		SIT	E INFORMA	TION					
	F	Report Typ	e: Work Pla	n 1R	P-5018				
General Site Info	ormation:								
Site:		McKay West F							
Company:		Marathon Oil	Company						
Section, Townsh	nip and Range	Unit F	Sec. 34	T 18S	R 32E				
Lease Number:		API No. 30-025	5-24931						
County:		Lea County							
GPS:			32.70564º N			103.75	589º W		
Surface Owner:		Federal							
Mineral Owner:		Federal							
Directions:			TION OF US-82 AN .25MI, TRN W 0.5M			9 4.5MI, TR	N E ON MIDWAY RD		
Release Data:									
Date Released: 3/30/2018									
Type Release:		Crude Oil							
Source of Contamination: Water Tank									
Fluid Released:		86 bbls							
Fluids Recovered	ŀ	60 bbls							
Official Commun									
Name:	Callie Karrigan				Ike Tavarez				
Company:	Martathon Oil Comp	2001/			Tetra Tech				
Address:		Jany			-	Orting			
Address.	2423 Bonita Street				4000 N. Big	Spring			
					Ste 401				
City:	Carlsbad, New Mex	ico			Midland, Tex	xas			
Phone number:	405-202-1028				(432) 687-87	110			
Fax:									
Email:	cnkarrigan@mara	th <u>onoil.com</u>			Ike.Tavarez	z@tetratecl	n.c <u>om</u>		
			•						
Ranking Criteria									
Donth to Groundu	votor.		Ranking Score	1		Sita Data			
Depth to Groundw <50 ft	ater:		20			Site Data			
50-99 ft			10						
>100 ft.			0						
WellHead Protecti			Ranking Score			Site Data			
	000 ft., Private <200 ft		20						
Water Source >1,0	000 ft., Private >200 ft		0			0			
Currence Dealth of M	Veter	Domking Coore			Cite Data				
Surface Body of Water: <200 ft.			Ranking Score 20			Site Data			
<200 ft - 1,000 ft.		10							
>1,000 ft.			0			0			
Τα	otal Ranking Score):	0						
					_				
		Accepta	ble Soil RRAL (m	g/kg)					
		Benzene	Total BTEX	TPH]				
		10	50	5,000					

May 22, 2018

NMOCD approves of the proposed remediation for 1RP-5018.

Ms. Olivia Yu Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Work Plan for the Marathon Oil Company, McKay West Federal #1 Tank Battery, Unit F, Section 34, Township 18 South, Range 32 East, Lea County, New Mexico. 1RP-5018.

Ms. Yu:

Tetra Tech, Inc. (Tetra Tech) was contacted by Marathon Oil Company(Marathon) to evaluate and assess a release that occurred at the McKay West Federal #1 Tank Battery, Unit F, Section 34, Township 18 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.70564°, W 103.75589°. The site location is shown on Figures 1 and 2.

Background

The release occurred at the site on March 30, 2018. The operator had shut-in the well and was recycling and circulating the oil. During the process, the casing valve was left closed. The heater treater lost pressure, transferring oil to the water tank, and resulted in 86 barrels fluids overflowing into the unlined secondary containment. A vacuum truck was used to removal all freestanding fluids, recovering approximately 60 barrels of oil. The initial C-141 form is included in Appendix A.

Groundwater

There were no wells listed in Section 34 on the New Mexico Office of the State Engineers database. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is around 175' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine

> Tetra Tech 4000 North Big Spring, Suite 401, Midland, TX 79705 Tel 432.682.4559 Fax 432.682.3946 www.tetratech.com

recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5,000 mg/kg.

Soil Assessment and Analytical Results

On April 13, 2018, an emergency excavation was performed to remove the heavy oil saturated soil to a depth of 1.0' to 2.0' from inside the facility firewall. Once excavated, the area was sampled for evaluation. The material was stockpile on plastic onsite until disposal can be arranged.

A total of three (3) auger holes (AH-1 through AH-3) were installed in the release area to total depths of 3.0' below the excavation bottom to assess and vertically define extents. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The sample locations and excavation depths are depicted on Figure 3.

Referring to Table 1, samples analyzed from AH-1 did not report any benzene or total BTEX concentrations above RRALs. Auger hole (AH-2) showed a total BTEX concentration of 168 mg/kg at 0-1' but declined below the RRAL at 1-2' below excavation bottom. The area of AH-3 did show a deeper impact to the area with elevated TPH and total BTEX concentrations above the RRAL but also declined below the RRAL at 2-3' below excavation bottom.

Work Plan

Based on the laboratory results, Marathon Oil Company proposes to remove the impacted material as highlighted (green) on Table 1 and shown on Figure 4. The area of auger hole (AH-3) showed the deepest TPH and total BTEX impact to the area. This area will be excavated to a maximum depth of 2.0'- 3.0' below excavation bottom to remove the TPH and total BTEX impacted soil above the RRALs. Once excavated, confirmation samples will be collected from the bottom of the excavation and sidewalls and analyzed for TPH and total BTEX.

Once excavated to the appropriate depth, the excavation will be backfilled with clean material to surface grade. All of the excavated material will be transported offsite for proper disposal.

The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, Marathon Oil Company will excavate the impacted soils to the maximum extent practicable. In inaccessible areas, the hydrocarbon impacted area will be treated with a Micro-blaze product will be used to aid in the degradation of the hydrocarbons. If a Micro-blaze product is used, periodic samples will be collected from the remediation area to monitor the progress of the remediation and apply additional treatments as needed.

Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

air Clongalos \bigcap

Clair Gonzales, Project Manager

hTR

Ike Tavarez, Senior Project Manager, P.G.

Figures

Mapped By: Isabel Marmolejo

Drawn By: MISTI MORGAN

Drawn By: MISTI MORGAN

Tables

Table 1Marathon Oil CompanyMcKay West Federal #1Lea County, New Mexico

	Sample Sample	Sample	nle	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	BEB	In-Situ	Removed	C6-C10	C10-C28	C28-C35	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	4/13/2018	0-1	2	Х		476	1,390	164	2,030	<0.401	1.17	4.30	4.58	10.1	22.5
	"	1-2	2	Х		23.8	181	23.1	228	<0.00198	<0.00198	0.0201	0.0377	0.0578	<4.96
	"	2-3	2	Х		-	-	-	-	-	-	-	-	-	10.1
AH-2	4/13/2018	0-1	1	Х		1,570	2,680	303	4,550	2.75	43.7	64.7	56.7	168	<4.90
	"	1-2	1	Х		243	671	86.5	1,000	0.0110	0.366	1.86	2.18	4.42	<4.95
	"	2-3	1	Х		-	-	-	-	-	-	-	-	-	<4.92
AH-3	4/13/2018	0-1	1	Х		3,690	9500	1,820	15,000	53.0	219	204	166	642	<5.00
	"	1-2	1	Х		1,990	3970	562	6,520	14.5	88.8	96.0	81.8	281	6.42
	"	2-3	1	Х		18.1	18.4	<15.0	36.5	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<5.00

BEB

Proposed Excavation Depths

Below Excavation Bottom

(-) Not Analyzed

Photos

Marathon Oil Company McKay West Federal #1 Lea County, New Mexico

View North – Secondary containment before excavation activities

View West-Area of AH-1

Marathon Oil Company McKay West Federal #1 Lea County, New Mexico

View Northwest – Area of AH-2

View North - Area of AH-3

Marathon Oil Company McKay West Federal #1 Lea County, New Mexico

View North – View of secondary containment after excavation activities

Appendix A

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

						OPERA '	ГOR		🛛 Initia	al Report	Final Repor
		arathon Oil F					lie Karrigan			•	-
		ipe Street, H	,	Texas 77056			No. 405-202-10				
Facility Na	me: McKa	y West Feder	ral #1			Facility Typ	be Oil and gas p	roduct	ion facilitie	S	
Surface: Ov	wner: feder	al		Mineral:	Owner:	federal			API No	.:30-025-2493	31
				LOC	ATION	N OF RE	LEASE				
Unit Letter F	Section 34	Township 18S	Range 32E	Feet from the 1980					County Lea		
				Latitude 3	32.70564	4 Longitud	e -103.75589				
				NAT	TURE	OF REL					
Type of Rele Source of Re		tople					Release: 86 barr Hour of Occurrence			tecovered: 60 bb	
source of Re	elease: water	rtank					8 unknown	ce		Hour of Discove 8 02:00 pm	ry
Was Immedi	Vas Immediate Notice Given?					If YES, To	Whom?		•	•	
🛛 Yes 🗌 No 🗌 Not Requ				equired		eaver and Mike B			inty		
By Whom? Callie Karrigan Was a Watercourse Reached?						Iour 03/31/2018					
Was a Water	rcourse Read	ched?	Yes 🛛	l No		If YES, Vo N/A	olume Impacting	the Wa	tercourse.		
IC - 11/- (т										
Not applicat	urse was im	pacted, Descri	ibe Fully."				RECEIVE	D			
r tot uppnout											
Operator had	use of Probl 1 shut-in we		he process	of recycling and		ng oil. Durin	By Olivia) g the process, the	Yu a casing	valve was le	eft closed instead	of open. The
Operator had treater begar released into Describe Ard The entirety	use of Problet d shut-in wel to run out of unlined cor ea Affected of the conta	Il and began th of gas and lose ntainment. and Cleanup A inment was af	he process e pressure, Action Tak ffected (~3	of recycling and dumping oil to t cen.* (60 ft). A vac true	he water	ng oil. Durin tank and ove ered standing	By Olivia S g the process, the rfilling into conta fluids. Tetratech	Yu a casing inment will be	valve was le . Approxima assessing sp	eft closed instead ately 86 barrels of pill site.	l of open. The f oil was
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the enviro	use of Problet d shut-in well to run out of unlined cor- ea Affected of the conta ify that the i all operators or the envi- operations homent. In a	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The lave failed to a	Action Tak Action Tak ffected (~3 ven above o report ar acceptanc adequately OCD accep	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove plete to the release no ort by the remediate	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminati	By Olivia S g the process, the rfilling into conta	casing inment will be indersta ctive ac iceport" reat to g	valve was le Approxima assessing sp and that purs tions for rele does not reli ground water	eft closed instead ately 86 barrels of bill site. uant to NMOCE eases which may eve the operator ; surface water, ;	orules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the enviro federal, state	use of Problet d shut-in well to run out of unlined cor- ea Affected of the conta ify that the i all operators or the envi- operations homent. In a e, or local law	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The lave failed to a iddition, NMC	Action Tak Action Tak ffected (~3 ven above o report ar acceptanc adequately OCD accep	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove plete to the release no ort by the remediate	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminati	By Olivia S g the process, the orfilling into conta fluids. Tetratech knowledge and u nd perform correct arked as "Final R ion that pose a thir we the operator of	casing inment will be indersta ctive ac leport" reat to g respons	valve was le Approxima assessing sp and that purs tions for rele does not reli ground water sibility for co	eft closed instead ately 86 barrels of bill site. uant to NMOCE eases which may eve the operator ; surface water, ;	orules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the envirc federal, state	use of Problet d shut-in well to run out of unlined cor- ea Affected of the conta ify that the i all operators or the envi- operations homent. In a e, or local law	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The lave failed to a iddition, NMC	Action Tak Action Tak ffected (~3 ven above o report ar acceptanc adequately OCD accep	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove plete to the release no ort by the remediate	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminati	By Olivia S g the process, the orfilling into conta fluids. Tetratech knowledge and u nd perform correct arked as "Final R ion that pose a thir we the operator of	casing inment will be indersta ctive ac leport" reat to g respons	valve was le Approxima assessing sp and that purs tions for rele does not reli ground water sibility for co	eft closed instead ately 86 barrels of bill site. uant to NMOCE eases which may eve the operator , surface water, j ompliance with a	of open. The f oil was rules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the envirc federal, state Callie Ko	use of Problet d shut-in well to run out of unlined cor- ea Affected of the conta ify that the i all operators or the envi- operations homent. In a e, or local law	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The lave failed to a iddition, NMC	Action Tak Action Tak ffected (~3 ven above o report ar acceptanc adequately OCD accep	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove plete to the release no ort by the remediate report do	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminations of the the the over the	By Olivia g the process, the erfilling into conta fluids. Tetratech r knowledge and u nd perform corre- narked as "Final R ion that pose a thu- re the operator of <u>OIL CON</u>	casing inment will be indersta ctive ac eport" reat to g respons	valve was le Approxima assessing sp and that purs tions for rele does not reli ground water sibility for co VATION	eft closed instead ately 86 barrels of bill site. uant to NMOCE eases which may eve the operator , surface water, j ompliance with a	of open. The f oil was rules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the enviro federal, state Callée Ko Signature:	use of Problet d shut-in well o to run out of o unlined cor ea Affected of the conta ify that the i all operators of the environ operations homent. In a e, or local law	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The vave failed to a iddition, NMC ws and/or regu	Action Tak Action Tak ffected (~3 ven above o report ar acceptanc adequately OCD accep	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove plete to the release no ort by the remediate report do	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminations of the the the over the	By Olivia S g the process, the rfilling into conta fluids. Tetratech knowledge and u nd perform correc- parked as "Final R ion that pose a thu we the operator of <u>OIL CON</u> Environmental S	casing inment will be indersta ctive ac ceport" reat to g respons SERV pecialis	valve was le Approxima assessing sp and that purs tions for rele does not reli ground water sibility for co VATION	eft closed instead ately 86 barrels of bill site. uant to NMOCE eases which may eve the operator , surface water, j ompliance with a	of open. The f oil was rules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the enviro federal, state <i>Callée Ko</i> Signature: Printed Nam	use of Problet d shut-in well o unlined cor ea Affected a of the conta ify that the i all operators of the environ operations h onment. In a e, or local law	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The vave failed to a iddition, NMC ws and/or regu	Action Tak ffected (~3 iven above o report ar acceptanc adequately DCD accep alations.	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove olete to the release no ort by the remediate report do	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminations of the the the over the	By Olivia S g the process, the erfilling into conta fluids. Tetratech knowledge and u nd perform corre- parked as "Final R ion that pose a thu- re the operator of <u>OIL CON</u> Environmental S	casing inment will be indersta ctive ac ceport" reat to g respons SERV pecialis	valve was le Approxima assessing sp and that purs tions for rele does not reli ground water sibility for co VATION	eft closed instead ately 86 barrels of bill site. uant to NMOCE cases which may eve the operator ; surface water, pompliance with a DIVISION	of open. The f oil was rules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the enviro federal, state <i>Callie Ko</i> Signature: Printed Nam	use of Problet d shut-in we of the run out of ounlined cor ea Affected if the conta ify that the if all operators n or the envir operations h onment. In a e, or local law wrigaw	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The lave failed to a iddition, NMC ws and/or regu	Action Tak ffected (~3 ven above o report ar acceptanc adequately DCD accep alations.	of recycling and dumping oil to t teen.* 60 ft). A vac true is true and comp d/or file certain te of a C-141 rep investigate and tance of a C-141	he water ck recove olete to the release no ort by the remediate report do	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminations oes not reliev Approved by	By Olivia S g the process, the rfilling into conta fluids. Tetratech r knowledge and u nd perform correct narked as "Final R ion that pose a thur the operator of <u>OIL CON</u> Environmental S te: 4/11/201	casing inment will be indersta ctive ac ceport" reat to g respons SERV pecialis	assessing sp and that purs tions for rele does not religround water sibility for co VATION st:	eft closed instead ately 86 barrels of bill site. to NMOCE cases which may eve the operator c, surface water, ompliance with a DIVISION	of open. The f oil was rules and endanger of liability numan health
Operator had treater begar released into Describe Ard The entirety I hereby cert regulations a public health should their or the enviro federal, state <i>Callie Ko</i> <u>Signature:</u> <u>Printed Nam</u> <u>Title: HES E</u> <u>E-mail Addr</u> Date: 4/4/18 Phone: 405-	use of Problet d shut-in well o unlined cor ea Affected of the conta ify that the i all operators n or the envit operations h orment. In a c, or local law wrigow ee: Callie Ka	Il and began th of gas and lose ntainment. and Cleanup A inment was af information gi are required to ronment. The lave failed to a ddition, NMC ws and/or regu rrigan al Professiona	Action Tak ffected (~3 iven above o report ar acceptanc adequately DCD accep alations.	of recycling and dumping oil to t cen.* (60 ft). A vac true is true and comp id/or file certain ice of a C-141 rep investigate and it tance of a C-141	he water ck recove olete to the release no ort by the remediate report do	ng oil. Durin tank and ove ered standing ne best of my otifications a e NMOCD m e contaminati oes not reliev Approved by Approval Da Conditions o	By Olivia S g the process, the rfilling into conta fluids. Tetratech r knowledge and u nd perform correct narked as "Final R ion that pose a thur the operator of <u>OIL CON</u> Environmental S te: 4/11/201	casing inment will be indersta ctive ac ceport" respons SERV pecialis 8	assessing sp and that purs tions for rele does not religround water sibility for co VATION st:	eft closed instead ately 86 barrels of bill site. uant to NMOCE cases which may eve the operator ; surface water, pompliance with a DIVISION	orules and endanger of liability numan health

pOY1810156472

Appendix B

Water Well Data Average Depth to Groundwater (ft) Marathon-McKay West Federal #1 Lea County, New Mexico

_	17 Sc	outh	31	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34 271	35	36

	18 South 31 East				
6	5	4	3	2	1
7	8	9	10	11	12 400
18	17	16	15 <mark>98</mark>	14 317	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35 261	36

	19 Sc	outh	31 East		
6	5	4	3	2	1
	SITE				
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
180					
30	29	28	27	26	25
		180			
31	32	33 101	34	35	36
		140			130

	17 So	uth	32		
6	5 Ma	4 <mark>82</mark> Ijamar	3 1 75	2 60	1 225
7	8	9	10 <mark>132</mark>	11 70 88	12 120
18	17	16	15	14	13
19	20	21	22	23	24
30 180 dry	29	28	27	26	25
31	32	33	34	35	36

	18 South 32 East				
6	5	4 65	3	2	1
7 460 82	8	9	10	11	12
18	17	16 <mark>84</mark>	15	14	13
19	20 164	21	22 429	23	24
30	29	28	27	26	25
31	32	33	34 117	35	36

	19 5	19 South 32 East			t
6	5	4	3	2	1
7	8 365	9	10	11	12
18	17	16	15	14	13 135 dry
19 102	20 345	21	22	23	24
30	29	28	27	26	25
31	32	33	34 250	35	36

_	17 Sc	outh	33	East	
6 <mark>90</mark>	5	4	3 155	2 158	1 150
7 167	8	9	10	11	12
	173	161			
18	17	16	15	14	13
188	1 80				165
19	20	21	22	23	24
	190			115	
30 <mark>69</mark>	29 60	28	27	26	25
31	32	33	34	35	36
		120		155	

	18 Sc	outh	33	East	
6	5	4	3	2	1
			60		
7	8 100	9	10	11	12 143
			62	46	140
18	17	16	15	14	13
	85			36	60
19	20	21	22	23	24
>140					195
30	29	28	27	26	25
35					
31	32	33	34	35	36
		177			

	19 So	uth	33		
6	5	4	3	2	1
7	8	9	10	11	12
18 340	17 116	16	15	14	13
19	20	21	22	23	24
30	29	28 130 dry	27	26 92 85	25
31	32 185	33	34	35	36

88 New Mexico State Engineers Well Reports

- **105** USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD l replaced, O=orphan C=the file closed)	ied,		arters					√ 4=SE) (NAD8	83 UTM in mete	rs)	(In feet)	
POD Number	Code	POD Sub- basin	County	Q Q 6416	-		Tws	Rng	х	Y	DepthWellDo	epthWater	Water Column
<u>L 03240</u>		L	LE	2	4	35	15S	37E	671534	3649681*	120	45	75
										Average Depth	to Water:	45	feet
										Minim	um Depth:	45	feet
										Maxim	ım Depth:	45	feet
Record Count: 1													
PLSS Search:													
Section(s): 35	1	Fownshi	p: 15S	Ra	nge	: 37E	8						
*UTM location was derive													

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/30/18 10:25 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

USGS Home Contact USGS Search USGS

V

National Water Information System: Web Interface

USGS Water Resources

Data Category: Groundwater Geographic Area: New Mexico

GO

Click to hideNews Bulletins

- Please see news on new formats
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Search Results -- 1 sites found

site no list =

• 325839103095201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 325839103095201 15S.37E.35.212112

Available data for this site Groundwater: Field measurements

GO

V

Lea County, New Mexico Hydrologic Unit Code 12080003 Latitude 32°58'51", Longitude 103°10'05" NAD27 Land-surface elevation 3,766.40 feet above NGVD29 This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Breaks in the plot represent a gap of at least one year between field measurements.

Download a presentation-guality graph

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility Plug-Ins FOIA Privacy Policies and Notices U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: New Mexico Water Data Maintainer Page Last Modified: 2018-03-01 11:21:56 EST 1.02 0.88 nadww01

Appendix C

Analytical Report 582593

for Tetra Tech- Midland

Project Manager: Ike Tavarez

Mckay West Federal

212C-MD-01183

23-APR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

23-APR-18

SUP ACCHEORE

Project Manager: **Ike Tavarez Tetra Tech- Midland** 4000 N. Big Spring Suite 401 Midland, TX 79705

Reference: XENCO Report No(s): **582593** Mckay West Federal Project Address:

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 582593. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 582593 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Huns hoah

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

AH-1 (0-1') BEB, 2'
AH-1 (0-2') BEB, 2'
AH-1 (2-3') BEB, 2'
AH-2 (0-1') BEB, 1'
AH-2 (1-2') BEB, 1'
AH-2 (2-3') BEB, 1'
AH-3 (0-1') BEB, 1'
AH-3 (1-2') BEB, 1'
AH-3 (2-3') BEB, 1'
AH-1 (3-4') BEB, 2'
AH-1 (4-5') BEB, 2'
AH-2 (3-4') BEB, 1'
AH-2 (4-5') BEB, 1'
AH-2 (5-6') BEB, 1'
AH-3 (3-4') BEB, 1'
AH-3 (4-5') BEB, 1'
AH-3 (5-6') BEB, 1'

Sample Cross Reference 582593

Tetra Tech- Midland, Midland, TX

Mckay West Federal

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	04-13-18 09:50		582593-001
S	04-13-18 09:52		582593-002
S	04-13-18 11:24		582593-003
S	04-13-18 10:05		582593-006
S	04-13-18 10:10		582593-007
S	04-13-18 10:40		582593-008
S	04-13-18 11:50		582593-012
S	04-13-18 11:58		582593-013
S	04-13-18 12:04		582593-014
S	04-13-18 11:25		Not Analyzed
S	04-13-18 11:27		Not Analyzed
S	04-13-18 10:43		Not Analyzed
S	04-13-18 10:45		Not Analyzed
S	04-13-18 11:15		Not Analyzed
S	04-13-18 12:14		Not Analyzed
S	04-13-18 12:20		Not Analyzed
S	04-13-18 12:28		Not Analyzed

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Mckay West Federal

Project ID: 212C-MD-01183 Work Order Number(s): 582593 Report Date: 23-APR-18 Date Received: 04/16/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3047326 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Dilutions due to poor resolution of internal standard caused by matrix interference.

Batch: LBA-3047447 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3047448 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Batch: LBA-3047482 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:212C-MD-01183Contact:Ike Tavarez

Project Location:

Certificate of Analysis Summary 582593

Tetra Tech- Midland, Midland, TX Project Name: Mckay West Federal

Date Received in Lab:Mon Apr-16-18 01:15 pmReport Date:23-APR-18Project Manager:Kelsey Brooks

	Lab Id:	582593-	001	582593-	002	582593-0	003	582593-0)06	582593-0	007	582593-0	08
Amaluaia Degranated	Field Id:	AH-1 (0-1')	BEB, 2'	AH-1 (0-2')	BEB, 2'	AH-1 (2-3') B	BEB, 2'	AH-2 (0-1') H	BEB, 1'	AH-2 (1-2') H	BEB, 1'	AH-2 (2-3') B	EB, 1'
Analysis Requested	Depth:												
	Matrix:	SOIL	,	SOIL	.	SOIL		SOIL		SOIL		SOIL	
	Sampled:	Apr-13-18	09:50	Apr-13-18	09:52	Apr-13-18	11:24	Apr-13-18	10:05	Apr-13-18	10:10	Apr-13-18 1	0:40
BTEX by EPA 8021B	Extracted:	Apr-19-18	17:00	Apr-19-18	17:00			Apr-20-18	14:00	Apr-19-18	17:00		
	Analyzed:	Apr-20-18	02:29	Apr-20-18	00:34			Apr-20-18	22:03	Apr-20-18	02:10		
	Units/RL:	mg/kg	RL	mg/kg	RL			mg/kg	RL	mg/kg	RL		
Benzene		< 0.0401	0.0401	< 0.00198	0.00198			2.75	0.502	0.0110	0.0101		
Toluene		1.17	0.0401	< 0.00198	0.00198			43.7	0.502	0.366	0.0101		
Ethylbenzene		4.30	0.0401	0.0201	0.00198			64.7	0.502	1.86	0.0101		
m,p-Xylenes		3.12	0.0802	0.0253	0.00397			40.1	1.00	1.49	0.0202		
o-Xylene		1.46	0.0401	0.0124	0.00198			16.6	0.502	0.694	0.0101		
Total Xylenes		4.58	0.0401	0.0377	0.00198			56.7	0.502	2.18	0.0101		
Total BTEX		10.1	0.0401	0.0578	0.00198			168	0.502	4.42	0.0101		
Inorganic Anions by EPA 300/300.1	Extracted:	Apr-18-18	10:00	Apr-18-18	10:00	Apr-18-18	10:00	Apr-18-18	10:00	Apr-18-18	10:00	Apr-18-18 1	0:00
	Analyzed:	Apr-18-18	18:04	Apr-18-18	18:10	Apr-18-18	18:28	Apr-18-18	18:34	Apr-18-18	18:40	Apr-18-18 1	8:46
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		22.5	4.97	<4.96	4.96	10.1	4.94	<4.90	4.90	<4.95	4.95	<4.92	4.92
TPH By SW8015 Mod	Extracted:	Apr-18-18	07:00	Apr-18-18	07:00			Apr-18-18	07:00	Apr-18-18	07:00		
	Analyzed:	Apr-18-18	11:37	Apr-18-18	11:56			Apr-18-18	12:16	Apr-18-18	12:37		
	Units/RL:	mg/kg	RL	mg/kg	RL			mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		476	74.7	23.8	15.0			1570	74.7	243	15.0		
Diesel Range Organics (DRO)		1390	74.7	181	15.0			2680	74.7	671	15.0		
Oil Range Hydrocarbons (ORO)		164	74.7	23.1	15.0			303	74.7	86.5	15.0		
Total TPH		2030	74.7	228	15.0			4550	74.7	1000	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Project Id:212C-MD-01183Contact:Ike Tavarez

Project Location:

Certificate of Analysis Summary 582593

Tetra Tech- Midland, Midland, TX Project Name: Mckay West Federal

Date Received in Lab:Mon Apr-16-18 01:15 pmReport Date:23-APR-18Project Manager:Kelsey Brooks

	Lab Id:	582593-0	012	582593-0	013	582593-0)14		
Analysis Paguested	Field Id:	AH-3 (0-1') H	BEB, 1'	AH-3 (1-2') B	BEB, 1'	AH-3 (2-3') B	BEB, 1'		
Analysis Requested	Depth:								
	Matrix:	SOIL		SOIL		SOIL			
	Sampled:	Apr-13-18	11:50	Apr-13-18	11:58	Apr-13-18	12:04		
BTEX by EPA 8021B	Extracted:	Apr-20-18	16:30	Apr-20-18 1	14:00	Apr-23-18 (08:00		
	Analyzed:	Apr-21-18	08:17	Apr-20-18 2	22:23	Apr-23-18	10:34		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		53.0	2.00	14.5	0.499	< 0.00202	0.00202		
Toluene		219	2.00	88.8	0.499	< 0.00202	0.00202		
Ethylbenzene		204	2.00	96.0	0.499	< 0.00202	0.00202		
m,p-Xylenes		113	4.01	58.1	0.998	< 0.00403	0.00403		
o-Xylene		53.0	2.00	23.7	0.499	< 0.00202	0.00202		
Total Xylenes		166	2.00	81.8	0.499	< 0.00202	0.00202		
Total BTEX		642	2.00	281	0.499	< 0.00202	0.00202		
Inorganic Anions by EPA 300/300.1	Extracted:	Apr-18-18	10:00	Apr-18-18 1	10:00	Apr-18-18	10:00		
	Analyzed:	Apr-18-18	18:52	Apr-18-18 1	18:58	Apr-18-18	19:04		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		< 5.00	5.00	6.42	4.99	< 5.00	5.00		
TPH By SW8015 Mod	Extracted:	Apr-18-18	07:00	Apr-18-18 (07:00	Apr-19-18	16:00		
	Analyzed:	Apr-18-18	12:57	Apr-18-18 1	13:17	Apr-20-18	10:51		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		3690	74.9	1990	74.9	18.1	15.0		
Diesel Range Organics (DRO)		9500	74.9	3970	74.9	18.4	15.0		
Oil Range Hydrocarbons (ORO)		1820	74.9	562	74.9	<15.0	15.0		
Total TPH		15000	74.9	6520	74.9	36.5	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Mckay West Federal

Work Orde Lab Batch #:		Sample: 582593-001 / SMP	Bate	Project ID h: 1 Matrix									
U nits:	mg/kg	Date Analyzed: 04/18/18 11:37	SU	JRROGATE R	ECOVERY S	STUDY							
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage						
		Analytes			[D]								
1-Chlorooctane	e		87.4	99.6	88	70-135							
o-Terphenyl			46.7	49.8	94	70-135							
Lab Batch #:	3047233	Sample: 582593-002 / SMP	Bate	h: 1 Matrix	: Soil								
Units:	mg/kg	Date Analyzed: 04/18/18 11:56	SURROGATE RECOVERY STUDY										
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage						
1-Chlorooctane		Analytes	94.1	99.7	94	70-135							
o-Terphenyl			49.3	49.9	99	70-135							
Lab Batch #:	3047233	Sample: 582593-006 / SMP	Bato			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Units:	mg/kg	Date Analyzed: 04/18/18 12:16	st	JRROGATE R	ECOVERY S	STUDY							
	TPH E	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage						
		Analytes			[D]								
1-Chlorooctane	e		117	99.6	117	70-135							
o-Terphenyl			64.1	49.8	129	70-135							
Lab Batch #:	3047233	Sample: 582593-007 / SMP	Batc	h: 1 Matrix	: Soil								
Units:	mg/kg	Date Analyzed: 04/18/18 12:37	SU	JRROGATE R	ECOVERY S	STUDY							
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag						
1-Chlorooctane			100	100	100	70-135							
o-Terphenyl			49.1	50.0	98	70-135							
Lab Batch #:	3047233	Sample: 582593-012 / SMP	Bato										
Units:	mg/kg	Date Analyzed: 04/18/18 12:57	SU	JRROGATE R	ECOVERY S	STUDY							
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag						
		Analytes			[D]								
1-Chlorooctane	e		97.8	99.8	98	70-135							
o-Terphenyl			43.9	49.9	88	70-135							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mckay West Federal

Lab Batch #:	3047233	3, Sample: 582593-013 / SMP	Batcl	Project ID h: 1 Matrix									
Units:	mg/kg	Date Analyzed: 04/18/18 13:17	SU	RROGATE R	ECOVERY	STUDY							
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage						
		Analytes			[D]								
1-Chlorooctane	e		115	99.8	115	70-135							
o-Terphenyl			58.9	49.9	118	70-135							
Lab Batch #:	3047326	Sample: 582593-002 / SMP	P Batch: 1 Matrix: Soil										
Units:	mg/kg	Date Analyzed: 04/20/18 00:34	SU	RROGATE R	ECOVERY S	STUDY							
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags						
1,4-Difluorobe		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	0.0278	0.0300	93	70-130							
4-Bromofluoro	benzene		0.0303	0.0300	101	70-130							
Lab Batch #:	3047326	Sample: 582593-007 / SMP	Batcl	h: 1 Matrix	: Soil								
Units:	mg/kg	Date Analyzed: 04/20/18 02:10	SU	RROGATE R	ECOVERY	STUDY							
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage						
		Analytes			[D]								
1,4-Difluorobe	nzene		0.0242	0.0300	81	70-130							
4-Bromofluoro	benzene		0.0369	0.0300	123	70-130							
Lab Batch #:	3047326	Sample: 582593-001 / SMP	Batcl	h: 1 Matrix	: Soil								
Units:	mg/kg	Date Analyzed: 04/20/18 02:29	SU	RROGATE R	ECOVERY S	STUDY							
		Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage						
1,4-Difluorobe			0.0250	0.0300	83	70-130							
4-Bromofluoro	benzene		0.0300	0.0300	100	70-130							
Lab Batch #:	3047364	Sample: 582593-014 / SMP	Batcl		: Soil	I							
Units:	mg/kg	Date Analyzed: 04/20/18 10:51	SU	RROGATE R	ECOVERY S	STUDY							
TPH By SW8015 Mod			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag						
		Analytes			[D]								
1-Chlorooctane	e		96.8	99.7	97	70-135							
o-Terphenyl			48.6	49.9	97	70-135	-						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mckay West Federal

	: 3047447	Sample: 582593-006 / SMP									
Units:	mg/kg	Date Analyzed: 04/20/18 22:03	SU	JRROGATE R	ECOVERY S	STUDY					
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes			[D]						
1,4-Difluorol	oenzene		0.0244	0.0300	81	70-130					
4-Bromofluo			0.0263	0.0300	88	70-130					
Lab Batch #	: 3047447	Sample: 582593-013 / SMP	P Batch: 1 Matrix: Soil								
Units:	mg/kg	Date Analyzed: 04/20/18 22:23	SURROGATE RECOVERY STUDY								
		A by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage				
1,4-Difluorol		Anarytes	0.0244	0.0300	81	70-130					
4-Bromofluo			0.0238	0.0300	79	70-130					
Lab Batch #	: 3047448	Sample: 582593-012 / SMP	Bato								
Units:	mg/kg	Date Analyzed: 04/21/18 08:17	SU	JRROGATE R	ECOVERY	STUDY					
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag				
		Analytes			[D]						
1,4-Difluorob	enzene		0.0281	0.0300	94	70-130					
4-Bromofluor	robenzene		0.0264	0.0300	88	70-130					
Lab Batch #	: 3047482	Sample: 582593-014 / SMP	P Batch: 1 Matrix: Soil								
Units:	mg/kg	Date Analyzed: 04/23/18 10:34	SU	RROGATE R	ECOVERY S	STUDY					
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag				
1,4-Difluorot	enzene		0.0274	0.0300	91	70-130					
4-Bromofluo	robenzene		0.0281	0.0300	94	70-130					
Lab Batch #	: 3047233	Sample: 7642935-1-BLK / B	LK Bate	h: 1 Matrix	: Solid	1					
Units:	mg/kg	Date Analyzed: 04/18/18 08:38	SU	JRROGATE R	ECOVERY	STUDY					
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag				
		Analytes			[D]						
1-Chloroocta	ne		103	100	103	70-135					
o-Terphenyl			55.7	50.0	111	70-135					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mckay West Federal

Units:	mg/kg	Date Analyzed: 04/19/18 23:17			ECOVEDY							
omis.	iiig/kg	Date Analyzeu. 04/19/18 23.17	SU	RROGATE R	ROGATE RECOVERY STUDY							
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage					
		Analytes			[D]							
1,4-Difluorob	enzene		0.0284	0.0300	95	70-130						
4-Bromofluor	obenzene		0.0252	0.0300	84	70-130						
Lab Batch #	: 3047364	Sample: 7643028-1-BLK /	BLK Batc	h: 1 Matrix	: Solid							
Units:	mg/kg	Date Analyzed: 04/20/18 05:15	SURROGATE RECOVERY STUDY									
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage					
1.011		Analytes		100		70.107						
1-Chlorooctar	ie		98.3	100	98	70-135						
o-Terphenyl Lab Batch #	2047447	Complet 7642115 1 DI K /	50.1	50.0	100 c: Solid	70-135						
		Sample: 7643115-1-BLK /										
Units:	mg/kg	Date Analyzed: 04/20/18 13:52	SU	RROGATE R	ECOVERY S	STUDY						
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags					
		Analytes			[D]							
1,4-Difluorob	enzene		0.0281	0.0300	94	70-130						
4-Bromofluor	obenzene		0.0235	0.0300	78	70-130						
Lab Batch #	: 3047448	Sample: 7643121-1-BLK /	BLK Batc	h: 1 Matrix	: Solid							
Units:	mg/kg	Date Analyzed: 04/21/18 01:15	SU	RROGATE R	ECOVERY S	STUDY						
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.4-Difluorob	enzene		0.0290	0.0300	97	70-130						
4-Bromofluor			0.0229	0.0300	76	70-130						
Lab Batch #		Sample: 7643162-1-BLK /			Solid	, 0 150						
Units:	mg/kg	Date Analyzed: 04/23/18 09:55		RROGATE R		STUDY						
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage					
		Analytes	[]	-1	[D]							
		-	1									
1,4-Difluorob	enzene		0.0271	0.0300	90	70-130						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mckay West Federal

Lab Batch #:		Sample: 7642935-1-BKS / 1					
Units:	mg/kg	Date Analyzed: 04/18/18 08:58	SU	RROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes			[D]		
1-Chlorooctane	;		109	100	109	70-135	
o-Terphenyl			53.4	50.0	107	70-135	
Lab Batch #:	3047326	Sample: 7643021-1-BKS / 1	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/19/18 21:21	SU	RROGATE R	ECOVERY S	STUDY	
		A by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobe			0.0304	0.0300	101	70-130	
4-Bromofluoro			0.0299	0.0300	100	70-130	
Lab Batch #:	3047364	Sample: 7643028-1-BKS / 1			: Solid		
Units:	mg/kg	Date Analyzed: 04/20/18 05:41		RROGATE R	ECOVERY	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage
		Analytes	[-]	[-]	[D]	,	
1-Chlorooctane	•		116	100	116	70-135	
o-Terphenyl			57.8	50.0	116	70-135	
Lab Batch #:	3047447	Sample: 7643115-1-BKS / 1	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/20/18 11:58	SU	RROGATE R	ECOVERY S	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobe		Anaryus	0.0303	0.0300	101	70-130	
4-Bromofluoro			0.0303	0.0300	92	70-130	
Lab Batch #:		Sample: 7643121-1-BKS / 1			Solid	, 5 150	
Units:	mg/kg	Date Analyzed: 04/20/18 23:20		RROGATE R		STUDY	
		K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1,4-Difluorobe	nzene		0.0300	0.0300	100	70-130	
4-Bromofluoro	henzene		0.0270	0.0300	90	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mckay West Federal

		.					
Units:	mg/kg	Date Analyzed: 04/23/18 07:58	04/23/18 07:58 SURROGATE RECOV				
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobenzene			0.0292	0.0300	97	70-130	
4-Bromofluorobenzene			0.0304	0.0300	101	70-130	
Lab Batch #: 3047233 Sample: 7642935-1-BSD / E			BSD Batc	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/18/18 09:19	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			111	100	111	70-135	
o-Terphenyl			52.7	50.0	105	70-135	
Lab Batch #	#: 3047326	Sample: 7643021-1-BSD / 1				10 135	
Units:	mg/kg	Date Analyzed: 04/19/18 21:41	ECOVERY	STUDY			
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[]	[-]	[D]	,	
1,4-Difluorobenzene			0.0286	0.0300	95	70-130	
4-Bromofluorobenzene			0.0292	0.0300	97	70-130	
Lab Batch #: 3047364 Sample: 7643028-1-BSD / E			BSD Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/20/18 06:08	SURROGATE RECOVERY STUDY				
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane			113	100	113	70-135	
o-Terphenyl			58.0	50.0	116	70-135	
Lab Batch #	#: 3047447	Sample: 7643115-1-BSD /	BSD Batc	h: 1 Matrix		I	1
Units:	mg/kg	Date Analyzed: 04/20/18 12:17	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobenzene			0.0309	0.0300	103	70-130	
4-Bromofluorobenzene			0.0280	0.0300	93	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Form 2 - Surrogate Recoveries

Project Name: Mckay West Federal

	3047448	Sample: 7643121-1-BSD / BS	D Batc	h: 1 Matrix	· bond		
U nits:	mg/kg	Date Analyzed: 04/20/18 23:40	SU	RROGATE R	ECOVERY S	STUDY	
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobe	nzene		0.0300	0.0300	100	70-130	
4-Bromofluoro			0.0296	0.0300	99	70-130	
Lab Batch #:	3047482	Sample: 7643162-1-BSD / BS	D Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 04/23/18 08:17	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flage
1,4-Difluorobe			0.0299	0.0300	100	70-130	
4-Bromofluoro			0.0306	0.0300	100	70-130	
Lab Batch #:	3047233	Sample: 582464-004 S / MS	Batc	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/18/18 09:58	SU	RROGATE R	ECOVERY S	STUDY	
	TPH F	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooctane	e		99.0	99.9	99	70-135	
o-Terphenyl			43.6	50.0	87	70-135	
Lab Batch #:	3047326	Sample: 582908-007 S / MS	Bate	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/19/18 22:00	SU	RROGATE R	ECOVERY S	STUDY	
		L by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobe			0.0310	0.0300	103	70-130	
4-Bromofluoro			0.0310	0.0300	97	70-130	
Lab Batch #:		Sample: 582908-001 S / MS	Batc			/0150	
Units:	mg/kg	Date Analyzed: 04/20/18 06:59		RROGATE R		STUDY	
	TPH E	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flag
		Analytes			[D]		
1-Chlorooctane	e		110	100	110	70-135	
o-Terphenyl			52.9	50.0	106	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Mckay West Federal

Lab Batch	#: 3047447	Sample: 583094-001 S / MS									
U nits:	mg/kg	Date Analyzed: 04/20/18 12:35	SU	RROGATE R	ECOVERY	STUDY					
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes			[D]						
1,4-Difluoro	obenzene		0.0267	0.0300	89	70-130					
4-Bromoflu	orobenzene		0.0265	0.0300	88	70-130					
Lab Batch	#: 3047448	Sample: 582929-001 S / MS	S Bate	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 04/20/18 23:59	SU	RROGATE R	ECOVERY	STUDY					
		by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro		Anary us	0.0307	0.0300	102	70-130					
4-Bromoflu			0.0300	0.0300	102	70-130					
	#: 3047482	Sample: 583105-006 S / MS				70 150					
Units:	mg/kg	Date Analyzed: 04/23/18 08:36		RROGATE R		STUDY					
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes	[A]	[10]	[D]	701					
1,4-Difluoro	obenzene		0.0288	0.0300	96	70-130					
4-Bromoflu	orobenzene		0.0307	0.0300	102	70-130					
Lab Batch	#: 3047233	Sample: 582464-004 SD / N	ASD Bate	h: 1 Matrix	: Soil						
Units:	mg/kg	Date Analyzed: 04/18/18 10:18	SU	RROGATE R	ECOVERY S	STUDY					
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct		Anaryus	117	99.7	117	70-135					
o-Terphenyl			41.1	49.9	82	70-135					
	#: 3047326	Sample: 582908-007 SD / N				/0-155					
Units:	mg/kg	Date Analyzed: 04/19/18 22:19		RROGATE R		STUDY					
	BTEX	L by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flage				
		Analytes			[D]						
1,4-Difluoro	obenzene		0.0297	0.0300	99	70-130					
4-Bromoflu	orobenzene		0.0304	0.0300	101	70-130					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Mckay West Federal

	rders: 582593 #: 3047364	3, Sample: 582908-001 SD / N	MSD Batcl		: 212C-MD-0	01183	
Units:	mg/kg	Date Analyzed: 04/20/18 07:24		RROGATE R	-	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooc	tane		107	99.8	107	70-135	
o-Terpheny	1		53.3	49.9	107	70-135	
Lab Batch	#: 3047447	Sample: 583094-001 SD / N	MSD Batcl	h: 1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 04/20/18 12:54	SU	RROGATE R	ECOVERY	STUDY	
		K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluor		Anarytes	0.0275	0.0300	92	70-130	
4-Bromoflu	orobenzene		0.0255	0.0300	85	70-130	
	#: 3047448	Sample: 582929-001 SD / M				10 150	
Units:	mg/kg	Date Analyzed: 04/21/18 00:19		RROGATE R		STUDY	
	BTEX	K by EPA 8021B	Amount Found	True Amount	Recovery %R	Control Limits %R	Flags
		Analytes	[A]	[B]	[D]	-70K	
1,4-Difluor	obenzene		0.0312	0.0300	104	70-130	
4-Bromoflu	orobenzene		0.0272	0.0300	91	70-130	
Lab Batch	#: 3047482	Sample: 583105-006 SD / N	MSD Batcl	h: 1 Matrix	: Soil	1	
Units:	mg/kg	Date Analyzed: 04/23/18 08:57	SU	RROGATE R	ECOVERY	STUDY	
		K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0302	0.0300	101	70-130	
4-Bromoflu	orobenzene		0.0308	0.0300	103	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: Mckay West Federal

Work Order #: 582593							Proj	ect ID:	212C-MD-(01183	
Analyst: ALJ	D	ate Prepar	ed: 04/19/20	18			Date A	nalyzed: (04/19/2018		
Lab Batch ID: 3047326 Sample: 7643021-1-	BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / I	BLANK	SPIKE DUP	LICATE	RECOVI	ERY STUI	ЭY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.0998	0.119	119	0.100	0.118	118	1	70-130	35	
Toluene	< 0.00200	0.0998	0.113	113	0.100	0.113	113	0	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.113	113	0.100	0.111	111	2	70-130	35	
m,p-Xylenes	< 0.00399	0.200	0.230	115	0.201	0.228	113	1	70-130	35	
o-Xylene	< 0.00200	0.0998	0.117	117	0.100	0.113	113	3	70-130	35	
Analyst: ALJ	D	ate Prepar	ed: 04/20/20	18			Date A	nalyzed: (04/20/2018		
Lab Batch ID: 3047447 Sample: 7643115-1-	BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOVI	ERY STUI	DY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00202	0.101	0.113	112	0.100	0.120	120	6	70-130	35	
Toluene	<0.00202	0.101	0.109	108	0.100	0.115	115	5	70-130	35	
Ethylbenzene	<0.00202	0.101	0.110	109	0.100	0.115	115	4	70-130	35	
m,p-Xylenes	< 0.00403	0.202	0.224	111	0.201	0.236	117	5	70-130	35	
o-Xylene	<0.00202	0.101	0.110	109	0.100	0.115	115	4	70-130	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Mckay West Federal

Analyst: ALJ Date Preparet: 04/20/2018 Date Analyzed: 04/20/2018 Lab Batch ID: 3047448 Sample: 7643121-1-BKS Batch #: I Matrix: Solid Units: mg/kg BLANK / BLANK SPIKE / BLANK SPIKE DUP/CATE RECOVERSY SPIKE DUP/CATE Recover Spike Flag Blank Spike Spike Blank	Work Order #: 582593							Proj	ect ID:	212C-MD-(01183	
Inits: mg/kg BTEX by EPA 8021B Blank simple Result [A] Spike Added Blank Spike Result [C] Blank Spike (D] Spike Added Blank Spike Result [F] Blank Spike (G] Bla.Spk NPD RPD Control Limits %R Control Limits %R Flag Benzene <0.00200 0.0998 0.115 115 0.101 0.112 111 3 70-130 35 100 Benzene <0.00200 0.0998 0.108 108 0.101 0.107 106 1 70-130 35 100 Toluene <0.00200 0.0998 0.109 109 0.101 0.107 106 1 70-130 35 100 Ethylbenzene <0.00399 0.200 0.221 111 0.201 0.218 108 1 70-130 35	Analyst: ALJ	D	ate Prepar	ed: 04/20/20	18			Date A	nalyzed: (04/20/2018		
BTEX by EPA 8021B Blank Sample Result [A] Spike Added Blank Spike Result [C] Spike Mded Blank Spike (B] Spike Added Blank Spike (B] Spike Added Blank Spike (B] Spike Added Blank Spike (B] Spike Added Blank Spike Result [F] Blank Spike [G] Blank Spike (B] Spike Month Spike (B] Blank Spike (B] Blank Spike (B] Blank Spike Result [F] Blank Spike (B] Blank Spike (B] <t< th=""><th>Lab Batch ID: 3047448 Sample: 7643121-1</th><th>-BKS</th><th>Batcl</th><th>h #: 1</th><th></th><th></th><th></th><th></th><th>Matrix: S</th><th>Solid</th><th></th><th></th></t<>	Lab Batch ID: 3047448 Sample: 7643121-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Sample Result [A] Added [A] Spike Result [C] Spike %R (D] Spike %R [E] Spike Duplicate Result [F] Dup. %R [G] RPD % Limits %R Limits %RPD Flag Benzene <0.00200 0.0998 0.115 115 0.101 0.112 111 3 70-130 35 Toluene <0.00200 0.0998 0.108 108 0.101 0.107 106 1 70-130 35 Ethylbenzene <0.00399 0.200 0.221 111 0.201 0.218 108 1 70-130 35	Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Toluene <0.00200		Sample Result	Added	Spike Result	Spike %R	Added	Spike Duplicate	Dup. %R		Limits	Limits	Flag
Ethylbenzene <0.00200 0.0998 0.109 109 0.101 0.107 106 2 70-130 35 m,p-Xylenes <0.00399	Benzene	< 0.00200	0.0998	0.115	115	0.101	0.112	111	3	70-130	35	
m,p-Xylenes <0.00399 0.200 0.221 111 0.201 0.218 108 1 70-130 35	Toluene	< 0.00200	0.0998	0.108	108	0.101	0.107	106	1	70-130	35	
	Ethylbenzene	< 0.00200	0.0998	0.109	109	0.101	0.107	106	2	70-130	35	
o-Xylene <0.00200 0.0998 0.111 111 0.101 0.109 108 2 70-130 35	m,p-Xylenes	< 0.00399	0.200	0.221	111	0.201	0.218	108	1	70-130	35	
	o-Xylene	< 0.00200	0.0998	0.111	111	0.101	0.109	108	2	70-130	35	
Analyst: ALJ Date Prepared: 04/23/2018 Date Analyzed: 04/23/2018	Analyst: ALJ	D	ate Prepar	ed: 04/23/20	18			Date A	nalyzed: (04/23/2018		
Lab Batch ID: 3047482 Sample: 7643162-1-BKS Batch #: 1 Matrix: Solid	Lab Batch ID: 3047482 Sample: 7643162-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021BBlank Sample Result [A]Spike AddedBlank Spike ResultBlank Spike NRSpike AddedBlank Spike NRBlank AddedBlank Spike NRBlank Spike Duplicate Result [F]Blank Dup. NRBlank NRBlank Control Limits NRControl Limits NRControl Limits NRControl NRControl NRControl NRFlag		Sample Result	Added	Spike Result	Spike %R	Added	Spike Duplicate	Dup. %R		Limits	Limits	Flag
Benzene <0.00199 0.0996 0.118 118 0.100 0.117 117 1 70-130 35	Benzene	< 0.00199	0.0996	0.118	118	0.100	0.117	117	1	70-130	35	
Toluene <0.00199 0.0996 0.113 113 0.100 0.112 112 1 70-130 35	Toluene	<0.00199	0.0996	0.113	113	0.100	0.112	112	1	70-130	35	
Ethylbenzene <0.00199 0.0996 0.118 118 0.100 0.116 116 2 70-130 35	Ethylbenzene	<0.00199	0.0996	0.118	118	0.100	0.116	116	2	70-130	35	
m,p-Xylenes <0.00398 0.199 0.243 122 0.200 0.240 120 1 70-130 35	m,p-Xylenes	<0.00398	0.199	0.243	122	0.200	0.240	120	1	70-130	35	
o-Xylene <0.00199 0.0996 0.120 120 0.100 0.117 117 3 70-130 35	o-Xylene	< 0.00199	0.0996	0.120	120	0.100	0.117	117	3	70-130	35	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Mckay West Federal

Work Order #: 582593							Proj	ject ID:	212C-MD-	01183	
Analyst: OJS	D	ate Prepar	red: 04/18/202	18			Date A	nalyzed: (04/18/2018		
Lab Batch ID: 3047178 Sample: 7642856-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<5.00	250	245	98	250	255	102	4	90-110	20	
Analyst: ARM	D	ate Prepar	ed: 04/18/20	18	ļ	1	Date A	nalyzed: ()4/18/2018	Į	<u> </u>
Lab Batch ID: 3047233 Sample: 7642935-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	979	98	1000	942	94	4	70-135	20	
Diesel Range Organics (DRO)	<15.0	1000	1020	102	1000	1030	103	1	70-135	20	
Analyst: ARM	D	ate Prepar	ed: 04/19/20	18			Date A	nalyzed: (04/20/2018		
Lab Batch ID: 3047364 Sample: 7643028-1	-BKS	Batcl	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	1030	103	1000	1030	103	0	70-135	20	
Diesel Range Organics (DRO)	<15.0	1000	1070	107	1000	1090	109	2	70-135	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Project Name: Mckay West Federal

Work Order # : 582593						Project II	D: 212C-1	MD-01183	3		
Lab Batch ID: 3047326	QC- Sample ID:	582908	-007 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/19/2018	Date Prepared:	04/19/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	< 0.00201	0.100	0.107	107	0.101	0.117	116	9	70-130	35	
Toluene	< 0.00201	0.100	0.0995	100	0.101	0.110	109	10	70-130	35	
Ethylbenzene	< 0.00201	0.100	0.0961	96	0.101	0.109	108	13	70-130	35	
m,p-Xylenes	< 0.00402	0.201	0.197	98	0.202	0.225	111	13	70-130	35	
o-Xylene	< 0.00201	0.100	0.0987	99	0.101	0.113	112	14	70-130	35	
Lab Batch ID: 3047447	QC- Sample ID:	583094	-001 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/20/2018	Date Prepared:	04/20/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.100	0.0645	65	0.0998	0.0771	77	18	70-130	35	X
Toluene	< 0.00200	0.100	0.0546	55	0.0998	0.0657	66	18	70-130	35	X
Ethylbenzene	< 0.00200	0.100	0.0467	47	0.0998	0.0582	58	22	70-130	35	X
m,p-Xylenes	<0.00401	0.200	0.0943	47	0.200	0.117	59	21	70-130	35	X
o-Xylene	< 0.00200	0.100	0.0476	48	0.0998	0.0588	59	21	70-130	35	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Mckay West Federal

Work Order # : 582593						Project II): 212C-N	MD-01183	3		
Lab Batch ID: 3047448	QC- Sample ID:	582929	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed: 04/20/2018	Date Prepared:	04/20/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]		[G]		/011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Benzene	<0.00199	0.0996	0.0945	95	0.100	0.108	108	13	70-130	35	
Toluene	< 0.00199	0.0996	0.0869	87	0.100	0.0957	96	10	70-130	35	
Ethylbenzene	< 0.00199	0.0996	0.0820	82	0.100	0.0865	87	5	70-130	35	
m,p-Xylenes	< 0.00398	0.199	0.166	83	0.200	0.175	88	5	70-130	35	
o-Xylene	< 0.00199	0.0996	0.0858	86	0.100	0.0883	88	3	70-130	35	
Lab Batch ID: 3047482	QC- Sample ID:	583105	-006 S	Ba	tch #:	1 Matrix	x: Soil				
Date Analyzed: 04/23/2018	Date Prepared:	04/23/2	018	An	alyst: A	ALJ					
Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Benzene	<0.00200	0.0998	0.106	106	0.100	0.0972	97	9	70-130	35	
Toluene	<0.00200	0.0998	0.101	101	0.100	0.0918	92	10	70-130	35	
Ethylbenzene	<0.00200	0.0998	0.102	102	0.100	0.0917	92	11	70-130	35	
m,p-Xylenes	< 0.00399	0.200	0.210	105	0.201	0.189	94	11	70-130	35	
										1	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Mckay West Federal

Work Order # :	582593						Project II): 212C-1	MD-0118	3		
Lab Batch ID:	3047178	QC- Sample ID:	582592	-005 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	04/18/2018	Date Prepared:	04/18/2	018	An	alyst: (OJS					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[C]	76K [D]	E]	Kesun [F]	%K [G]	-70	70K	70KPD	
Chloride		488	249	719	93	249	728	96	1	90-110	20	
Lab Batch ID:	3047178	QC- Sample ID:	582600	-004 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	04/18/2018	Date Prepared:	04/18/2	018	An	alyst: (OJS					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	Added [B]		%K [D]	E]	Kesuit [F]	%K [G]	70	% K	%KPD	
Chloride		184	249	420	95	249	416	93	1	90-110	20	
Lab Batch ID:	3047233	QC- Sample ID:	582464	-004 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	04/18/2018	Date Prepared:	04/18/2	018	An	alyst: A	ARM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	TPH By SW8015 Mod	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	e Hydrocarbons (GRO)	<15.0	999	826	83	997	870	87	5	70-135	20	
Diesel Range O	Organics (DRO)	<15.0	999	857	86	997	875	88	2	70-135	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Mckay West Federal

Work Order # :	582593						Project II	D: 212C-1	MD-01183	3		
Lab Batch ID:	3047364	QC- Sample ID:	582908-	001 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed:	04/20/2018	Date Prepared:	04/19/20	018	An	alyst: A	ARM					
Reporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERYS	STUDY		
]	ГРН By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	Hydrocarbons (GRO)	<15.0	1000	943	94	998	945	95	0	70-135	20	
Diesel Range Or	rganics (DRO)	<15.0	1000	972	97	998	974	98	0	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

Frequest of Chain of Custo Frequest of Chain of Custo Frequest of Chain of Custo Frequest of Chain of Custo Frequest of Chain of Custo Midland, Texas 79705 (32) 882-4539 • Fax (42) 882-3946 Frequest of RAB Frequest of Chain of Custo Frequest	Of Chain of Custody Reco FERETRATECH ITERATECH ITERATECH	Of Chain of Custody Record FERATECH 1910 N. Big spring st. Wildland, Texas 79705 42) 982-4539 Fax (432) 682-3946 Sample IDENTIFICATION Sample IDENTIFICATION INTERNANCER: TREMANCER: INTERNANCER: TREMANCER: INTERNANCER: INTERNANCER: INTERNANCER: INTERNANCE: INTERNANCE: <td co<="" th=""><th>OT Chain of Custody Record FERRATECH Igto N. Rig Spring St. Midland, Texas 7970S 42) 882-4559 Fax (42) 682-3946 SITE MANAGER: IMAGE TECH (12) 882-3946 SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION MICH-0-1') BEB 2' 1 FILTERED (1/10) 3.000-1') BEB 2' 1 FILTERED (1/10) FILTERED (1/10) 3.000-1') BEB 2' 1 HICL HICL 1 HICL HICL 1 HICL HICL 1 HICL HICL 2.0 HICL HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 1 HICL HICL 1 HICL HICL 1 HICL HICL 1 HICL HIC</th><th>of Chain of Custody Record Cirice and an analysis of the copy - Account of the copy</th></td>	<th>OT Chain of Custody Record FERRATECH Igto N. Rig Spring St. Midland, Texas 7970S 42) 882-4559 Fax (42) 682-3946 SITE MANAGER: IMAGE TECH (12) 882-3946 SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION MICH-0-1') BEB 2' 1 FILTERED (1/10) 3.000-1') BEB 2' 1 FILTERED (1/10) FILTERED (1/10) 3.000-1') BEB 2' 1 HICL HICL 1 HICL HICL 1 HICL HICL 1 HICL HICL 2.0 HICL HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 1 HICL HICL 1 HICL HICL 1 HICL HICL 1 HICL HIC</th> <th>of Chain of Custody Record Cirice and an analysis of the copy - Account of the copy</th>	OT Chain of Custody Record FERRATECH Igto N. Rig Spring St. Midland, Texas 7970S 42) 882-4559 Fax (42) 682-3946 SITE MANAGER: IMAGE TECH (12) 882-3946 SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION MICH-0-1') BEB 2' 1 FILTERED (1/10) 3.000-1') BEB 2' 1 FILTERED (1/10) FILTERED (1/10) 3.000-1') BEB 2' 1 HICL HICL 1 HICL HICL 1 HICL HICL 1 HICL HICL 2.0 HICL HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 3.0 FILTERED (1/10) HICL 1 HICL HICL 1 HICL HICL 1 HICL HICL 1 HICL HIC	of Chain of Custody Record Cirice and an analysis of the copy - Account of the copy
	TIME:	The Project Manager retains	Image:	PRECERTAINTYER AMALYSIS REQUEST Click of CONTAINERS PRECERTAINTYER PRECENTION PRECENTION <th< td=""></th<>	

Page 24 of 26

Stan Fila r.odo

Page 25 of 26

Final 1.000

XENCO Laboratories

ATORIES Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC						
Date/ Time Received: 04/16/2018 01:15:00 PM	Air and Metal samples Acceptable Range: Ambient						
Work Order #: 582593	Temperature Measuring device used : R8						
Sample Recei	pt Checklist Comments						
#1 *Temperature of cooler(s)?	5						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes						
#4 *Custody Seals intact on shipping container/ cooler?	N/A						
#5 Custody Seals intact on sample bottles?	N/A						
#6*Custody Seals Signed and dated?	N/A						
#7 *Chain of Custody present?	Yes						
#8 Any missing/extra samples?	No						
#9 Chain of Custody signed when relinquished/ received?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#11 Container label(s) legible and intact?	Yes						
#12 Samples in proper container/ bottle?	Yes						
#13 Samples properly preserved?	Yes						
#14 Sample container(s) intact?	Yes						
#15 Sufficient sample amount for indicated test(s)?	Yes						
#16 All samples received within hold time?	Yes						
#17 Subcontract of sample(s)?	N/A						
#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 04/17/2018

Date: 04/18/2018