

Jason Michelson Project Manager Chevron Environmental Management Company 1400 Smith Street, #07084 Houston, Texas 77002 Work: 713-372-0289 Cell: 281-660-8564 jmichelson@chevron.com

APPROVED By Olivia Yu at 3:08 pm, Sep 18, 2018

> NMOCD approves of the additional delineation and proposed groundwater monitoring well for 1RP-1483.

July 25, 2018

Olivia Yu Environmental Specialist New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Chevron Central Vacuum Unit No. 47H 2017 Soil Assessment Report Case No. RP-1483 Lea County, New Mexico

Dear Ms. Yu,

Please find enclosed for your files copies of the following report:

 Central Vacuum Unit No. 47 H – 2017 Soil Assessment Report, Unit A, Section 31, Township 17 South, Range 35 East; Lea County New Mexico.

The report was prepared by GHD Services (GHD) on behalf of Chevron Environmental Management Company (CEMC) to document on-going assessment activities throughout 2017 at the Site.

Please do not hesitate to call Scott Foord with GHD at 713-734-3090 or myself at 713-372-0289, should you have any questions.

Sincerely,

Jan Mila

Jason Michelson

Encl. Central Vacuum Unit No. 47H - 2017 Soil Assessment Report

C.C. Amy Barnhill, Chevron/MCBU

Site Assessment Report

Central Vacuum Unit No. 47H RP No. 1483 Unit A, Section 31, Township 17 South, Range 35 East Lovington, New Mexico

Chevron Environmental Management Company

Table of Contents

1.	Intro	Juction	. 1
2.	Proje	ct Information and Background	. 1
3.	Rem	ediation Standards	. 2
4.	Geop	hysical Survey – EM31 and ER	. 3
	4.1	EM31 Survey Methodology	. 3
	4.2	EM31 Survey Results	. 3
	4.3	ER Survey Methodology	. 4
	4.4	ER Survey Results	. 4
	4.5	Geophysical Survey Correlations/Conclusions	. 4
5.	Soil A	Assessment	. 4
	5.1	Soil Sampling Analytical Results - 2017	. 5
6.	Conc	lusions	. 6
7.	2018	Assessment Activities	. 6

Figure Index

Figure 1	Site Location Map
Figure 2	Site Aerial Map
Figure 3	Site Details Map
Figure 4	EM31 Geophysical Investigation
Figure 5	Geophysical Investigation Electrical Resistivity Survey Results
Figure 6	Chloride Analytical Results Map

Table Index

 Table 1
 Summary of Soil Analytical Results

Appendix Index

- Appendix A SB-5 through SB-10 Soil Boring Logs
- Appendix B Soil Laboratory Analytical Report
- Appendix C 2018 Work Plan

1. Introduction

On behalf of Chevron Environmental Management Company (CEMC), GHD Services, Inc. (GHD) has prepared this Site Assessment Report summarizing soil boring installation and sampling activities conducted at the Central Vacuum Unit No. 47H location (hereafter referred to as the "Site"). The Site is located in Unit A, Section 31, Township 17 South, Range 35 East, approximately 0.94-miles southeast of Buckeye, in central Lea County, New Mexico (Figure 1 and Figure 2). Remediation Permit (RP) Number 1483 (RP-1483) was assigned by the New Mexico Oil Conservation Division (NMOCD) District I, Hobbs, New Mexico office.

2. Project Information and Background

Environmental Plus, Inc. (EPI) submitted a request for pit closure/work plan on behalf of Chevron USA (Chevron) to the NMOCD District I, Hobbs, New Mexico office on July 9, 2007 that summarized field activities completed by EPI in January and February 2006 at CVU 47H. An area around the former pit location was excavated to approximately 10-feet below ground surface (bgs) and an estimated 2,622 cubic yards (cy) of drilling mud/soil were transported to Sundance Services, Inc. Subsequent to excavation activities, soil samples from two soil borings (SB-1 and SB-2) installed at the base of the excavation and eight excavation sidewall samples (NSWW-3, WSWN-3, WSWS-3, SSWW 3, SSWE-3, ESWS-3, ESWN-3 and NSWE-3) were collected. Soil boring data demonstrated chloride concentrations decreasing to below the Site Recommended Remediation Action Level (RRAL) of 250 milligrams per kilogram (mg/kg) in each of the pit floor borings. Sidewall samples indicated elevated chloride impacts at a depth of 3 feet bgs on the south/southeastern portions of the excavation.

On July 11, 2007, the pit closure work plan submitted by EPI was denied approval by the NMOCD District I office because of elevated chloride concentrations still present on the south/southeastern portion of the existing excavation. The NMOCD recommended these "hot spots" be removed and a closure proposal be resubmitted once lateral delineation was confirmed. In December 2010, CEMC assumed the responsibilities of the pit closure activities at the Site and GHD (formerly CRA) was contracted to manage the pit closure activities. On January 11, 2011, GHD, CEMC and AECOM met at the NMOCD District I office to discuss the path forward at the Site. Topics of discussions included the 2007 work plan submittal and objectives to close the pit as directed by the NMOCD.

On June 27, 2012, GHD and CEMC met at the NMOCD District I office to further discuss the path forward at the Site. The discussion covered GHD's Closure Request Work Plan (prepared March 18, 2011), additional delineation activities, proper closure documentation (C-141/C-144 form) submittal, and reporting. The NMOCD requested additional assessments be completed to further evaluate the vertical extent of chloride impacts for areas outside of the excavated pit boundaries. In December 2012, GHD mobilized to the Site to initiate additional soil boring activities. Soil borings SB-3 and SB-4 were drilled to 50 feet bgs to assess areas southeast (outside) of the previously excavated pit boundaries. Results of the 2012 soil boring and sampling activities indicated the presence of elevated chloride concentrations in soil (see Figure 6).

On July 9, 2014, GHD and CEMC met with NMOCD at the NMOCD District I office to discuss a pit closure plan and request to backfill prepared by GHD on behalf of CEMC. The Site's history and analytical findings were reviewed and it was agreed to by all parties that the existing open pit excavation should be backfilled in accordance to the pit closure plan and backfill request prepared by GHD (July 2014). NMOCD requested that a NMOCD Form C-144 be submitted summarizing the backfilling and closure activities. Additionally, NMOCD requested that delineation efforts to the southeast of the excavation be explored further via soil borings and analytical sampling, and that those activities be reported under a separate NMOCD Form C-141 during the 2015 calendar year.

GHD performed the proposed backfilling and closure activities for the pit in March of 2015. GHD prepared and submitted a Remediation and Pit Closure Activities Report as an attachment to NMOCD C-144 Pit Closure Form to NMOCD in April 2015.

GHD returned to the Site on August 19, 2015 to initiate additional soil boring activities discussed in the July 9, 2014 meeting between Chevron, GHD, and the NMOCD. Soil boring SB-1 was advanced to approximately 50 feet bgs and soil boring SB-2 was advanced to approximately 90 feet bgs. Soil samples collected from SB-1 were below the RRAL (250 milligrams mg/kg) for chloride in all samples collected with the exception of the 5-foot interval (421 mg/kg). Soil boring SB-2 exceeded the RRAL in multiple sample intervals throughout the boring.

The analytical data obtained from the 2012 and 2015 soil assessment activities indicated that vertical and horizontal delineation of chloride impacts in soil was not achieved at the Site. Assessment activities were continued in 2017 and included the advancement of six additional soil borings (SB-5 through SB-10) to 90 feet bgs. Soil boring locations are depicted on Figure 3. The findings of the 2017 soil investigation are presented in this report.

3. Remediation Standards

Information available on the Petroleum Recovery Research Center (PRRC) Mapping Portal, current (GHD) managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation indicate:

- The depth to groundwater from the deepest impacted soil at the Site is less than 50-feet bgs.
- The nearest private domestic water source is greater than 200-feet from the release site.
- The nearest public/municipal water source is greater than 1,000-feet from the release site.
- The release site lies more than 1,000 horizontal feet from the nearest surface water body.

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site. The site-specific RRALs applied to this location by the NMOCD are 10 mg/kg for benzene; 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX); 100 mg/kg for total petroleum hydrocarbons (TPH); and an NMOCD accepted 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chloride.

In an August 28, 2017 telephone conversation between Bernard Bockisch (GHD) and Jim Griswold (NMOCD Environmental Bureau Chief), GHD was informed that the NMOCD is accepting chloride concentrations of 600 mg/kg for the horizontal delineation assessment clean up levels.

4. Geophysical Survey – EM31 and ER

In June and August 2017, GHD completed a two-phase geophysical investigation at the Site. The purpose of the investigation was to delineate areas of elevated conductivity in order to map the extent of suspected chloride impacts to soil at the Site. The first phase of the investigation consisted of an electromagnetic (EM) survey to delineate the footprint of the suspected impacts. Based on the EM survey results, an electrical resistivity (ER) survey was completed to determine the vertical distribution of the suspected impacts. Survey coverage data are presented on attached Figures 4 and 5.

The EM survey was completed with an EM31 terrain conductivity meter. Prior to conducting the EM31 survey, a grid consisting of parallel lines was established over the proposed area of investigation indicated on Figure 4. Measurements of EM31 data were collected along 30-foot spaced grid lines over the area of investigation, with station spacings of approximately 4 feet on all grid lines. The ER survey line location was chosen based on the EM31 survey results, and transected the EM31 conductivity anomaly. The configuration of the electrodes (also called an array) and the electrode spacings were optimized to achieve an approximate depth of investigation of approximately 70 feet bgs, and the electrode spacing on all grid lines was on the order of 6.6 feet (i.e. 2 meters).

4.1 EM31 Survey Methodology

The EM31 survey was completed to determine the horizontal extent or limits of chloride impacts in the shallow subsurface soils at the Site. The EM31 consists of transmitter and receiver coils located at opposite ends of a rigid boom. The coil separation for the EM31 is approximately 13 feet, which yields an approximate depth of penetration of 18 feet bgs in vertical dipole mode. Measurements of terrain conductivity from the EM31 were used to assess the extent of chloride impacts at the Site. The data for the EM31 survey were then processed as a colored contour plot. The plot was superimposed on an aerial image of the Site plan, and was used to locate elevated conductivity responses indicative of chloride-impacted areas relative to the Site features. Figure 4 depicts the EM31 survey results.

4.2 EM31 Survey Results

The colored contour conductivity plot presented on Figure 4 reveals that the highest intensity conductivity responses are colored red to purple, while areas of low response are colored blue. All remaining intermediate responses correspond to the color scale presented on the figure. Results from non-impacted areas within the survey coverage indicate that background conductivity responses were approximately 15 milliSiemens/meter (mS/m). Anomalous responses relative to background were generally 1.5 to 10 times higher, and ranged from approximately 20 to 150 mS/m. The EM31 survey results delineated one main area of suspected brine-impacted soils. The response area is just south of the former pit (previously excavated in 2015).

4.3 ER Survey Methodology

The ER survey profile was completed in August 2017 to determine the vertical extent of chlorideimpact in soil on one selected survey line running north/south, transecting the former pit at the Site. This area exhibited the strongest responses during the EM31 survey (see Figure 4). The ER survey was conducted with a dual-function resistivity meter, which operates simultaneously as a transmitter and receiver. The survey utilized two multi-electrode cables yielding a total spread of 72 electrodes. The receiver was programmed to automatically "switch" between measured quadripoles, yielding a pseudosection of apparent resistivity. The apparent resistivity data were then imported into an inversion software program, and processed to yield a modeled profile section of resistivity.

4.4 ER Survey Results

The electrical resistivity results for the survey line are presented on Figure 5. These results are based on the measured apparent resistivity values for various depths along the survey line. Calculations of measured apparent resistivity values include the type of ER array (Wenner), the electrode spacing, and raw field data (i.e., applied current and measured voltage for each data point).

The measured apparent resistivity data were processed with the inversion program RES2DINV, to yield the modeled resistivity section presented on Figure 5. The modeled section represents the resistance of earth materials in the shallow subsurface, and thus provides an interpretation of the overburden sequences and areas of suspected brine impacts along the survey line. The highest resistivity values are colored dark blue, while areas of low resistivity (or conversely, high conductivity) are colored yellow to red. All remaining intermediate responses correspond to the color scale presented on the bottom of each section.

The colored plot reveals that the contour intervals ranged from 6.0 to approximately 1,000 Ohm.meters (Ohm.m). The intermediate contour intervals were determined by applying a normalized distribution curve to the data such that the entire range of responses could be identified by discrete colors. The interpreted colored contoured plot suggests that suspected brine-impacted soils can likely be characterized by modeled responses of approximately 6.0 to 40 Ohm.m.

4.5 Geophysical Survey Correlations/Conclusions

- The EM31 survey delineated one main area of suspected brine-impacted soils at the Site.
- In general, the ER survey results indicate the zone of suspected brine impact is centered south/southeast of the former pit, affecting soils at surface down to at least 70 feet bgs.
- The suspected brine impacts appear confined to one area south/southeast of the former pit.

5. Soil Assessment

In order to further define the horizontal extent of chloride impact, six additional soils borings (SB-5 though SB-10) were installed using an air rotary drilling rig. Prior to mobilizing drilling equipment to the Site, the boring locations were marked and an initial New Mexico One Call utility locate ticket was submitted. GHD's contracted service provider, Harrison Cooper, Inc. (HCI), a New Mexico-

licensed water well driller, and GHD mobilized to the Site to begin drilling activities on October 18, 2017. Each boring location was cleared for underground utilities with the use of an air knife up to a depth of 5.0 feet bgs or refusal. SB-5 though SB-10 were advanced to 90 feet bgs. Site details and boring locations are shown on Figure 3.

The chloride screening was accomplished in the field by mixing soil samples with distilled water, then testing the rinsate using Hach chloride test strips. The soil types observed during drilling of SB-6 through SB-10 consisted primarily of silty sands. The soils were logged in accordance with the Unified Soil Classification System, and soil boring logs are provided in Appendix A.

Soil samples were collected at 0.5-1 feet bgs, 4-5 feet bgs, and then ten-foot intervals starting at 9-10 feet bgs within each of the six soil borings. Soil samples were placed in laboratory-supplied sample containers on ice, labeled, and submitted to Xenco Laboratories in Midland, Texas for analysis of chloride by EPA Method 300. Groundwater was not encountered in any of the soil borings. Following completion of activities, the soil cuttings were returned to their respective boreholes and the remainder backfilled with hydrated bentonite pellets from 10 feet bgs to the ground surface.

5.1 Soil Sampling Analytical Results - 2017

Analytical results associated with the soil boring activities of October 2017 are discussed in the following section. Based on analytical results from the shallow soil samples (below Site RRALs), some deeper soil samples were not analyzed at the direction of GHD. Analytical results are presented in Table 1, shown in map view on Figure 6, and are summarized below:

- Soil samples collected from SB-5 exhibited chloride concentrations exceeding the RRAL in the first two shallow sample intervals (0.5-1 feet bgs at 3,760 mg/kg and 4-5 feet bgs at 585 mg/kg). Chloride concentrations decreased below the RRAL throughout the deeper soil sample intervals.
- SB-6 exhibited chloride concentrations exceeding the RRAL in all but one sample interval (9-10 feet bgs) with concentrations ranging from 384 mg/kg to 1,970 mg/kg. The chloride concentration of the soil sample collected from the terminal depth of the boring (90 feet bgs) was above the RRAL at 1,120 mg/kg.
- Soil samples collected from SB-7 exhibited chloride concentrations exceeding the RRAL beginning at interval 0.5-1 feet bgs (1,180 mg/kg), and continued throughout sample intervals to a depth of 49-50 feet bgs with concentrations ranging from 625 mg/kg to 1,940 mg/kg. The highest chloride concentration reported was 1,940 mg/kg at 19-20 feet bgs. The chloride concentration of the soil samples collected from 50 feet bgs to the terminal depth of the boring (90 feet bgs) were well below the RRAL.
- SB-8 exhibited chloride concentrations exceeding the RRAL in one sample interval (9-10 feet bgs at 1,570 mg/kg). Samples analyzed below this interval were all below the RRAL to the depth of 40 feet bgs (deeper samples were not analyzed).
- SB-9 exhibited chloride concentrations exceeding the RRAL within two sample intervals (4-5 feet bgs at 290 mg/kg and 9-10 feet bgs at 495 mg/kg). Samples analyzed below the 10 feet bgs interval were all below the RRAL to 30 feet bgs (deeper samples were not analyzed).

• Soil samples collected from SB-10 exhibited chloride concentrations exceeding the RRAL in one sample interval (9-10 feet bgs at 322 mg/kg). Samples analyzed below this interval were all below the RRAL to 30 feet bgs (deeper samples were not analyzed).

6. Conclusions

Analytical results associated with assessment activities conducted in 2017 indicate the horizontal and vertical extents of the chloride impact in soil have not been fully delineated.

7. 2018 Assessment Activities

On February 13, 2018, GHD and Chevron representatives met with NMOCD to discuss further assessment activities addressing the presence of chloride in soil and the potential presence of chloride in groundwater at the Site. Additional soil and groundwater assessment activities based on those discussions are summarized in the Work Plan included in Appendix C of this report.

Submitted by:

GHD Services, Inc.

Scott Foord, P.G. Project Manager

Kary U. PaliO

Raaj U. Patel, P.G. Program Manager

CAD File: I:\CAD\Files\07----\073821-Chevron-Central Vacuum Unit #47H\073821-00\073821-00(007)\073821-00(007)GN-DL001.dwg

Source: USDA FSA Imagery, May 10, 2014

CEMC LEA COUNTY, NEW MEXICO CENTRAL VACUUM UNIT No. 47H 073821-00

Apr 11, 2018

SITE AERIAL MAP

CAD File: I:\CAD\Files\07----\073#--\073821-Chevron-Central Vacuum Unit #47H\073821-00\073821-00\0073821-00(007)\073821-00(007)GN-DL001.dwg

FIGURE 2

CEMC LEA COUNTY, NEW MEXICO CENTRAL VACUUM UNIT No. 47H

SITE DETAILS MAP

CAD File: I:\CAD\Files\07----\073821-Ohevron-Central Vacuum Unit #47H\073821-00\073821-00(007)\07

073821-00 May 3, 2018

Source: UDSA FSA Imagery, May 10, 2014

CEMC LEA COUNTY, NEW MEXICO CENTRAL VACUUM UNIT No. 47H

EM31 GEOPHYSICAL INVESTIGATION

CAD File: P:\drawings\73000s\73821\73821-REPORTS\73821-2017(007)\73821-2017(007)GN\73821-2017(007)GN-WA004.dwg

Lat/Long: 32.7970° North, 103.4906° West

73821-2017 May 3, 2018

CEMC

ЗНС

LEA COUNTY, NEW MEXICO CENTRAL VACUUM UNIT No. 47H

CVU 47H - LINE 1 INVERSE MODEL RESISTIVITY SECTION

GEOPHYSICAL INVESTIGATION ELECTRICAL RESISTIVITY SURVEY RESULTS

FIGURE 5

73821-2017 May 3, 2018

Source: UDSA FSA Imagery, May 10, 2014

97.0 <u>93.7</u> 68.9

15' 123

17.8

CEMC LEA COUNTY, NEW MEXICO CENTRAL VACUUM UNIT No. 47H

CHLORIDE ANALYTICAL RESULTS MAP

CAD File: I:\CAD\Files\07----\073821-Chevron-Central Vacuum Unit #47H\073821-00\073821-00(007)\073821-00(007)GN-DL001.dwg

and the second second	
1.	States and the states of the
	APROXIMATION CONTRACTOR OF THE REAL
	A STATE OF A
and the second	COMPANY COMPANY
Sec. 7, 199	CARD DO TO THE REAL PROPERTY OF
1200 120	AND DESCRIPTION OF THE PARTY OF
- 17. M	CONTRACTOR OF STATE
and a second	CONTRACTOR OF A DATE
	and the second se
	and a second a
	and the second s
	a state of the second
100 100	a la construction and a second
and a way	C. A. C.
	To be considered to be a
and the second second	
Contraction of the second	
	and the second s
SB-7 10/18/17	and the second s
19-20' 29-30' 39-40' 1,940 1,020 848	49-50' 59-60' 69-70' 79-80' 89-90' 625 114 58.7 58.5 62.4
Ce -	
	and the second second
1.4.	" 7
	· · · · · · · · · · · · · · · · · · ·
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	////
1 34	5 7 1 8 5 MA.
2	1 11 1 11 11 11 11
40' 50' 209 87.3	
200 01.0	
	 Soil Boring Location - 2012 Soil Boring Location - 2015
And the second second	Soil Boring Location - 2017
1 march	Excavated Sidewall Sample Location 5-point Composite Sample Location
Contraction of the	Approximate Boundary of Remedial Closure Activities
14 C 14 C 20	Approximate Excavated Area
	Backfill and Remediated Area Depth Depth of Sample (ft)
A CANCER	BTEX Benzene, Toluene, Ethylbenzene and Xylenes Concentration
17 ' 19-20' 29-30' 20.2 108	TPH Total Petroleum Hydrocarbons
39.2 108	Concentration DRO TPH as Diesel Range Organics
A PARTY AND	GRO TPH as Gasoline Range Organics
and the second	* Indicates Duplicate Sample
	Lat/Long: 32.7970° North, 103.4906° West

073821-00 May 3, 2018

FIGURE 6

Tables

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY CENTRAL VACUUM UNIT 47H LEA COUNTY, NEW MEXICO

Sample	Depth	Date	Chlorides
ID	(feet)		mg/kg
NMOCD Rec	ommended Remediation	Action Levels	250
SB-1	0	8/19/15	75.7
	5	8/19/15	421
	10	8/19/15	17.8
	15	8/19/15	123
	20	8/19/15	97
	30	8/19/15	93.7
	40	8/19/15	68.9
	50	8/19/15	15.5
SB-2	0	8/19/15	1540
	5	8/19/15	1470
	10	8/19/15	462
	15	8/19/15	611
	20	8/19/15	680
	30	8/19/15	306
	40	8/19/15	539
	50	8/19/15	554
	60	8/19/15	1090
	80	8/19/15	101
SB-3	10	12/17/12	1250
	20	12/17/12	906
	30	12/17/12	537
	40	12/17/12	1360
	50	12/17/12	1430
SB-4	10	12/17/12	1230
	20	12/17/12	754
	30	12/17/12	274
	40	12/17/12	209
	50	12/17/12	87.3
SB-5	0.5-1	10/18/17	3760
	4-5	10/18/17	585
	9-10	10/18/17	167
	19-20	10/18/17	135
	29-30	10/18/17	17.4
SB-6	0.5-1	10/18/17	1970
	4-5	10/18/17	384
	9-10	10/18/17	229
	19-20	10/18/17	542
Dup	19-20	10/18/17	536
	29-30	10/18/17	417
	39-40	10/18/17	507
	49-50	10/18/17	489
	59-60	10/18/17	541
	69-70	10/18/17	867
	79-80	10/18/17	1140
	89-90	10/18/17	1120

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY **CENTRAL VACUUM UNIT 47H** LEA COUNTY, NEW MEXICO

Sample ID	Depth (feet)	Date	Chlorides
	(ieer)		mg/kg
	ommended Remediation	Action Levels	250
SB-7	0.5-1	10/18/17	1180
	4-5	10/18/17	475
	9-10	10/18/17	966
	19-20	10/18/17	1940
	29-30	10/18/17	1020
	39-40	10/18/17	848
	49-50	10/18/17	625
	59-60	10/18/17	114
	69-70	10/18/17	58.7
	79-80	10/18/17	58.5
	89-90	10/18/17	62.4
SB-8	0.5-1	10/18/17	11.7
	4-5	10/18/17	108
	9-10	10/18/17	1570
	19-20	10/18/17	28.8
	29-30	10/18/17	125
	39-40	10/18/17	41.5
SB-9	0.5-1	10/18/17	210
	4-5	10/18/17	290
	9-10	10/18/17	495
	19-20	10/18/17	227
	29-30	10/18/17	12.7
SB-10	0.5-1	10/18/17	39.8
	4-5	10/18/17	243
	9-10	10/18/17	322
	19-20	10/18/17	39.2
	29-30	10/18/17	108

Notes:

1. All analytical results reported in (mg/kg) milligrams per kilogram

Chloride analyses by EPA Method 300
 Highlighted cells indicate concentrations exceeding guidance RRALs

4. bgs - below ground surface
5. Depth of samples reported in feet

Appendix A SB-5 though SB-10 Boring Logs

Page 1 of 1

PROJECT NAME: CVU-47H

PROJECT NUMBER: 73821

CLIENT: Chevron

LOCATION: Hobbs

HOLE DESIGNATION: SB-5 DATE COMPLETED: 18 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS		1	SAM	-LC	
			DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	Chlorides
-	Caliche Pad	1.00					
-5	CALICHE, light brown, dry	∠ 	4-5	>	1.0		166
5	SILTY SAND (SM), light brown, some caliche, dry	3.00					
- 10	SILTY SAND (SM), light brown, some caliche, dry	10.00	9-10	\geq	1.0		46
- 15							
- 20	SILTY SAND (SM), reddish brown, some caliche, dry	20.00	19-20	\geq	1.0		<28
- 25							
- 30	SILTY SAND (SM), reddish brown, some caliche, dry	30.00	29-30	~	1.0		<2
- 35							
			39-40	~	10		<2
40 -	SILTY SAND (SM), reddish brown, some caliche, dry	40.00	00-40		1.0		~2
45							
- 50	SILTY SAND (SM), reddish brown, some caliche, dry	50.00	49-50	>	1.0		<2
- 55							
00							
- 60	SILTY SAND (SM), reddish brown, some caliche, dry	60.00	59-60		1.0		<2
- 65							
- 70		70.00	69-70	~	1.0		<2
75	SILTY SAND (SM), reddish brown, some caliche, dry						
- 75							
- 80	SILTY SAND (SM), reddish brown, some caliche, damp	80.00	(79-80)	\geq	1.0		<2
- 85							
- 90 -		90.00	89-90	\geq	1.0		<2
	END OF BOREHOLE @ 90.0ft BGS						
- 95							
 <u> </u>	NOTES:						

Page 1 of 1

PROJECT NAME: CVU-47H

PROJECT NUMBER: 73821

CLIENT: Chevron

LOCATION: Hobbs

HOLE DESIGNATION: SB-6 DATE COMPLETED: 18 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	_		SAMF	PLE	
11 003		11 003	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	Chlorides (ka/ma)
	Caliche Pad	· ۲/ 1.00					
-	SANDY CLAY (SC), red	5.00	4-5	\sim	1.0		99
5	SILTY SAND (SM), light brown, some caliche, dry	5.00					
10	SILTY SAND (SM), light brown, some caliche, dry	10.00	9-10	>	1.0		74
15							
20	SILTY SAND (SM), light brown, some caliche, dry	20.00	19-20	\geq	1.0		14
25							
30	SILTY SAND (SM), light brown, some caliche, dry	30.00	29-30	\geq	1.0		119
35							
40	SILTY SAND (SM), light brown, some caliche, dry	40.00	39-40	>	1.0		14
45							
50	SILTY SAND (SM), light brown, some caliche, dry	50.00	49-50	>	1.0		130
55							
60	SILTY SAND (SM), reddish brown, some caliche, dry	60.00	59-60	\geq	1.0		141
65							
70		70.00	69-70	\geq	1.0		21
	SILTY SAND (SM), reddish brown, some caliche, dry						
75							
80		80.00	79-80	\geq	1.0		21
-	SILTY SAND (SM), reddish brown, some caliche, damp						
85							
90		90.00	89-90	\geq	1.0		109
	END OF BOREHOLE @ 90.0ft BGS						
95							
<u> </u>	NOTES:						
	LABORATORY ANALYSIS						

Page 1 of 1

PROJECT NAME: CVU-47H

PROJECT NUMBER: 73821

CLIENT: Chevron

LOCATION: Hobbs

HOLE DESIGNATION: SB-7

DATE COMPLETED: 18 October 2017 DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	-		1	PLE	
11 003		11 803	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	Chlorides (ka/ma)
	Top soil	1.00					
-5	CALICHE, light brown, dry	5.00	4-5	\sim	1.0		32
	SILTY SAND (SM), light brown, some caliche, dry						
- 10	SILTY SAND (SM), light brown, some caliche, dry	10.00	9-10	\sim	1.0		182
15							
20		20.00	19-20	\sim	1.0		496
20	SILTY SAND (SM), light brown, some caliche, dry	20.00	\sim		Γ		
-25							
- 30	SILTY SAND (SM), light reddish brown, some caliche, dry	30.00	29-30	\sim	1.0		229
- 35							
40			39-40	\sim	10		190
40	SILTY SAND (SM), light reddish brown, some caliche, dry	40.00					10
45		- 					
- 50	SILTY SAND (SM), light reddish brown, some caliche, dry	50.00	49-50	>	1.0		143
- 55							
			59-60	~	1.0		28
- 60	SILTY SAND (SM), light reddish brown, some caliche, dry	60.00	00-00				20
65							
70	SILTY SAND (SM), light reddish brown, some caliche, dry	70.00	69-70	\geq	1.0		<2
	SILT T SAND (Sin), light reduish brown, some calicite, dry						
-75							
00		80.00	79-80	\geq	1.0		<28
80	SILTY SAND (SM), reddish brown, some caliche, damp	80.00	\square				
85							
-90	END OF BOREHOLE @ 90.0ft BGS	90.00	89-90	>	1.0		<28
95							
1	NOTES:						

Page 1 of 1

PROJECT NAME: CVU-47H

PROJECT NUMBER: 73821

CLIENT: Chevron

LOCATION: Hobbs

HOLE DESIGNATION: SB-8 DATE COMPLETED: 18 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS		1	SAMF		
11 003		IL DGS	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	Chlorides (ka/ma)
	Top soil	1.00					
_	CALICHE, light brown, dry	5.00	4-5	\sim	1.0		32
5	SILTY SAND (SM), light brown, some caliche, damp	5.00			Γ		
10	SILTY SAND (SM), light brown, some caliche, dry	10.00	9-10	~	1.0		634
15							
							10
20	SILTY SAND (SM), light brown, some caliche, dry	20.00	19-20	\geq	1.0		496
25							
30	SILTY SAND (SM), light brown, some caliche, dry	30.00	29-30	~	1.0		49
35							
40	SILTY SAND (SM), light reddish brown, some caliche, dry	40.00	39-40	\geq	1.0		<2
45							
50	SILTY SAND (SM), reddish brown, some caliche, dry	50.00	49-50	~	1.0		<28
55							
55							
60	SILTY SAND (SM), reddish brown, some caliche, dry	60.00	59-60	\geq	1.0		<28
65							
70		70.00	69-70	\geq	1.0		<28
	SILTY SAND (SM), reddish brown, some caliche, dry						
75							
80	SILTY SAND (SM), reddish brown, some caliche, damp	80.00	(79-80	\geq	1.0		<2
85							
90 -		90.00	89-90	\geq	1.0		<28
	END OF BOREHOLE @ 90.0ft BGS	50.00					
95							
<u>۱</u>	NOTES:						
-							

Page 1 of 1

PROJECT NAME: CVU-47H

PROJECT NUMBER: 73821

CLIENT: Chevron

LOCATION: Hobbs

HOLE DESIGNATION: SB-9

DATE COMPLETED: 18 October 2017 DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH SAME					
ft BGS		ft BGS	(tt)	/AL	(H)	sf)	
			DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	
			В	Ξ	Ľ	ц.	
_	Top soil	1.00					
5	CALICHE, reddish brown, dry	5.00	4-5	$>\!\!\!>$	1 .0		
_	SILTY SAND (SM), light brown, some caliche, damp						
- 10	SILTY SAND (SM), light brown, some caliche, damp	10.00	9-10	\sim	1 .0		
15							
-							
20	SILTY SAND (SM), reddish brown, some caliche, dry	20.00	19-20	\geq	1 .0		
_							
25							
			29-30	\sim	1.0		
30	SILTY SAND (SM), reddish brown, some caliche, dry	30.00	29-30	\sim	1.0		
-							
35							
40		40.00	39-40	\sim	1.0		
- 40	SILTY SAND (SM), reddish brown, some caliche, slightly damp	40.00	\sim				
45							
-							
50		50.00	49-50	\sim	1 .0		
	SILTY SAND (SM), reddish brown, some caliche, dry						
_							
60	SILTY SAND (SM), reddish brown, some caliche, dry	60.00	59-60	>	1 .0		
_							
65							
70	SILTY SAND (SM), reddish brown, some caliche, dry	70.00	69-70	\sim	1.0		
81/4/11 							
11/4 1 1/4 1 1/4		80.00	79-80	\sim	1.0		
109- 	SILTY SAND (SM), reddish brown, some caliche, damp	80.00	\sim				
85							
CRA							
ਹੁ ਜੂ – 90		90.00	89-90	\sim	1.0		
821.0	END OF BOREHOLE @ 90.0ft BGS						
⁸⁶ -95							
OVERBURDEN LOG 073821.GPJ CRA_CORP_GDT 0.06 GB 0.06 GB 0.06 GB 0.08 GB	NOTES:						
RUF	NOTES:						
OVE	LABORATORY ANALYSIS						
-							

Page 1 of 1

PROJECT NAME: CVU-47H

PROJECT NUMBER: 73821

CLIENT: Chevron

LOCATION: Hobbs

HOLE DESIGNATION: SB-10

DATE COMPLETED: 18 October 2017 DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS			SAMF	'LE	
		11 000	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	Chlorides (ka/ma)
	Top Soil	1.00					
-5 -	CALICHE, light brown, dry	∠ <u>−</u> 5.00	4-5	\times	1.0		55
5	SILTY SAND (SM), light brown, some caliche, dry	5.00	\square				
10	CALICHE, white, dry	10.00	9-10	\times	1.0		76
		Z					
15	7	Z					
20	Z		19-20	X	1.0		<28
20	SILTY SAND (SM), reddish brown, some caliche, dry	20.00			–		
25							
30	SILTY SAND (SM), reddish brown, some caliche, dry	30.00	29-30	\ge	1.0		28
35							
40		40.00	39-40	\times	1.0		<2
	SILTY SAND (SM), reddish brown, some caliche, dry						
45							
			49-50		1.0		<2
50	SILTY SAND (SM), reddish brown, some caliche, dry	50.00	49-30		1.0		~20
55							
60 -	SILTY SAND (SM), reddish brown, some caliche, dry	60.00	59-60	Х	1.0		<2
05							
65							
70		70.00	69-70	\times	1.0		<28
	SILTY SAND (SM), reddish brown, some caliche, dry						
75							
80 -		80.00	79-80	\times	1.0		<2
	SILTY SAND (SM), reddish brown, some caliche, damp	00.00	\square				
85							
					L		
90 -	END OF BOREHOLE @ 90.0ft BGS	90.00	89-90	\sim	1.0		<2
95							
N	OTES:						
11							

Appendix B Soil Laboratory Analytical Report

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX

Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0	01	566200-0	02	566200-0	03	566200-0	004	566200-0	05	566200-0	12
Analysis Requested	Field Id:	SB-9-S-0.5-1-	SB-9-S-0.5-1-171018		SB-9-S-4-5-171018		SB-9-S-9-10-171018		-171018	SB-9-S-29-30-171018		SB-10-S-0.5-1-	171018
Analysis Kequesieu	Depth:	0.5-1	0.5-1		4-5		9-10			29-30		0.5-1	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-18-17 (Oct-18-17 09:40 O		Oct-18-17 09:45 Oct-		Oct-18-17 09:50)9:55	Oct-18-17 10:00		Oct-18-17 11:30	
Chloride by EPA 300	Extracted:	Oct-31-17 12:30		Oct-31-17 12:30		Oct-31-17 12:30		Oct-31-17 12:30		Nov-07-17 09:00		Oct-31-17 12:30	
	Analyzed:	Oct-31-17	17:13 Oct-31-17 17:32		7:32	Oct-31-17 17:39		Oct-31-17 17:58		Nov-07-17 11:08		Oct-31-17 18:04	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		210	4.99	290	4.96	495	5.00	227	4.94	12.7	5.00	39.8	4.90
Percent Moisture	Extracted:												
	Analyzed: Oct-25-17 09:50		9:50	Oct-25-17 0	9:50	Oct-25-17 0	9:50	Oct-25-17 (9:50	Nov-06-17 08:50		Oct-25-17 0	9:50
Units/RL:		%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.63	1.00	4.08	1.00	5.94	1.00	8.91	1.00	5.63	1.00	7.82	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0	013	566200-0	14	566200-0	15	566200-0	16	566200-0	23	566200-0	24
Analysis Requested	Field Id:	SB-10-S-4-5-	SB-10-S-4-5-171018		SB-10-S-9-10-171018		SB-10-S-19-20-171018		SB-10-S-29-30-171018		SB-8-S-0.5-1-171018		71018
Anulysis Requesieu	Depth:	4-5	4-5			19-20		29-30		0.5-1		4-5	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-18-17	ct-18-17 11:35 Oc		1:40	Oct-18-17 1	1:45	Oct-18-17 11:50		Oct-18-17 10:35		Oct-18-17 10:40	
Chloride by EPA 300	Extracted:	Oct-31-17	12:30	Oct-31-17 1	2:30	Oct-31-17 12:30		Nov-07-17 09:00		Oct-31-17 12:30		Oct-31-17 12:30	
	Analyzed:	Oct-31-17	18:10	Oct-31-17 1	8:17	Oct-31-17 1	Oct-31-17 18:23		11:15	Oct-31-17 18:30		Oct-31-17 18:36	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		243	4.92	322	4.98	39.2	4.92	108	4.90	11.7	4.93	108	4.93
Percent Moisture	Extracted:												
	Analyzed:	Oct-25-17 (Oct-25-17 09:50		Oct-25-17 09:50		9:50	Nov-06-17 08:50		Oct-25-17 09:50		Oct-25-17 09:50	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.06	1.00	6.11	1.00	1.42	1.00	5.19	1.00	12.3	1.00	5.49	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX

Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0)25	566200-0	26	566200-0	27	566200-0	028	566200-0	34	566200-0)35
Analysis Requested	Field Id:	SB-8-S-9-10-70	SB-8-S-9-10-70-171018		SB-8-S-19-20-171018		SB-8-S-29-30-171018		SB-8-S-39-40-171018		SB-7-S-0.5-1-171018		71018
Analysis Kequestea	Depth:	9-10		19-20	19-20		29-30			0.5-1		4-5	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-18-17	10:45	Oct-18-17 1	0:50	Oct-18-17 10:55		Oct-18-17 11:00		Oct-18-17 12:25		Oct-18-17 12:30	
Chloride by EPA 300	Extracted:	Oct-31-17	13:30	Oct-31-17 1	.3:30	3:30 Oct-31-17 13:30		Oct-31-17 13:30		Oct-31-17 13:30		Oct-31-17 13:30	
	Analyzed:	Oct-31-17	19:33	Oct-31-17 1	9:14	Oct-31-17 19:40		Oct-31-17 19:46		Oct-31-17 19:52		Oct-31-17 20:12	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1570	24.6	28.8	4.90	125	4.96	41.5	4.92	1180	25.0	475	5.00
Percent Moisture	Extracted:												
	Analyzed:	Oct-25-17	Oct-25-17 09:50		Oct-25-17 09:50		2:00	Oct-23-17 12:00		Oct-23-17 12:00		Oct-23-17 12:00	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		13.1	1.00	5.39	1.00	4.56	1.00	5.46	1.00	2.86	1.00	8.07	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0)36	566200-0	37	566200-0	38	566200-0	39	566200-0	40	566200-0	41
Analysis Requested	Field Id:	SB-7-S-9-10-	SB-7-S-9-10-171018		SB-7-S-19-20-171018		SB-7-S-29-30-171018		SB-7-S-39-40-171018		SB-7-S-49-50-171018		171018
Analysis Kequestea	Depth:	9-10		19-20		29-30		39-40		49-50		59-60	
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	Oct-18-17	t-18-17 12:35 Oc		2:40	Oct-18-17 1	2:45	Oct-18-17 12:50		Oct-18-17 12:55		Oct-18-17 13:00	
Chloride by EPA 300	Extracted:	Oct-31-17	13:30	Oct-31-17 1	31-17 13:30 Oct-31-17 13:30		3:30	Oct-31-17 13:30		Oct-31-17 13:30		Nov-07-17 09:00	
	Analyzed:	Oct-31-17	20:18	Oct-31-17 2	20:24	24 Oct-31-17 20:31		Oct-31-17 20:37		Oct-31-17 20:43		Nov-07-17 11:21	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		966	24.5	1940	25.0	1020	4.96	848	4.93	625	4.98	114	4.91
Percent Moisture	Extracted:												
	Analyzed:	Oct-23-17	Oct-23-17 12:00		Oct-23-17 12:00		2:00	Oct-23-17 12:00		Oct-23-17 12:00		Nov-06-17 08:50	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		10.1	1.00	10.9	1.00	5.88	1.00	5.92	1.00	5.42	1.00	5.15	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0	42	566200-0	43	566200-0	44	566200-0)45	566200-0	46	566200-0	47
Analysis Requested	Field Id:	SB-7-S-69-70-	SB-7-S-69-70-171018		SB-7-S-79-80-171018		SB-7-S-89-90-171018		SB-6-S-0.5-1-171018		SB-6-S-4-5-171018		171018
Analysis Kequesieu	Depth:	69-70	69-70			89-90		0.5-1		4-5		9-10	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-18-17	13:05	Oct-18-17 1	3:10	Oct-18-17 13:15		Oct-18-17 13:20		Oct-18-17 13:25		Oct-18-17 13:30	
Chloride by EPA 300	Extracted:	Nov-07-17	09:00	Nov-07-17 (17 09:00 Nov-07-17 09:00		9:00	Oct-31-17 13:30		Oct-31-17 13:30		Oct-31-17 13:30	
	Analyzed:	Nov-07-17	11:40	Nov-07-17 11:46		Nov-07-17 12:06		Oct-31-17 21:03		Oct-31-17 21:09		Oct-31-17 21:28	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		58.7	4.98	58.5	4.99	62.4	4.92	1970	24.6	384	49.2	229	24.7
Percent Moisture	Extracted:												
	Analyzed:	Nov-06-17	Nov-06-17 08:50		Nov-06-17 08:50		08:50	Oct-23-17 12:00		Oct-23-17 12:00		Oct-23-17 1	2:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		4.99	1.00	4.76	1.00	4.22	1.00	3.41	1.00	28.3	1.00	8.72	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0	048	566200-0	49	566200-0	50	566200-0)51	566200-0)52	566200-0	53
Analysis Requested	Field Id:	SB-6-S-19-20-	171018	SB-6-S-29-30-	171018	SB-6-S-39-40-	171018	SB-6-S-49-50-171018		SB-6-S-59-60-171018		SB-6-S-69-70-	171018
Analysis Kequesieu	Depth:	19-20		29-30		39-40		49-50		59-60		69-70	
	Matrix:	SOIL		SOIL	SOIL		SOIL			SOIL		SOIL	
	Sampled:	Oct-18-17	13:35	Oct-18-17 1	3:40	Oct-18-17 1	3:45	Oct-18-17	13:50	Oct-18-17	13:55	Oct-18-17	4:00
Chloride by EPA 300	Extracted:	Oct-31-17	13:30	Nov-07-17 (09:00	9:00 Nov-07-17 09:00		Nov-07-17 09:00		Nov-09-17 16:00		Nov-09-17 16:00	
	Analyzed:	Oct-31-17 2	21:34	Nov-07-17 1	12:12	Nov-07-17 12:18		Nov-07-17 12:25		Nov-09-17 23:11		Nov-10-17 00:02	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		542	4.95	417	4.99	507	4.98	489	4.95	541	4.98	867	24.9
Percent Moisture	Extracted:												
	Analyzed:	Oct-23-17	Oct-23-17 12:00		Nov-06-17 08:50		08:50	Nov-06-17 08:50		Nov-10-17 17:04		Nov-10-17 17:04	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		8.52	1.00	6.33	1.00	6.63	1.00	6.02	1.00	6.28	1.00	6.00	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-0)54	566200-0	55	566200-0	56	566200-0)57	566200-0	58	566200-0	59
Analysis Requested	Field Id:	SB-6-S-79-80-	-171018	SB-6-S-89-90-	171018	SB-5-S-0.5-1-1	71018	SB-5-S-4-5-1	71018	SB-5-S-9-10-171018		SB-5-S-19-20-	171018
Analysis Kequesieu	Depth:	79-80		89-90		0.5-1		4-5		9-10		19-20	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-18-17	14:05	Oct-18-17 1	4:10	Oct-18-17 1	4:15	Oct-18-17 1	14:20	Oct-18-17 1	4:25	Oct-18-17 1	14:30
Chloride by EPA 300	Extracted:	Nov-10-17	09:00	Nov-15-17	14:00 Oct-31-17		3:30	Oct-31-17 13:30		Oct-31-17 13:30		Nov-01-17 15:00	
	Analyzed:	Nov-10-17	12:04	Nov-15-17 2	20:56	Oct-31-17 21:41		Oct-31-17 21:47		Oct-31-17 21:54		Nov-01-17 16:25	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1140	24.9	1120	24.7	3760	49.9	585	4.97	167	4.97	135	4.92
Percent Moisture	Extracted:												
	Analyzed:	Nov-10-17	Nov-10-17 17:04		Nov-16-17 15:30		2:00	Oct-23-17 12:00		Oct-23-17 12:00		Oct-23-17 12:00	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		6.00	1.00	4.87	1.00	7.91	1.00	5.11	1.00	2.29	1.00	5.81	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566200

GHD Services, INC- Midland, Midland, TX

Project Name: CVU-47H

Date Received in Lab:Fri Oct-20-17 04:20 pmReport Date:20-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566200-060		566200-06	57		
Analysis Requested	Field Id:	SB-5-S-29-30-171	018	DUP-1-171	018		
Anaiysis Kequesieu	Depth:	29-30					
	Matrix:	SOIL		SOIL			
	Sampled:	Oct-18-17 14:3	5	Oct-18-17 0	0:00		
Chloride by EPA 300	Extracted:	Nov-07-17 09:0	00	Nov-01-17 1	5:00		
	Analyzed:	Nov-07-17 12:3	31	Nov-01-17 1	6:34		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		17.4	4.98	536	4.98		
Percent Moisture	Extracted:						
	Analyzed:	Nov-06-17 08:5	50	Oct-23-17 12	2:00		
	Units/RL:	%	RL	%	RL		
Percent Moisture		5.63	1.00	8.19	1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Mike Kimmel Client Services Manager
Analytical Report 566200

for GHD Services, INC- Midland

Project Manager: Scott Foord

CVU-47H

073821

20-NOV-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

20-NOV-17

Project Manager: **Scott Foord GHD Services, INC- Midland** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 566200 CVU-47H Project Address: Lea County, NM

Scott Foord:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 566200. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 566200 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

le p

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 566200

GHD Services, INC- Midland, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-9-S-0.5-1-171018	S	10-18-17 09:40	0.5 - 1	566200-001
SB-9-S-4-5-171018	S	10-18-17 09:45	4 - 5	566200-002
SB-9-S-9-10-171018	S	10-18-17 09:50	9 - 10	566200-003
SB-9-S-19-20-1-171018	S	10-18-17 09:55	19 - 20	566200-004
SB-9-S-29-30-171018	S	10-18-17 10:00	29 - 30	566200-005
SB-10-S-0.5-1-171018	S	10-18-17 11:30	0.5 - 1	566200-012
SB-10-S-4-5-171018	S	10-18-17 11:35	4 - 5	566200-013
SB-10-S-9-10-171018	S	10-18-17 11:40	9 - 10	566200-014
SB-10-S-19-20-171018	S	10-18-17 11:45	19 - 20	566200-015
SB-10-S-29-30-171018	S	10-18-17 11:50	29 - 30	566200-016
SB-8-S-0.5-1-171018	S	10-18-17 10:35	0.5 - 1	566200-023
SB-8-S-4-5-171018	S	10-18-17 10:40	4 - 5	566200-024
SB-8-S-9-10-70-171018	S	10-18-17 10:45	9 - 10	566200-025
SB-8-S-19-20-171018	S	10-18-17 10:50	19 - 20	566200-026
SB-8-S-29-30-171018	S	10-18-17 10:55	29 - 30	566200-027
SB-8-S-39-40-171018	S	10-18-17 11:00	39 - 40	566200-028
SB-7-S-0.5-1-171018	S	10-18-17 12:25	0.5 - 1	566200-034
SB-7-S-4-5-171018	S	10-18-17 12:30	4 - 5	566200-035
SB-7-S-9-10-171018	S	10-18-17 12:35	9 - 10	566200-036
SB-7-S-19-20-171018	S	10-18-17 12:40	19 - 20	566200-037
SB-7-S-29-30-171018	S	10-18-17 12:45	29 - 30	566200-038
SB-7-S-39-40-171018	S	10-18-17 12:50	39 - 40	566200-039
SB-7-S-49-50-171018	S	10-18-17 12:55	49 - 50	566200-040
SB-7-S-59-60-171018	S	10-18-17 13:00	59 - 60	566200-041
SB-7-S-69-70-171018	S	10-18-17 13:05	69 - 70	566200-042
SB-7-S-79-80-171018	S	10-18-17 13:10	79 - 80	566200-043
SB-7-S-89-90-171018	S	10-18-17 13:15	89 - 90	566200-044
SB-6-S-0.5-1-171018	S	10-18-17 13:20	0.5 - 1	566200-045
SB-6-S-4-5-171018	S	10-18-17 13:25	4 - 5	566200-046
SB-6-S-9-10-171018	S	10-18-17 13:30	9 - 10	566200-047
SB-6-S-19-20-171018	S	10-18-17 13:35	19 - 20	566200-048
SB-6-S-29-30-171018	S	10-18-17 13:40	29 - 30	566200-049
SB-6-S-39-40-171018	S	10-18-17 13:45	39 - 40	566200-050
SB-6-S-49-50-171018	S	10-18-17 13:50	49 - 50	566200-051
SB-6-S-59-60-171018	S	10-18-17 13:55	59 - 60	566200-052
SB-6-S-69-70-171018	S	10-18-17 14:00	69 - 70	566200-053
SB-6-S-79-80-171018	S	10-18-17 14:05	79 - 80	566200-054
SB-6-S-89-90-171018	S	10-18-17 14:10	89 - 90	566200-055
SB-5-S-0.5-1-171018	S	10-18-17 14:15	0.5 - 1	566200-056
SB-5-S-4-5-171018	S	10-18-17 14:20	4 - 5	566200-057
SB-5-S-9-10-171018	S	10-18-17 14:25	9 - 10	566200-058
SB-5-S-19-20-171018	S	10-18-17 14:30	19 - 20	566200-059
SB-5-S-29-30-171018	S	10-18-17 14:35	29 - 30	566200-060

GHD Services, INC- Midland, Midland, TX

DUP-1-171018	S	10-18-17 00:00		566200-067
SB-9-S-39-40-171018	S	10-18-17 10:05	39 - 40	Not Analyzed
SB-9-S-49-50-171018	S	10-18-17 10:10	49 - 50	Not Analyzed
SB-9-S-59-60-171018	S	10-18-17 10:15	59 - 60	Not Analyzed
SB-9-S-69-70-171018	S	10-18-17 10:20	69 - 70	Not Analyzed
SB-9-S-79-80-171018	S	10-18-17 10:25	79 - 80	Not Analyzed
SB-9-S-89-90-171018	S	10-18-17 10:30	89 - 90	Not Analyzed
SB-10-S-39-40-171018	S	10-18-17 11:55	39 - 40	Not Analyzed
SB-10-S-49-50-171018	S	10-18-17 12:00	49 - 50	Not Analyzed
SB-10-S-59-60-171018	S	10-18-17 12:05	59 - 60	Not Analyzed
SB-10-S-69-70-171018	S	10-18-17 12:10	69 - 70	Not Analyzed
SB-10-S-79-80-171018	S	10-18-17 12:15	79 - 80	Not Analyzed
SB-10-S-89-90-171018	S	10-18-17 12:20	89 - 90	Not Analyzed
SB-8-S-49-50-171018	S	10-18-17 11:05	49 - 50	Not Analyzed
SB-8-S-59-60-171018	S	10-18-17 11:10	59 - 60	Not Analyzed
SB-8-S-69-70-171018	S	10-18-17 11:15	69 - 70	Not Analyzed
SB-8-S-79-80-171018	S	10-18-17 11:20	79 - 80	Not Analyzed
SB-8-S-89-90-171018	S	10-18-17 11:25	89 - 90	Not Analyzed
SB-5-S-39-40-171018	S	10-18-17 14:40	39 - 40	Not Analyzed
SB-5-S-49-50-171018	S	10-18-17 14:45	49 - 50	Not Analyzed
SB-5-S-59-60-171018	S	10-18-17 14:50	59 - 60	Not Analyzed
SB-5-S-69-70-171018	S	10-18-17 14:55	69 - 70	Not Analyzed
SB-5-S-79-80-171018	S	10-18-17 15:00	79 - 80	Not Analyzed
SB-5-S-89-90-171018	S	10-18-17 15:05	89 - 90	Not Analyzed

CASE NARRATIVE

Client Name: GHD Services, INC- Midland Project Name: CVU-47H

Project ID:073821Work Order Number(s):566200

 Report Date:
 20-NOV-17

 Date Received:
 10/20/2017

Sample receipt non conformances and comments:

SB-5 (29-30);SB-6 (29-30), (39-40), (49-50); SB-7 (59-60), (69-70), (79-80), (89-90); SB-9 (29-30); SB-10 (29-30)- Released from hold per Scott Foord e-mail 11/02/17-- KB 11/09/17: SB-6(59-60)/(69-70), and (79-80) removed from hold to analyze by Scott Foord. 11/13/17: Revised report to incorporate additional samples taken off of hold to analyze per client. 11/14/17: Add SB-6(89-90) Per Scott Foord.

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3032046 Chloride by EPA 300

Lab Sample ID 566200-040 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 566200-025, -026, -027, -028, -034, -035, -036, -037, -038, -039, -040, -045, -046, -047, -048, -056, -057, -058.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3032955 Inorganic Anions by EPA 300

Lab Sample ID 567942-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 566200-052, -053.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-9-S-0.5-1-171018		Matrix:	Soil		Date Received:10		0
Lab Sample Id	d: 566200-001		Date Colle	cted: 10.18.17 09.40		Sample Depth: 0.	5 - 1	
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E3	300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30		Basis: W	et Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	210	4.99	mg/kg	10.31.17 17.13		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-9-S-4-5-171018		Matrix:	Soil]	Date Received:10.	20.17 16.20	C
Lab Sample I	d: 566200-002		Date Colle	cted: 10.18.17 09.45		Sample Depth: 4 -	5	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV				(% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis: We	t Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	290	4.96	mg/kg	10.31.17 17.32		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-9-S-9-10-171018		Matrix:	Soil]	Date Received:10.	20.17 16.20)
Lab Sample I	d: 566200-003		Date Collec	cted: 10.18.17 09.50	:	Sample Depth: 9 -	10	
Analytical Mo	ethod: Chloride by EPA	300]	Prep Method: E30	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis: We	t Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	495	5.00	mg/kg	10.31.17 17.39		1

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-9-S-19-20-1-1710	18	Matrix:	Soil]	Date Received:	10.20.17 16.20	0
Lab Sample I	d: 566200-004		Date Colle	cted: 10.18.17 09.55	\$	Sample Depth:	19 - 20	
Analytical M	ethod: Chloride by EPA	300			l	Prep Method:	E300P	
Tech:	MNV				Q	% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis:	Wet Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	227	4.94	mg/kg	10.31.17 17.5	8	1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Seq Number:	3032684							
Analyst:	MNV		Date Prep:	11.07.17 09.00]	Basis: V	Vet Weight	
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E	E300P	
-	d: 566200-005			ed: 10.18.17 10.00	-	Sample Depth: 2		
Sample Id:	SB-9-S-29-30-171018		Matrix:	Soil	1	Date Received:1	0.20.17 16.20)

16887-00-6 12.7

5.00

11.07.17 11.08

mg/kg

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-10-S-0.5-1-17101	8	Matrix:	Soil]	Date Received:10	.20.17 16.20	
Lab Sample I	d: 566200-012		Date Colle	cted: 10.18.17 11.30	:	Sample Depth: 0.5	5 - 1	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis: We	et Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	39.8	4.90	mg/kg	10.31.17 18.04		1

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-10-S-4-5-171018		Matrix:	Soil	1	Date Received:	10.20.17 16.2	0
Lab Sample I	d: 566200-013		Date Colle	cted: 10.18.17 11.35	:	Sample Depth:	4 - 5	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis:	Wet Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	243	4.92	mg/kg	10.31.17 18.1	10	1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Seq Number:	3032042								
Analyst:	MNV		Date Prep:	10.31.17 12.30	I	Basis:	Wet V	Weight	
Tech:	MNV				Q	% Moisture:			
Analytical Me	ethod: Chloride by EPA 3	300			I	Prep Method:	E300	P	
Lab Sample Id	d: 566200-014		Date Collec	cted: 10.18.17 11.40	S	Sample Depth	:9 - 10)	
Sample Id:	SB-10-S-9-10-171018		Matrix:	Soil	I	Date Received	1:10.20	0.17 16.20)

16887-00-6 322

4.98

10.31.17 18.17

mg/kg

1

Page 21 of 72

GHD Services, INC- Midland, Midland, TX

CVU-47H

Chloride		16887-00-6	39.2	4.92	mg/kg	10.31.17 18.23	3	1
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Seq Number:	3032042							
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis:	Wet Weight	
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: H	E300P	
Lab Sample Id	d: 566200-015		Date Colle	cted: 10.18.17 11.45		Sample Depth:	19 - 20	
Sample Id:	SB-10-S-19-20-17101	.8	Matrix:	Soil]	Date Received:	0.20.17 16.20)

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-10-S-29-30-171018	3	Matrix:	Soil		Date Received	:10.20.17 16.	20
Lab Sample Id:	566200-016		Date Collec	eted: 10.18.17 11.50		Sample Depth	:29 - 30	
Analytical Meth	od: Chloride by EPA	300				Prep Method:	E300P	
Tech: N	ANV					% Moisture:		
Analyst: N	ANV		Date Prep:	11.07.17 09.00		Basis:	Wet Weight	
Seq Number: 3	8032684							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	108	4.90	mg/kg	11.07.17 11.	15	1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-8-S-0.5-1-171018		Matrix:	Soil		Date Received:10	0.20.17 16.20)
Lab Sample I	d: 566200-023		Date Collec	cted: 10.18.17 10.35	Ĩ	Sample Depth: 0.	5 - 1	
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E	300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30		Basis: W	et Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	11.7	4.93	mg/kg	10.31.17 18.30		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-8-S-4-5-171018		Matrix:	Soil]	Date Received:10	.20.17 16.2	0
Lab Sample I	d: 566200-024		Date Collec	cted: 10.18.17 10.40	:	Sample Depth: 4 -	5	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV				(% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 12.30]	Basis: We	et Weight	
Seq Number:	3032042							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	108	4.93	mg/kg	10.31.17 18.36		1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id: SB-8-S-9-10-70-171	018	Matrix:	Soil]	Date Received:	10.20.17 16.20)
Lab Sample Id: 566200-025		Date Collec	cted: 10.18.17 10.45	1	Sample Depth: 9	9 - 10	
Analytical Method: Chloride by EP	A 300]	Prep Method: I	E300P	
Tech: MNV				(% Moisture:		
Analyst: MNV		Date Prep:	10.31.17 13.30]	Basis: V	Wet Weight	
Seq Number: 3032046							
Parameter	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride	16887-00-6	1570	24.6	mg/kg	10.31.17 19.33	3	5

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-8-S-19-20-171018	6	Matrix:	Soil]	Date Received:10	.20.17 16.20	
Lab Sample I	d: 566200-026		Date Colle	cted: 10.18.17 10.50	:	Sample Depth: 19	- 20	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis: We	et Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	28.8	4.90	mg/kg	10.31.17 19.14		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-8-S-29-30-171018	1	Matrix:	Soil	J	Date Received:10.	20.17 16.20)
Lab Sample I	d: 566200-027		Date Collec	cted: 10.18.17 10.55	S	Sample Depth: 29	- 30	
Analytical Mo	ethod: Chloride by EPA	300]	Prep Method: E30	00P	
Tech:	MNV				Q	% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis: We	t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	125	4.96	mg/kg	10.31.17 19.40		1

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-8-S-39-40-171018	3	Matrix:	Soil]	Date Received:	10.20.17 16.2	0
Lab Sample I	d: 566200-028		Date Colle	cted: 10.18.17 11.00	:	Sample Depth:	39 - 40	
Analytical M	ethod: Chloride by EPA	. 300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis:	Wet Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Chloride		16887-00-6	41.5	4.92	mg/kg	10.31.17 19.4	6	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-7-S-0.5-1-171018 d: 566200-034		Matrix: Date Colle	Soil cted: 10.18.17 12.25		Date Received:10.2 Sample Depth:0.5		0
Analytical Mo Tech:	ethod: Chloride by EPA MNV	300				Prep Method: E30 % Moisture:	00P	
Analyst:	MNV		Date Prep:	10.31.17 13.30			t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1180	25.0	mg/kg	10.31.17 19.52		5

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-7-S-4-5-171018		Matrix:	Soil]	Date Received:10.	20.17 16.20)
Lab Sample I	d: 566200-035		Date Collec	cted: 10.18.17 12.30	1	Sample Depth: 4 -	5	
Analytical M	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis: We	et Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	475	5.00	mg/kg	10.31.17 20.12		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-7-S-9-10-171018		Matrix:	Soil		Date Received:10.	.20.17 16.2	0
Lab Sample I	d: 566200-036		Date Collec	cted: 10.18.17 12.35		Sample Depth: 9 -	10	
Analytical Mo	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30		Basis: We	et Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	966	24.5	mg/kg	10.31.17 20.18		5

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-7-S-19-20-171018 d: 566200-037		Matrix:	Soil cted: 10.18.17 12.40		Date Received:10.2 Sample Depth: 19 -		0
	ethod: Chloride by EPA	300	Date Colle	cted: 10.18.17 12.40		Prep Method: E30		
Tech:	MNV					% Moisture:		
Analyst: Seq Number:	MNV 3032046		Date Prep:	10.31.17 13.30		Basis: We	t Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1940	25.0	mg/kg	10.31.17 20.24		5

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-7-S-29-30-171018	;	Matrix:	Soil	I	Date Received:10.	20.17 16.20)
Lab Sample I	d: 566200-038		Date Collec	cted: 10.18.17 12.45	ŝ	Sample Depth: 29	- 30	
Analytical Me	ethod: Chloride by EPA	300			I	Prep Method: E30	00P	
Tech:	MNV				ç	% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30	1	Basis: We	t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1020	4.96	mg/kg	10.31.17 20.31		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-7-S-39-40-171018	;	Matrix:	Soil		Date Received:10.	20.17 16.2	0
Lab Sample I	d: 566200-039		Date Colle	cted: 10.18.17 12.50		Sample Depth: 39	- 40	
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30		Basis: We	t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	848	4.93	mg/kg	10.31.17 20.37		1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-7-S-49-50-171018	5	Matrix:	Soil		Date Received:10.	20.17 16.2	0
Lab Sample I	d: 566200-040		Date Colle	cted: 10.18.17 12.55		Sample Depth: 49	- 50	
Analytical Mo	ethod: Chloride by EPA	300				Prep Method: E30)0P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30		Basis: We	t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	625	4.98	mg/kg	10.31.17 20.43		1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Seq Number:	3032684								
Analyst:	MNV		Date Prep:	11.07.17 09.00	I	Basis:	Wet V	Veight	
Tech:	MNV				ç	% Moisture:			
Analytical Me	ethod: Chloride by EPA 3	00			I	Prep Method:	E300I	P	
Lab Sample Id	d: 566200-041		Date Collect	ted: 10.18.17 13.00	S	Sample Depth	: 59 - 6	0	
Sample Id:	SB-7-S-59-60-171018		Matrix:	Soil	I	Date Received	1:10.20	.17 16.20	

16887-00-6 **114**

4.91

mg/kg

11.07.17 11.21

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Fla	ıg Dil
Seq Number:	3032684							
Analyst:	MNV		Date Prep:	11.07.17 09.00]	Basis:	Wet Wei	ght
Tech:	MNV				Q	% Moisture:		
Analytical Me	ethod: Chloride by EPA 3	300			1	Prep Method:	E300P	
Lab Sample Id	d: 566200-042		Date Collec	eted: 10.18.17 13.05	2	Sample Depth	:69 - 70	
Sample Id:	SB-7-S-69-70-171018		Matrix:	Soil]	Date Received	1:10.20.17	16.20

58.7

16887-00-6

4.98

11.07.17 11.40

mg/kg

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id: Lab Sample Id	SB-7-S-79-80-171018 d: 566200-043		Matrix: Date Collecte	Soil ed: 10.18.17 13.10		Date Received:10.20.17 Sample Depth: 79 - 80		
	ethod: Chloride by EPA 3 MNV	800				Prep Method: % Moisture:	E300P	
Tech: Analyst:	MNV		Date Prep:	11.07.17 09.00		% Moisture: Basis:	Wet Weight	
Seq Number:	3032684							
Parameter		Cas Number	Result I	RL	Units	Analysis Da	ate Flag	Dil

Chloride

16887-00-6 **58.5**

4.99

11.07.17 11.46

mg/kg

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-7-S-89-90-17101	8	Matrix:	Soil]	Date Received	:10.20.17 16.	20
Lab Sample I	d: 566200-044		Date Colle	cted: 10.18.17 13.15	:	Sample Depth:	: 89 - 90	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.07.17 09.00]	Basis:	Wet Weight	
Seq Number:	3032684							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Chloride		16887-00-6	62.4	4.92	mg/kg	11.07.17 12.	06	1

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-6-S-0.5-1-171018		Matrix:	Soil		Date Received:10.2	20.17 16.2	0
Lab Sample I	d: 566200-045		Date Colle	cted: 10.18.17 13.20		Sample Depth: 0.5	- 1	
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30		Basis: We	t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1970	24.6	mg/kg	10.31.17 21.03		5

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-6-S-4-5-171018		Matrix:	Soil]	Date Received:1	0.20.17 16.20)
Lab Sample I	d: 566200-046		Date Collec	cted: 10.18.17 13.25	:	Sample Depth: 4	- 5	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30		Basis: V	Vet Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride		16887-00-6	384	49.2	mg/kg	10.31.17 21.09)	10

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-6-S-9-10-171018		Matrix:	Soil]	Date Received:10	.20.17 16.20)
Lab Sample Io	d: 566200-047		Date Colle	cted: 10.18.17 13.30	:	Sample Depth: 9 -	10	
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis: We	et Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	229	24.7	mg/kg	10.31.17 21.28		5

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id: SI	B-6-S-19-20-171018		Matrix:	Soil	Ι	Date Received:10.	20.17 16.20	
Lab Sample Id: 56	56200-048		Date Collect	ed: 10.18.17 13.35	S	Sample Depth: 19	- 20	
Analytical Method	d: Chloride by EPA 30	00			F	Prep Method: E3	00P	
Tech: MN	NV				9	6 Moisture:		
Analyst: MN	NV		Date Prep:	10.31.17 13.30	E	Basis: We	et Weight	
Seq Number: 303	32046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	1	6887-00-6	542	4.95	mg/kg	10.31.17 21.34		1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-6-S-29-30-171018		Matrix:	Soil		Date Received	:10.20.17 16.2	0
Lab Sample Id: 566200-049			Date Collec	ted: 10.18.17 13.40	Sample Depth: 29 - 30			
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	800				Prep Method: % Moisture:	E300P	
Analyst:	MNV		Date Prep:	11.07.17 09.00		Basis:	Wet Weight	
Seq Number:	3032684							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ite Flag	Dil

16887-00-6 417

4.99

11.07.17 12.12

mg/kg

1

Page 45 of 72

GHD Services, INC- Midland, Midland, TX

CVU-47H

Chloride		16887-00-6	507	4.98	mg/kg	11.07.17 12.18		1
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3032684							
Analyst:	MNV		Date Prep:	11.07.17 09.00		Basis: We	t Weight	
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA	. 300				Prep Method: E30	90P	
Lab Sample I	Lab Sample Id: 566200-050			cted: 10.18.17 13.45	Sample Depth: 39 - 40			
Sample Id:	SB-6-S-39-40-171018	3	Matrix:	Soil		Date Received:10.	20.17 16.2	0

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Seq Number:	3032684								
Analyst:	MNV		Date Prep:	11.07.17 09.00]	Basis:	Wet W	Weight	
Tech:	MNV					% Moisture:			
Analytical Me	ethod: Chloride by EPA	300]	Prep Method:	E3001	Р	
Lab Sample Id	d: 566200-051		Date Collec	cted: 10.18.17 13.50	:	Sample Depth	: 49 - 5	50	
Sample Id:	SB-6-S-49-50-171018		Matrix:	Soil	1	Date Received	1:10.20	.17 16.20)

489

16887-00-6

4.95

mg/kg

11.07.17 12.25

1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Chloride		16887-00-6	541	4.98	mg/kg	11.09.17 23.11		1
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Seq Number:	3032955							
Analyst:	MNV		Date Prep:	11.09.17 16.00		Basis: We	t Weight	
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E30)0P	
Lab Sample I	Lab Sample Id: 566200-052		Date Collected: 10.18.17 13.55		Sample Depth: 59 - 60			
Sample Id:	SB-6-S-59-60-171018	3	Matrix:	Soil		Date Received:10.	20.17 16.2	0

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis D	ate F	Flag I	Dil
Seq Number:	3032955								
Analyst:	MNV		Date Prep:	11.09.17 16.00	I	Basis:	Wet W	eight	
Tech:	MNV				Q	% Moisture:			
Analytical Me	ethod: Chloride by EPA	300			I	Prep Method:	E300P		
Lab Sample Id: 566200-053			Date Collec	Sample Depth: 69 - 70					
Sample Id:	SB-6-S-69-70-171018		Matrix:	Soil	I	Date Received	1:10.20.1	17 16.20	

16887-00-6 **867**

24.9

mg/kg 11.10.17 00.02

5

GHD Services, INC- Midland, Midland, TX

CVU-47H

Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Seq Number:	3032985								
Analyst:	MNV		Date Prep:	11.10.17 09.00		Basis:	Wet	Weight	
Tech:	MNV					% Moisture:			
Analytical Me	ethod: Chloride by EPA 3	300				Prep Method:	E300)P	
Lab Sample Id: 566200-054			Date Collect	Sample Depth: 79 - 80					
Sample Id:	SB-6-S-79-80-171018		Matrix:	Soil		Date Received	1:10.20	0.17 16.20	

16887-00-6 1140

24.9

11.10.17 12.04

mg/kg

5

Page 50 of 72

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-6-S-89-90-171018	3	Matrix:	Soil]	Date Received:	10.20.17 16.20	D
Lab Sample Id: 566200-055			Date Collected: 10.18.17 14.10		:	Sample Depth:	89 - 90	
Analytical M	ethod: Chloride by EPA	. 300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.15.17 14.00	i	Basis:	Wet Weight	
Seq Number:	3033477							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	1120	24.7	mg/kg	11.15.17 20.5	6	5

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id: SB-5-S-0.5-1-171018	1	Matrix:	Soil		Date Received:1	0.20.17 16.20	
Lab Sample Id: 566200-056		Date Collec	cted: 10.18.17 14.15		Sample Depth: 0	.5 - 1	
Analytical Method: Chloride by EPA	300				Prep Method: E	300P	
Tech: MNV					% Moisture:		
Analyst: MNV		Date Prep:	10.31.17 13.30		Basis: W	Vet Weight	
Seq Number: 3032046							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	3760	49.9	mg/kg	10.31.17 21.41		10

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-5-S-4-5-171018		Matrix:	Soil]	Date Received:10.	20.17 16.20)
Lab Sample I	d: 566200-057		Date Collec	cted: 10.18.17 14.20	Sample Depth: 4 - 5			
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV				Q	% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis: We	t Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	585	4.97	mg/kg	10.31.17 21.47		1

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-5-S-9-10-171018		Matrix:	Soil]	Date Received:10	.20.17 16.20	
Lab Sample I	Lab Sample Id: 566200-058			cted: 10.18.17 14.25	Sample Depth: 9 - 10			
Analytical Me	ethod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	10.31.17 13.30]	Basis: We	et Weight	
Seq Number:	3032046							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	167	4.97	mg/kg	10.31.17 21.54		1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-5-S-19-20-171018	8	Matrix:	Soil]	Date Received:	10.20.17 16.2	0
Lab Sample I	Lab Sample Id: 566200-059			cted: 10.18.17 14.30	Sample Depth: 19 - 20			
Analytical M	ethod: Chloride by EPA	300]	Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.01.17 15.00]	Basis:	Wet Weight	
Seq Number:	3032120							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	135	4.92	mg/kg	11.01.17 16.2	.5	1

Certificate of Analytical Results 566200

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	SB-5-S-29-30-171018	3	Matrix:	Soil		Date Received:10	.20.17 16.20	C
Lab Sample I	Lab Sample Id: 566200-060			cted: 10.18.17 14.35	Sample Depth: 29 - 30			
Analytical M	ethod: Chloride by EPA	300				Prep Method: E3	800P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.07.17 09.00		Basis: W	et Weight	
Seq Number:	3032684							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	17.4	4.98	mg/kg	11.07.17 12.31		1

GHD Services, INC- Midland, Midland, TX

CVU-47H

Sample Id:	DUP-1-171018		Matrix:	Soil		Date Received:10.2	20.17 16.2	0
Lab Sample I	d: 566200-067		Date Colle	cted: 10.18.17 00.00				
Analytical Mo	ethod: Chloride by EPA	300				Prep Method: E30)0P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.01.17 15.00		Basis: We	t Weight	
Seq Number:	3032120							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	536	4.98	mg/kg	11.01.17 16.34		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	
2525 W. Hunnington Dr Suite 102, Tempe 742 05202	(002) 457-0550	

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3 3032042 7633545-1-BLK	Matrix: nple Id:	Solid 7633545-	1-BKS			ep Metho Date Pro D Sample	ep: 10.3				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	239	96	238	95	90-110	0	20	mg/kg	10.31.17 15:31	
Analytical Method:	Chloride by EPA 3	600						Pr	ep Metho	od: E300	9P	
Seq Number:	3032046			Matrix:	Solid				Date Pro	ep: 10.3	1.17	
MB Sample Id:	7633547-1-BLK		LCS Sar	nple Id:	7633547-	1-BKS		LCS	D Sample	e Id: 7633	3547-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	242	97	241	96	90-110	0	20	mg/kg	10.31.17 19:01	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300)P	
Seq Number:	3032120			Matrix:	Solid				Date Pre	ep: 11.0	1.17	
MB Sample Id:	7633554-1-BLK		LCS Sar	nple Id:	7633554-	1-BKS		LCSI	O Sample	Id: 7633	554-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	236	94	237	95	90-110	0	20	mg/kg	11.01.17 14:11	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	d: E300)P	
Seq Number:	3032684			Matrix:	Solid				Date Pre	ep: 11.0	7.17	
MB Sample Id:	7633932-1-BLK		LCS Sar	nple Id:	7633932-	1-BKS		LCSI	O Sample	Id: 7633	932-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	249	100	257	103	90-110	3	20	mg/kg	11.07.17 09:39	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300)P	
Seq Number:	3032955			Matrix:	Solid				Date Pre	ep: 11.0	9.17	
MB Sample Id:	7634136-1-BLK		LCS Sar	nple Id:	7634136-	1-BKS		LCSI	O Sample	d: 7634	136-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 5.00	250	255	102	252	101	90-110	1	20	mg/kg	11.09.17 21:29	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E300)P	
Seq Number:	3032985			Matrix:	Solid				Date Pre	ep: 11.1	0.17	
MB Sample Id:	7634159-1-BLK		LCS Sar	nple Id:	7634159-	1-BKS		LCSI	O Sample	Id: 7634	159-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	< 5.00	250	250	100	251	100	90-110	0	20	mg/kg	11.10.17 10:09	

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	OP	
Seq Number:	3033477			Matrix:	Solid				Date Pre	ep: 11.1	5.17	
MB Sample Id:	7634451-1-BLK		LCS Sar	nple Id:	7634451-	1-BKS		LCSI	D Sample	Id: 7634	4451-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	250	100	250	100	90-110	0	20	mg/kg	11.15.17 19:39	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	d: E300)P	
Seq Number:	3032042			Matrix:	Soil				Date Pre	ep: 10.3	1.17	
Parent Sample Id:	566199-046		MS Sar	nple Id:	566199-04	46 S		MSI	D Sample	Id: 5661	99-046 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	9.97	249	250	96	252	97	90-110	1	20	mg/kg	10.31.17 15:50	

Analytical Method:	Chloride by EPA 30)0						Pr	ep Metho	od: E30	0P	
Seq Number:	3032042			Matrix:	Soil				Date Pre	ep: 10.3	1.17	
Parent Sample Id:	566200-001		MS San	nple Id:	566200-00	01 S		MSI	O Sample	e Id: 5662	200-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	210	250	454	98	453	97	90-110	0	20	mg/kg	10.31.17 17:19	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3032046			Matrix:	Soil				Date Pre	ep: 10.3	1.17	
Parent Sample Id:	566200-026		MS Sar	nple Id:	566200-02	26 S		MSI	O Sample	Id: 5662	200-026 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	28.8	245	269	98	269	98	90-110	0	20	mg/kg	10.31.17 19:21	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E300)P	
Seq Number:	3032046			Matrix:	Soil				Date Pre	ep: 10.3	1.17	
Parent Sample Id:	566200-040		MS Sar	nple Id:	566200-04	40 S		MSI	O Sample	Id: 5662	200-040 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	625	249	831	83	843	88	90-110	1	20	mg/kg	10.31.17 20:50	Х

Analytical Method: Seq Number:	Chloride by EPA 30 3032120	00		Matrix:	Soil			Pr	ep Metho Date Pre			
Parent Sample Id:	566321-005		MS Sar	nple Id:	566321-00)5 S		MSI	D Sample	Id: 5663	321-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	1410	248	1620	85	1620	85	90-110	0	20	mg/kg	11.01.17 18:11	Х

Analytical Method: Seq Number:	Chloride by EPA 3 3032120	600		Matrix:	Soil			Pr	ep Meth Date Pr			
Parent Sample Id:	566976-001		MS Sa		566976-0	01 S		MS			976-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	335	248	586	101	585	101	90-110	0	20	mg/kg	11.01.17 16:07	
Analytical Method:	Chloride by EPA 3	600						Pr	ep Meth	od: E30	0P	
Seq Number:	3032684			Matrix:					Date Pr	•		
Parent Sample Id:	566200-041		MS Sa	mple Id:	566200-04	41 S		MS	D Sample	e Id: 5662	200-041 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	114	246	368	103	370	104	90-110	1	20	mg/kg	11.07.17 11:27	
Analytical Method:	Chloride by EPA 3	:00						Pr	ep Meth	od: E30	0P	
Seq Number:	3032684			Matrix:	Soil			11	Date Pr			
Parent Sample Id:	566954-008		MS Sa	mple Id:	566954-0	08 S		MS			954-008 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	212	246	454	98	454	98	90-110	0	20	mg/kg	11.07.17 09:58	
Analytical Method:	Chloride by FDA 3	300						D,	ep Meth	od: E30	Ω₽	
Seq Number:	3032955			Matrix:	Soil			11	Date Pr			
Parent Sample Id:	566200-052		MS Sat		566200-0	52 S		MS		1	200-052 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	541	249	763	89	795	102	90-110	4	20	mg/kg	11.09.17 23:17	Х
Analytical Method:	Chloride by EPA 3	600						Pr	ep Meth		0P	
Seq Number:	3032955			Matrix:					Date Pr	-		
Parent Sample Id:	567942-001		MS Sai	mple Id:	567942-0	01 S		MS	D Sample	e Id: 5679	942-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag

Parameter	Result	Amount	Result	MS %Rec	MSD Result	MSD %Rec	Limits	%KPD	Limit	Units	Date	Flag
Chloride	90.5	250	346	102	345	102	90-110	0	20	mg/kg	11.09.17 21:48	

Analytical Method:	Chloride by EPA 30	00						Pr	ep Metho	od: E300	OP	
Seq Number:	3032985			Matrix:	Soil				Date Pre	ep: 11.1	0.17	
Parent Sample Id:	567962-001		MS Sar	nple Id:	567962-00	01 S		MSI	O Sample	Id: 5679	962-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	352	249	591	96	587	94	90-110	1	20	mg/kg	11.10.17 11:32	

Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 (3032985 568052-002	00		Matrix: nple Id:	Soil 568052-00	02 S			ep Meth Date Pr O Sample	ep: 11.1		
Parameter	Parent	Spike	MS Result	MS	MSD	MSD	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	Result 7.10	Amount 248	265	%Rec 104	Result 267	%Rec 105	90-110	1	20	mg/kg	11.10.17 13:02	
Analytical Method:	Chloride by EPA 3	00						Pr	ep Meth	od: E30	0P	
Seq Number: Parent Sample Id:	3033477 568380-001			Matrix: nple Id:	Soil 568380-0	01 S		MSI	Date Pr Date D	-	5.17 380-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	5.24	247	260	103	256	7 6 Kec 102	90-110	2	20	mg/kg	11.15.17 19:58	
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3033477 568429-004	00		Matrix: nple Id:	Soil 568429-00	04 S			ep Meth Date Pr D Sample	ep: 11.1		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	435	246	654	89	649	8 7	90-110	1	20	mg/kg	11.15.17 21:27	х
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031257			Matrix: nple Id:	Solid 3031257-	I-BLK				Units %	Analysis Date 10.23.17 12:00	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031376			Matrix: nple Id:	Solid 3031376-	I-BLK				Units %	Analysis Date 10.25.17 09:50	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3032453			Matrix: nple Id:	Solid 3032453-	I-BLK				Units %	Analysis Date 11.06.17 08:50	Flag

Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3033007	Matrix: MB Sample Id: MB Result <1.00	Solid 3033007-1-BLK			Units %	Analysis Date 11.10.17 17:04	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3033594	Matrix: MB Sample Id: MB Result <1.00	Solid 3033594-1-BLK			Units %	Analysis Date 11.16.17 15:30	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031257 566200-038 Parent Result 5.88	Matrix: MD Sample Id: MD Result 5.88		%RPD 0	RPD Limit 20	Units %	Analysis Date 10.23.17 12:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031257 566200-067 Parent Result 8.19	Matrix: MD Sample Id: MD Result 7.64		%RPD 7	RPD Limit 20	Units %	Analysis Date 10.23.17 12:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031376 566200-001 Parent Result 5.63	Matrix: MD Sample Id: MD Result 5.65		%RPD 0	RPD Limit 20	Units %	Analysis Date 10.25.17 09:50	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3032453 566200-005 Parent Result 5.63	Matrix: MD Sample Id: MD Result 5.74		%RPD 2	RPD Limit 20	Units %	Analysis Date 11.06.17 08:50	Flag

Analytical Method: Seq Number:	3033007	Matrix:						
Parent Sample Id:	566503-053	MD Sample Id:	566503-053 D					
Parameter	Parent Result	MD Result		%RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	6.07	5.97		2	20	%	11.10.17 17:04	

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3033007 566621-008	Matrix: MD Sample Id:					
Parameter	Parent Result	MD Result	%RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	5.59	5.43	3	20	%	11.10.17 17:04	

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3033594 568558-001	Matrix: MD Sample Id:					
Parameter	Parent Result	MD Result	%RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	23.3	23.1	1	20	%	11.16.17 15:30	

Dallas Texas (214-902-0300)

Stafford,Texas (281-240-4200)

Page 1 Of 7 CHAIN OF CUSTODY

(Acce-eo2-ors) sexas ,oinotnA ne2

(r222-407-524) sexaT ,bnslbiM

Phoenix, Arizona (480-355-0900)

(6-23: +0.2°C) S. U CE:(0-e:-0.2°C) Temp: 8-A:01 AI previously negotiated under a fully executed client contract. a will be involced at \$5 per sample. These terms will be enforced unless expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project, Xenco's libelit fet of samples and shall not assume any responsibility for any losses or Notice: Notice: Signature of this document and relindustanties of signatures or value for company to Xenco, its affiliates and subcontractors. It assigns standard terms and х ç Thermo. Corr. Factor Cooler Temp. On Ice Preserved where applicable Custody Seal # Received By: :emiT etsO Relinquished by: Received By: :emiT ets0 Relinquished By: Received By Roco Received By: Date Time: Relinquished by: Z1/2 -2020 Relinquished by Samp 0020 0231 Relinquished By: Ka p :emiT ets0 Date Time: SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY # BuildenT :SAU / X3-033 TAT Starts Day received by Lab, if received by 5:00 pm TRRP Checklist 3 Day EMERGENCY TAT tostinoo UST/RG-411 Level 3 (CLP Forms) 5 Day EMERGENCY TRRP Level IV Level III Std QC+ Forms Next Day EMERGENCY TAT Y60 T Level IV (Full Data Pkg /raw data) Cevel II Std QC TAT YED & TAT ysG ems2 :sejon Data Deliverable Information (sysb szenizu8) emiT bruotemuT 6101 L 10 Ł S 1052 11/81/01 09-62 810121-08-62-S-6-8S PIOF 1 6 L S 11/81/01 1050 02-69 810121-02-69-5-6-85 PIQH 1 L s 8 1012 11/81/01 09-69 810121-09-65-2-6-85 L L S L 1010 10/18//12 09-67 810121-09-67-5-6-85 PIOP L 9 L S 10002 11/181/01 36-40 810171-04-95-2-9-82 Plat 1 Ł S 1000 11/181/01 S 56-30 810171-05-22-29-30 L L S 11/81/01 * 996 16-20 810171-02-01-2-0-82 1 Ł S 3 096 11/81/01 01-6 8101/1-01-6-S-6-8S L 2 Ł S 946 11/81/01 5-12 810121-9-7-S-6-8S L Ł 1 S 016 11/81/01 1-9'0 810121-1-9'0-S-6-8S Field Comments Chloride Moisture NaHSO4 H2SO4 NaOH/Zn Acetate NONE MEOH NaOH HCI semod xinteM. emiT Date Depth HNO3 J0 # Sample Field ID / Point of Collection 'ON Number of preserved bottles Collection IA = A WW= Waste Water Samplers's Name Rebecca Jones ||0 = 0||PO Number: Scott.Foord@ghd.com eqiW = IW Project Contact: OW =Ocean/Sea Water abpnis = 75 215-206-8803 Chris.Knight@ghd.com SW = Surface water INVOICE TO: ON BUOU : Ireiura P = Product DW = Drinking Water Kea County, NM 6320 Rothway St. #100, Houston TX 77040 GW =Ground Water Project Location: :ssauppy Aueduog pilos/pas/lios = s CVU-47H / 073821 N = Water roject kame/Number: CHD/ Houston Company Name / Branch: Project Information Client / Reporting Information Matrix Codes Analytical Information moo.com Xenco Quote # Xenco Job #

Final 1.003

XENCO
Setting the Standard since 1990

Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY Page 2 of 7

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

				3	www.xer	co.cor	n						Xenco	o Quote	# Xenco J	Job# 500200
	-														Analytical Information	Matrix Codes
Client / Reporting Information			Proj	ect Infor	mation							_				
company Name / Branch: GHD/ Houston		Project Name CVU-47H /											1			W = Water S = Soil/Sed/Solid
ompany Address:	-	Project Locat	ion:					-								GW =Ground Water
320 Rothway SL #100, Houston TX 77040		Lea County, I	MM													DW = Drinking Water P = Product
mall: Phone No: Chris.Knight@ghd.com 512-506-8803		Invoice To:											1			SW = Surface water
	_															SL = Sludge OW =Ocean/Sea Wate
roject Contact: scott.Foord@ghd.com		PO Number:	-	-				_				-				WI = Wipe O = Oil
amplers's Name Rebecca Jones	-				_	_	_	_	_	_		_				WW= Waste Water
	-	Collection			1.1		Numb	er of	preser	ved b	ottles		e	2		A = Air
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	Ę	NaOH/Zn Acetate	HN03	H2SO4	NaOH	MEOH	NONE	Chloride	Moisture		Field Comments
1 SB-9-S-89-90-171018	89-90	10/18/17	1030	S	1			-		-		1	N			Hold
2 SB-10-S-0.5-1-171018	0.5-1	10/18/17	1130	s	1	-				-	1	1	1	X		hord hord
3 SB-10-S-4-5-171018	4-5	10/18/17	1135	s	1	-			-	+	+	1	K	X		
4 SB-10-S-9-10-171018	9-10	10/18/17	1140	S	1				-	+	+	1	K	X		
5 SB-10-S-19-20-171018	19-20	10/18/17	1145	s	1	-	-		+	+	+	1		$\langle \rangle$		
6 SB-10-S-29-30-171018	29-30	10/18/17	1150	s	1	-		-	+	+	+	1	K	K		Hold
7 SB-10-S-39-40-171018	39-40	10/18/17	1155	S	1				+	+	+	1				Hold
8 SB-10-S-49-50-171018	49-50	10/18/17	1200	s	1		-		-	+	+	1		K		Hold
9 SB-10-S-59-60-171018	59-60	10/18/17	1205	S	1				+	+	+	1	1			Hold
10 SB-10-S-69-70-171018	69-70	10/18/17	1210	s	1				+	+	+	1				Hold
Turnaround Time (Business days)	-		-		Data Deliv	erable	Informa	tion		1		1			Notes:	Tiord
Same Day TAT 5 Day TAT			Le	vel II Std	QC		I		Level	IV (F	ull Da	ta Pkg	Iraw o	data)		
Next Day EMERGENCY 7 Day TAT			Le	vel III Ste	d QC+ F	orms	[TRRP	Leve	VI le					
2 Day EMERGENCY			Le	vel 3 (CL	P Form	5)	1		UST	RG-	411	1				
3 Day EMERGENCY			TR	RP Chee	cklist	-		-	-				_			
TAT Starts Day received by Lab, if received by 5:	00 pm	-			_					_				_	FED-EX / UPS: Tra	icking #
	TODY MUST BE		DBELOW	ACH TIM	E SAMPL	ES CH/	ANGE P						ER DEL			A 1.
SAMPLE CUST			Received	Xe	ence	0			Reling				1	-	1-1-11/ - 12/1	annelmen
Refinquished by Sampler USAMPLE CUST	Date Tim	7-0800	11						Reling	uishe	ed By:	1			Date Time: Receiv	ved By:
Relinquished by Sampler 1 Relinquished by:	Date Tim Date Tim	1-0800	Received	By:												
Refinquished by Sampler USAMPLE CUST	10201	e:	Received 3 Received		_			-	4 Custo	dy Se	al #	_	_	Prese	4 4 erved where applicable	On Ice Cooler Temp. Thermo, Corr. Factor

YEN CO ABORATORIES

CHAIN OF CUSTODY Page 3 of 7

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

San Antonio, Texas (210-509-3334)

	Midland, Texas (432-704-5251)								Xer	Xenco Quote # Xenco Job # SU(200						010200					
																Analytic	al Inform	nation	1000		Matrix Codes
Client / Reporting Information			Proje	ect Infor	mation									Τ		1					
ompany Name / Branch: GHD/ Houston		Project Name CVU-47H /																			W = Water S = Soil/Sed/Solid
ompany Address: 20 Rothway St. #100, Houston TX 77040		Project Loca Lea County,	tion:																		GW =Ground Water DW = Drinking Water P = Product
nall: Phone No: hris.Knight@ghd.com 512-506-8803		Invoice To:	ivoice To:-																SW = Surface water SL = Sludge OW =Ocean/Sea Wate		
oject Contact: cott.Foord@ghd.com		PO Number:											_								WI = Wipe O = Oil
amplers's Name Rebecca Jones						_		_													WW= Waste Water
	-	Collection	-				Numb	ber of	prese	erved I	bottle	s			0				1.1		A = Air
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	Ę	NaOH/Zn Acetate	HN03	H2SO4	NaOH	NaHSO4	MEOH	Chlorida	Culorid	Moisture						Field Comments
1 SB-10-S-79-80-171018	79-80	10/18/17	1215	S	1								1								Hold
2 SB-10-S-89-90-171018	89-90	10/18/17	1220	s	1								1								Hold
3 SB-8-S-0.5-1-171018	0.5-1	10/18/17	1035	S	1								1		1						11010
4 SB-8-S-4-5-171018	4-5	10/18/17	1040	S	1								1	1	1						
5 SB-8-S-9-10-171018	9-10	10/18/17	1045	s	1								1	1	1						
6 SB-8-S-19-20-171018	19-20	10/18/17	1050	S	1		1					1	1	1							
7 SB-8-S-29-30-171018	29-30	10/18/17	1055	S	1								1	1							
8 SB-8-S-39-40-171018	39-40	10/18/17	1100	S	1								1	1	1						
9 SB-8-S-49-50-171018	49-50	10/18/17	1105	S	1								1	1	1						Hold
10 SB-8-S-59-60-171018	59-60	10/18/17	1110	S	1								1	1							Hold
Turnaround Time (Business days)	-			1	Data Deli	verable	Inform	ation		-				1	×	-	No	otes:	2		1.010
Same Day TAT 5 Day TAT			Lev	el II Std	QC				Leve	el IV (I	Full D	Data P	kg /rav	w dat	ta)						
Next Day EMERGENCY 7 Day TAT			Lev	vel III St	d QC+ F	orms			TRR	RP Lev	el IV	1									
2 Day EMERGENCY	0.00	1	Lev	vel 3 (CL	P Form	s)			UST	/RG	-411										
3 Day EMERGENCY		1	TR	RP Che	cklist																
TAT Starts Day received by Lab, if received by 5:0	0 pm								-			-	_			_	FED-EX	UPS:	Tracking #		
Relinquished by Sampler	Date Time	DOCUMENT	Received		E SAMP	LES CH	ANGER			, INCL			JRIER D	ELM		ate Time:	- 92	De	eived By	7.	A
Relinquished by:	Date Time	17-0100	1 Received	٨	enc	0	-		2	iquish	12	1	al	-		ate Time:	17	21	ceived By:	MA	elh fi-
3 Relinquished by:	Date Time	9:	3 Received	By:					4 Custe	ody S	eal #		-	1	Presen	ed where	applica	4 ble	On		Cooler Temp. Thermo. Corr. Factor

XENCO	È.
LABORATORIES	8

CHAIN OF CUSTODY

Setting the Standard since 1990 Stafford,Texas (281-240-4200) Dallas Texas (214-902-0300)

Page 68 of 72

Final 1.003

San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251)

				1	www,xer	100.00	m						×	enco	Quote #	ŧ	Xenco Jo	b#	511	00200
												-				Analytical Inform	ation		00	Matrix Codes
Client / Reporting Information			Proj	ect Infor	mation															
ompany Name / Branch: GHD/ Houston		Project Name CVU-47H /																		W = Water
ompany Address:		Project Loca	tion:		_		_						-							S = Soil/Sed/Solid GW =Ground Water
320 Rothway SL #100, Houston TX 77040		Lea County,	ea County, NM																	DW = Drinking Water P = Product
mail: Phone No:	1000	Invoice To:															SW = Surface water			
Chris.Knight@ghd.com 512-506-8803																				SL = Sludge OW =Ocean/Sea Wat
roject Contact: cott.Foord@ghd.com		PO Number:						_				_	_							WI = Wipe
amplers's Name Rebecca Jones	_	l'onunou.	_	_	_															O = Oil WW= Waste Water
		Collection	-				Numi	per of	prese	erved	bottle	es		æ				100		A = Air
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	HCI	NaOH/Zn Acetate	HNO3	H2SO4	NaOH	NaHSO4	MEOH	NONE	Chloride	Moisture					Field Comments
1 SB-8-S-69-70-171018	69-70	10/18/17	1115	s	1		-	-	-	~	-	-	1							Hold
2 SB-8-S-79-80-171018	79-80	10/18/17	1120	s	1						+	+	1	7	1					Hold
3 SB-8-S-89-90-171018	89-90	10/18/17	1125	S	1						-	-	1)			+ +-			Hald
4 SB-7-S-0.5-1-171018	0.5-1	10/18/17	1225	s	1						+	+	1	-	1					11410
5 SB-7-S-4-5-171018	4-5	10/18/17	1230	S	1					-	-	+	1	-				-		
6 SB-7-S-9-10-171018	9-10	10/18/17	1235	s	1				-		-	-	1				+ +			
7 SB-7-S-19-20-171018	19-20	10/18/17	1240	S	1				-		-	+	1	-						
8 SB-7-S-29-30-171018	29-30	10/18/17	1245	S	1				-		-	-	1	-				-		
9 SB-7-S-39-40-171018	39-40	10/18/17	1250	S	1				-		-	-	1	-				-	-	
10 SB-7-S-49-50-171018	49-50	10/18/17	1255	S	1						-	-	1	-						
Turnaround Time (Business days)	1		-		ata Deli	verable	Informa	ation	-				- 1	-	N	No	es:	_		
Same Day TAT 5 Day TAT			Le	vel II Std	oc				Lev	el IV (Euli	Data	Pkg /ra	b we	lete					
Next Day EMERGENCY 7 Day TAT		-		vel III Sto		arme				RP Le	_	-	- ng m		acuj					
		-	_		-	_	1			_			-		-					
2 Day EMERGENCY		-		vel 3 (CL		s)			UST	r/RG	-411									
3 Day EMERGENCY		1 - 3		RP Chec	klist			_												
TAT Starts Day received by Lab, if received by 5:0																FED-EX	UPS: Trad	king #		1
Relinquished by Sampler	Date Time	DOCUMENTE	Received		E SAMPL	LES CH	ANGE F			nquisi			URIER	DELM		Date Time: 162	Receive	d 県y: ハ		11 12
1 KILLIANDOONIO Relinguished by:	1020	7-0800	1					-	2 /	Un	13	La	rl	-	-	10/2017	2/	1 a	Ul	repros
Keinquisied by:	Date This	B:	Received	ву:					Relin	nquisi	hed B	y:				Date Timé:	Receive	ed By:		
2	Date Time	9:	Received	By:					4 Cust	ody S	ieal #	-	_	- 1	Preser	rved where applicab	le le	ànie	e (Cooler Temp. Thermo. Corr. Factor
3 Relinquished by:																_		X		

XENCO
Setting the Standard since 1990

Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

					www.xer	nco.co	om						Xen	ico Que	ote #		Xen	co Job #	2	56620	D
													3			Analytical Infor	mation			real	Matrix Codes
Client / Reporting Information				ject Info	mation																
empanyName / Branch: GHD/ Houston		Project Nam CVU-47H																			W = Water S = Soil/Sed/Solid
mpanyAddress: 10 Rothway St. #100, Houston TX 77040		Project Loca Lea County,	ation:																		GW =Ground Water DW = Drinking Water
all: Phone No:		Invoice To:	-	_		_	_	-	_	_	-	_	-								P = Product
ris.Knight@ghd.com 512-506-884	03																		SW = Surface water SL = Sludge OW =Ocean/Sea Wate		
ject Contact: ott.Foord@ghd.com		PO Number:		-	_	_	_	-	~	-			-								WI = Wipe O = Oil
mplers's Name Rebecca Jones	10.000	1		-		-		_	_	_	_	_				1 1 1					WW= Waste Water
	1000	Collection	1000				Num	ber of	prese	erved	bottles	S	4	a							A = Air
o. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	HCI	NaOH/Zn Acetate	HNO3	H2SO4	NaOH	NaHSO4	MEOH	Chloride	Moisture						Field	d Comments
SB-7-S-59-60-171018	59-60	10/18/17	1300	S	1		0.04					1								Hold	
SB-7-S-69-70-171018	69-70	10/18/17	1305	S	1							1	1	X	1				-	Hold	
SB-7-S-79-80-171018	79-80	10/18/17	1310	S	1						-	1	-	X	1		-		-	1 1 1 1	
SB-7-S-89-90-171018	89-90	10/18/17	1315	S	1						+	1	1	X	1		-		-	Fold	
SB-6-S-0.5-1-171018	0.5-1	10/18/17	1320	S	1						+	1	1	X	1		-		-	rivio	
SB-6-S-4-5-171018	4-5	10/18/17	1325	S	1						1	1		X	1		-		-		
SB-6-S-9-10-171018	9-10	10/18/17	1330	S	1							1	1	X	1				-		
3 SB-6-S-19-20-171018	19-20	10/18/17	1335	S	1							1	1	1	1						
SB-6-S-29-30-171018	29-30	10/18/17	1340	S	1							1	1	1	1					Hold	
0 SB-6-S-39-40-171018	39-40	10/18/17	1345	S	1							1	1	1	1				-	How	
Turnaround Time (Business days)	11			1	Data Deli	verable	e Informa	ation			_		-	1	×	N	otes:	1000	-	INCE	
Same Day TAT 5 Day TA	т		Le	vel II Sto	QC				Leve	el IV (Full Da	ata Pk	cg /raw	/ data)	10						
Next Day EMERGENCY 7 Day TAT		1.1.1	Le	vel III St	d QC+ F	orms			TRR	RP Lev	rel IV										
2 Day EMERGENCY	TAT	1	Le	vel 3 (CL	P Form	s)			UST	RG	-411										
3 Day EMERGENCY				RP Che	klist				-												
TAT Starts Day received by Lab, if received by						-	_						_			FED-E	K/UPS:	Tracking #	1		
Relinquished by Samples	USTODY MUST BE	DOCUMENT	ED BELOW	EACH TIN	E SAMPL	ES CH	ANGE P						RIER DE	ELIVER	Y			11		2	
Revittanion	1080	7-0900	1	гоу.				- 11	Rein	quisr	ed By	- /	1	-	Da	te Time: /62	Rec	eived By	NIL	Mell	st
Relinquished by:	Date Tim	e:	Received	By:				-	Relin	quist	ed By	120				te Time:		eived By:	un	1 mgr	nou
			3		_				4								4	1			
Relinquished by:	Date Tim	e:	Received	By:					Cust	ody S	eal #			Pre	eserve	d where applica	ble	0	n Ice	Cooler Temp.	Thermo, Corr. Factor
tice: Notice: Signature of this document and relinquishment of samples of	onstitutes a valid our	chase order fro	5 m client com	nany lo Xe	non its af	filiates	and subs	ontract	tore II	accion	e eland	and ton	hee and	acadita		Andrea Manager 2014	- Fable and		XL.		
Notice: Notice: Signature of this document and relinquishment of samples or expenses incurred by the Client if such loses are due to circumstances bey previously negotiated under a fully executed client contract.	onstitutes a valid pur ond the control of Xe	chase order fro nco, A minimun	n C					ontract	tors. II	assign	s sland	ard ten	ms and f sa	conditionamples.	Any sa	ervice. Xenco will b mples received by 3	e liable only Kenco but i	y for the cost not analyzed	of sample will be inw	es and shall not assume oiced at \$5 per sample, 1	any responsibility for any loss These terms will be enforced
enously negonated under a rully executed citerin contract.			Te	mp:	5	5	<	IR	ID:	R-P	3										
				:(0-6					10.												
			UF																		
					3: +0		C)	/	5	1											
			Co	rrect	ed Te	emp):	C	2	(0										

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Client / Reporting Information ompany Name / Branch: GHD/ Houston ompany Address: 320 Rothway St. #100, Houston TX 77040 mall: Phone No: :hris.Knight@ghd.com 512-506-8803 roject Contact: :cott.Foord@ghd.com amplers's Name Rebecca Jones	CVU-4 Project Lea Cou	lame/Number: 'H / 073821 .ocation: nty, NM	ject Info	rmation	r							_			Analytical In	formation			Matrix Codes
ompany Name / Branch: GHD/ Houston ompany Address: 20 Rothway St. #100, Houston TX 77040 nall: Phone No: hrtis.Knight@ghd.com 512-506-8803 oject Contact: cott.Foord@ghd.com	CVU-4 Project Lea Cou	lame/Number: 'H / 073821 .ocation: nty, NM	ject Info	rmation	r						-	-							W = Water
ompany Address: 120 Rothway St. #100, Houston TX 77040 mail: Phone No: hris.Knight@ghd.com 512-506-8803 roject Contact: cott.Foord@ghd.com	CVU-4 Project Lea Cou	H / 073821 ocation: nty, NM																	W = Water
320 Rothway St. #100, Houston TX 77040 mall: Phone No: hris.Knight@ghd.com 512-506-8803 roject Contact: cott.Foord@ghd.com	Project Lea Cou	ocation: nty, NM					VU-47H / 073821									1 1 1			S = Soil/Sed/Solid
hris,Knight@ghd.com 512-506-8803 roject Contact:	Invoice		Project Location: Lea County, NM																GW =Ground Water DW = Drinking Water
cott.Foord@ghd.com		Invoice To:																	P = Product SW = Surface water SL = Sludge
							_			_	_								OW =Ocean/Sea Water WI = Wipe
	PO Num	ber:																-	O = Oil
	Collect	ion	-	10.0	0.00	Num	ber of	prese	erved	bottle	s								WW= Waste Water A = Air
	nple pth Date	Time	Matrix	# of bottles	Ē	NaOH/Zn Acetate	HNO3	H2SO4	NaOH	NaHSO4	MEOH	NONE	Chloride	Moisture					Field Comments
1 SB-6-S-49-50-171018 49	50 10/18/	7 1350	S	1							-	1						Hold	ried Comments
2 SB-6-S-59-60-171018 59	60 10/18/1	7 1355	S	1					1	-		1	1	1				Hold	
3 SB-6-S-69-70-171018 69	70 10/18/	7 1400	S	1					1	1		1	1	1				Hold	
	80 10/18/1	7 1405	S	1					1		+	1	1	1				Hold	
	-90 10/18/	7 1410	s	1		-			-	+	+	1	1	1			-	Hold	
	5-1 10/18/1	7 1415	s	1				-	+		-	1	\uparrow	1				nuc	
00 5 0 1 5 171010	5 10/18/	7 1420	S	1					-	+	+	1	1	1					
	10 10/18/	7 1425	S	1					-	+	+	1	1	1					
	20 10/18/	7 1430	S	1					-	+	-	1	1	1				-	
	-30 10/18/	7 1435	S	1		1.00					-	1	1	1				Hold	
Turnaround Time (Business days)	-	1	1	Data Deli	iverable	e Informa	ation					-		V		Notes:		noto	
Same Day TAT 5 Day TAT		Le	wel II Sto	I QC				Leve	el IV (I	Full D	Data P	Pkg /ra	aw dat	a)					
Next Day EMERGENCY 7 Day TAT		Le	evel III St	d QC+ F	orms			TRR	P Lev	el IV	i.								
2 Day EMERGENCY			evel 3 (CL	P Form	is)			UST	/RG	-411	1				-				
3 Day EMERGENCY		П	RRP Che	cklist															
TAT Starts Day received by Lab, if received by 5:00 pm				-			_								FED	EX/UPS: Tra	ckina #		0,
Relinduished by Sampler a	T BE DOCUME Time:	Receive	EACH TIN	IE SAMP	LES CH	ANGE F						JRIER	DELIVE						11 11
1 NULUYI DUDADO 10	10M-08		а бу.					2	quish	ed By	y:	6	1		ate Time:	Receiv	ed By:	12 80	hatt
	Tinle:	Receive	d By:				F	Relin	quish	ed By	y:	er	_	C	ate Time:	Receiv	ed By:		1 - 40
3 Relinquished by: Date	Time:	3 Receive	d By:	_	-	_	4	4 Custo	ody Se	eal #	-	-	P	reser	ed where appl	4	Qn /Ce	Cooler Temp.	Thermo, Corr. Factor
5 lotice: Notice: Signature of this document and relinquishment of samples constitutes a val		5														CONTO .	Xĩ	cooler relity.	Thermo, con, Factor

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY Page 7 of 7

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

				_	<u>www.xe</u>	enco.co	om	_					Xe	nco Qu	ote #		Xenco Jo	b# 5	566200
			-		_	_										Analytical Inform	ation		Matrix Codes
Client / Reporting Information mpany Name / Branch: GHD/ Houston		Destant		ject Info	mation				_				_						
		Project Nan CVU-47H																	W = Water
mpany Address: 20 Rothway St. #100, Houston TX 77040	1.00	Project Loc Lea County																	S = Soil/Sed/Solid GW =Ground Water DW = Drinking Wate
all: Phone No: ris.Knight@ghd.com 512-506-880	13	Invoice To:																	P = Product SW = Surface water SL = Studge
elect Contact:															OW =Ocean/Sea Wa				
ott.Foord@ghd.com mplers's Name Rebecca Jones		PO Number	PO Number:												WI = Wipe O = Oil				
	A 1994	Collection		8		6			-		-	-	-		1				WW= Waste Water
o. Field ID / Point of Collection		Collection		1				ber of	pres			s		an a					A = Air
	Sample Depth	Date	Time	Matrix	# of bottles	P	NaOH/Zn Acetate	HNO3	H2S04	NaOH	NaHSO4	MEOH	NONE	Moisture					a Sumain
SB-5-S-39-40-171018	39-40	10/18/17	1440	S	1		24	-	-	-	-		1				-	++	Field Comments
2 SB-5-S-49-50-171018	49-50	10/18/17	1445	s	1			+	-		+	-	1	X	+		++-		Hold
3 SB-5-S-59-60-171018	59-60	10/18/17	1450	S	1				-		+	-	1	X	1				Hold
4 SB-5-S-69-70-171018	69-70	10/18/17	1455	s	1	\square					+	-	1	X	+		++	++	Hold
5 SB-5-S-79-80-171018	79-80	10/18/17	1500	s	1				-		+	+	1	X	+			+ +	1010
5 SB-5-S-89-90-171018	89-90	10/18/17	1505	S	1					-	+	+		X	+				Hold
7 DUP-1-171018	-	10/18/17		S	1						+	+	1	X	+		+	+ +	Hold
8											+	+	1		+				
9											+				1				
0														1	1				
Turnaround Time (Business days)		1	1	1	Data Deli	verable	Inform	ation		10		-				Note	s:		
Same Day TAT 5 Day TA	r	12 11	Le	vel II Std	QC				Leve	el IV (l	Full Da	ata P	kg /rav	v data)	Ē.				
Next Day EMERGENCY 7 Day TAT		1 1	Le	vel III Ste	d QC+ F	orms			TRR	RP Lev	el IV	2							
2 Day EMERGENCY	TAT		Le	vel 3 (CL	P Form	s)			UST	/RG	-411		_	-				_	
3 Day EMERGENCY	-		TR	RP Cheo	klist				-	-	-							_	
TAT Starts Day received by Lab, if received by			_	-			-	-								FED-EX /	UPS: Track	cina #	1
Relinguisher Bampler:	Date Tim	E DOCUMENT	Received	EACH TIM	E SAMPI	ES CH	ANGE P	OSSES	SION	I, INCL	UDING	COU	RIER DI	ELIVER			1/1	-	
Relinquished by Sampler:	10 20	17-080	Di	ву:				2	Relin	quish	ed By:	/	1		Da	ate Time: 162-	Received	BX: AL	uncella pr
Relinquished by:	Date Tim	e:	Received	By:				F	Relin	quish	ed By:	: "			Da	ate Time:	Received	By:	hap to
Relinquished by:	Date Tim	e:	3 Received	By:	_	_		4	4 Custo	ody Se	al #	_	_	Pre	serve	ed where applicable	4	Ontes	
																ou where applicable		Onlice	Cooler Temp. Thermo, Corr. Factor

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: GHD Services, INC- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/20/2017 04:20:00 PM Temperature Measuring device used : R8 Work Order #: 566200 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? 5.6 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/23/2017

Checklist completed by: Shawnee Smith Checklist reviewed by: Mark Moah Kelsey Brooks

Date: 10/23/2017

Appendix C 2018 Work Plan

Reference No. 073821-1

July 24, 2018

Ms. Olivia Yu Environmental Specialist New Mexico Oil Conservation Division – District 1 1625 N. French Drive Hobbs, New Mexico 88240

Re: 2018 Scope of Work CVU No. 47H – Produced Water Release (RP-1483) Lea County, New Mexico

Dear Ms. Yu,

1. Project Information

The Site is located in Unit E, Section 31, Township 16 South, Range 37 East, approximately 5 miles southeast of Lovington in eastern Lea County, New Mexico.

Soil

Information available from various sources including the Petroleum Recovery Research Center (PRRC) Mapping Portal, GHD currently managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation, concludes:

- a) The depth to groundwater from the deepest impacted soil at the Site is less than 50-feet bgs.
- b) The nearest private domestic water source is greater than 200-feet from the release site.
- c) The nearest public/municipal water source is greater than 1,000-feet from the release site.
- d) The release site lies more than 1,000 horizontal feet from the nearest surface water body.

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site. The site-specific Recommended Remedial Action Levels (RRALs) applied to this location by the NMOCD are 10 milligrams per kilogram (mg/kg) for benzene; 50 mg/kg for total benzene, toluene, ethylbenzene, and xylenes (BTEX); 100 mg/kg for total petroleum hydrocarbons (TPH); and an NMOCD accepted 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chlorides.

In an August 28, 2017 telephone conversation between Bernard Bockisch (GHD) and Jim Griswold (NMOCD Environmental Bureau Chief), GHD was informed that the NMOCD is accepting chloride concentrations of 600 mg/kg for the horizontal delineation assessment clean up levels.

Groundwater

The NMOCD provides guidance for remediation of contaminants of oil field wastes or products in Guidelines for Remediation of Leaks, Spills, and Releases (August 13, 1993). The guidance requires remediation of groundwater to the human health standards of the NMWQCC set forth in New Mexico Administrative Code 20.6.2.3103. Standards for chloride and total dissolved solids (TDS) are listed below.

Analyte	NMWQCC Standard for Groundwater (mg/L)
Chloride	250
TDS	1,000

In order to further define the horizontal extent of chloride impact, six (6) additional soils borings (SB-5 though SB-10) were advanced to 90 feet below ground surface (bgs) in October 2017 and soil samples were submitted for chloride analysis by EPA Method 300.0. Analytical results associated with assessment activities conducted in 2017 indicated the horizontal and vertical extents of the chloride impact in soil had not been fully delineated to the south and east of the former pit.

2. 2018 Scope of Work

2.1 Task I - Soil Boring and Monitoring Well Installation Activities

Six (6) additional soil borings (SB-11 through SB-16) will be installed to approximately 90 feet bgs to further horizontal and vertical delineation of the chloride impact to soil. Field screening of soil cuttings for chlorides will be performed to guide drilling activities and soil samples will be collected for laboratory analysis. Additionally, GHD is proposing the installation of one 4-inch diameter monitoring well (MW-1) southeast of the impacted area (assumed downgradient) to screen groundwater for chloride impact (see Figure 1). Preparation of a permit application and associated fees for the required NMOSE monitoring well permit will be submitted prior to drilling activities.

Prior to mobilizing drilling equipment to the Site, a utility notification will be made at least 48-hours prior to mobilization. In addition to the utility locate, a geophysical survey will be completed for each of the proposed boring locations.

A hydroexcavator or similar borehole clearance equipment will be used to clear the boring locations with a diameter at least 2 inches greater than the size of the largest drilling tool. The boring will be cleared to 5-feet bgs or refusal. Initially, each boring will be drilled with air-rotary and switched to mud-rotary (monitoring well only) toward the bottom portion of each boring (if necessary). The rig will be operated by a New Mexico licensed water well driller.

Soil samples will be collected at 10-foot intervals. Soil samples will be field screened for chloride concentrations using Hach Chloride Titration strips and evaluated by the field geologist during the sampling event. Selected soil samples will be submitted for laboratory analysis of chloride by EPA Method 300. The total depth and nature of any sampling of soils will be based on results of the chloride field

screening and the professional judgment of the GHD geologist with the intent to establish the depth at which soil concentrations are below the NMOCD accepted 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chloride. The soil borings will then be backfilled with cuttings up to 10 feet bgs and then filled to the ground surface with hydrated bentonite chips.

One additional soil boring will be installed approximately 20 to 25 feet into the Ogallala Formation (i.e., approximately 125 feet bgs) and completed as the proposed 4 inch monitoring well. A GHD geologist will record the subsurface lithology and any sample data on the well construction diagram/soil boring logs. The total depth and construction of the well and nature of any soil sampling will be based on the professional judgment of the GHD geologist.

Following monitoring well installation activities, the newly installed well (MW-1) will be developed by the driller. Roll off/mud boxes will be located proximate to the proposed well location and drilling and formation fluids, along with drill cuttings, will be containerized. Following waste characterization (estimated at one month), drill cuttings (non-hazardous) will be removed and transported to CEMC-approved Sundance Services, Inc. for disposal.

2.2 Task II – 2018 Groundwater Sampling Event

Following installation and development of MW-1, and prior to purging the well, the static fluid level will be measured with an electric interface probe to the nearest hundredth of a foot. After recording the fluid level, the monitoring well will be profiled using a conductivity meter. Subsequent to well gauging, the monitoring well will be purged using EPA-approved low-flow methodology.

Groundwater sample will be placed on ice in insulated coolers and chilled to a temperature of approximately 4°C (40°F). The coolers will then be sealed for shipment and proper chain-of-custody documentation will accompany the laboratory for analysis of chloride by EPA Method 300 and total dissolved solids (TDS) by Method 2540C.

2.3 Task III - Reporting

Following completion of the field activities detailed above, a report summarizing the results of the additional assessment will be prepared for submittal to NMOCD. The report will include a Site description, project history, description of field events, a discussion of results, and recommendations (if any). Soil and groundwater analytical results collected will be tabulated in data tables and presented graphically using concentration maps. Boring logs and a monitor well construction log for the Site will also be completed.

If you have any questions, please contact me at 713-734-3090.

Sincerely,

GHD

2

Scott Foord, P.G. Project Manager

SF/ag/1

Encl.

Attachment: Figure 1 – Proposed Soil Boring and Monitoring Well Location Map

Figure

GHD | 2018 Scope of Work – CVU No. 47H | 073821-1

NOTES:

1. All analytical results reported in (mg/kg) milligrams per kilogram.

2. Yellow shaded cells indicate exceedance.

3. Floor Sample-031015 indicates a 5-point composite sample of excavation floor.

Source: UDSA FSA Imagery, May 10, 2014

SB-4 12/17/12 Sample Date Depth 10' Sample Depth (ft) Sample ID--Sample Result (mg/kg) Chloride

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LEA COUNTY, NEW MEXICO CENTRAL VACUUM UNIT No. 47H PROPOSED SOILBORING AND MONITORING WELL LOCATION MAP

A ST PARTY AND	200	No. of Concession, Name
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3.00	1
		A CONTRACTOR OF THE OWNER
and the	2/64	State State
100.000	E alle	State Charles
1. 1. 1. 1. 1. 1.		COLORIS COLORIS
10 0 m 10	240	100 100 100 100 100 100 100 100 100 100
and the second second	00	ARCHINESS & LAN
		CONTRACTOR OF THE
		Contraction of the
	67	a second and
	1.25	and the second
00000	1 13	The Design of the Party
The set	200	A CALL AND A
		Constraint of the second
and the second second		and the second second
CONTRACTOR OF		The second states
1	1.0	and a second the second
SB-7 10/18/17	40.50	
19-20' 29-30' 39-40 1,940 1,020 848	' 49-50' 625	59-60' 69-70' 79-80' 89-90' 114 58.7 58.5 62.4
C.		
)		and the second
2 40' 50'		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
209 87.3		7 4 11
1.1.1.1.1.1.1		A 16
5 A 1	3. 1	1 3 6 11/1 *1
		LEGEND
		Proposed Soil Boring Location Proposed Monitoring Well Location
1205		Soil Boring Location - 2012
1		Soil Boring Location - 2015 Soil Boring Location - 2017
and a series		Excavated Sidewall Sample Location
Contractor of		5-point Composite Sample Location Approximate Boundary of Remedial Closure Activities
States -	-	Approximate Boundary of Remedial Closure Activities
CONTRACTOR OF	Depth	Backfill and Remediated Area Depth of Sample (ft)
A CARCELLA	BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
17 ' 19-20' 29-30'	TPH	Concentration Total Petroleum Hydrocarbons
39.2 108	DRO	Concentration TPH as Diesel Range Organics
Star Call	GRO	TPH as Gasoline Range Organics
and the second se		
Contraction of the second	*	Indicates Duplicate Sample
	*	Indicates Duplicate Sample Lat/Long: 32.7970° North, 103.4906° West

073821-00 May 14, 2018

