-14-17 12:30	5	568958-022
SB-16-S-10-171113	S	11-14-17 12:40	10	568958-023
SB-16-S-15-171113	S	11-14-17 12:50	15	568958-024
SB-16-S-20-171113	S	11-14-17 13:00	20	568958-025
SB-16-S-25-171113	S	11-14-17 13:15	25	568958-026
SB-16-S-30-171113	S	11-14-17 13:30	30	568958-027
SB-17-S-0-1-171113	S	11-14-17 14:00	0 - 1	568958-028
SB-17-S-5-171113	S	11-14-17 14:45	5	568958-029
SB-17-S-10-171113	S	11-14-17 14:55	10	568958-030
SB-17-S-15-171113	S	11-14-17 15:10	15	568958-031
SB-17-S-20-171113	S	11-14-17 15:20	20	568958-032
SB-17-S-25-171113	S	11-14-17 15:40	25	568958-033
SB-17-S-30-171113	S	11-14-17 15:55	30	568958-034
SB-18-S-0-1-171113	S	11-15-17 07:35	0 - 1	568958-035
SB-18-S-5-171113	S	11-15-17 08:00	5	568958-036
SB-18-S-10-171113	S	11-15-17 08:05	10	568958-037
SB-18-S-15-171113	S	11-15-17 08:15	15	568958-038
SB-18-S-30-171113	S	11-15-17 08:50	30	568958-041
MW-2-S-0-1-171115	S	11-15-17 09:15	0 - 1	568958-042
MW-2-S-5-171115	S	11-15-17 09:45	5	568958-043
MW-2-S-10-171115	S	11-15-17 10:00	10	568958-044
MW-2-S-15-171115	S	11-15-17 10:15	15	568958-045

Sample	Cross	Reference	568958
--------	-------	-----------	--------

GHD Services, INC- Midland, Midland, TX

New Mexico East State

S	11-15-17 10:25	20	568958-046
S	11-15-17 10:40	25	568958-047
S	11-15-17 11:05	30	568958-048
S	11-15-17 11:35	35	568958-049
S	11-15-17 12:05	40	568958-050
S	11-15-17 14:20	0 - 1	568958-051
S	11-15-17 14:55	5	568958-052
S	11-15-17 15:05	10	568958-053
S	11-15-17 15:15	15	568958-054
S	11-15-17 15:20	20	568958-055
S	11-15-17 15:50	25	568958-056
S	11-15-17 16:05	30	568958-057
S	11-16-17 08:20	0 - 1	568958-058
S	11-16-17 09:10	5	568958-059
S	11-16-17 09:25	10	568958-060
S	11-16-17 09:35	15	568958-061
S	11-16-17 09:45	20	568958-062
S	11-16-17 10:00	25	568958-063
S	11-16-17 10:10	30	568958-064
S	11-15-17 08:25	20	Not Analyzed
S	11-15-17 08:35	25	Not Analyzed

MW-2-S-20-171115
MW-2-S-25-171115
MW-2-S-30-171115
MW-2-S-35-171115
MW-2-S-40-171115
MW-1-S-0-1-171115
MW-1-S-5-171115
MW-1-S-10-171115
MW-1-S-15-171115
MW-1-S-20-171115
MW-1-S-25-171115
MW-1-S-30-171115
MW-3-S-0-1-171115
MW-3-S-5-171115
MW-3-S-10-171115
MW-3-S-15-171115
MW-3-S-20-171115
MW-3-S-25-171115
MW-3-S-30-171115
SB-18-S-20-171113
SB-18-S-25-171113

CASE NARRATIVE

Client Name: GHD Services, INC- Midland Project Name: New Mexico East State

Project ID:089861Work Order Number(s):568958

 Report Date:
 08-DEC-17

 Date Received:
 11/18/2017

Sample receipt non conformances and comments:

12/06/17: Per Scott Ford remove from hold and run: 568958-1,2,7,8,12,14,15,16,21,22,23,28,29,32,35,42,51,52,55,56,58,59,60.

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3034777 Chloride by EPA 300

Lab Sample ID 568958-062 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 568958-041, -043, -044, -045, -046, -047, -048, -049, -050, -053, -054, -057, -061, -062, -063, -064.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3035189 Chloride by EPA 300

Lab Sample ID 568958-028 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 568958-001, -002, -007, -008, -012, -014, -015, -016, -021, -022, -023, -028, -029, -032, -035, -042, -051, -052, -056.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

U

1

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-13-S-0-1-171113 Lab Sample Id: 568958-001		Matrix: Date Collecte	Soil d: 11.13.17 12.30	Date Received:11.18.17 09.00 Sample Depth: 0 - 1				
Analytical Method:Chloride by EPATech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight		
Parameter	Cas Number	Result R	RL	Units	Analysis Da	ate Flag	Dil	

<4.92

16887-00-6

4.92

mg/kg 12.06.17 17.18

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-13-S-1.0-171113 Lab Sample Id: 568958-002		Matrix: Date Collecte	Soil d: 11.13.17 13.30		Date Received Sample Depth	.00	
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **331**

5.00

mg/kg 12.06.17 17.36

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-13-S-15-1-171113 Lab Sample Id: 568958-003		Matrix: Date Collecte	Soil d: 11.13.17 13.50		Date Received Sample Depth	d:11.18.17 09.0 :: 15	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034718	300	Date Prep:	11.30.17 17.40		Prep Method: % Moisture: Basis:	E300P 15.6 Dry Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **728**

29.2

29.2

11.30.17 22.21

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-13-S-20-1-171113 Lab Sample Id: 568958-004		Matrix: Date Collecte	Soil ed: 11.13.17 14.05		Date Received Sample Depth	9.00	
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034718	300	Date Prep:	11.30.17 17.40		Prep Method: % Moisture: Basis:	E300P 13.04 Dry Weigh	ıt
Parameter	Cas Number	Result I	8L	Units	Analysis D	ate Flag	Dil

16887-00-6 **739**

5.73

mg/kg 11.30.17 22.27

1

Page 20 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: S Lab Sample Id: 5	5B-13-S-25-171113 568958-005		Matrix: Soil Date Collected: 11.13.17 14.20		Date Received:11.18.17 09.00 Sample Depth: 25			
Tech: M Analyst: M	od: Chloride by EPA 3(INV INV 034718	00	Date Prep:	11.30.17 17.40		Prep Method: % Moisture: Basis:	E300P 9.87 Dry Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

963

16887-00-6

5.44

mg/kg 11.30.17 22.33

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-13-S-30-171113 : 568958-006		Matrix: Date Collect	Soil ed: 11.13.17 14.45		Date Received Sample Depth	00	
Tech: Analyst:	thod: Chloride by EPA 3 MNV MNV 3034718	00	Date Prep:	11.30.17 17.40		Prep Method: % Moisture: Basis:	E300P 21.04 Dry Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **1950**

31.7

11.30.17 22.57

mg/kg

U

1

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-14-S-0-171113 Lab Sample Id: 568958-007		Matrix: Date Collecte	Soil d: 11.13.17 15.15		Date Received Sample Depth)	
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

< 5.00

Chloride

16887-00-6

5.00

mg/kg 12.06.17 17.42

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-14-S-5-171113 d: 568958-008		Matrix: Soil Date Collected: 11.13.17 16.10			Date Received:11.18.17 09.00 Sample Depth: 5			
Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight		
Seq Number: Parameter	3035189	Cas Number	Result I	RL	Units	Analysis D	ate Flag	Dil	

16887-00-6 **339**

4.90

.90

12.06.17 17.48

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-14-S-10-171113 d: 568958-009		Matrix: Date Collect	Soil ed: 11.13.17 16.20		Date Received:11.18.17 09 Sample Depth: 10)
Analytical Mo Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034718	800	Date Prep:	11.30.17 17.40		Prep Method: % Moisture: Basis:	14.4		
Parameter	5054/10	Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **688**

5.74

11.30.17 22.39

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-14-S-15-171113 Lab Sample Id: 568958-010		Matrix: Date Collecte	Soil ed: 11.13.17 16.30		Date Received Sample Depth	l:11.18.17 09.0 :15	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034718	300	Date Prep:	11.30.17 17.40		Prep Method: % Moisture: Basis:	E300P 16.05 Dry Weight	
Parameter	Cas Number	Result F	RL .	Units	Analysis D	ate Flag	Dil

16887-00-6 **1330**

29.8

mg/kg 11.30.17 23.03

5

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Seq Number: Parameter	3034715	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil
Analyst:	MNV		Date Prep:	12.01.17 09.00		Basis:	Dry Weight	
Tech:	MNV					% Moisture:	15.68	
Analytical M	ethod: Chloride by EPA 3	800				Prep Method:	E300P	
Sample Id: SB-14-S-20-171113 Lab Sample Id: 568958-011			Matrix: Date Collecte	Soil ed: 11.13.17 16.40	Date Received:11.18.17 09.00 Sample Depth: 20			

16887-00-6 **935**

29.1

mg/kg

12.01.17 13.10

Page 27 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-14-S-25-171113 Lab Sample Id: 568958-012		Matrix: Date Collecte	Soil d: 11.14.17 07.50		Date Received Sample Depth	1:11.18.17 09.0 : 25	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 432

4.95

12.06.17 17.54

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-14 Lab Sample Id: 56895	-8-30-171113 8-013	Matrix: Date Collect	Soil ed: 11.14.17 08.05		Date Received Sample Depth		7 09.00
Analytical Method: C Tech: MNV Analyst: MNV Seq Number: 303471		Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 7.05 Dry We	eight
Parameter	Cas Number	Result]	RL	Units	Analysis Da	ate F	lag Dil

705

16887-00-6

5.30

mg/kg 12.01.17 13.16

U

1

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-15-S-0-1-171113 Lab Sample Id: 568958-014		Matrix: Date Collecte	Soil d: 11.14.17 08.45		Date Received Sample Depth	l:11.18.17 09.0 :0 - 1	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result R	L	Units	Analysis Da	ate Flag	Dil

16887-00-6

<4.99 4.99

12.06.17 18.11

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-15-S-5-171113 Lab Sample Id: 568958-015		Matrix: Date Collecte	Soil ed: 11.14.17 09.30		Date Received Sample Depth	d:11.18.17 09.0 ::5	00
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result I	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **163**

4.95

mg/kg 12.06.17 18.17

1

Page 31 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-15-S-10-171113 Lab Sample Id: 568958-016		Matrix: Date Collecte	Soil ed: 11.14.17 09.40		Date Received Sample Depth	l:11.18.17 09.0 : 10	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

16887-00-6 **51.9**

4.81

mg/kg 12.06.17 18.23

1

Page 32 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Parameter		Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil
Seq Number:	3034715							
Analyst:	MNV		Date Prep:	12.01.17 09.00		Basis:	Dry Weigh	nt
Tech:	MNV					% Moisture:	12.76	
Analytical Me	ethod: Chloride by EPA 3	800				Prep Method:	E300P	
Sample Id: Lab Sample Id	SB-15-S-15-171113 d: 568958-017		Matrix: Date Collecte	Soil ed: 11.14.17 09.55		Date Received Sample Depth		9.00
Commle Ide	CD 15 C 15 171112		Moterive	Soil		Data Dagaiwa	1.11 10 17 0	0 00

16887-00-6 **966**

5.73

12.01.17 13.22

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-15-S-20-171113 d: 568958-018		Matrix: Date Collecte	Soil ed: 11.14.17 10.05		Date Received Sample Depth		17 09.00	
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034715	300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 12.18 Dry W		
Parameter		Cas Number	Result F	RL	Units	Analysis D	ate l	Flag	Dil

16887-00-6 **947**

5.58

mg/kg

12.01.17 11.11

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-15-S-25-171113 d: 568958-019		Matrix: Date Collect	Soil ed: 11.14.17 10.25		Date Received Sample Depth	1:11.18.17 09.0 : 25	0
Tech: Analyst:	thod: Chloride by EPA 3 MNV MNV 3034715	00	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 11.14 Dry Weight	
Seq Number: Parameter	3034715	Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **642**

5.53

mg/kg 12.01.17 11.17

1

Page 35 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-15-S-30-171113 d: 568958-020		Matrix: Date Collecte	Soil ed: 11.14.17 10.40		Date Received Sample Depth		.00
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034715	300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 13.67 Dry Weight	
Parameter		Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **629**

5.73

12.01.17 11.35

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-16-S-0-1-171113 Lab Sample Id: 568958-021		Matrix: Date Collecte	Soil d: 11.14.17 11.05		Date Received Sample Depth	1:11.18.17 09.0 : 0 - 1	0
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

16887-00-6

<4.99 4.99

mg/kg 1

12.06.17 18.29

U

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-16-S-5-171113 Lab Sample Id: 568958-022		Matrix: Date Collecte	Soil ed: 11.14.17 12.30		Date Received Sample Depth	l:11.18.17 09.0 : 5	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result F	яГ Г	Units	Analysis D	ate Flag	Dil

16887-00-6 482

4.97

12.06.17 18.35

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-16-S-10-171113 l: 568958-023		Matrix: Date Collect	Soil eed: 11.14.17 12.40		Date Received Sample Depth		3.17 09.00	
Analytical Me Tech: Analyst: Seq Number:	thod: Chloride by EPA 3 MNV MNV 3035189	800	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	0	P Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

996

16887-00-6

24.8

mg/kg 12.06.17 18.59

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Parameter		Cas Number	Result F	RL	Units	Analysis D	ate Flag	g Dil
Seq Number:	3034715							
Analyst:	MNV		Date Prep:	12.01.17 09.00		Basis:	Dry Weig	ht
Tech:	MNV					% Moisture:	15.84	
Analytical M	ethod: Chloride by EPA 3	800				Prep Method:	E300P	
Sample Id: Lab Sample I	SB-16-S-15-171113 d: 568958-024		Matrix: Date Collecte	Matrix: Soil Date Collected: 11.14.17 12.50		Date Received:11.180Sample Depth: 15		
Sample Id:	SB-16-S-15-171113		Matrix:	Soil		Date Received	1:11.18.17	09.00

16887-00-6 **9280**

58.2

8.2

mg/kg

12.01.17 11.41

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-16-S-20-171113 d: 568958-025		Matrix: Soil Date Collected: 11.14.17 13.00			Date Received:11.18.17 09.00 Sample Depth: 20			
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034715	300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	11.9		
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6

2090 28.0

12.01.17 11.47

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-16-S-2 Lab Sample Id: 568958-02		Matrix: Date Collecte	Soil ed: 11.14.17 13.15		Date Received Sample Depth	1:11.18.17 09.0 1:25	00
Analytical Method: Chlor Tech: MNV Analyst: MNV Seq Number: 3034715	ride by EPA 300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 9.03 Dry Weight	
Parameter	Cas Number	Result I	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **518**

5.43

12.01.17 11.53

mg/kg

1

Page 42 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-16-S-30-171113 d: 568958-027		Matrix: Date Collecte	Soil ed: 11.14.17 13.30		Date Received:11.18.17 Sample Depth: 30			
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034715	800	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	9.91	P Veight	
Parameter	555 17 15	Cas Number	Result F	RL.	Units	Analysis D	ate	Flag	Dil

16887-00-6 **629**

5.52

12.01.17 11.59

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-17-S-0-1-171113 Lab Sample Id: 568958-028		Matrix: Date Collecte	Soil d: 11.14.17 14.00		Date Received Sample Depth	l:11.18.17 09.0 :0 - 1	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:		
Parameter	Cas Number	Result R	L	Units	Analysis Da	ate Flag	Dil

16887-00-6

<4.98 4.98

mg/kg 12.06.1

12.06.17 18.41

U

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-17-S-5-171113 Lab Sample Id: 568958-029		Matrix: Date Collecte	Soil d: 11.14.17 14.45		Date Received Sample Depth	l:11.18.17 09.0 : 5	00
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **5.19**

4.97

12.06.17 19.05

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-17-S-10-171113 Lab Sample Id: 568958-030		Matrix: Soil Date Collected: 11.14.17 14.55		Date Received:11.18.17 Sample Depth: 10			С
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3034715	300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 11.1 Dry Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis Da	ate Flag	Dil

73.3

16887-00-6

5.57

12.01.17 12.05

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-17-S-15-171113 Lab Sample Id: 568958-031		Matrix: Soil Date Collected: 11.14.17 15.10		Date Received:11.18.17 0 Sample Depth: 15			0
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3034715	300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 15.55 Dry Weight	
Parameter	Cas Number	Result R	L	Units	Analysis D	ate Flag	Dil

873

16887-00-6

5.92

12.01.17 12.23

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-17-S-20-171113 Lab Sample Id: 568958-032		Matrix: Date Collecte	Soil ed: 11.14.17 15.20		Date Received Sample Depth		7 09.00
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry We	ight
Parameter	Cas Number	Result I	8L	Units	Analysis D	ate Fl	lag Dil

16887-00-6 **324**

4.99

12.06.17 19.22

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-17- Lab Sample Id: 568958	S-25-171113 -033	Matrix: Date Collecte	Soil ed: 11.14.17 15.40		l:11.18.17 09.0 :25	0	
Analytical Method: Ch Tech: MNV Analyst: MNV Seq Number: 3034715		Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 11.82 Dry Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis Da	ate Flag	Dil

16887-00-6 **433**

5.59

mg/kg 12.01.17 12.29

1

Page 49 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-17-S-30-171113 d: 568958-034		Matrix: Date Collecte	Soil ed: 11.14.17 15.55		Date Received Sample Depth		8.17 09.00	
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034715	00	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	10.7		
Parameter		Cas Number	Result 1	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **719**

5.60

mg/kg 12.01.17 12.46

1

Page 50 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-18-S-0-1-171113 Lab Sample Id: 568958-035		Matrix: Date Collecte	Soil ed: 11.15.17 07.35		Date Received Sample Depth	1:11.18.17 09.0 : 0 - 1	0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **331**

4.93

12.06.17 19.28

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-18-S-5-171113 Lab Sample Id: 568958-036			Matrix: Date Collect	Soil ted: 11.15.17 08.00	Date Received:11.18.17 (Sample Depth: 5			0
Analytical Me Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	00	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 8.55 Dry Weight	
Seq Number:	3034715							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 552

5.47

12.01.17 12.52

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: SB-18-S-10-171113 Lab Sample Id: 568958-037		Matrix: Soil Date Collected: 11.15.17 08.05		Date Received:11.18.17 09. Sample Depth: 10			7 09.00
Analytical Method: C Tech: MNV Analyst: MNV Seq Number: 303471	,	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 8.96 Dry We	ight
Parameter	Cas Number	Result	RL	Units	Analysis D	ate Fl	lag Dil

16887-00-6 659

5.43

mg/kg

12.01.17 12.58

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-18-S-15-171113 l: 568958-038		Matrix: Date Collecte	Soil ed: 11.15.17 08.15	Date Received:11.18.17 09.0 Sample Depth: 15			00
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034715	300	Date Prep:	12.01.17 09.00		Prep Method: % Moisture: Basis:	E300P 14.63 Dry Weight	
Parameter		Cas Number	Result	RL.	Units	Analysis D	ate Flag	Dil

16887-00-6 **677**

5.76

12.01.17 13.04

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	SB-18-S-30-171113 d: 568958-041		Matrix: Soil Date Collected: 11.15.17 08.50		Date Received:11.18.17 09.00 Sample Depth: 30			9.00
Analytical Me Tech: Analyst: Seq Number:	ethod: Chloride by EPA 3 MNV MNV 3034777	800	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 20.68 Dry Weigh	ıt
Parameter		Cas Number	Result]	RL	Units	Analysis D	ate Flag	Dil

1940

16887-00-6

30.9

mg/kg

12.01.17 16.31

5

Page 55 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-2-S-0-1-171115 Lab Sample Id: 568958-042			Matrix: Soil Date Collected: 11.15.17 09.15		Date Received:11.18.17 09.00 Sample Depth: 0 - 1			00
Analytical Me Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Seq Number:	3035189							
Parameter		Cas Number	Result]	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **106**

4.93

mg/kg 12.06.17 19.34

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW- Lab Sample Id: 5689	2-8-5-171115 58-043	Matrix: Soil Date Collected: 11.15.17 09.45		Date Received:11.18.1 Sample Depth: 5			I
Analytical Method: 0 Tech: MNV Analyst: MNV Seq Number: 30347		Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 9.06 Dry Weight	
Parameter	Cas Number	Result R	L	Units	Analysis Da	ate Flag	Dil

16887-00-6 2120

27.0

12.01.17 16.37

mg/kg

5

Page 57 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample I	MW-2-S-10-171115 d: 568958-044		Matrix: Date Colle	Soil cted: 11.15.17 10.00		Date Received: Sample Depth:		0
Analytical M	ethod: Chloride by EPA	A 300				Prep Method:	E300P	
Tech:	MNV					% Moisture:	8.29	
Analyst:	MNV		Date Prep:	12.01.17 11.00		Basis:	Dry Weight	
Seq Number:	3034777							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	1680	26.7	mg/kg	12.01.17 16.4	13	5

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-2-S-15-171115 Lab Sample Id: 568958-045		Matrix: Soil Date Collected: 11.15.17 10.15		Date Received:11.18.17 09 Sample Depth: 15			0
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034777	800	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 11.72 Dry Weight	
Parameter	Cas Number	Result I	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **1990**

27.8

mg/kg 12.01.17 14.27

5

Page 59 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-2-S-20-171115 Lab Sample Id: 568958-046		Matrix: Soil Date Collected: 11.15.17 10.25			Date Received:11.18.17 09. Sample Depth: 20		
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3034777	300	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 10.96 Dry Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate Flag	Dil

1180

16887-00-6

27.5

12.01.17 14.33

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	MW-2-S-25-171115 d: 568958-047		Matrix: Soil Date Collected: 11.15.17 10.40			Date Received:11.18.17 09.0 Sample Depth: 25			
2	ethod: Chloride by EPA 3	300				Prep Method:			
Tech:	MNV					% Moisture:	7.53		
Analyst:	MNV		Date Prep:	12.01.17 11.00		Basis:	Dry Weight		
Seq Number:	3034777								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil	

16887-00-6 **476**

5.30

mg/kg 12.01.17 13.57

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-2-S-30-171115 Lab Sample Id: 568958-048		Matrix: Soil Date Collected: 11.15.17 11.05		Date Received:11.18.17 09.00 Sample Depth: 30			00
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034777	300	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 7.52 Dry Weight	
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 472

5.30

12.01.17 14.15

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-2-S-35-171115 Lab Sample Id: 568958-049		Matrix: Soil Date Collected: 11.15.17 11.35		Date Received:11.18.17 09 Sample Depth: 35			7 09.00
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034777	300	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 9.43 Dry We	ight
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate F	lag Dil

16887-00-6 **975**

5.49

12.01.17 14.21

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	MW-2-S-40-171115 d: 568958-050		Matrix: Date Collecte	Soil ed: 11.15.17 12.05		Date Received Sample Depth	d:11.18.17 09.0 n:40	0
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	800				Prep Method: % Moisture:	E300P 12.02	
Analyst:	MNV		Date Prep:	12.01.17 11.00		Basis:	Dry Weight	
Seq Number:	3034777							
Parameter		Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **1040**

28.1

mg/kg 12.01.17 14.51

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-1-S-0-1-171115 Lab Sample Id: 568958-051		Matrix: Date Collecte	Soil d: 11.15.17 14.20		Date Received Sample Depth	l:11.18.17 09.0 :0 - 1	0
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result F	Ł	Units	Analysis D	ate Flag	Dil

< 5.00

Chloride

16887-00-6

5.00

mg/kg

12.06.17 19.40

U

1

Page 65 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-1-S-5-171115 Lab Sample Id: 568958-052		Matrix: Date Collecte	Soil d: 11.15.17 14.55		Date Received Sample Depth		9.00
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weigh	ıt
Parameter	Cas Number	Result R	L	Units	Analysis D	ate Flag	Dil

16887-00-6 **216**

4.93

mg/kg 12.06.17 19.46

1

Page 66 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	MW-1-S-10-171115 d: 568958-053		Matrix: Date Collecte	Soil ed: 11.15.17 15.05		Date Received Sample Depth	d:11.18.17 09.0 :: 10	0
Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV 3034777	300	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 32.67 Dry Weight	
Seq Number: Parameter	5054777	Cas Number	Result H	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **2880**

37.1

12.01.17 14.57

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-1-S-15-171115 Lab Sample Id: 568958-054		Matrix: Soil Date Collected: 11.15.17 15.15			Date Received:11.18.17 09.00 Sample Depth: 15			
Analytical Method: Chloride by EPA 3 Tech: MNV Analyst: MNV Seq Number: 3034777	300	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 12.8 Dry Weight		
Parameter	Cas Number	Result F	RL	Units	Analysis D	ate Flag	Dil	

16887-00-6 **1070**

28.3

12.01.17 15.03

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-1-S-20-171115 Lab Sample Id: 568958-055		Matrix: Date Collecte	Soil d: 11.15.17 15.20		Date Received Sample Depth	1:11.18.17 09.0 : 20	0
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035189	300	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter	Cas Number	Result R	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **577**

4.96

mg/kg 12.06.17 19.52

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id:	MW-1-S-25-171115 568958-056		Matrix: Date Collect	Soil ed: 11.15.17 15.50		Date Received Sample Depth		17 09.00	
Tech: Analyst:	hod: Chloride by EPA 30 MNV MNV 3035189	00	Date Prep:	12.06.17 15.00		Prep Method: % Moisture: Basis:	E300P 0 Dry W		
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **469**

4.91

mg/kg 12.06.17 19.58

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	MW-1-S-30-171115 d: 568958-057		Matrix: Date Collect	Soil ed: 11.15.17 16.05		Date Received Sample Depth	l:11.18.17 09.0 : 30	0
Analytical Me Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	00	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 9.21 Dry Weight	
Seq Number:	3034777							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **794**

5.47

12.01.17 15.08

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-3-S-0-1-171115 Lab Sample Id: 568958-058		Matrix: Soil Date Collected: 11.16.17 08.20			Date Received:11.18.17 09.00 Sample Depth: 0 - 1			
Analytical Method:Chloride by EPA 3Tech:MNVAnalyst:MNVSeq Number:3035193	300	Date Prep:	12.06.17 16.20		Prep Method: % Moisture: Basis:			
Parameter	Cas Number	Result R	Ł	Units	Analysis Da	ate Flag	Dil	

16887-00-6

<4.99 4.99 mg/kg

12.06.17 20.34

U

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-3-S-5-171115 Lab Sample Id: 568958-059			Matrix: Soil Date Collected: 11.16.17 09.10		Date Received:11.18.17 09 Sample Depth: 5			0
Analytical Me Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	300	Date Prep:	12.06.17 16.20		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Seq Number:	3035193							
Parameter		Cas Number	Result J	RL	Units	Analysis D	ate Flag	Dil

16887-00-6

208

4.96

12.06.17 20.51

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id:	MW-3-S-10-171115 568958-060		Matrix: Date Collect	Soil ed: 11.16.17 09.25		Date Received Sample Depth	d:11.18.17 09.0 n: 10	00
Tech: Analyst:	hod: Chloride by EPA 3 MNV MNV 3035193	00	Date Prep:	12.06.17 16.20		Prep Method: % Moisture: Basis:	E300P 0 Dry Weight	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 285

4.95

12.06.17 20.57

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-3-S-15-171115 Lab Sample Id: 568958-061		Matrix: Date Collecte	Soil ed: 11.16.17 09.35		Date Receive Sample Deptl		09.00
Analytical Method: Chloride by EPA Tech: MNV Analyst: MNV Seq Number: 3034777	<u>300</u>	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 18.63 Dry Weig	ght
Parameter	Cas Number	Result F	аL	Units	Analysis D	ate Fla	ag Dil

948

16887-00-6

30.6

30.6

12.01.17 15.14

mg/kg

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-3-S-20-171115 Lab Sample Id: 568958-062		Matrix: Date Collecte	Soil d: 11.16.17 09.45		Date Receive Sample Depth		8.17 09.00	
Analytical Method: Chloride by EPA Tech: MNV Analyst: MNV	300		12.01.17.11.00		Prep Method: % Moisture: Basis:	11.72	2	
Seq Number: 3034777		Date Prep:	12.01.17 11.00			5	Weight	
Parameter	Cas Number	Result F	8L	Units	Analysis D	ate	Flag	Dil

16887-00-6 **693**

5.61

51

12.01.17 15.20

mg/kg

1

Page 76 of 92

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-3-S-25-1711 Lab Sample Id: 568958-063	15	Matrix: Date Collecte	Soil ed: 11.16.17 10.00		Date Receive Sample Depth		09.00
Analytical Method: Chloride by E Tech: MNV Analyst: MNV Seq Number: 3034777	PA 300	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	E300P 10.24 Dry Weig	ght
Parameter	Cas Number	Result F	аL	Units	Analysis D	ate Fla	ig Dil

16887-00-6 **861**

5.48

mg/kg

12.01.17 15.38

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: Lab Sample Id	MW-3-S-30-171115 d: 568958-064		Matrix: Date Collect	Soil ed: 11.16.17 10.10		Date Receive Sample Depth		8.17 09.00	
Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	:00	Date Prep:	12.01.17 11.00		Prep Method: % Moisture: Basis:	10.56		
Seq Number: Parameter	3034777	Cas Number	Result]	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **881**

5.48

12.01.17 16.02

mg/kg

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

GHD Services, INC- Midland

New Mexico East State

Analytical Method	Chloride by EPA 3	00						Pı	ep Metho	d: E30	00P	
Seq Number:	3034718			Matrix:	Solid				Date Pre	p: 11.3	30.17	
MB Sample Id:	7635234-1-BLK		LCS Sar	nple Id:	7635234-	1-BKS		LCS	D Sample	Id: 763	5234-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Chloride	< 5.00	250	255	102	254	100	90-110	0	20	mg/kg	11.30.17 21:04	

Analytical Method:	Chloride by EPA 3	00						Prep	Method	: E300)P	
Seq Number:	3034715			Matrix:	Solid			D	ate Prep	: 12.0	1.17	
MB Sample Id:	7635267-1-BLK		LCS Sar	nple Id:	7635267-1	I-BKS		LCSD S	Sample I	d: 7635	5267-1-BSD	
Parameter	MB	Spike	LCS	LCS	LCSD	LCSD	Limits	%RPD RF	D Limit	Units	Analysis	
	Result	Amount	Result	%Rec	Result	%Rec			DEnni	emis	Date	Flag

Analytical Method:	Chloride by EPA 30	00						P	rep Meth	od: E30	0P	
Seq Number:	3034777			Matrix:	Solid				Date Pr	ep: 12.0)1.17	
MB Sample Id:	7635270-1-BLK		LCS Sar	nple Id:	7635270-1	I-BKS		LCS	D Sample	e Id: 763	5270-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 5.00	250	254	102	259	104	90-110	2	20	mg/kg	12.01.17 13:46	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30)P	
Seq Number:	3035189			Matrix:	Solid				Date Pre	ep: 12.0	6.17	
MB Sample Id:	7635547-1-BLK		LCS Sar	nple Id:	7635547-	I-BKS		LCSI	D Sample	d: 7635	5547-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	<5.00	250	250	100	249	100	90-110	0	20	mg/kg	12.06.17 17:06	

Analytical Method:	Chloride by EPA 3	00						P	rep Metho	od: E30	OP	
Seq Number:	3035193			Matrix:	Solid				Date Pre	ep: 12.0	6.17	
MB Sample Id:	7635551-1-BLK		LCS Sar	nple Id:	7635551-1	I-BKS		LCS	D Sample	e Id: 763	5551-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
	Kesuit	Amount	Result	/once	Result	/once					Butt	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

New Mexico East State

Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3034718 568958-009	00		Matrix: nple Id:	Soil 568958-00)9 S			ep Meth Date Pr D Sample	ep: 11.3		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	688	287	955	93	948	91	90-110	1	20	mg/kg	11.30.17 22:45	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3034718 569124-003	00		Matrix: nple Id:	Soil 569124-00)3 S			ep Meth Date Pr D Sample	ep: 11.3		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	58.1	245	319	106	306	101	90-110	4	20	mg/kg	11.30.17 21:22	
Analytical Method:	Chloride by EPA 3	00						Pı	ep Meth	od: E300)P	

								-	rep meen	, an		
Seq Number:	3034715			Matrix:	Soil				Date Pr	ep: 12.0	1.17	
Parent Sample Id:	568958-030		MS San	nple Id:	568958-03	60 S		MS	D Sample	e Id: 5689	958-030 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	73.3	278	368	106	370	107	90-110	1	20	mg/kg	12.01.17 12:11	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	od: E30	00P	
Seq Number:	3034777			Matrix:	Soil				Date Pre	ep: 12.0	01.17	
Parent Sample Id:	568958-047		MS Sar	nple Id:	568958-04	47 S		MSI	O Sample	Id: 568	958-047 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	t Units	Analysis Date	Flag
Chloride	476	265	696	83	685	79	90-110	•	20	mg/kg	12.01.17 14:03	37

Analytical Method:	Chloride by EPA 30)0						Р	rep Metho	od: E30	0P	
Seq Number:	3034777			Matrix:	Soil				Date Pre	ep: 12.0	1.17	
Parent Sample Id:	568958-062		MS Sar	nple Id:	568958-06	52 S		MS	D Sample	e Id: 568	958-062 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	693	280	881	67	900	74	90-110	2	20	mg/kg	12.01.17 15:26	х

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

New Mexico East State

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E30	OP	
Seq Number:	3035189			Matrix:	Soil				Date Pre	ep: 12.0	6.17	
Parent Sample Id:	568958-001		MS San	nple Id:	568958-00	01 S		MSI	O Sample	Id: 5689	958-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD 1	RPD Limi	t Units	Analysis Date	Flag
Chloride	<4.92	246	277	113	257	104	90-110	7	20	mg/kg	12.06.17 17:24	Х

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	d: E30)0P	
Seq Number:	3035189			Matrix:	Soil				Date Pre	ep: 12.0	06.17	
Parent Sample Id:	568958-028		MS Sar	nple Id:	568958-02	28 S		MSI	D Sample	Id: 568	958-028 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag

Analytical Method:	Chloride by EPA 30)0						P	rep Meth	od: E30	00P	
Seq Number:	3035193			Matrix:	Soil				Date Pr	ep: 12.	06.17	
Parent Sample Id:	568958-058		MS Sar	nple Id:	568958-03	58 S		MS	D Sampl	e Id: 568	8958-058 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lin	it Units	Analysis Date	Flag
											12.06.17 20:39	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3035193			Matrix:	Soil				Date Pro	ep: 12.0	6.17	
Parent Sample Id:	570161-004		MS Sar	nple Id:	570161-00)4 S		MS	D Sample	e Id: 570	161-004 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	8.01	246	275	109	255	100	90-110	8	20	mg/kg	12.06.17 22:02	

Analytical Method: Seq Number:	3034306 Matrix	: Solid : 3034306-1-BLK			
Parameter	MB Result		Units	Analysis Date	Flag
Percent Moisture	<1.00		%	11.28.17 09:00	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

New Mexico East State

Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3034364	Matrix: MB Sample Id: MB Result <1.00	Solid 3034364-1-BLK		Units %	Analysis Date 11.28.17 11:20	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3034365	Matrix: MB Sample Id: MB Result <1.00	Solid 3034365-1-BLK		Units %	Analysis Date 11.28.17 11:20	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3034366	Matrix: MB Sample Id: MB Result <1.00	Solid 3034366-1-BLK		Units %	Analysis Date 11.28.17 11:20	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3034306 568958-003 Parent Result 15.6	Matrix: MD Sample Id: MD Result 14.7		%RPD RPD Limi 6 20	t Units %	Analysis Date 11.28.17 09:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3034306 568958-019 Parent Result 11.1	Matrix: MD Sample Id: MD Result 11.2		%RPD RPD Limi 1 20	t Units %	Analysis Date 11.28.17 09:00	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

GHD Services, INC- Midland

New Mexico East State

Analytical Method:	Percent Moisture							
Seq Number:	3034364	Matrix:	Soil					
Parent Sample Id:	568958-020	MD Sample Id:	568958-020 D					
	D (4 TT	A	
Parameter	Parent Result	MD Result		%RPD	RPD Limi	t Units	Analysis Date	Flag

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3034364 568958-038	Matrix: MD Sample Id:					
Parameter	Parent Result	MD Result	%RPD	RPD Limi	t Units	Analysis Date	Flag
Percent Moisture	14.6	14.9	2	20	%	11.28.17 11:20	

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3034365 568958-041	Matrix: MD Sample Id:					
Parameter	Parent Result	MD Result	%RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	20.7	19.6	5	20	%	11.28.17 11:20	

Analytical Method: Seq Number:	3034366	Matrix:						
Parent Sample Id:	568958-061	MD Sample Id:	568958-061 D					
Parameter	Parent Result	MD Result		%RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	18.6	18.3		2	20	%	11.28.17 11:20	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

XENCO
LABORATORIES
Setting the Standard since 1990
Stafford, Texas (281-240-4200)
Dallas Texas (214-902-0300)

CHAIN OF CUSTODY Page 1 Of

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Final 1.001

of 92

Page 85

Xenco Quote # Xenco Job # 080 www.xenco.com Analytical Information Matrix Codes Client / Reporting Information **Project Information** Company Name / Branch: Project Name/Number W = Water S = Soil/Sed/Solid Company Address: 6320 ROTHWAY SUITE 100 Project Location: GW =Ground Water HOBBS NAW DW = Drinking Water HOUSTON, TX 77040 5 P = Product Invoice To DE SW = Surface water 713-734-3090 SL = Sludge OW =Ocean/Sea Water Project Contact: SCOTT FORD 22 WI = Wipe O = OilSamplers's Name: 0 WW= Waste Water Collection A = Air Number of preserved bottles 44 No. Field ID / Point of Collection aOH/Zn cetate IaHSO4 U Sample 12504 EOH IONE NO3 HOR # of ō Depth Date Time Matrix bottles **Field Comments** 53-13-5-0-1-171113 0-1 5 1 11-13-17 1230 l HOLD 53-13-5-10-171113 2 10 1330 HOLD 15 53-13-5-15-171113 1350 3 20 33-13-5-20-171113 1405 4 25 513-13-5-25-1711(3 5 1420 1 53-13-5-30-171113 1445 6 30 53-14-5-01-17113 7 0-1 1515 HOLIS 53-14-5-5-171(13 5 8 1 1610 HOLD SB-14-5-10-171113 iD ĩ 9 1620 15 53-14-5-15-17/113 1630 10 Turnaround Time (Business days) Data Deliverable Information Notes: Same Day TAT 5 Day TAT Level IV (Full Data Pkg /raw data) Level II Std QC . 8021B-RL<=0.00100 mg/l Next Day EMERGENCY 7 Day TAT Level III Std QC+ Forms TRRP Level IV ii. TPH TX1005 EXT to C35- RL <= 5.00 mg/l 2 Day EMERGENCY Contract TAT Level 3 (CLP Forms) UST / RG -411 iii. Flag estimated concentrations 3 Day EMERGENCY **TRRP Checklist** TAT Starts Day received by Lab, if received by 5:00 pm FED-EX / UPS: Tracking # SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Relinquished by Sampler: Date Time: Received By: Relinquished By: Date Time: Received By: ED-X Relinquished by: Date Time: Received By: Relinquished By: Date Time: :00 3 Relinquished by: Date Time: Preserved where applicable On Ice Cooler Temp. Thermo, Corr. Factor Temp: 5 IR ID:R-8 Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase o Idard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any CF:(0-6: -0.2°C) losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of X I be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract. (6-23: +0.2°C) Corrected Temp: 20.5

CHAIN OF CUSTODY Page 2 of M

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

				1	www.xe	nco.com						Xe	enco Quote	8		X	enco Job :	"5	U	8958	
														Analy	tical Info	rmation	1				Matrix Codes
Client / Reporting Information				ct Infor	rmation																
mpany Name / Branch: GHD		Project Nan	ne/Number:	OS	296	361														Field HOLD HOLD HOLD HOLD HOLD HOLD HOLD	W = Water S = Soil/Sed/Solid
mpany Address: 6320 ROTHWAY SUITE	100	Project Loc	ation:	0																	GW =Ground Water
HOUSTON TX 77040		1	HC	131	35	/	V	M					N								DW = Drinking Water P = Product
mail: Phone No:		Invoice To:	10										DE								SW = Surface water SL = Sludge
713-734	-3090											1	17								OW =Ocean/Sea Wat
roject Contact: SCOTT FCRD							_			_	_	-	ruc								WI = Wipe O = Oil
amplers's Name:	_					_	_					_	9								WW= Waste Water
		Collectio	n			N	lumb	er of pr	reser	ved bot	tles	-	H								A = Air
No. Field ID / Point of Collection						120	2.0	7	ŧ .	04	-		0								
	Sample Depth	Date	Time	Matrix	# of bottles	ID HO	Acetate	HN03	12504	NaOH NaHSO4	MEOH	NONE								Fie	d Comments
1 53-14-5-20-171113	20	11-13-17	1640	5	L			1017	T		5	XI	X				100				
2 51374-5-25-171114	25		10750	i	1							2	X							HOLD	
3 56-14-5-30-171114	30	T	0805		1							X	X								
4 513-15-5-0-1-171114	0-1	1	0845	1	1				1	-		V	(HOLD	
EN IT A M IMILION	K		0930		11							2K	Ŷ								
and 1.2	10		0940	+	li		-		+	-		5	ŶΗ								
the second second second	15		0955	+	11		-		+	-		Ŷ	6				-			110	
	20	1	1005	1	11		-		+	-	-	A_{\downarrow}	$\widehat{}$		-		-				
AB SE A AF INUM	25		1025	$\left \right $	11				+			<u></u>	2		-		-				
1	30		1040		ti		-		+	+	P	2	2-		-		-		-		
10 5/3-/3-5-30-1/1/14 Turnaround Time (Business days)	130	1 10	1010		Data Del	liverable li	nforma	ation	-	_	I r	Έl	T			Notes:	-		-	-	
Same Day TAT 5 Day TA	T			vel II St				_	Lovo	IN/Eul	I Data I	Dka /	raw data)		1 80	218-RI	<=0.001	100 mg/l			
				_		-		_	-	P Level		r kg /i	un dutuj	-	-	-	-	-	-	<= E 00 mall	
Next Day EMERGENCY 7 Day TAT		-		_	td QC+		-				_				-	-					
2 Day EMERGENCY Contract	TAT		Le	vel 3 (C	LP Form	ns)			UST	/ RG -4	11				iii. F	lag esti	mated c	oncentra	ations	S	
3 Day EMERGENCY			TR	RP Che	ecklist																
TAT Starts Day received by Lab, if received I															FED	-EX / UR	PS: Tracl	king #			
Relinquished by Sampler:	USTODY MUST BE Date Tim		Received		ME SAMP	LES CHA	NGE F		_	, INCLUD quished		URIER	RDELIVER	Date Ti	me:		Receive	d By:		0	11.10.11
1 Muchal 1	1-17/7			ED	-X			2									2 M	/01	U	recon	th 11.18.11
Relinquished by:	Date Tim	e:	Received	By:				R	Relin	quished	By:			Date Ti	me:		Receive	d By:			91.0
3 Relinquished by:	Date Tim	e:	3 Received	*		-		4					1	served wi	here appl	icable	4	On lo	ce	Cooler Temp.	Thermo. Corr. Factor
5			5		Temn	:2	m	3		IR ID):R-8	3									
Notice: Notice: Signature of this document and relinquishment of samples losses or expenses incurred by the Client if such loses are due to circums	s constitutes a valid	purchase ord	ler from client c	0		-6: -0		-					X	nditions of	service. Xe	amples r	be liable o	nly for the	cost o	of samples and shall no analyzed will be invoice	ot assume any responsibility ed at \$5 per sample. These t
osses of expenses incurred by the client if such loses are due to cliculity will be enforced unless previously negotiated under a fully executed clien		venuer er Ab	and the second s			6-23: -								on or anili	pros. Pary's	empres I	country of	, storioo Di	and the second second		
									0		~										
					Corre	ected	rer	np. (X	0.	D										

Final 1.001

Page 86 of 92

CHAIN OF CUSTODY Page 3 of 7

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

				Y	www.xe	nco.con	n						Xenco	Quote	#			Xenco	Job#	510	8958	
				_											Ana	lytical Ir	nformat	ion				Matrix Codes
Client / Reporting Information			Proje	ect Infor	mation																	
ompany Name / Branch: GHD		Project Nam	ne/Number:	08	96	36	1															W = Water
company Address: 6320 ROTHWAY SUI	TE,00	Project Loc	ation:															11			File HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD	S = Soil/Sed/Solid GW =Ground Water
HOUSTON, TX 47040		1.50	HOB	SBG	5	N	N	(DW = Drinking Water P = Product
mail: Phone	No:	Invoice To:	1100	10-			1		-				N	行的								SW = Surface water
713-734-	3090												RC								-	SL = Sludge OW =Ocean/Sea Wat
Project Contact: SCOTT FORD		1					_					_	2.D									WI = Wipe
samplers's Name:													240									O = Oil WW= Waste Water
		Collection	n		1.5	1	Numb	per of pr	rese	rved b	ottles	5	HLC								-	A = Air
No. Field ID / Point of Collection							S.			5			CH									
	Sample Depth	Date	Time	Matrix	# of bottles	Į Į	VaOH/Zn Acetate	EON!	12504	HOH	MEOH	NONE	0									Field Comments
1 53-16-5-0-1-17111		11-14-17	1	S	J	I	ZK	TJ	T	Z 2	2	V	X				-	-		-	-	rield Comments
2 53-16-5-5-171114	5	11/1/	17.30	7	1		-		+	+	+	Ŕ	Ŷ	-	-	-	+	+		+		
					1		-		+	+	+	A	1		-		+	-		-		
3 5B-16-5-10-171114	10		1240		1	+	-		+	+	-	X	A	_		-	-	-		-	HOLD	
4 SB-16 5-15-171(14	15		1250	\vdash	1		-		+	_	-	X	X	_		-	-	-		-		
5 SB-16-5-20-171114	20		1300		1				-			X	X,	-		_					E	
6 5B-16-5-25-171114	25		1315		1							X	X					1			Fi HOLD HOLD HOLD HOLD HOLD HOLD HOLD HOLD	
7 53-16-5-30-171114	30	1	1330		1							X	X		_	-	1.1	1				
8 SB-17-5-0-1-171114	0-1		1400		1							X	X								HOLD	
· SB-17-5-5-171114	5		1445		1							X	V	1.00							HOLP	
10 33-17-5-10-171114	10	V	1455	V	1							4	X									
Turnaround Time (Business days)		1		1.13	Data Deli	iverable I	Inform	ation		-			12				Note	s:				
Same Day TAT 5 Day	y TAT	1	Lev	vel II Sto	1 QC				Leve	el IV (F	ull Da	ta Pkg	/raw d	lata)		i. 8	8021B-	RL<=(0.00100 r	mg/l		
Next Day EMERGENCY 7 Day	TAT		Lev	vel III St	d QC+ F	Forms			TRR	PLev	VII				_	ii	TPH T	X1005	FXT to (C35- RI	<= 5.00 mg/l	
2 Day EMERGENCY	CONT TAT			-	LP Form		-	-		/ RG -	_	-			_	-						
7		-		-	-	15)			051	/ RG -	411	_					. Flag e	suma	ed conce	entrations	5	
3 Day EMERGENCY			TR	RP Che	cklist	_	_										-					
TAT Starts Day received by Lab, if received																FE	ED-EX /	UPS:	Fracking	#		
Relinquished by Sampler:	LE CUSTODY MUST BE Date Tim		Received		E SAMP	LES CHA	ANGE			quishe			ER DEL	IVERY	Date T	lime;		Rec	Wed/By	i	1	210
1 This he tiel	11-17-17	_	1 F	ED-	X			2										2	NO	W	Ulp	neri
Relinquished by:	Date Tim	e:	Received	By:				R	Relin	quishe	ed By:				Date 1	fime:		Reč	eived By:		- 1	1.18.17 9:0
3 Relinquished by:	Date Tim	e:	3 Recei			~	-	4		1 0.	-14		-	Pres	erved v	where ap	plicabl	4 e	0)n Ice	Cooler Temp.	
5			5	Terr	np: d	20	1	2	IR	ID:F	0 0				[Γ	11		
Notice: Notice: Signature of this document and relinquishment of san losses or expenses incurred by the Client if such loses are due to cir			co A mini	CF:	(0-6:	-0.20	Ci	_														not assume any responsibility f piced at \$5 per sample. These to
will be enforced unless previously negotiated under a fully executed					6-23	: +0.2 d Ter	200	1								interest set	, souther	a tower	and of round		and the second	and a ve per sumply. These is
				Corr	ecter	d Tor	20	0	0	C												
					Solet	a ren	ub;	X	O	.0	F .											

Final 1.001

Page 87 of 92

Setting the Standard since 1990
Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY Page L Of

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Xenco Job # 568958 Xenco Quote # www.xenco.com Analytical Information Matrix Codes Client / Reporting Information **Project Information** Company Name / Branch: Project Name/Number: W = Water S = Soil/Sed/Solid Company Address: 6320 ROTHWAY SULTE 100 Project Location: GW =Ground Water DW = Drinking Water 77040 P = Product Sn Email: Invoice To SW = Surface water DE 713-734-3090 SL = Sludge OW =Ocean/Sea Water Project Contact: WI = Wipe FORM Sic O = OilSamplers's Name: WW= Waste Water A = Air Collection Number of preserved bottles -H No. Field ID / Point of Collection laOH/Zn cetate aHSO4 C Sample 12504 EOH NONE INO3 AOH # of ö Depth Date Time Matrix bottles **Field Comments** 5B-17-5-15-17/114 11-1411 1510 S 1 58-17-5-20-171114 20 1520 1 HOLD 2 25 17-5-25-171114 SR-3 1540 -5-30-171114 30 GR 1555 4 11-15-12 0735 5-0-1-71115 5 5 0-1 HOLD 5 B 6 ·* 6 0 800 10 7 0805 15 8 0815 V 20 8-5-20-1 512 HOLD 9 0825 V 25 513-18-5-25-1 HCLD 10 0835 Turnaround Time (Business days) Data Deliverable Information Notes: Same Day TAT 5 Day TAT Level II Std QC Level IV (Full Data Pkg /raw data) 8021B-RL<=0.00100 mg/l Next Day EMERGENCY 7 Day TAT Level III Std QC+ Forms TRRP Level IV ii. TPH TX1005 EXT to C35- RL <= 5.00 mg/l 2 Day EMERGENCY Contract TAT Level 3 (CLP Forms) UST / RG -411 iii. Flag estimated concentrations 3 Day EMERGENCY **TRRP** Checklist TAT Starts Day received by Lab, if received by 5:00 pm FED-EX / UPS: Tracking # SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Relinquished by Sempler: Date Time: Received By: Relinquished By: Date Time: Rece ved By 1117-17 FED Relinquished by: Date Time: Received By: Relinquished By: Date Time: Received By Relinquished by: Date Time: Received [served where applicable On Ice Cooler Temp. Thermo, Corr. Factor IR ID:R-8 Temp: Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client con nditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any CF:(0-6: -0.2°C) losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum (ost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract. (6-23: +0.2°C) Corrected Temp: 200

Page 88 of 92

Final 1.001

CHAIN OF CUSTODY Page 5 of 7

Dallas Texas (214-902-0300)

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

					www.xe	enco.co	om					_	Xenco Qu	ote #			Xenco	Job # C	56	8958
						-								A	nalytica	I Informa	- 1			Matrix Codes
Client / Reporting Information				ect Info	rmation	1														
npany Name / Branch: GHD		Project Na	me/Number:	C	29	28	61													W = Water
Pany Address: 6320 ROTHWAY SUC	TE 100	Project Lo			01	00														S = Soil/Sed/Solid GW =Ground Water
HOUSTON, TX 77040			H	OB	BS		1	11	M				N				1 1			DW = Drinking Water
il: Phone No:	-	Invoice To:	:								_	-	12							P = Product SW = Surface water
713-734-30	90												0							SL = Sludge OW =Ocean/Sea Water
SCOTT FORD							_	_			_	_	Rei				11			WI = Wipe
plers's Name:		-											0		11		1 1			O = Oil WW= Waste Water
		Collectio	'n			1700	Numb	per of p	oreser	ved b	ottles		1							A = Air
Field ID / Point of Collection							uz .			4			H						113	
	Sample Depth		Time	Matrix	# of bottles	ē	VaOH/Zn Acetate	INO3	12504	JaHSO4	VEOH	NONE	0		1 1					
58-18-5-30-171115	30	11-15-17		S	louies	T	ZK	T	I :	z z	2	Z	V	-		-			+	Field Comments
MW-2-5-0-1-171115	0-1	1	0915	1	1		-		+	+	+	V	V	+		-		-	+	alat D
	5		-	+	1				-	+	+	X	X	-				_	-	HOLD
MW-2-5-5-171115	10	-	0945	+	1		-	+	-	-	-	V.	1	-		-		-	+	
MW-2-5-10-171115		1	1000	1	1		_		-	-	_	X	X	-		_			_	
MW-2-5-15-17/115	15	1.1	1015		1				_	-		X	X							
MW-2-5-20-171115	20		1075		1							X	X							
MW-2-5-25-171115	2.5		1040		Î							X	X							
MW-2-5-30-171115	30		1105	1	1							X	X							
MW-2-5-35-171115	35		1135		1							X	X							
MM-2-5- 40-171(15	40		1205	V	1							X	X							
Turnaround Time (Business days)					Data Del	liverable	e Inform	ation	- 1			1.5				Not	es:			
Same Day TAT 5 Day TAT			Lev	el II Ste	d QC				Level	IV (F	ull Da	ta Pkç	/raw data	1)		i. 8021B	RL<=0.	00100 m	ig/l	
Next Day EMERGENCY 7 Day TAT			Lev	el III St	td QC+	Forms	23		TRRF	Leve	el IV	1.1				II. TPH T	X1005 I	EXT to C	35- RL	. <= 5.00 mg/l
2 Day EMERGENCY			Lev	el 3 (C	LP Form	ns)	33		UST	RG -	411					iii. Flag e	estimate	d concer	ntration	S
3 Day EMERGENCY			TRI	RP Che	ecklist															
TAT Starts Day received by Lab, if received by						-										FED-EX	UPS: T	racking #	E.	
Relinquished by Sampler:	ODY MUST BE Date Tim	DOCUMENT	Received	ACH TIM	IE SAMP	LES CH	ANGE F		SION, Reling			COURI	ER DELIVE		Time:		Dana	Add		Α
This has hard	17717		1 FR		-x			1	2	uisiic	u by.			Date	e rinne.		2	ydd By	11 11	100 mith
telinquished by:	Date Tim	e:	Received	By:				F	Reling	uishe	d By:			Date	Time:		Rece	Wed By:	MA	1110.17
elinguished by:	Date Tim	e.	3 Received	Bu-				4	1					1		Prov	4			(1.18.17 9
	Date 111		5	Jy.			Te	mp:	6	LC) :	3	IR ID:	R-8		licab	le	On	lce	Cooler Temp. Thermo. Corr. Factor
ce: Notice: Signature of this document and relinquishment of samples con	stitutes a valid	purchase orde	er from client co	mpany t	o Xenco,	its af		:(0-6				_				enco v	vill be liab	le only for t	he cost o	of samples and shall not assume any responsibility for
es or expenses incurred by the Client if such loses are due to circumstanc be enforced unless previously negotiated under a fully executed client con	lract.	control of Xen	ico. A minimum	charge (of \$75 wil	lbea										ample	s receive	d by Xenco	but not	analyzed will be invoiced at \$5 per sample. These term
							0	(0-4	20.	+U.4		12	20.5	5						
							Co	prrec	ted	1 er	nb:	0	0.							

Final 1.001

Page 89 of 92

CHAIN OF CUSTODY P Of Page

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Xenco Quote # Xenco Job # 563958 www.xenco.com Matrix Codes Analytical Information **Project Information** Client / Reporting Information W = Water Company Name / Branch Project Name/Number: S = Soil/Sed/Solid S GW =Ground Water Company Address: 6320 ROTHWAY SWITE 100 Project Location: Se . DW = Drinking Water NM HEBBS HOUSTON TX 7.7040 P = Product 0 SW = Surface water Email: Phone No: SL = Sludge 713-734-3090 12rc OW =Ocean/Sea Water Project Contact: 5CO WI = Wipe OTED O = Oil WW= Waste Water Samplers's Name: ~ A = Air Collection Number of preserved bottles t No. Field ID / Point of Collection laOH/Zn cetate VaHSO4 2 12504 NEOH Sample NO3 HOH ONE # of ō bottles **Field Comments** Depth Matrix Date Time MW-1-5-0-1-171115 11-1517 1420 HOLD 5 0-1 1 HULP MW-1-5-5-171115 5 1455 2 MW-1-5-10-17/115 10 1505 Ŵ 3 MW-1-5-15-141115 15 1515 4 MW-1-5-20-171115 HOLP 20 1520 5 HOLD MW-1-5-25-171115 25 1550 1 6 MW-1-5-30-171115 30 1 1605 7 8 9 10 Data Deliverable Information Notes: Turnaround Time (Business days) 5 Day TAT Level IV (Full Data Pkg /raw data) .8021B-RL<=0.00100 mg/l Same Day TAT Level II Std QC ii. TPH TX1005 EXT to C35- RL <= 5.00 mg/l 7 Day TAT TRRP Level IV Next Day EMERGENCY Level III Std QC+ Forms 2 Day EMERGENCY Contract TAT Level 3 (CLP Forms) UST / RG -411 iii. Flag estimated concentrations **TRRP** Checklist 3 Day EMERGENCY FED-EX / UPS: Tracking # TAT Starts Day received by Lab, if received by 5:00 pm SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Received B Received By: Relinquished By: Date Time: Relinquished by Sampler Date Time: 17-17 FED-X Date Time: Received By Date Time: Received By: Relinquished By: Relinquished by: 3 applicable On Ice Cooler Temp. Thermo, Corr. Factor Relinguished by: Date Time: Received By: Temp: 20. 3 IR ID:R-8 5 Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco ce. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any CF:(0-6: -0.2°C) Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 wi will be enforced unless previously negotiated under a fully executed client contract. (6-23: +0.2°C) Corrected Temp:

Page 90 of 92

Final 1.001

CHAIN OF CUSTODY Page 7 Of 7

Dallas Texas (214-902-0300)

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

		_		1	www.xe	nco.co	m	_					Xenco	Quote #	P.		Xenc	o Job # C	5689	58	
							-	-							Analy	tical Inform	nation			1	Matrix Codes
Client / Reporting Information					mation			_													
Company Name / Branch: GHP Company Address: 6320 POTHWAY SUITE HOUSTON, TX 47040	100	Project Nam	ation:		398				_											КL <= 5.00 mg/l	= Water = Soil/Sed/Solid V =Ground Water V = Drinking Water
$\frac{HOUSTON}{1} \frac{TX}{77040}$ Phone No: $\frac{713-734-309}{70ject Contact:} SCOTT FOULD$ implers's Name:		Invoice To:	Hol	513	1	_	_		_		_		LORIDES							P SV SL OV W O O W	= Product V = Surface water . = Sludge V =Ocean/Sea Wate = Wipe = Oil W= Waste Water
	-	Collection	1				Numb	per of p	oresen	ved bo	ottles	-	H							A	= Air
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	Ę	NaOH/Zn Acetate	HN03	H2SO4	NaHSO4	MEOH	NONE	e							Field (Comments
1 MW-3-5+0-1-171116	0-2	11-1617	0820	5	1							X	X						Ho	LD	
2 MW-3-5-5-171116	5		0910	1	1							X	X						HO	LD	
3 MW-3-5-10-17/116	10		0975	1	1		22					V	X						HO	20	
4 MW-3-5-15-171116	15	1	0935		1							V	Ŷ								
5 MB-3-5-20-171116	20		0945	1	1							V	X								
6 MW-3-5-25-171116	25	1	1000		1							X	X								
7, MW 3-5-30-171116	30		1010	V	I					-	1	Ŷ	X								
8				1								1	ľ								
9				11.11							1						-1-				
10		11																			
Turnaround Time (Business days)	-			1200	Data Deli	iverable	Inform	ation		-						N	lotes:		1 1		
Same Day TAT 5 Day TAT		1.1	Lev	el II Sto	QC				Level	IV (Fu	II Data	a Pkg	/raw d	data)		i. 8021	B-RL<=	0.00100 mg	л		
Next Day EMERGENCY 7 Day TAT			Lev	el III St	d QC+ F	orms			TRRP	Level	IV	r i				II. TPH	H TX1005	5 EXT to C3	Fiel HOLD HOLD HOLD HOLD	mg/l	
2 Day EMERGENCY Contract TA	т		Lev	el 3 (Cl	P Form	ns)			UST /	RG -4	11					iii. Fla	g estima	ted concentr	rations		
3 Day EMERGENCY			TR	RP Che	cklist					-											
TAT Starts Day received by Lab, if received by	5:00 pm	-		-									_			FED-E	X / UPS:	Tracking #			
Relinquished by Sampler: SAMPLE CUS	TODY MUST BE	DOCUMENT	ED BELOW EA	CH TIM	E SAMPL	LES CH	ANGE F					OURIE	ER DEL			_			1	7	
1 Mars has fan /	Date Tim	e:	Received	By:	X			F	Relinqu 2	uished	By:				Date Tim	le:	Rec	Med By	1100	Ant	the
Relinquished by:	Date Tim	e:	Received		1			F	Relinq	uished	By:				Date Tim	ie:	Rec	erved By:	/ m com	SXXI	11.18.170
3 Relinquished by:	Date Tim	9 *	3 Received	Bur	_		_	4	4	-							4	0.1	0		11.18.119
5	Dure Till		5	oy.			Tar	np:	5)C	7	31	RIC):R-8	3	JIIC	able	On I		riemp. Th	ermo. Corr. Factor
Notice: Notice: Signature of this document and relinquishment of samples co losses or expenses incurred by the Client if such loses are due to circumstan will be enforced unless previously negotiated under a fully executed client co	ces beyond the o	purchase orde control of Xend	r from client co co. A minimum	mpany ti charge d	o Xenco, i If \$75 will	its a be	CF	:(0-6	6: -0.	.2°C)		D.			ienc san	o will be lia	able only for the ved by Xenco b	e cost of samples out not analyzed w	and shall not ass ill be invoiced at	sume any responsibility for \$5 per sample. These ten

Page 91 of 92

Final 1.001

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: GHD Services, INC- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/18/2017 09:00:00 AM Temperature Measuring device used : R8 Work Order #: 568958 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? 20.5 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? No #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: 2000 Shawnee Smith

Date: 11/20/2017

Checklist reviewed by:

Mike Kimmel

Date: 11/27/2017

Page 92 of 92

Project Id:089861Contact:Chris KnightProject Location:Lovington New Mexico

Certificate of Analysis Summary 571045

GHD Services, INC- Midland, Midland, TX

Project Name: New Mexico East State

Date Received in Lab:Wed Dec-13-17 04:50 pmReport Date:20-DEC-17Project Manager:Kelsey Brooks

	Lab Id:	571045-0	001	571045-0	02	571045-0	03	571045-0	004		
Analysis Requested	Field Id:	MW-1-W-17	71213	MW-2-W-17	71213	MW-3-W-17	1213	MW-1-WD-1	71213		
Analysis Kequestea	Depth:										
	Matrix:	GROUND W	ATER	GROUND W	ATER	GROUND W	ATER	GROUND W	ATER		
	Sampled:	Dec-13-17	13:40	Dec-13-17	13:00	Dec-13-17 1	4:20	Dec-13-17 (00:00		
Chloride by EPA 300	Extracted:	** ** **	**	** ** ** *	**	** ** ** 1	**	** ** ** :	**		
	Analyzed:	Dec-14-17	19:00	Dec-14-17 1	9:07	Dec-14-17 1	9:14	Dec-14-17	19:21		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL		
Chloride		10900	50.0	11300	50.0	11100	50.0	11400	50.0		
TDS by SM2540C	Extracted:										
	Analyzed:	Dec-18-17	08:31	Dec-18-17 (08:31	Dec-18-17 (8:31	Dec-18-17 (08:31		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL		
Total Dissolved Solids		16900	5.00	12000	5.00	18600	5.00	16500	5.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Analytical Report 571045

for GHD Services, INC- Midland

Project Manager: Chris Knight

New Mexico East State

089861

20-DEC-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

20-DEC-17

Project Manager: **Chris Knight GHD Services, INC- Midland** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): **571045** New Mexico East State Project Address: Lovington New Mexico

Chris Knight:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 571045. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 571045 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 571045

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1-W-171213	W	12-13-17 13:40		571045-001
MW-2-W-171213	W	12-13-17 13:00		571045-002
MW-3-W-171213	W	12-13-17 14:20		571045-003
MW-1-WD-171213	W	12-13-17 00:00		571045-004

CASE NARRATIVE

Client Name: GHD Services, INC- Midland Project Name: New Mexico East State

 Project ID:
 089861

 Work Order Number(s):
 571045

 Report Date:
 20-DEC-17

 Date Received:
 12/13/2017

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-1-W-17121 Lab Sample Id: 571045-001	3	Matrix: Date Coll	Ground Water ected: 12.13.17 13.40]	Date Received:12.	13.17 16.5	60
Analytical Method: Chloride by I	EPA 300]	Prep Method: E30)0P	
Tech: LRI				Q	% Moisture:		
Analyst: OJS		Date Prep	: 12.13.17 15.00				
Seq Number: 3036137							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10900	50.0	mg/L	12.14.17 19.00		100
Analytical Method: TDS by SM2	2540C						
Tech: LRI					% Moisture:		
Analyst: LRI							
Seq Number: 3036101							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total Dissolved Solids	1642222	16900	5.00	mg/L	12.18.17 08.31		1

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-2-W-171213 Lab Sample Id: 571045-002	i	Matrix: Date Colle	Ground Water ected: 12.13.17 13.00]	Date Received:12.	13.17 16.5	50
Analytical Method: Chloride by E	EPA 300]	Prep Method: E30)0P	
Tech: LRI				Q	% Moisture:		
Analyst: OJS		Date Prep	: 12.13.17 15.00				
Seq Number: 3036137							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11300	50.0	mg/L	12.14.17 19.07		100
Analytical Method: TDS by SM2	540C						
Tech: LRI				(% Moisture:		
Analyst: LRI							
Seq Number: 3036101							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total Dissolved Solids	1642222	12000	5.00	mg/L	12.18.17 08.31		1

Certificate of Analytical Results 571045

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-3-W-17121 Lab Sample Id: 571045-003	3	Matrix: Date Coll	Ground Water ected: 12.13.17 14.20]	Date Received:12.	13.17 16.5	50
Analytical Method: Chloride by	EPA 300]	Prep Method: E30)0P	
Tech: LRI				Q	% Moisture:		
Analyst: OJS		Date Prep	: 12.13.17 15.00				
Seq Number: 3036137							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11100	50.0	mg/L	12.14.17 19.14		100
Analytical Method: TDS by SM2	2540C						
Tech: LRI				(% Moisture:		
Analyst: LRI							
Seq Number: 3036101							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total Dissolved Solids	1642222	18600	5.00	mg/L	12.18.17 08.31		1

Certificate of Analytical Results 571045

GHD Services, INC- Midland, Midland, TX

New Mexico East State

Sample Id: MW-1-WD-1712 Lab Sample Id: 571045-004	213	Matrix: Date Colle	Ground Water ected: 12.13.17 00.00]	Date Received:12.	13.17 16.5	50
Analytical Method: Chloride by	EPA 300]	Prep Method: E30)0P	
Tech: LRI				Q	% Moisture:		
Analyst: OJS		Date Prep	: 12.13.17 15.00				
Seq Number: 3036137							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11400	50.0	mg/L	12.14.17 19.21		100
Analytical Method: TDS by SM2	2540C						
Tech: LRI				0	% Moisture:		
Analyst: LRI							
Seq Number: 3036101							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Total Dissolved Solids	1642222	16500	5.00	mg/L	12.18.17 08.31		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

Amalatical Matheds TDC has SM2540C

QC Summary 571045

GHD Services, INC- Midland

New Mexico East State

Analytical Method:	Chloride by EPA 3	00						Pi	rep Metho	od: E30	OP
Seq Number:	3036137			Matrix:	Water				Date Pro	ep: 12.1	13.17
MB Sample Id:	7636002-1-BLK		LCS Sar	nple Id:	7636002-	1-BKS		LCS	D Sample	e Id: 763	6002-1-BSD
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date
Chloride	< 0.500	25.0	27.2	109	27.3	109	90-110	0	20	mg/L	12.14.17 16:06

Analytical Method:	Chloride by EPA 3	00						P	rep Metho	od: E30	0P	
Seq Number:	3036137			Matrix: Drinking Water				Date Prep: 12.13.17				
Parent Sample Id:	571046-001		MS Sar	MS Sample Id: 571046-001 S MSD Sample Id: 5			e Id: 571	: 571046-001 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride			37.1	112	36.8	111	90-110		20	mg/L	12.14.17 16:27	

Analytical Method:	Chloride by EPA 300							P	rep Metho	od: E30	0P	
Seq Number:	3036137	37 Matrix:			Drinking Water Date Prep:			ep: 12.1	12.13.17			
Parent Sample Id:	571047-001		MS San	IS Sample Id: 571047-001 S MSD Sample Id: 5			e Id: 5710	: 571047-001 SD				
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	13.7	25.0	41.3	110	43.3	118	90-110	5	20	mg/L	12.14.17 18:04	Х

Analytical Metho	a: 1D5 by 51/12540C								
Seq Number:	3036101			Matrix:	Water				
MB Sample Id:	3036101-1-BLK		LCS Sar	nple Id:	3036101-1-BKS				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec		Limits	Units	Analysis Date	Flag
Total Dissolved Soli	ds <5.00	1000	983	98		80-120	mg/L	12.18.17 08:31	

Analytical Method:	TDS by SM2540C							
Seq Number:	3036101	Matrix:	Water					
Parent Sample Id:	571024-001	MD Sample Id:	571024-001 D					
Parameter	Parent Result	MD Result		%RPD	RPD Limit	Units	Analysis Date	Flag
Total Dissolved Solids	2740	2720		1	10	mg/L	12.18.17 08:31	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery

 $LCS = Laboratory \ Control \ Sample$ A = Parent ResultC = MS/LCS ResultE = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec Flag

CABORATORIES

$\begin{array}{c} \textbf{CHAIN} \hspace{0.1cm} \textbf{OF} \hspace{0.1cm} \underset{Page}{\overset{}{\bigsqcup}} \hspace{0.1cm} \textbf{OF} \hspace{0.1cm} \underset{\overset{}{\bigsqcup}}{\overset{}{\bigsqcup}} \hspace{0.1cm} \textbf{CUSTODY} \end{array}$

Setting the Standard since 1990

Relinguished by:

5

Date Time:

Received By:

Stafford, Texas (281-240-4200) Odessa, Texas (432-563-1800) Lakeland, Florida (863-646-8526) Dallas Texas (214-902-0300) Norcross, Georgia (770-449-8800) Tampa, Florida (813-620-2000) Xenco Quote # Xenco Job # Service Center - San Antonio, Texas (210-509-3334) 1045 www.xenco.com Analytical Information Matrix Codes **Client / Reporting Information Project Information** Company Name / Branch: Project Name/Number **GHD-Midland** New Mexico East State/089861 S = Soil/Sed/Solid Company Address: Project Location: GW =Ground Water DW = Drinking Water 2135 S Loop 250 W, Midland, TX 79703 Lovington New Mexico P = Product Invoice To: Email: Phone No: SW = Surface water christopher.knight@ghd.com 512-506-8803 SL = Sludge GHD OW =Ocean/Sea Water Project Contact: Christopher Knight W = Wipe PO Number: 0=01 Samplers's Name UStoNix WW= Waste Water A = Air Collection Number of preserved bottles Chloride No. Field ID / Point of Collection aOH/Zn cetate VaHSO4 TDS Sample 2S04 EOH NONE NO3 aOH # of ö Depth Date Time Matrix bottles **Field Comments** Mw-1-W-171213 17150 1340 760 U 1 -W-1300 2 And --w-171212 420 3 - Out 171213 V 4 now 5 6 7 8 9 10 Turnaround Time (Business days) Data Deliverable Information Notes: Same Day TAT 5 Day TAT Level II Std QC IR ID:R-8 Level IV (Full Data Pkg /raw data) Temp: 5. | CF:(0-6: -0.2°C) (6-23: +0.2°C) Next Day EMERGENCY 7 Day TAT Level III Std QC+ Forms TRRP Level IV 2 Day EMERGENCY Contract TAT Level 3 (CLP Forms) UST / RG -411 Corrected Temp: U 9 3 Day EMERGENCY TRRP Checklist TAT Starts Day received by Lab, if received by 5:00 pm FED-EX SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Relinquished by Sampler: Date Time: Received By: Relinquished By: Date Time: Received By: 12-12-12/050 S 1/11 Relinguished by: Date Time: Received By: Relinquished By: Date Time: Received By: 3

Custody Seal #

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to XENCO Laboratories and its affiliates, subcontractors and assigns XENCO's standard terms and conditions of service unless previously negioitated under a fully executed client contract.

Preserved where applicable

Cooler Temp.

Thermo. Corr. Factor

On Ice

Final 1.000

Page 12 of 13

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: GHD Services, INC- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 12/13/2017 04:50:00 PM Temperature Measuring device used : R8 Work Order #: 571045 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? 4.9 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? No #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: CH

PH Device/Lot#: 213315

Checklist completed by:

Date: 12/14/2017

Checklist reviewed by:

Mbet Mike Kimmel

Date: 12/18/2017

Appendix C Waste Disposal Documentation

24-HOUR SERVICE	CE SE	RVICES, Inc.	
PI	RC #175010		37226
AUTHORI	ZATION F	ORWORK	Nri
DATE		YOUR NO.	
COMPANY Ches.on Emc	i	EASE NH Last 5	1-1 . NC7 -1 007
MAIL INVOICE TO: Chevron EMC			
DESCRIPTION OF WORK		985-773-	6746
.P. ckup dd. spose	6	*	Near Monumez
(32.597691,-	103.	316477)	
Equipment Used	_@\$	Hrs. worked	Total
Box Rent	_@\$	Hrs. worked	Total
Liner	_@\$	Hrs. worked	Total
Jet Out	_@\$	Hrs. worked	Total
Disposal	_@\$	Hrs. worked	Total
Disposal FacilityS_S_L	_@\$	Hrs. worked	Total
Box No. Delivered	_@\$	Hrs. worked	Total
Box No. Picked Up	_@\$		Total
Driver_1.gul / Kinen			Sub Total
Approved by			Sales Tax
Reorder from: Vertigo Creative Services	LLC • www.Ve	rtigoCreative.com • Form#SDI-003	TOTAL

200	CHEVI MCB	and the second			-1				
	EMC on behalf of MCBU								
NON	N-HAZARDOUS WASTE MANIFEST NO. EMC	2228_	1. PAC	e <u>lof</u>	2. TRAIL	ER NO.			
-	3. COMPANY NAME 4. ADDRESS 100 North 1	and D	1	5. P	ICK-UP DATH	12-8-	17		
G	PHONE NO. CITY S	TATE		ZIP 6.					
E	985-773-6746 Covington,	LA	70						
	7. NAME OF DESCRIPTION OF WASTE SHIPPED:		8, CON' No.	TAINERS Type	9. TOTAL QUANTITY	10. UNIT WT/Vol.	11.		
N	a (soil cuttings) (non-hazardou	6)	ľ						
	b. NON RECOLLETED DO	7							
E	C. MATERIAI								
R	d.								
	12. COMMENTS OR SPECIAL INSTRUCTIONS:				13. WASTE P	ROFILE N	IO.		
A	14. IN CASE OF EMERGENCY O	DE SELL C		N. T.					
Т	14. IN CASE OF EMERGENCY O	JR SFILL, C	UNIAC		24-HOUR	EMERGE	ENCY NO.		
	15. GENERATOR'S CERTIFICATION: Hereby declare that the c	ontents of this c	onsignme	nt are fully	and accurate	v describe	d above.		
0							.#\$h		
D	PRINTED TYPED NAME	SIGNATURE	1				DATE		
R	Chenni Quinney on behalf of Chein	n Ch	-0		On beh lt	of the	leret.		
T	16. TRANSPORTER (1) NAME	17. NAME	TI	RANSPO	RTER (2)				
R A	Sundance	INAME							
N S	IN CASE OF EMERGENCY CONTACT:	IN CASE OF	EMERG	ENCY CO	NTACT:				
P O	EMERGENCY PHONE	EMERGENCY PHONE							
R T	18. TRANSPORTER (1): Acknowledgement of receipt of material	18. TRANS	PORTE	R (2): Ac	knowledgeme	nt of receip	t of material		
E	PRINTED/TYPED NAME Itype Kinera	PRINTED/TY	PED NA	ME					
R S	SIGNATURE /2-8-17	SIGNATURE				DATE	-		
D F I A	Sundary ADDRESS: POBOX (initrar	æ, nm	8823) PHONE	5) 394	- 2811		
S C P I O L	PERMIT NO. 2228 - 120817	20. COMMEN	ITS				and the		
S I A T	21. DISPOSAL FACILITY'S CERTIFICATION: I Hereby certify	that the above d	escribed	wastes wei	re delivered to	this facility	y, that the		
LY	facility is authorized and permitted to receive such wastes. AUTHORIZED SIGNATURE	CELL NO.		DATE		TI	ME		
GEN	ERATOR: COPY 1 DISPOSAL SIT	E: COPY-2			TR	NSPORT	ERS: COPY 3		

Appendix D 2018 Work Plan

Reference No. 089861-2

May 18, 2018

Ms. Olivia Yu Environmental Specialist New Mexico Oil Conservation Division – District 1 1625 N. French Drive Hobbs, New Mexico 88240

Re: 2018 Scope of Work New Mexico East State NCT-1 007 – Wellhead Release (1RP-4239) Lea County, New Mexico

Dear Ms. Yu,

1. Project Information

The Site is located in Unit N, Section 1, Township 20 South, Range 36 East, approximately 3.2 miles southwest of Monument in eastern Lea County, New Mexico. On November 17, 2010, well NM E NCT-1 #7 was in the process of being plugged and abandoned when unexpected wellhead pressure caused tubing in the well to damage the wellhead nipple connection resulting in a release of gas and well fluids around the well pad and tank battery location. The volume of fluids released was estimated at 5 to 10 barrels of an unknown fluid. Chevron submitted an initial Form C-141 to the New Mexico Oil Conservation Division (NMOCD) on November 18, 2010 which reported zero volume of fluids recovered. The wellhead and deadman anchors have been removed and surface casing cut off several feet below surface grade. GHD understands the surface land owner is the State of New Mexico.

<u>Soil</u>

Information available on the Petroleum Recovery Research Center (PRRC) Mapping Portal, current (GHD) managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation indicate:

- The depth to groundwater at the Site is less than 50-feet bgs.
- The nearest private domestic water source is greater than 200-feet from the release site.
- The nearest public/municipal water source is greater than 1,000-feet from the release site.
- The release site lies more than 1,000 horizontal feet from the nearest surface water body.

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site. The site-specific RRALs applied to this location by the NMOCD are 10 milligrams per kilogram (mg/kg) for benzene; 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX); 100 mg/kg for total petroleum hydrocarbons (TPH); and an NMOCD accepted 600 mg/kg for horizontal delineation and 250 mg/kg for vertical delineation of chlorides.

Groundwater

The guidance also requires remediation of groundwater to human health standards of the New Mexico Water Quality Control Commission (NMWQCC) established in New Mexico Administrative Code Section 20.6.2.3103. Standards for chloride and total dissolved solids (TDS) are listed below.

Analyte	NMWQCC Standard for Groundwater (mg/L)
Chloride	250
TDS	1,000

Soil assessment activities were performed in November 2010, September 2015, and August 2016 at the Site. Delineation activities were continued in 2017 and included the advancement of six (6) additional soil borings (SB-13 through SB-18) to 30 feet bgs, and three (3) monitoring wells (MW-1 through MW-3) were installed to assess potential groundwater impact. Analytical data obtained from the assessment performed in 2017 indicates that vertical and horizontal extent of chloride impacts in soil and groundwater are not delineated.

2. 2018 Scope of Work

On February 13, 2018, GHD and Chevron representatives met with NMOCD and New Mexico State Land Office (NMSLO) regarding further delineation activities at the Site. Recommended assessment activities are detailed below.

2.1 Task I - Monitoring Well Installation Activities

GHD is proposing the installation of nine (9) soil borings that will be completed as 4-inch diameter monitoring wells to further screen soil and groundwater chloride impact at the Site (see Figure 1). Preparation of permit applications and associated fees for the required New Mexico Office of the State Engineer (NMOSE) monitoring well permit will be submitted prior to drilling activities.

Prior to mobilizing drilling equipment to the Site, a utility notification will be made at least 48-hours prior to mobilization. In addition to the utility locate, a geophysical survey will be completed for each of the proposed monitoring well locations. Following all utility clearance activities, a Chevron Dig Plan will be prepared and approved by Chevron prior to performing any drilling activities.

A hydroexcavator or similar borehole clearance equipment will be used to clear the boring locations with a diameter at least 2 inches greater than the size of the largest drilling tool. The monitoring well locations will be cleared to 5 feet bgs or refusal. Each monitoring well boring will be drilled with a track-mounted hollow stem auger (HAS) drill rig capable of converting to mud rotary if determined necessary due to drilling conditions encountered. The rig will be operated by a New Mexico licensed water well driller retained by GHD.

Nine monitoring wells will be installed extending approximately 10 feet into the groundwater table (estimated at approximately 35 feet bgs). The total depth of the monitoring wells are estimated at approximately 45 feet bgs. A GHD geologist will record the subsurface lithology and any sample data on the well construction diagram/soil boring logs. Soils will be continuously cored if possible and field screening samples will be collected at 5 foot intervals. Soil samples will be field screened for chloride

concentrations using Hach Chloride Titration strips and evaluated by the field geologist during the sampling event.

Selected soil samples will be submitted to Xenco Laboratories, Midland, Texas for analysis of chlorides by EPA Method 300. The nature of any sampling of soils will be based on results of the chloride field screening and the professional judgment of the GHD geologist with the intent to establish the depth at which soil concentrations are below the Site RRAL's. Soil sampling will be completed in accordance with our standard Quality Assurance/ Quality Control (QA/QC) procedures designed to minimize cross-contamination between samples and to provide reliable laboratory results.

The ground surface elevation of each soil boring, including the top of casing and top of pad elevations from the monitoring wells, will be determined to the nearest hundredth of a foot by a professional surveyor.

2.2 Task II – 2018 Groundwater Monitoring Activities

Following installation and development of the nine monitoring wells, all site monitoring wells (12 monitoring wells total) will be sampled. Prior to purging the wells, static fluid levels will be measured with an electric interface probe to the nearest hundredth of a foot. After recording fluid levels, monitoring wells will be profiled using a conductivity meter. Subsequent to well gauging, the monitoring wells will be purged using EPA-approved low-flow methodology.

Groundwater samples will be placed on ice in insulated coolers and chilled to a temperature of approximately 4°C (40°F). The coolers will then be sealed for shipment and proper chain-of-custody documentation will accompany the samples to Xenco Laboratories located in Midland, Texas for analysis of dissolved chloride according to method EPA 300 and for TDS by method SM 2540C.

2.3 Task III – Reporting

Following completion of the field activities detailed above, a report summarizing the results of the additional assessment will be prepared for submittal. The report will include a Site description, project history, description of field events, a discussion of results, and recommendations. A Site groundwater gradient map will be constructed from the well gauging data collected prior to sample collection. Soil and groundwater analytical results collected will be tabulated in data tables and presented graphically using concentration maps. Monitoring well construction logs for MW-4 through MW-12 will also be completed.

If you have any questions, please contact us at 713-734-3090.

Sincerely,

GHD

Kay U. Palio

Raaj Patel, P.G. Program Manager

Scott Foord, P.G. Project Manager

SF/ag/2

Encl.

Attachment: Figure 1 – Proposed Monitoring Well Locations

Figure

GHD | 2018 Scope of Work - New Mexico East State | 089861-2

LEA COUNTY, NEW MEXICO NEW MEXICO E STATE NCT-1 007 GHD

CAD File: I:\CAD\Files\08----\089861-CEMC-New Mexico E State\Proposal\089861-00(Proposal-02)GN-DL001.dwg

an and the	SAL	A design of an and the	
Alter Strates	NOT	NOTES:	
1. 1.	1. Yellow shaded cells indicate NMOCD Recommended Remediation Action Level exceedance.		
WETTER FRANCE	2. "<" indicates below laboratory detection limit.		
The state state	 Soil concentrations (in brown) presented in milligrams per kilogram (mg/kg). 		
A CARLE	 Groundwater concentrations (in blue) presented in milligrams per liter (mg/L). 		
	LEGEND		
Law a marked			
ALC: NOT THE REAL		Proposed Monitoring Well Location	
CONTRACTOR OF		Soil Boring Location - 2015 and 2016	
		Soil Boring Location - 2017	
ALT PROPERTY OF	•	Monitoring Well Location	
AND STATISTICS	Θ	New Mexico E State NCT-1 007 Well Marker	
	Depth	Depth of Sample (ft)	
CONTRACTOR OF	TPH	Total Petroleum Hydrocarbons Concentration (mg/kg)	
	DRO	TPH as Diesel Range Organics	
and the second second	DRO	Ti Ti do Dicoci Ttalige Organico	
the second	GRO	TPH as Gasoline Range Organics	
C Carl		0 0	

May 16, 2018

PROPOSED MONITORING WELL LOCATION MAP

