

Jason Michelson Project Manager Chevron Environmental Management Company 1400 Smith Street, #07084 Houston, Texas 77002 Work: 713-372-0289 Cell: 281-660-8564 jmichelson@chevron.com

APPROVED By Olivia Yu at 12:13 pm, Sep 20, 2018

NMOCD approves of the proposed additional site assessment activities for 1RP-4017.

July 25, 2018

Olivia Yu Environmental Specialist New Mexico Oil Conservation Division, District 1 1625 N. French Drive Hobbs, NM 88240

Re: Chevron Lovington Paddock Unit No. 89 Well-Site 2017 Soil Assessment and Delineation Report Case No. 1RP-4017 Lea County, New Mexico

Dear Ms. Yu,

Please find enclosed for your files copies of the following report:

 Lovington Paddock Unit No. 89 Well-Site – 2017 Soil Assessment Report, Unit E, Section 31, Township 16 South, Range 37 East; Lea County New Mexico.

The report was prepared by GHD Services (GHD) on behalf of Chevron Environmental Management Company (CEMC) to document on-going assessment activities throughout 2017 at the Site.

Please do not hesitate to call Scott Foord with GHD at 713-734-3090 or myself at 713-372-0289, should you have any questions.

Sincerely,

Jan Mila

Jason Michelson

Encl. Lovington Paddock Unit No. 89 Well-Site – 2017 Soil Assessment and Delineation Activities Report

C.C. Amy Barnhill, Chevron/MCBU

Soil Assessment and Delineation Activities Report

Lovington Paddock Unit No. 89 Well-Site 1RP - 4017 Unit E, Section 31, Township 16 South, Range 37 East Lovington, New Mexico

Chevron Environmental Management Company

Table of Contents

1.	Introd	luction	1
2.	Proje	ct Information and Background	1
3.	Reme	ediation Standards	2
4.	Geop	hysical Survey – EM31 and ER	2
	4.1	EM31 Survey Methodology	3
	4.2	EM31 Survey Results	3
	4.3	ER Survey Methodology	3
	4.4	ER Survey Results	4
	4.5	Geophysical Survey Correlations/Conclusions	4
5.	Soil A	ssessment	4
	5.1	Soil Sampling Analytical Results - 2017	5
6.	Concl	lusions	5
7.	2018	Assessment Activities	6

Figure Index

Figure 1	Site Location Map
Figure 2	Site Aerial Map
Figure 3	Soil Boring Location Map
Figure 4	EM31 Geophysical Survey Map
Figure 5	Electrical Resistivity Cross-section Survey Results and Historical Soil Analytical Data
Figure 6	Chloride Analytical Results Map

Table Index

Table 1Soil Analytical Summary – 2017

Appendix Index

Appendix A	SB-5 through SB-10 Soil Boring	Logs
------------	--------------------------------	------

- Appendix B Soil Laboratory Analytical Report
- Appendix C 2018 Work Plan

1. Introduction

GHD is pleased to present this soil assessment and delineation activities report to Chevron Environmental Management Company (CEMC) for the Lovington Paddock Unit No. 89 Well-Site location (hereafter referred to as the "Site"). The Site is located in Unit E, Section 31, Township 16 South, Range 37 East, approximately 5.00-miles southeast of the City of Lovington (COL), in eastern Lea County, New Mexico (Figure 1 and Figure 2). GHD understands the surface property is owned by the COL and the minerals are managed by the New Mexico State Land Office (NMSLO). The LPU No. 89 well was plugged and abandoned in July 2010. A dry hole marker is present at the location and surface equipment has been removed from the Site.

2. Project Information and Background

The initial scope of work for the Site included reclamation activities that were developed in personal correspondences between Chevron Midland, Chevron Lovington, COL, and the Bureau of Land Management. GHD did not participate in any landowner or regulatory agency discussions regarding specific requirements for the Site reclamation. GHD was responsible for the project management, general oversight of the reclamation activities, soil sample collection, and documentation of all site activities. Site reclamation activities began on June 6, 2011 and were completed on June 10, 2011.

On November 20, 2013, GHD and CEMC met in Midland, Texas to review the status of the Site. CEMC requested that GHD develop and submit a site reclamation activities report detailing the 2011 field activities and any path forward recommendations for the Site.

In February 2014, GHD prepared and submitted a Site Reclamation Completion Report to CEMC detailing the 2011 site reclamation and sampling activities. Additionally, and based on analytical results of the soil sampling completed in June 2011, GHD recommended implementation of a soil boring program to assess elevated chloride concentrations at the Site. CEMC concurred with the recommendations outlined in GHD's 2014 report. On July 11, 2014, CEMC submitted a work plan to the COL attorney's office for the evaluation of subsurface conditions at the Site. GHD returned to the Site following Work Plan approval in 2015 to execute the proposed field activities.

In September 2015, under supervision of GHD, Harrison Cooper, Inc. (HCI) advanced four soil borings (SB-1 through SB-4) utilizing an air-rotary drilling rig. Soil borings SB-1, SB-3 and SB-4 were advanced to depths of 30 feet below ground surface (bgs), and SB-2 was advanced to a depth of 50 feet bgs. Soil samples were collected at five-foot intervals within each of the four soil borings. Soil samples were submitted to Xenco Laboratories in Midland, Texas for analysis of chloride by EPA Method 300.0.

Chloride was reported at concentrations above the Recommended Remediation Action Level (RRAL) soil standard of 250 milligrams per kilogram (mg/kg) in soil borings SB-1 and SB-3. All sample intervals within SB-2 and SB-4 were below the Site RRAL for chloride.

Following approval of a Work Plan submitted to NMOCD in August 2016, GHD and subcontractor Diamondback Services (Diamondback) initiated excavation activities at the Site in September 2016 to remove impacted soils within the well pad to a depth of approximately 4 feet bgs. Soil samples

were collected from the sidewalls of the excavation limits and field screened for chloride. During field screening activities, it was determined that horizontal delineation of the impacted soils had not been achieved. As such, additional site assessment/delineation activities were determined necessary and the excavation activities were suspended.

In 2017, a two phase geophysical investigation was completed and six additional soil borings were subsequently advanced (SB-5 through SB-10) at the Site. Soil samples were collected from each boring for analytical analyses in an attempt to further delineate the horizontal and vertical extents of the chloride impact. The results of the geophysical investigation and soil borings installed in 2017 are provided herein. Figure 3 depicts the soil boring locations installed between 2015 through 2017.

3. Remediation Standards

Information available from various sources including the Petroleum Recovery Research Center (PRRC) Mapping Portal, current GHD managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation, concludes:

- a) the depth to groundwater from the deepest impacted soil at the Site is less than 50-feet bgs;
- b) the nearest private domestic water source is greater than 200-feet from the release site;
- c) the nearest public/municipal water source is greater than 1,000-feet from the release site; and
- d) the release site lies more than 1,000 horizontal feet from the nearest surface water body.

Localized depth to groundwater was confirmed to be approximately 97 feet bgs in 2017 based on gauging information from monitoring wells MW-1 through MW-5 associated with the LPU-96 Site (RP-1665) located approximately 0.5 miles south/southwest of the Site.

Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site as depth from chloride impacted soil to groundwater is estimated at less than 50 feet. The anticipated site-specific RRALs to be applied to this location by the NMOCD are 10 mg/kg for benzene, 50 mg/kg for total BTEX, 100 mg/kg for total TPH, and 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chloride.

In an August 28, 2017 telephone conversation between Bernard Bockisch (GHD) and Jim Griswold (NMOCD Environmental Bureau Chief), GHD was informed that the NMOCD is accepting chloride concentrations of 600 mg/kg for the horizontal delineation assessment clean up levels.

4. Geophysical Survey – EM31 and ER

In June and August 2017, GHD completed a two-phase geophysical investigation at the Site. The purpose of the investigation was to delineate areas of elevated conductivity in order to map the extent of suspected chloride impacts to soil at the Site. The first phase of the investigation consisted of an electromagnetic (EM) survey to delineate the footprint of the suspected impacts. Based on the EM survey results, an electrical resistivity (ER) survey was completed to determine the vertical distribution of the suspected impacts. Survey coverage data are presented on attached Figure 4

(EM31 Geophysical Survey Map) and Figure 5 (Electrical Resistivity Survey Results and Historical Soil Analytical Data).

The EM survey was completed with an EM31 terrain conductivity meter. Prior to conducting the EM31 survey, a grid consisting of parallel lines was established over the proposed area of investigation indicated on Figure 4. Measurements of EM31 data were collected along 30-foot spaced grid lines over the area of investigation, with station spacings of approximately 4 feet on all grid lines. The ER survey line location was chosen based on the EM31 survey results, and transected the EM31 conductivity anomaly. The configuration of the electrodes (also called an array) and the electrode spacings were optimized to achieve an approximate depth of investigation of approximately 70 feet bgs, and the electrode spacing on all grid lines was on the order of 6.6 feet (i.e. 2 meters).

4.1 EM31 Survey Methodology

The EM31 survey was completed to determine the horizontal extent or limits of chloride impacts in the shallow subsurface soils at the Site. The EM31 consists of transmitter and receiver coils located at opposite ends of a rigid boom. The coil separation for the EM31 is approximately 13 feet, which yields an approximate depth of penetration of 18 feet bgs in vertical dipole mode. Measurements of terrain conductivity from the EM31 were used to assess the extent of chloride impacts at the Site. The data for the EM31 survey were then processed as a colored contour plot. The plot was superimposed on an aerial image of the Site plan, and was used to locate elevated conductivity responses indicative of chloride-impacted areas relative to the Site features. Figure 4 depicts the EM31 survey results.

4.2 EM31 Survey Results

The colored contour conductivity plot presented on Figure 4 reveals that the highest intensity conductivity responses are colored red to purple, while areas of low response are colored blue. All remaining intermediate responses correspond to the color scale presented on the figure. Results from non-impacted areas within the survey coverage indicate that background conductivity responses were approximately 20 milliSiemens/meter (mS/m). Anomalous responses relative to background were generally 1.5 to 10 times higher, and ranged from approximately 30 to 200 mS/m. The EM31 survey results delineated two main areas of suspected brine-impacted soils (on the southwest and west side of the Site). The response area on the southwest portion of the Site is believed a former pit area. The area to the west is an anomaly and will be investigated further. A third lower intensity conductive zone was detected south of the previously excavation, near the middle of the Site.

4.3 ER Survey Methodology

The ER survey profile was completed in August 2017 to determine the vertical extent of chlorideimpact in soil on one selected survey line located along the southeastern section of the Site. This area exhibited strong responses during the EM31 survey and included the location of a suspected former pit (see Figure 4). The ER survey was conducted with a dual-function resistivity meter, which operates simultaneously as a transmitter and receiver. The survey utilized two multi-electrode cables yielding a total spread of 72 electrodes. The receiver was programmed to automatically "switch"

between measured quadripoles, yielding a pseudosection of apparent resistivity. The apparent resistivity data were then imported into an inversion software program, and processed to yield a modeled profile section of resistivity.

4.4 ER Survey Results

The electrical resistivity results for the survey line are presented on Figure 5. These results are based on the measured apparent resistivity values for various depths along the survey line. Calculations of measured apparent resistivity values include the type of ER array (Wenner), the electrode spacing, and raw field data (i.e., applied current and measured voltage for each data point).

The measured apparent resistivity data were processed with the inversion program RES2DINV, to yield the modeled resistivity section presented on Figure 5. The modeled section represents the resistance of earth materials in the shallow subsurface, and thus provides an interpretation of the overburden sequences and areas of suspected brine impacts along the survey line. The highest resistivity values are colored dark blue, while areas of low resistivity (or conversely, high conductivity) are colored yellow to red. All remaining intermediate responses correspond to the color scale presented on the bottom of each section.

The colored plot reveals that the contour intervals ranged from 2.25 to 1,000 Ohm.meters (Ohm.m). The intermediate contour intervals were determined by applying a normalized distribution curve to the data such that the entire range of responses could be identified by discrete colors. The interpreted colored contoured plot suggests that suspected brine-impacted soils can be likely characterized by modeled responses of approximately 2.25 to 40 Ohm.m.

4.5 Geophysical Survey Correlations/Conclusions

- The geophysical investigation successfully delineated the horizontal and vertical extents of suspected brine-impacted areas in the shallow subsurface.
- The EM31 survey delineated three areas of suspected brine-impacted soils at the Site.
- In general, the ER survey results indicate the zone of suspected brine impact is a surficial zone, affecting soils at surface down to approximately 40 feet bgs.
- The suspected brine impacts appear confined to near surface areas that correlate well with soil sample analytical results for chlorides from the previous assessment activities.

5. Soil Assessment

In order to further define the horizontal and vertical extent of chloride impact, six additional soil borings (SB-6 though SB-10) were installed using an air rotary drilling rig. Prior to mobilizing drilling equipment to the Site, the boring locations were marked and an initial New Mexico One Call utility locate ticket was submitted on October 11, 2017. GHD's contracted service provider, HCI, a New Mexico-licensed water well driller, and GHD mobilized to the Site to begin drilling activities on October 24, 2017. Each boring location was cleared for underground utilities with the use of an air

knife up to a depth of 5.0 feet bgs or refusal. SB-5 though SB-9 were advanced to 50 feet bgs and SB-10 was advanced to 60 feet bgs. Site details and boring locations are shown on Figure 3.

The chloride screening was accomplished in the field by mixing soil samples with distilled water, then testing the rinsate using Hach chloride test strips. The soil types observed during drilling of SB-6 through SB-10 consisted primarily of silty sands. The soils were logged in accordance with the Unified Soil Classification System, and soil boring logs are provided in Appendix A.

Soil samples were collected at 0.5-1 feet bgs, 4-5 feet bgs, and then ten-foot intervals starting at 9-10 feet bgs within each of the six soil borings. Soil samples were placed in laboratory-supplied sample containers on ice, labeled, and submitted to Xenco Laboratories in Midland, Texas for analysis of chlorides by EPA Method 300. Groundwater was not encountered in any of the soil borings. Following completion of activities, the soil cuttings were returned to their respective boreholes and backfilled with hydrated bentonite pellets from 10 feet bgs to the ground surface.

5.1 Soil Sampling Analytical Results - 2017

Analytical results associated with the soil boring activities of October 2017 are included in Appendix B and discussed in the following section. Based on analytical results from the shallow soil samples, some deeper soil samples collected during this assessment were not analyzed at the direction of GHD. Analytical results are presented in Table 1, shown in map view on Figure 6, and are summarized below:

- Soil samples collected from SB-5 and SB-6 demonstrated chloride concentrations below the site specific RRAL of 250 mg/kg for chloride from 0.5 to 20 feet bgs. As such, the deeper interval soil samples collected (20 to 50 feet bgs) were not analyzed.
- SB-7 exhibited chloride concentrations exceeding the RRAL beginning at sample interval 4-5 feet bgs (1630 mg/kg), and continued through to the soil boring terminal depth at 49-50 feet bgs (371 mg/kg).
- SB-8 demonstrated chloride concentrations below the site specific RRAL in all but one sample interval (9-10 feet bgs at 347 mg/kg).
- SB-9 exhibited chloride concentrations exceeding the RRAL in sample intervals beginning at 4-5 feet bgs (365 mg/kg), continuing through 19-20 feet bgs (669 mg/kg). The highest concentration reported was 680 mg/kg at the 9-10 feet bgs interval.
- SB-10 exhibited chloride concentrations exceeding the RRAL in all sample intervals (0.5-1 feet bgs at 418 mg/kg through 59-60 feet bgs at 297 mg/kg). The highest reported concentration was 1,420 mg/kg at the 9-10 feet bgs interval.

6. Conclusions

Analytical results associated with assessment activities conducted in 2017 indicate the horizontal extents of the chloride impact in soil have not been fully delineated. The vertical extent of chloride impact appears delineated to concentrations protective of groundwater, and confined to shallow soils less than 60 feet bgs.

7. 2018 Assessment Activities

On February 13, 2018, GHD and Chevron representatives met with NMOCD and NMSLO to discuss further assessment activities addressing the presence of chloride in soil at the Site. Additional soil assessment activities based on those discussions are summarized in the Work Plan included in Appendix C of this report.

All of Which is Respectfully Submitted,

GHD

2

Scott Foord, P.G. Project Manager

agy U. Pali

Raaj U. Patel, P.G. Program Manager

Figures

CAD File: I:\CAD\Files\07----\074287-CEMC-LPU # 89\074287-00\074287-00(004)\074287-00(004)GN-DL002.dwg

Source: USDA FSA Imagery, May 10, 2014

CEMC LEA COUNTY, NEW MEXICO LOVINGTON PADDOCK UNIT #89

074287-00 Feb 5, 2018

SITE AERIAL MAP

CAD File: I:\CAD\Files\07----\074287-CEMC-LPU # 89\074287-00\074287-00(004)\074287-00(004)GN-DL002.dwg

FIGURE 2

Source: UDSA FSA Imagery, May 10, 2014

CEMC LEA COUNTY, NEW MEXICO LOVINGTON PADDOCK UNIT #89

SOIL BORING LOCATION MAP

074287-00 May 10, 2018

CEMC LEA COUNTY, NEW MEXICO LOVINGTON PADDOCK UNIT #89 EM31 GEOPHYSICAL SURVEY MAP

CAD File: P:\drawings\74000s\74287\74287-REPORTS\74287-2017(006)\74287-2017(006)GN\74287

May 2, 2018

FIGURE 4

LPU 89 - LINE 1 INVERSE MODEL RESISTIVITY SECTION DISTANCE (ft)

LEA COUNTY, NEW MEXICO LOVINGTON PADDOCK UNIT #89 ELECTRICAL RESISTIVITY SURVEY RESULTS AND HISTORICAL SOIL ANALYTICAL DATA

SOUTHWEST

NORTHEAST

FIGURE 5

CAD File: I:\CAD\Files\07----\074287-CEMC-LPU # 89\074287-00\074287-00(004)\074287-00(004)GN-DL002.dwg

New Mexico East (US Feet)

	「大い」に、「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」		
3-2 09/18/15	7.98	A BAR AND	2900
52 09/18/13 15' 20' 25' 30' 6.1 25.6 26.0 17.1	40' 21.2	50' 8.52	1253
and and and			
		LEGEND Soil Boring Location - 2011	
-60' 97		Soil Boring Location - 2015 Soil Boring Location - 2017	
100 S 18 19	Θ	LPU #89 Well Marker	
Contraction of the second	Depth TPH	Depth of Sample (ft) Total Petroleum Hydrocarbons	
199		Total Petroleum Hydrocarbons Concentration (mg/kg)	
at Brief	DRO GRO	TPH as Diesel Range Organics TPH as Gasoline Range Organics	
CARLON BORNES	*	Indicates Duplicate Sample	
and the second second second	1. A.M.M.		
		Lat/Long: 32.881111° North, 103.	29512° West

074287-00 May 2, 2018

FIGURE 6

Tables

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LOVINGTON PADDOCK UNIT 89 LEA COUNTY, NEW MEXICO

	Depth (feet)	Date	Chlorides
ID			mg/kg
NMOCD Recomm	ended Remediation Actior	n Levels	250
SB-1	0	9/18/15	58.3
	5	9/18/15	271
	10	9/18/15	1590
	15	9/18/15	2040
	20	9/18/15	1100
	25	9/18/15	268
	30	9/18/15	122
SB-2	0	9/18/15	39.6
	5	9/18/15	145
	10	9/18/15	18.0
	15	9/18/15	16.1
	20	9/18/15	25.6
	25	9/18/15	26.0
	30	9/18/15	17.1
	40	9/18/15	21.2
	50	9/18/15	8.52
SB-3	0	9/18/15	4450
	5	9/18/15	405
	10	9/18/15	511
	15	9/18/15	399
	20	9/18/15	479
	25	9/18/15	540
	30	9/18/15	561
SB-4	0	9/18/15	11.0
00-4	5	9/18/15	29.1
	10	9/18/15	14.1
	15	9/18/15	8.22
	20	9/18/15	7.75
	25	9/18/15	7.55
	30	9/18/15	2.65
SB-5	0.5-1	10/24/17	29.3
0-00	4-5	10/24/17	29.3
	4-5 9-10		
	9-10 19-20	10/24/17	23.1 25.1
	19-20	10/24/17	20.1
SB-6	0.5-1	10/24/17	32.1
	4-5	10/24/17	45.1
	9-10	10/24/17	34.3
	19-20	10/24/17	37.8

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY LOVINGTON PADDOCK UNIT 89 LEA COUNTY, NEW MEXICO

Sample ID	Depth (feet)	Date	Chlorides mg/kg				
NMOCD Recomm	nended Remediation Action	n Levels	250				
SB-7	0.5-1	10/25/17	23.9				
	4-5	10/25/17	1630				
	9-10	10/25/17	413				
	19-20	10/25/17	564				
	39-40	10/25/17	378				
	49-50	10/25/17	371				
SB-8	0.5-1	10/25/17	32.2				
	4-5	10/25/17	143				
	9-10	10/25/17	347				
	19-20	10/25/17	132				
	39-40	10/25/17	19.4				
SB-9	0.5-1	10/24/17	24.4				
	4-5	10/24/17	365				
	9-10	10/24/17	680				
	19-20	10/24/17	678				
Dup.	19-20	10/24/17	669				
	29-30	10/24/17	183				
	39-40	10/24/17	102				
	49-50	10/24/17	45.6				
SB-10	0.5-1	10/24/17	418				
	4-5	10/24/17	733				
	9-10	10/24/17	1420				
	19-20	10/24/17	897				
	29-30	10/24/17	1010				
	39-40	10/24/17	1050				
	49-50	10/24/17	621				
	59-60	10/24/17	297				

Notes:

1. All analytical results reported in (mg/kg) milligrams per kilogram

2. Chloride analyses by Method EPA 300

3. TPH analysis by Method SW 8015B Modified

4. bgs - below ground surface

5. < indicates below laboratory Reporting Limit (RL)

6. (SB) indicates Soil Borings

7. Highlighted cells indicate and exceedance of NMOCD Site RRALs

GHD | Chevron Environmental Management Company - Soil Assessment and Delineation Activities Report | 074287 (6)

Appendix A SB-5 though SB-10 Boring Logs

Page 1 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-5 DATE COMPLETED: 24 October 2017 DRILLING METHOD: Air Rotary FIELD

PERSONNEL: Rebecca Jones

STRATIGRAPHIC LOG
(OVERBURDEN)

Page 2 of 2

PROJECT NAME: LPU -89 PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-5 DATE COMPLETED: 24 October 2017 DRILLING METHOD: Air Rotary FIELD

PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS		1	SAMF	PLE	
πBGS		πBGS	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)
_ 36 							
- 38 - -							
- 40 			39-40		1.0		<28
- 42 							
44 							
46 							
48 		49.00					
- 50 	SILTY SAND (SM); light brown END OF BOREHOLE @ 50.0ft BGS	50.00	49-50		1.0		<28
- 52 							
- 54 -							
- 56 -							
- 58 - -							
- 60 							
- 62 							
- 64 							
- 66 							
- 							
	NOTES:						
	LABORATORY ANALYSIS						

Page 1 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-6 DATE COMPLETED: 24 October 2017 DRILLING METHOD: Air Rotary FIELD

PERSONNEL: Rebecca Jones

HOLE DESIGNATION:

PERSONNEL: Rebecca Jones

DATE COMPLETED: 24 October 2017 DRILLING METHOD: Air Rotary FIELD

SB-6

Page 2 of 2

SAMPLE

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

Page 1 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-7 DATE COMPLETED: 25 October 2017 DRILLING METHOD: Air Rotary FIELD PERSONNEL: Rebecca Jones

Page 2 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-7 DATE COMPLETED: 25 October 2017 DRILLING METHOD: Air Rotary FIELD PERSONNEL: Rebecca Jones

Page 1 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-8 DATE COMPLETED: 25 October 2017 DRILLING METHOD: Air Rotary FIELD

PERSONNEL: Rebecca Jones

Page 2 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

Page 1 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-9 DATE COMPLETED: 24 October 2017 DRILLING METHOD: Air Rotary FIELD

PERSONNEL: Rebecca Jones

Page 2 of 2

HOLE DESIGNATION: SB-9 DATE COMPLETED: 24 October 2017

DRILLING METHOD: Air Rotary FIELD

PERSONNEL: Rebecca Jones

PROJECT NAME: LPU -89 PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

Page 1 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-10 DATE COMPLETED: 24 October 2017

DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS			SAMF	PLE	
ft BGS		ft BGS	(£) T	VAL	(#)	tsf)	RIDE (g)
			DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)
	Top Soil			2			U U
-	SILTY SAND (SM); reddish brown, some caliche present	1.00					
-2							
-							
-4			4-5	\boxtimes	1.0		90
6					Γ		
_							
	- Light brown at 10.0ft BGS		9-10	\bowtie	1.0		354
-							
-							
14							
_							
16							
_							
— 18 -							
-			19-20	\mathbf{X}	1.0		263
- 20							
-							
- 22							
≝24							
15/2/							
26							
GR0-							
28 							
				\sim			
0. 20 20 20 20 20	- Reddish brown, no caliche present. at 30.0ft BGS		(29-30)	\bowtie	1.0		244
ЧГ ЦХ							
نا لھے 32							
074:							
0 — 34							
016ERBURDEN LOG 074287 CVX LPU 89.6PU CRA. CORP.GDT 15/2/18 017 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NOTES:		1	I			
/ERBI							
ó							

Page 2 of 2

PROJECT NAME: LPU -89

PROJECT NUMBER: 74287

CLIENT: Chevron

LOCATION: Lovington

HOLE DESIGNATION: SB-10 DATE COMPLETED: 24 October 2017 DRILLING METHOD: Air Rotary

FIELD PERSONNEL: Rebecca Jones

	DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS			SAMF	PLE	
	ft BGS		ft BGS	DEPTH (ft)	INTERVAL	REC (ft)	PP (tsf)	CHLORIDE (mg/kg)
-	- 36	- Light brown at 35.0ft BGS						
F								
-	- 38							
-	-40			39-40		1.0		244
	-42							
-	-44							
	-46							
	-48							
-	- 50			49-50		1.0		130
-	- 52							
	- 54							
	- 56							
2/18	- 58					.		
.GDT 15/2	- 60	END OF BOREHOLE @ 60.0ft BGS	60.00	59-60		1.0		90
CRA CORF	- 62							
OVERBURDEN LOG 074287 CVX LPU 89.GPJ CRA_CORP.GDT 15/2/18	- 64							
	- 66							
LOG 07428	- 68							
RDEN I		NOTES:						
VERBU		LABORATORY ANALYSIS						
σL								

Appendix B Certified Analytical Report

Project Id:074287Contact:Scott FoordProject Location:Lea County,NM

Certificate of Analysis Summary 566621

GHD Services, INC- Midland, Midland, TX Project Name: LPU# 89

Date Received in Lab:Thu Oct-26-17 02:10 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566621-0	001	566621-0	02	566621-0	03	566621-0	04	566621-0	05	566621-0	006		
Analysis Requested	Field Id:	SB-10-S-0.5-1	SB-10-S-0.5-1-171024		SB-10-S-4-5-171024		SB-10-S-9-10-171024		-171024	SB-10-S-29-30-171024		SB-10-S-39-40-171024			
Analysis Kequeslea	Depth:	0.5-1	0.5-1		4-5		9-10			29-30		29-30		39-40	
	Matrix:	SOIL		SOIL	SOIL		SOIL			SOIL		SOIL			
	Sampled:	Oct-24-17 11:50		Oct-24-17 11:53		Oct-24-17 11:56 Oct-24-1		Oct-24-17	1:59	Oct-24-17	2:02	Oct-24-17 12:08			
Chloride by EPA 300	Extracted:	Nov-06-17	Nov-06-17 10:00		Nov-06-17 10:00		Nov-06-17 10:00		10:00	Nov-06-17 10:00		Nov-06-17 12:15			
	Analyzed:	Nov-06-17	19:15	Nov-06-17 19:22		Nov-06-17 19:28		Nov-06-17 19:34		Nov-06-17 19:41		Nov-06-17 14:58			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		418	4.99	733	4.98	1420	4.98	897	5.00	1010	4.97	1050	4.97		
Percent Moisture	Extracted:														
Analyzed:		Oct-30-17	11:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00		
Units/RL:		%	RL	%	RL	%	RL	%	RL	%	RL	%	RL		
Percent Moisture		5.79	1.00	11.1	1.00	6.32	1.00	6.84	1.00	5.60	1.00	6.41	1.00		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Mike Kimmel Client Services Manager

Project Id:074287Contact:Scott FoordProject Location:Lea County,NM

Certificate of Analysis Summary 566621

GHD Services, INC- Midland, Midland, TX Project Name: LPU# 89

Date Received in Lab:Thu Oct-26-17 02:10 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566621-0	007	566621-0	08	566621-0	09	566621-0	010	566621-0	011	566621-0	12
Analysis Requested	Field Id:	SB-10-S-49-50	B-10-S-49-50-171024 SE		SB-10-S-59-60-171024		SB-5-S-0.5-1-171024		71024	SB-5-S-9-10-171024		24 SB-5-S-19-20-171	
Analysis Kequesieu	Depth:	49-50	49-50			0.5-1		4-5		9-10		19-20	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-24-17	Oct-24-17 12:11		Oct-24-17 13:35		Oct-24-17 13:35		13:38	Oct-24-17 13:41		Oct-24-17 13:44	
Chloride by EPA 300	Extracted:	Nov-06-17	Nov-06-17 12:15		Nov-09-17 10:00		Nov-06-17 12:15		12:15	Nov-06-17 12:15		Nov-06-17 12:15	
	Analyzed:	Nov-06-17	15:25	Nov-09-17 12:08		Nov-06-17 15:34		Nov-06-17 15:43		Nov-06-17 15:51		Nov-06-17 16:18	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		621	4.90	297	4.94	29.3	4.99	23.2	4.96	23.1	4.94	25.1	4.96
Percent Moisture	Extracted:												
	Analyzed:	Oct-30-17	Oct-30-17 11:00		Nov-10-17 17:04		1:00	Oct-30-17 11:00		Oct-30-17 11:00		Oct-30-17 1	1:00
	Units/RL: % RI		RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.48	1.00	5.59	1.00	4.74	1.00	7.05	1.00	6.34	1.00	8.23	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566621

GHD Services, INC- Midland, Midland, TX Project Name: LPU# 89

Date Received in Lab:Thu Oct-26-17 02:10 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566621-0	016	566621-0	17	566621-0	18	566621-0)19	566621-0	23	566621-0	24
Analysis Progressed	Field Id:	SB-6-S-0.5-1-	171024	SB-6-S-4-5-1	71024	SB-6-S-9-10-171024		SB-6-S-19-20-	171024	SB-9-S-0.5-1-	171024	SB-9-S-4-5-1	71024
Analysis Requested	Depth:	0.5-1		4-5		9-10		19-20		0.5-1		4-5	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-24-17	ct-24-17 15:15		5:18	Oct-24-17 1	5:21	Oct-24-17 15:24		Oct-24-17 15:55		Oct-24-17	5:58
Chloride by EPA 300	Extracted:	Nov-06-17	ov-06-17 12:15		12:15	Nov-06-17 1	12:15	Nov-06-17 12:15		Nov-06-17 12:15		Nov-06-17	12:15
	Analyzed:	Nov-06-17	16:27	Nov-06-17 16:36		Nov-06-17 1	16:45	Nov-06-17	16:53	Nov-06-17	17:02	Nov-06-17	17:29
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		32.1	4.98	45.1	4.97	34.3	4.97	37.8	4.93	24.4	4.92	365	4.99
Percent Moisture	Extracted:												
	Analyzed:	Oct-30-17	oct-30-17 11:00		1:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.33	1.00	32.2	1.00	23.5	1.00	6.96	1.00	9.66	1.00	3.60	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566621

GHD Services, INC- Midland, Midland, TX Project Name: LPU# 89

Date Received in Lab:Thu Oct-26-17 02:10 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566621-0)25	566621-0	26	566621-0	27	566621-0	28	566621-0	29	566621-0	30
Analysis Requested	Field Id:	SB-9-S-9-10-	171024	SB-9-S-19-20-	171024	SB-9-S-29-30-	171024	SB-9-S-39-40-	171024	SB-9-S-49-50-	171024	SB-7-S-0.5-1-	171025
Analysis Kequestea	Depth:	9-10		19-20		29-30		39-40		49-50		0.5-1	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-24-17	t-24-17 16:01 C		6:04	Oct-24-17 1	6:07	Oct-24-17 16:10		Oct-24-17 16:13		Oct-25-17 (07:45
Chloride by EPA 300	Extracted:	Nov-06-17	ov-06-17 12:15		12:15	Nov-09-17 1	10:00	Nov-09-17	10:00	Nov-09-17 10:00		Nov-06-17	12:15
	Analyzed:	Nov-06-17	17:38	Nov-06-17 18:04		Nov-09-17 12:27		Nov-09-17 12:33		Nov-09-17 12:39		Nov-06-17 18:13	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		680	4.90	678	4.93	183	4.92	102	4.95	45.6	4.98	23.9	4.98
Percent Moisture	Extracted:												
	Analyzed:	Oct-30-17	ct-30-17 11:00		1:00	Nov-10-17 1	17:04	Nov-10-17	17:04	Nov-10-17	17:04	Oct-30-17 1	1:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		3.80	1.00	7.84	1.00	5.32	1.00	5.74	1.00	6.19	1.00	14.3	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566621

GHD Services, INC- Midland, Midland, TX Project Name: LPU# 89

Date Received in Lab:Thu Oct-26-17 02:10 pmReport Date:13-NOV-17Project Manager:Kelsey Brooks

	Lab Id:	566621-0)31	566621-0	32	566621-0	33	566621-0)35	566621-0	36	566621-0	37
Analysis Requested	Field Id:	SB-7-S-4-5-1	71025	SB-7-S-9-10-1	171025	SB-7-S-19-20-	171025	SB-7-S-39-40-	171025	SB-7-S-49-50-	171025	SB-8-S-0.5-1-	171025
Analysis Kequestea	Depth:	4-5		9-10		19-20		39-40		49-50		0.5-1	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-25-17 (et-25-17 07:48		07:51	Oct-25-17 0	07:54	Oct-25-17 08:00		Oct-25-17 08:03		Oct-25-17 0	08:40
Chloride by EPA 300	Extracted:	Nov-06-17	12:15	Nov-06-17 1	12:15	Nov-06-17 1	12:15	Nov-09-17 10:00		Nov-09-17	10:00	Nov-06-17	12:15
	Analyzed:	Nov-06-17	18:22	Nov-06-17 18:31		Nov-06-17 18:40		Nov-09-17	12:46	Nov-09-17	13:05	Nov-06-17	18:48
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1630	49.3	413	24.7	564	4.98	378	5.00	371	4.94	32.2	4.98
Percent Moisture	Extracted:												
	Analyzed:	Oct-30-17	ct-30-17 11:00 C		1:00	Oct-30-17 1	1:00	Nov-10-17	17:04	Nov-10-17	17:04	Oct-30-17 1	1:00
	Units/RL:	%	% RL		RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		26.8	1.00	8.52	1.00	9.58	1.00	5.56	1.00	6.09	1.00	3.07	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Certificate of Analysis Summary 566621

GHD Services, INC- Midland, Midland, TX Project Name: LPU# 89

Date Received in Lab: Thu Oct-26-17 02:10 pm Report Date: 13-NOV-17

Project Manager: Kelsey Brooks

	Lab Id:	566621-0)38	566621-0	39	566621-0	40	566621-0	42	566621-0	44	
Analysis Requested	Field Id:	SB-8-S-4-5-1	71025	SB-8-S-9-10-2	171025	SB-8-S-19-20-	171025	SB-8-S-39-40-	171025	DUP-1 171	1024	
Anulysis Kequesteu	Depth:	4-5		9-10		19-20		39-40				
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Oct-25-17 (08:43	Oct-25-17 ()8:46	Oct-25-17 0)8:49	Oct-25-17 (08:55	Oct-24-17 (00:00	
Chloride by EPA 300	Extracted:	Nov-06-17	12:15	Nov-06-17	16:00	Nov-06-17	16:00	Nov-09-17	10:00	Nov-06-17	16:00	
	Analyzed:	Nov-06-17	18:57	Nov-07-17 2	20:20	Nov-06-17 2	20:26	Nov-09-17	13:11	Nov-06-17	20:35	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		143	4.98	347	4.98	132	4.98	19.4	4.96	669	4.92	
Percent Moisture	Extracted:											
	Analyzed:	Oct-30-17	11:00	Oct-30-17 1	1:00	Oct-30-17 1	1:00	Nov-10-17	17:04	Oct-30-17 1	1:00	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	
Percent Moisture		5.94	1.00	5.40	1.00	7.92	1.00	5.45	1.00	7.86	1.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Mike Kimmel Client Services Manager

Analytical Report 566621

for GHD Services, INC- Midland

Project Manager: Scott Foord

LPU# 89

074287

13-NOV-17

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-17-23), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-15), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-17-13) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

13-NOV-17

Project Manager: **Scott Foord GHD Services, INC- Midland** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): **566621** LPU# 89 Project Address: Lea County,NM

Scott Foord:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 566621. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 566621 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

le p

Mike Kimmel Client Services Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 566621

GHD Services, INC- Midland, Midland, TX

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-10-S-0.5-1-171024	S	10-24-17 11:50	0.5 - 1	566621-001
SB-10-S-4-5-171024	S	10-24-17 11:53	4 - 5	566621-002
SB-10-S-9-10-171024	S	10-24-17 11:56	9 - 10	566621-003
SB-10-S-19-20-171024	S	10-24-17 11:59	19 - 20	566621-004
SB-10-S-29-30-171024	S	10-24-17 12:02	29 - 30	566621-005
SB-10-S-39-40-171024	S	10-24-17 12:08	39 - 40	566621-006
SB-10-S-49-50-171024	S	10-24-17 12:11	49 - 50	566621-007
SB-10-S-59-60-171024	S	10-24-17 13:35	59 - 60	566621-008
SB-5-S-0.5-1-171024	S	10-24-17 13:35	0.5 - 1	566621-009
SB-5-S-4-5-171024	S	10-24-17 13:38	4 - 5	566621-010
SB-5-S-9-10-171024	S	10-24-17 13:41	9 - 10	566621-011
SB-5-S-19-20-171024	S	10-24-17 13:44	19 - 20	566621-012
SB-6-S-0.5-1-171024	S	10-24-17 15:15	0.5 - 1	566621-016
SB-6-S-4-5-171024	S	10-24-17 15:18	4 - 5	566621-017
SB-6-S-9-10-171024	S	10-24-17 15:21	9 - 10	566621-018
SB-6-S-19-20-171024	S	10-24-17 15:24	19 - 20	566621-019
SB-9-S-0.5-1-171024	S	10-24-17 15:55	0.5 - 1	566621-023
SB-9-S-4-5-171024	S	10-24-17 15:58	4 - 5	566621-024
SB-9-S-9-10-171024	S	10-24-17 16:01	9 - 10	566621-025
SB-9-S-19-20-171024	S	10-24-17 16:04	19 - 20	566621-026
SB-9-S-29-30-171024	S	10-24-17 16:07	29 - 30	566621-027
SB-9-S-39-40-171024	S	10-24-17 16:10	39 - 40	566621-028
SB-9-S-49-50-171024	S	10-24-17 16:13	49 - 50	566621-029
SB-7-S-0.5-1-171025	S	10-25-17 07:45	0.5 - 1	566621-030
SB-7-S-4-5-171025	S	10-25-17 07:48	4 - 5	566621-031
SB-7-S-9-10-171025	S	10-25-17 07:51	9 - 10	566621-032
SB-7-S-19-20-171025	S	10-25-17 07:54	19 - 20	566621-033
SB-7-S-39-40-171025	S	10-25-17 08:00	39 - 40	566621-035
SB-7-S-49-50-171025	S	10-25-17 08:03	49 - 50	566621-036
SB-8-S-0.5-1-171025	S	10-25-17 08:40	0.5 - 1	566621-037
SB-8-S-4-5-171025	S	10-25-17 08:43	4 - 5	566621-038
SB-8-S-9-10-171025	S	10-25-17 08:46	9 - 10	566621-039
SB-8-S-19-20-171025	S	10-25-17 08:49	19 - 20	566621-040
SB-8-S-39-40-171025	S	10-25-17 08:55	39 - 40	566621-042
DUP-1 171024	S	10-24-17 00:00		566621-044
SB-5-S-29-30-171024	S	10-24-17 13:47	29 - 30	Not Analyzed
SB-5-S-39-40-171024	S	10-24-17 13:50	39 - 40	Not Analyzed
SB-5-S-49-50-171024	S	10-24-17 13:53	49 - 50	Not Analyzed
SB-6-S-29-30-171024	S	10-24-17 15:27	29 - 30	Not Analyzed
SB-6-S-39-40-171024	S	10-24-17 15:30	39 - 40	Not Analyzed
SB-6-S-49-50-171024	S	10-24-17 15:33	49 - 50	Not Analyzed
SB-7-S-29-30-171025	S	10-25-17 07:57	29 - 30	Not Analyzed
SB-8-S-29-30-171025	S	10-25-17 08:52	29 - 30	Not Analyzed

Sample Cross Reference 566621

GHD Services, INC- Midland, Midland, TX

LPU# 89

S

SB-8-S-49-50-171025

10-25-17 08:58 49 - 50

N

Not Analyzed

CASE NARRATIVE

Client Name: GHD Services, INC- Midland Project Name: LPU# 89

Project ID: 074287 Work Order Number(s): 566621 Report Date: *13-NOV-17* Date Received: *10/26/2017*

Sample receipt non conformances and comments:

Per Scott Ford, add Chloride to samples: 008,027,028,029,035,036,042. Revised report on 11/13/17 for Chloride samples taken off of hold to analyze.

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3032574 Chloride by EPA 300

Lab Sample ID 566621-023 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 566621-006, -007, -009, -010, -011, -012, -016, -017, -018, -019, -023, -024, -025, -026, -030, -031, -032, -033, -037, -038. The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil
Seq Number:	3032548								
Analyst:	MNV		Date Prep:	11.06.17 10.00		Basis:	Wet W	Weight	
Tech:	MNV					% Moisture:			
Analytical Me	ethod: Chloride by EPA	300				Prep Method:	E300	Р	
1	d: 566621-001			ted: 10.24.17 11.50		Sample Depth			
Sample Id:	SB-10-S-0.5-1-171024		Matrix:	Soil		Date Received	1:10.26	5.17 14.10	

16887-00-6 **418**

4.99

mg/kg 11.06.17 19.15

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-10-S-4-5-171024 d: 566621-002		Matrix: Date Collect	Soil ed: 10.24.17 11.53		Date Received Sample Depth		.17 14.10	
Analytical Me	ethod: Chloride by EPA 3	800				Prep Method:	E300F	þ	
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	11.06.17 10.00		Basis:	Wet W	Veight	
Seq Number:	3032548								
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil

16887-00-6 **733**

4.98

11.06.17 19.22

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil
Seq Number:	3032548							
Analyst:	MNV		Date Prep:	11.06.17 10.00		Basis:	Wet Weigh	ıt
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA 3	800				Prep Method:	E300P	
Sample Id: Lab Sample Id	d: 566621-003			ted: 10.24.17 11.56		Sample Depth		4.10
Commla Ide	SB-10-S-9-10-171024		Matrix:	Soil		Date Received	4.10 26 17 1	4 10

16887-00-6 1420

4.98

11.06.17 19.28

mg/kg

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-10-S-19-20-17102 d: 566621-004	24	Matrix: Date Colle	Soil cted: 10.24.17 11.59		Date Received:10. Sample Depth: 19		0
Analytical Mo Tech:	ethod: Chloride by EPA MNV	. 300				Prep Method: E30 % Moisture:	00P	
Analyst:	MNV		Date Prep:	11.06.17 10.00			t Weight	
Seq Number:	3032548							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	897	5.00	mg/kg	11.06.17 19.34		1

Certificate of Analytical Results 566621

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: SB-10-S-29-30-171 Lab Sample Id: 566621-005	024	Matrix: Date Colle	Soil cted: 10.24.17 12.02		Date Received:1 Sample Depth:2)
Analytical Method: Chloride by EI	PA 300				Prep Method: E	E300P	
Tech: MNV				0	% Moisture:		
Analyst: MNV		Date Prep:	11.06.17 10.00]	Basis: V	Vet Weight	
Seq Number: 3032548							
Parameter	Cas Number	Result	RL	Units	Analysis Date	e Flag	Dil
Chloride	16887-00-6	1010	4.97	mg/kg	11.06.17 19.41		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-10-S-39-40-17102 d: 566621-006	24	Matrix: Date Colle	Soil cted: 10.24.17 12.08		Date Received:10.2 Sample Depth: 39 -		0
5	ethod: Chloride by EPA	. 300				Prep Method: E30	00P	
Tech: Analyst:	MNV MNV		Date Prep:	11.06.17 12.15		% Moisture: Basis: We	t Weight	
Seq Number:	3032574							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1050	4.97	mg/kg	11.06.17 14.58		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-10-S-49-50-17102 d: 566621-007	4	Matrix: Date Colle	Soil cted: 10.24.17 12.11	-	Date Received:10.2 Sample Depth: 49 -)
Analytical Mo Tech:	ethod: Chloride by EPA MNV	300				Prep Method: E30 % Moisture:	0P	
Analyst:	MNV		Date Prep:	11.06.17 12.15	,		Weight	
Seq Number:	3032574							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	621	4.90	mg/kg	11.06.17 15.25		1

Certificate of Analytical Results 566621

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-10-S-59-60-17102 l: 566621-008	4	Matrix: Date Colle	Soil cted: 10.24.17 13.35		Date Received: Sample Depth: :)	
•	thod: Chloride by EPA	300				Prep Method: 1	E300P	
Tech:	MNV MNV			11.09.17 10.00		% Moisture: Basis:	Wet Weight	
Analyst: Seq Number:	3032929		Date Prep:	11.09.17 10.00	-	Dasis.	wet weight	
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	297	4.94	mg/kg	11.09.17 12.03	8	1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: SI Lab Sample Id: 56	B-5-S-0.5-1-171024 66621-009		Matrix: Date Collect	Soil ed: 10.24.17 13.35		Date Received Sample Depth	14.10	
Tech: MI	d: Chloride by EPA 30	00				Prep Method: % Moisture:		_
) =	NV 32574		Date Prep:	11.06.17 12.15		Basis:	Wet Weig	ht
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	g Dil

16887-00-6 **29.3**

4.99

11.06.17 15.34

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15	1	Basis:	Wet Weight	
Tech:	MNV					% Moisture:		
Analytical Me	ethod: Chloride by EPA 3	00			1	Prep Method:	E300P	
Sample Id: Lab Sample Id	SB-5-S-4-5-171024 d: 566621-010		Matrix: Date Collect	Soil ed: 10.24.17 13.38		Date Received:10.26.17 14. Sample Depth: 4 - 5		
~	~~ - ~			a 11				

16887-00-6 23.2

4.96

11.06.17 15.43

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Fla	ag Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15]	Basis:	Wet Wei	ght
Tech:	MNV				Q	% Moisture:		
Analytical Me	thod: Chloride by EPA 3	00]	Prep Method:	E300P	
Sample Id: Lab Sample Ic	SB-5-S-9-10-171024 l: 566621-011		Matrix: Date Collec	Soil ted: 10.24.17 13.41	-	Date Received:10.26.17 14. Sample Depth: 9 - 10		
Commis Isl.	CD E C 0 10 171034		Matein	Soil	1	Data Dagainad	10 26 17	14.10

16887-00-6 23.1

4.94

11.06.17 15.51

mg/kg

1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15	E	Basis:	Wet Weight	
Tech:	MNV				9	% Moisture:		
Analytical Me	ethod: Chloride by EPA 3	300			F	Prep Method:	E300P	
1	SB-5-S-19-20-171024 d: 566621-012			Soil ed: 10.24.17 13.44	_	Date Received:10.26.17 14.1 Sample Depth: 19 - 20		
Sample Id:	SB-5-S-19-20-171024		Matrix:	Soil	_			0

16887-00-6 25.1

4.96

11.06.17 16.18

mg/kg

Certificate of Analytical Results 566621

GHD Services, INC- Midland, Midland, TX

LPU# 89

Tech:	MNV MNV			11.06.17.10.15		% Moisture: Basis:	Wat Waight	
Analyst: Seq Number:			Date Prep:	11.06.17 12.15		Basis:	Wet Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	32.1	4.98	mg/kg	11.06.17 16.2	7	1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-6-S-4-5-171024 d: 566621-017		Matrix: Date Collect	Soil ed: 10.24.17 15.18		Date Received:10.26.17 Sample Depth: 4 - 5			
Analytical Me	ethod: Chloride by EPA 3	600				Prep Method:	E300	Р	
Tech:	MNV					% Moisture:			
Analyst:	MNV		Date Prep:	11.06.17 12.15		Basis:	Wet V	Weight	
Seq Number:	3032574								
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 45.1

4.97

11.06.17 16.36

mg/kg

Chloride

Certificate of Analytical Results 566621

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result I	RL	Units	Analysis Da	ate Flag	Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15	В	asis:	Wet Weight	
Tech:	MNV				%	Moisture:		
Analytical Me	ethod: Chloride by EPA 3	600			P	rep Method:	E300P	
Sample Id: Lab Sample Id	SB-6-S-9-10-171024 d: 566621-018		Matrix: Date Collecte	Soil ed: 10.24.17 15.21	_	Date Received:10.26.17 14.1 Sample Depth: 9 - 10		
Sample Id:	SB_6_S_0_10_171024		Matrix	Soil	D	ate Received	·10 26 17 14 1	0

34.3

16887-00-6

4.97

11.06.17 16.45

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15	В	asis:	Wet Weight	
Tech:	MNV				%	Moisture:		
Analytical Me	ethod: Chloride by EPA 3	00			P	rep Method:	E300P	
Sample Id: Lab Sample Id	SB-6-S-19-20-171024 d: 566621-019		Matrix: Date Collect	Soil ted: 10.24.17 15.24	_	Date Received:10.26.17 14.1 Sample Depth: 19 - 20		

Chloride

37.8

16887-00-6

4.93

11.06.17 16.53

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample I	SB-9-S-0.5-1-171024 d: 566621-023	l	Matrix: Date Colle	Soil cted: 10.24.17 15.55	-	Date Received: Sample Depth:	0	
Analytical M	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Tech:	MNV				(% Moisture:		
Analyst:	MNV		Date Prep:	11.06.17 12.15]	Basis:	Wet Weight	
Seq Number:	3032574							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	24.4	4.92	mg/kg	11.06.17 17.0	2	1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-9-S-4-5-171024 d: 566621-024		Matrix: Date Colle	Soil cted: 10.24.17 15.58	-	Date Received:10.2 Sample Depth:4 - :	0	
Analytical M	ethod: Chloride by EPA	300]	Prep Method: E30	0P	
Tech:	MNV				Q	% Moisture:		
Analyst:	MNV		Date Prep:	11.06.17 12.15]	Basis: We	t Weight	
Seq Number:	3032574							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	365	4.99	mg/kg	11.06.17 17.29		1

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample I	SB-9-S-9-10-171024 d: 566621-025		Matrix: Date Colle	Soil cted: 10.24.17 16.01	-	Date Received:10.26.17 14.10 Sample Depth: 9 - 10			
Analytical Mo	ethod: Chloride by EPA	300			I	Prep Method: E30	0P		
Tech:	MNV				ç	% Moisture:			
Analyst:	MNV		Date Prep:	11.06.17 12.15	I	Basis: Wet	Weight		
Seq Number:	3032574								
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride		16887-00-6	680	4.90	mg/kg	11.06.17 17.38		1	

Certificate of Analytical Results 566621

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15]	Basis:	Wet Weight	
Tech:	MNV				Q	% Moisture:		
Analytical M	ethod: Chloride by EP	A 300]	Prep Method:	E300P	
1	d: 566621-026			cted: 10.24.17 16.04	-	Sample Depth: 19 - 20		
Sample Id:	SB-9-S-19-20-17102	24	Matrix:	Soil		Date Received:	10.26.17 14.10)

GHD Services, INC- Midland, Midland, TX

LPU# 89

Tech: Analyst:	MNV MNV		Date Prep:	11.09.17 10.00		% Moisture: Basis:	Wet Weight	
Seq Number:	3032929							
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Chloride		16887-00-6	183	4.92	mg/kg	11.09.17 12.2	27	1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-9-S-39-40-171024 d: 566621-028		Matrix: Date Collec	Soil ted: 10.24.17 16.10		Date Received:10.26.17 14 Sample Depth: 39 - 40)
Analytical Me Tech: Analyst:	ethod: Chloride by EPA 3 MNV MNV	300	Date Prep:	11.09.17 10.00		Prep Method: % Moisture: Basis:)P Weight	
Seq Number:	3032929							U	
Parameter		Cas Number	Result	RL	Units	Analysis D	ate	Flag	Dil

16887-00-6 **102**

4.95

11.09.17 12.33

mg/kg

1

Page 33 of 57

GHD Services, INC- Midland, Midland, TX

Sample Id:	SB-9-S-49-50-171024		Matrix:	Soil	-	Date Received:10.26.17 14.10		
Lab Sample I	d: 566621-029		Date Colle	cted: 10.24.17 16.13	2	Sample Depth: 49 - 50		
Analytical Me	ethod: Chloride by EPA	300			I	Prep Method: E30	OP	
Tech:	MNV				Ģ	% Moisture:		
Analyst:	MNV		Date Prep:	11.09.17 10.00	1	Basis: Wet	Weight	
Seq Number:	3032929							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	45.6	4.98	mg/kg	11.09.17 12.39		1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Seq Number: Parameter	3032374	Cas Number	Result	RL	Units	Analysis Da	te Flag	Dil
Analyst:	MNV 3032574		Date Prep:	11.06.17 12.15	В	asis:	Wet Weight	
Tech:	MNV				%	Moisture:		
Analytical Me	ethod: Chloride by EPA 3	800			Pı	rep Method:	E300P	
Sample Id: Lab Sample Id	SB-7-S-0.5-1-171025 d: 566621-030		Matrix: Date Collec	Soil ted: 10.25.17 07.45	_	Date Received:10.26.17 14. Sample Depth: 0.5 - 1		

16887-00-6 **23.9**

4.98

11.06.17 18.13

mg/kg

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-7-S-4-5-171025 : 566621-031		Matrix: Date Collec	Soil cted: 10.25.17 07.48	-	Date Received:10.26.17 14.10 Sample Depth: 4 - 5		
Analytical Me	thod: Chloride by EPA	300			I	Prep Method: E3	00P	
Tech:	MNV				Ģ	% Moisture:		
Analyst:	MNV		Date Prep:	11.06.17 12.15	1	Basis: We	et Weight	
Seq Number:	3032574							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1630	49.3	mg/kg	11.06.17 18.22		10

GHD Services, INC- Midland, Midland, TX

LPU# 89

Chloride		16887-00-6	413	24.7	mg/kg	11.06.17 18.3	31	5
Parameter		Cas Number	Result	RL	Units	Analysis Dat	te Flag	Dil
Seq Number:	3032574							
Analyst:	MNV		Date Prep:	11.06.17 12.15]	Basis:	Wet Weight	
Tech:	MNV					% Moisture:		
Analytical M	ethod: Chloride by EPA	A 300]	Prep Method:	E300P	
Lab Sample I	d: 566621-032		Date Colle	cted: 10.25.17 07.51	:	Sample Depth: 9 - 10		
Sample Id:	SB-7-S-9-10-171025		Matrix:	Soil]	Date Received:	10.26.17 14.1	0

GHD Services, INC- Midland, Midland, TX

Sample Id: Lab Sample Id	SB-7-S-19-20-171025 d: 566621-033		Matrix: Date Colle	Soil cted: 10.25.17 07.54	-	Date Received:10.26.17 14.10 Sample Depth: 19 - 20		
Analytical Me	ethod: Chloride by EPA	300	Dute Cone		I	Prep Method: E30		
Tech: Analyst:	MNV MNV		Date Prep:	11.06.17 12.15	,	% Moisture: Basis: Wet	t Weight	
Seq Number:	3032574		1					
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	564	4.98	mg/kg	11.06.17 18.40		1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Parameter		Cas Number	Result	RL	Units	Analysis Da	ate	Flag	Dil
Seq Number:	3032929								
Analyst:	MNV		Date Prep:	11.09.17 10.00		Basis:	Wet	Weight	
Tech:	MNV					% Moisture:			
Analytical Me	thod: Chloride by EPA 3	00				Prep Method:	E300	P	
Sample Id: Lab Sample Id	SB-7-S-39-40-171025 l: 566621-035		Matrix: Date Collec	Soil ted: 10.25.17 08.00	Date Received:10.2 Sample Depth: 39 -				
~	Sample Id. SD 7 S 30 40 171025			a					

16887-00-6 **378**

5.00

11.09.17 12.46

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-7-S-49-50-171025 d: 566621-036		Matrix: Date Collect	Soil ed: 10.25.17 08.03	Date Received:10.26.17 14 Sample Depth:49 - 50			7 14.10
Analytical Me	ethod: Chloride by EPA 3	000				Prep Method:	E300P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.09.17 10.00		Basis:	Wet We	ight
Seq Number:	3032929							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Fl	lag Dil

16887-00-6 **371**

4.94

11.09.17 13.05

mg/kg

GHD Services, INC- Midland, Midland, TX

LPU# 89

•	d: 566621-037 ethod: Chloride by EPA 3	00	Date Conce	ted: 10.25.17 08.40		Sample Depth: Prep Method:			
Tech:	MNV			11.06.17.10.15		% Moisture:	W-+ W	-:-1-4	
Analyst: Seq Number:	MNV 3032574		Date Prep:	11.06.17 12.15		Basis:	Wet We	eignt	
Parameter		Cas Number	Result	RL	Units	Analysis Da	nte F	lag	Dil

16887-00-6 32.2

4.98

mg/kg 11.06.17 18.48

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample I	SB-8-S-4-5-171025 d: 566621-038		Matrix: Date Colle	Soil cted: 10.25.17 08.43	-	Date Received:10.26.17 14.10 Sample Depth: 4 - 5		
Analytical Mo Tech:	ethod: Chloride by EPA MNV	300			I	Prep Method: E30 % Moisture:		
Analyst:	MNV		Date Prep:	11.06.17 12.15]	Basis: We	t Weight	
Seq Number:	3032574							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	143	4.98	mg/kg	11.06.17 18.57		1

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample I	SB-8-S-9-10-171025 d: 566621-039		Matrix: Date Colle	Soil cted: 10.25.17 08.46		Date Received:10.26.17 14.10 Sample Depth:9 - 10		
Analytical Mo Tech:	ethod: Chloride by EPA MNV	A 300				Prep Method: 1 % Moisture:	E300P	
Analyst: Seq Number:	MNV		Date Prep:	11.06.17 16.00			Wet Weight	
Parameter	3032370	Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	347	4.98	mg/kg	11.07.17 20.2	0	1

Page 43 of 57

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-8-S-19-20-171025 d: 566621-040		Matrix: Date Collect	Soil ed: 10.25.17 08.49	Date Received:10.26.17 14 Sample Depth: 19 - 20			0
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	300				Prep Method: % Moisture:	E300P	
Analyst:	MNV		Date Prep:	11.06.17 16.00		Basis:	Wet Weight	
Seq Number:	3032576							
Parameter		Cas Number	Result	RL	Units	Analysis Da	ate Flag	Dil

16887-00-6 **132**

4.98

mg/kg

11.06.17 20.26

1

Page 44 of 57

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	SB-8-S-39-40-171025 d: 566621-042		Matrix: Date Collect	Soil eed: 10.25.17 08.55	Date Received:10.26.17 1 Sample Depth: 39 - 40			10
Analytical Me Tech:	ethod: Chloride by EPA 3 MNV	800				Prep Method: % Moisture:	E300P	
Analyst:	MNV		Date Prep:	11.09.17 10.00		Basis:	Wet Weight	
Seq Number:	3032929							
Parameter		Cas Number	Result	RL	Units	Analysis D	ate Flag	Dil

16887-00-6 **19.4**

4.96

mg/kg

11.09.17 13.11

GHD Services, INC- Midland, Midland, TX

LPU# 89

Sample Id: Lab Sample Id	DUP-1 171024 d: 566621-044		Matrix:SoilDate Received:10.26.17 14.1Date Collected: 10.24.17 00.00					
Analytical Me	ethod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	MNV					% Moisture:		
Analyst:	MNV		Date Prep:	11.06.17 16.00		Basis: W	et Weight	
Seq Number:	3032576							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	669	4.92	mg/kg	11.06.17 20.35		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4147 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
1211 W Florida Ave, Midland, TX 79701	(432) 563-1800	(432) 563-1713
2525 W. Huntington Dr Suite 102, Tempe AZ 85282	(602) 437-0330	

QC Summary 566621

Analytical Method: Seq Number: MB Sample Id:	Chloride by EPA 3 3032548 7633896-1-BLK	00	Prep Method:E300PMatrix:SolidDate Prep:11.06.17LCS Sample Id:7633896-1-BKSLCSD Sample Id:7633896-1-BSD									
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	261	104	263	105	90-110	1	20	mg/kg	11.06.17 16:36	
Analytical Method:					Pı	ep Metho	od: E30	OP				

									-r			
Seq Number:					Solid				Date Pre	ep: 11.0	6.17	
MB Sample Id:	7633897-1-BLK		LCS Sar	nple Id:	7633897-	1-BKS		LCSI	D Sample	Id: 7633	8897-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride			242	97	245		90-110		20	mg/kg	11.06.17 14:41	

Analytical Method:	Chloride by EPA 3	Chloride by EPA 300 Prep Meth										
Seq Number:	3032576			Matrix:	Solid				Date Pre	ep: 11.0	6.17	
MB Sample Id:	7633898-1-BLK		LCS Sar	nple Id:	7633898-	1-BKS		LCSI	O Sample	Id: 7633	898-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	<5.00	250	234	94	235	94	90-110	0	20	mg/kg	11.06.17 19:33	

Analytical Method:	Chloride by EPA 30	Chloride by EPA 300 Prep Method										
Seq Number:	3032929			Matrix:	Solid				Date Pre	ep: 11.0	9.17	
MB Sample Id:	7634115-1-BLK		LCS Sar	nple Id:	7634115-	1-BKS		LCSI	D Sample	Id: 7634	4115-1-BSD	
Parameter	MB Result	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	< 5.00	255	102	256	102	90-110	0	20	mg/kg	11.09.17 11:55		

Analytical Method:	Chloride by EPA 30)0				Prep Method: E300P						
Seq Number:	3032548			Matrix:	Soil				Date Pre	ep: 11.0	6.17	
Parent Sample Id:	566877-023		MS Sar	nple Id:	566877-02	23 S		MSI	D Sample	Id: 5668	377-023 SD	
Parameter	Parent Result	Parent Spike			MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	762	969	84	976	87	90-110	1	20	mg/kg	11.06.17 16:55	Х	

Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 (3032548 566877-033)0		Matrix: nple Id:	Soil 566877-03	33 S				ep: 11.0		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	10.2	264	102	266	103	90-110	1	20	mg/kg	11.06.17 18:24		

QC Summary 566621

Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3032574 566621-006	800		Matrix: nple Id:	Soil 566621-0)6 S			ep Metho Date Pro D Sample	ep: 11.0		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	1050	249	1260	84	1270	88	90-110	1	20	mg/kg	11.06.17 15:07	Х
Analytical Method: Seq Number:	Chloride by EPA 3 3032574	300		Matrix:	Soil			Pr	ep Metho Date Pro			
Parent Sample Id:	566621-023				566621-02	23 S		MSI		-	521-023 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	24.4	246	239	87	239	87	90-110	0	20	mg/kg	11.06.17 17:11	Х
Analytical Method: Seq Number: Parent Sample Id:	Chloride by EPA 3 3032576 566621-039	300		Matrix: nple Id:	Soil 566621-0	39 S			ep Metho Date Pro D Sample	ep: 11.0		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	347	249	599	101	600	102	90-110	0	20	mg/kg	11.07.17 20:29	
Analytical Method: Seq Number:	Chloride by EPA 3 3032576	300	Matrix:	Soil			Pr	ep Metho Date Pro				
Parent Sample Id:	566853-002		566853-0	02 S		MSI		-	853-002 SD			
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
	25.5	246	248	90	248	90	90-110	0	20	mg/kg	11.07.17 21:13	

Analytical Method:	Chloride by EPA 30	00		Pr	ep Metho	od: E300)P					
Seq Number:	3032929			Matrix:	Soil				Date Pre	ep: 11.0	9.17	
Parent Sample Id:	566621-008		MS Sar	nple Id:	566621-00)8 S		MSI	O Sample	Id: 5666	521-008 SD	
Parameter	Parent Result	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag	
Chloride	297	538	98	536	97	90-110	0	20	mg/kg	11.09.17 12:14		

Analytical Method:	Chloride by EPA 3	00				Pr	ep Metho	d: E30	OP			
Seq Number:	3032929			Matrix:	Soil				Date Pre	ep: 11.0	9.17	
Parent Sample Id:	566990-004		MS Sar	nple Id:	566990-00)4 S		MS	D Sample	Id: 5669	990-004 SD	
Parameter	Parent Result				MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chloride	759	759 249			965	83	90-110	0	20	mg/kg	11.09.17 13:43	Х

QC Summary 566621

Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031777	Matrix: MB Sample Id: MB Result <1.00	Solid 3031777-1-BLK			Units %	Analysis Date 10.30.17 11:00	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3031778	Matrix: MB Sample Id: MB Result <1.00	Solid 3031778-1-BLK			Units %	Analysis Date 10.30.17 11:00	Flag
Analytical Method: Seq Number: Parameter Percent Moisture	Percent Moisture 3033007	Matrix: MB Sample Id: MB Result <1.00	Solid 3033007-1-BLK			Units %	Analysis Date 11.10.17 17:04	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031777 566619-024 Parent Result 12.6	Matrix: MD Sample Id: MD Result 10.8		%RPD 15	RPD Limit 20	Units %	Analysis Date 10.30.17 11:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031777 566621-016 Parent Result 5.33	Matrix: MD Sample Id: MD Result 5.22		%RPD 2	RPD Limit 20	Units %	Analysis Date 10.30.17 11:00	Flag
Analytical Method: Seq Number: Parent Sample Id: Parameter Percent Moisture	Percent Moisture 3031778 566621-017 Parent Result 32.2	Matrix: MD Sample Id: MD Result 30.2		%RPD 6	RPD Limit 20	Units %	Analysis Date 10.30.17 11:00	Flag

QC Summary 566621

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3031778 566771-002	Matrix: MD Sample Id:					
Parameter Percent Moisture	Parent Result 8.71	MD Result 9.49	%RPD 9	RPD Limit 20	Units %	Analysis Date 10.30.17 11:00	Flag

Analytical Method: Seq Number: Parent Sample Id:	Percent Moisture 3033007 566503-053	Matrix: MD Sample Id:					
Parameter	Parent Result	MD Result	%RPD	RPD Limit	Units	Analysis Date	Flag
Percent Moisture	6.07	5.97	2	20	%	11.10.17 17:04	

Analytical Method:	Percent Moisture							
Seq Number:	3033007	Matrix:	Soil					
Parent Sample Id:	566621-008	MD Sample Id:	566621-008 D					
Parameter	Parent Result	MD Result		%RPD	RPD Limit	Units	Analysis Date	Flag

Setting the Standard since 1990 Stafford,Texas (281-240-4200) Dallas Texas (214-902-0300)			CH onio, Texas Texas (432	(210-5) 2-704-5	09-3334	4)		C ₹	U \$5	ST	0	D	Phe	oenix	r, Arizona (480-355-09 ote#	00) Xenco Job	. 5	10101021
													1	-	Analytical Inform	ation		Matrix Codes
Client / Reporting Information Company Name / Branch: GHD / Houston Company Address: 6320 Rothway St. #100, Houston TX 77040 Email: Phone No:		LPU #89 Project Loc Lea County	Project Information Project Name/Number: LPU #59 / 074287 Project Location: Lea County, NM Invoice To:															W = Water S = Soil/Sed/Solid GW =Ground Water DW = Drinking Water P = Product SW = Surface water
Chris.Knight@ghd.com 512-506-880 Project Contact: Scott.Foord@ghd.com Samplers's Name Rebecca Jones	3	PO Number;																SL = Sludge OW =Ocean/Sea Water WI = Wipe O = Oil WW= Waste Water
		Collectio	n 1				Numb	per of	prese	erved	bottle	s	- 0		P			A = Air
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	Ρ	NaOH/Zn Acetate	HNO3	H2SO4	NaOH	NaHSO4	MEOH	Chloride					Field Comments
1 SB-10-S-0.5-1-1710a4	0.5-1	10/24	1150	S	1		194							5				
2 SB-10-S- 4-5-171024	4-5	1.	1153	s	1													
3 SB-10-5-9-10-171024	9-10		1150	s	1													
4 53-10-5-19-20-171024	19-20		1159	s	1		1.5						1	1				
5 SB-10-5-29-30-171024	29-31		1202	S	1									1				
5B-10-5-39-40-171024	39-4		1205	s	1								1	1				
7 53-10-5-49-50- 171024	49-50		1208	s	1								1	1				

59-60

05-

4-5

Date Time:

Date Time:

Date Time:

121

1335

1338

S 1

S 1

S 1

Level II Std QC

TRRP Checklist

Received By:

Received By:

Received By:

in

Level III Std QC+ Forms

SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY

Level 3 (CLP Forms)

Data Deliverable Information

DAL

5 Day TAT

7 Day TAT

TAT Starts Day received by Lab, if received by 5:00 pm

Contract TAT

8

9

10

3

Same Day TAT

Next Day EMERGENCY

2 Day EMERGENCY

3 Day EMERGENCY

quished by:

Relinquished by:

Turnaround Time (Business days)

1010

2.2

Cooler Temp.

IR ID:R-8

uton

Thermo. Corr. Factor

Temp: 2.5 CF:(0-6: -0.2°C)

Corrected Temp:

(6-23: +0.2°C)

On Ice

Temp:

FED-EX / UPS: Tracking #

Rece

Date Time:

Date Time:

Preserved where applicable

2 2 5 Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples, Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

-1

1

1

Level IV (Full Data Pkg /raw data)

TRRP Level IV

UST / RG -411

Relinquished By:

Relinquished By:

Custody Seal #

CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

XENCO LABORATORIES

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

Phoenix, Arizona	(480-355-0900)
------------------	----------------

Dallas Texas (214-902-0300)			Midland,	Texas (432											o Quote i			1.0	nco Job #	0	111	21
						www.xe	nco.c	om						Aenc	o Quote a			Xer	ICO JOD #	2	ado	CI
		_									-	-				Analyti	ical Info	rmation				Matrix Codes
Client / Reporting Information	-	_		Proje	ect Info	mation					-			100								
Company Name / Branch: GHD / Houston			Project Nam LPU #89 /											1	1 1							W = Water
Company Address:			Project Loca		-		-							+								S = Soil/Sed/Solid GW =Ground Water
6320 Rothway St, #100, Houston TX 77040			Lea County.	, NM																		DW = Drinking Wate
Email:	Phone No:	-	Invoice To:			-			_		_		-	-	1 1		1					P = Product SW = Surface water
Chris.Knight@ghd.com	512-506-8803																					SL = Sludge OW =Ocean/Sea Wa
Project Contact: Scott.Foord@ghd.com		1.0	PO Number		_							_	_		1 1							WI = Wipe
Samplers's Name Rebecca Jones			PO Number																			O = Oil WW= Waste Water
		F	Collection	1		-	1	Numi	ber of	prese	erved	bottles	s									A = Air
No. Field ID / Point of Collect	tion	1.000		1						T			1	i e	Ince							
		Sample Depth	Date	Time	Matrix	# of bottles	P	NaOH/Zn Acetate	HNO3	H2SO4	NaOH	MECH	NONE	Chloride	Moisture							Field Comments
1 SB-5-S-9-10-1710	124	Q to	1024	1341	s	1							1									
2 SB-5-5-19-20-171	024	19-20	1	1344	S	1				-			1	N	X	-					-	
3 58-5-5-29-30-1	LICOIT	2430		1347	s	1		-		+	+	+	1	K	XY	-	-	-	+ +		1 the	
3 0 5 C 30 10 1	TIDAT	Ba in				-		-		-	-	-	-		$\langle \rangle$	-	-	-	+ +	-	110d	
4 00-2-3-01-40-1	11024	39-40		1350	S	1				-	_	-	1		11	_					Hold	
5 DB-D-J- 49-50-	11024	49-50		1353	S	1							1		1						Hold	
· SB-10-5-0.5-1-1	71024	0.5-1		1515	S	1							1		N							
7 SB-10- S- 4-5-17	1024	4-5		1518	s	1							1		N	-						
8 SB-10-5-9-10-17	1024	9-10		1521	s	1					1		1		N	-	-					
· SB-10-5-19-20-1	71024	19-20		1524	S	1				1	+	+	1	K	X	-	+		1		-	
10 BB-10-5-29-30-	171024	29-30	t	1527	S	1				+	+	+	1	K	X	-	-			-	Hold	
Turnaround Time (Business days)	111001	MISH	~	1001	El	Data Deli	verable	e Inform	ation	1		-	-	1	4 4	-	1				nord	
Same Day TAT	5 Day TAT			Lev	el II Sto	qc				Leve	el IV (F	ull Da	ta Pkg	g /raw	data)	1	T	Tem	p: 6	2.5	IF	ID:R-8
Next Day EMERGENCY	7 Day TAT			Lev	el III St	d QC+ F	orms			TRR	PLev	el IV					T	CF:(0-6: -(0.2°C)	
2 Day EMERGENCY	Contract TAT	11.11	1	Lev	el 3 (Cl	P Form	is)			UST	/RG	411					Ť	(6-23:	0.2°C +0.2°(C)	
3 Day EMERGENCY			1.00	TRI	RP Che	cklist	τ.									1.1	T	Corr	ected	Temp	: 2	3
TAT Starts Day received by Lab,				104													_				917	-
Relinquished by Sample	SAMPLE CUSTOR	DY MUST BE	DOCUMENT	ED BELOW E	ACH TIN	E SAMPL	ES CH	ANGE F				DING and By:		ER DEL		Date Time		- 10			0	
KEIMADDAA		Date Time	-1410	11/-	u	A	in	N		2	Anish	cu by.				Jute rim		2	Uh	ann	10 X	mich
Relinquished by:		Date Time		Received	By:	U		0		Relind	quish	ed By:				Date Time	e:	R	ecefved By	Y:	ac p	
Relinquished by:		Date Time		Received	By:					Custo	ody Se	eal#			Prese	rved whe	re appli	cable	7	On Ice	Cooler Ter	np. Thermo. Corr. Factor
5				5			-				_		_				1	_	-	Y		

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco. its affliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract:

CHAIN OF CUSTODY Page 3 or #5

San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

					- 2	www.xe	nco.co	m						Xenco	Quote	1		1.1	Xenco J	ob #	51	dolo7	1		
							-							1		An	alytical	nformati	ion	-		ay c	Matrix C	odes	
Client / Reporting Information				Proje	ct Infor	mation	-																		
Company Name / Branch: GHD / Houston			Project Nan											1									W = Wate		
Company Address:		-	LPU #89				_	-			_	_	-	1									S = Soil/S	ed/Solid und Water	
6320 Rothway St. #100, Houston TX 77040			Lea County																					king Wate	
Email: Chris.Knight@ghd.com	Phone No: 512-506-8803		Invoice To:		_		_					-	7										SL = Sluc	face water	2.11
Project Contact: Scott.Foord@ghd.com					_										11								WI = Wip		ner
Samplers's Name Rebecca Jones			PO Number	:																			O = Oil	ste Water	
		3	Collection	1	1.11		1-	Num	ber of p	orese	arved	battle	-	1									A = Air	sic vvalet	
No. Field ID / Point of Collect	lion	Sample Depth				# of	ci	JaOH/Zn Voetate	TT	-	T	VaHSO4		Chloride	Moisture										
58 10-5-30-110	ורחודיו	39-40	Date 10 Z4	Time 1530	Matrix	bottles	Ť	ŽĂ	Ĩ	Ÿ	ž	žž	44	R	2		-	-		-			Field Comme	nts	
1 00-0-5-04-70-	111/014		10/21		-	1		1.1	+	-	-	-	1	1	1		-	-		-		Hold			
2 50-0-5-49-50-	111024	49.50		1533	S	1		1.1.1					1		1							Hold			
3 0B-9-5-015-1-1	71024	05-1		1555	S	1							1	N	5					-					
4 5B-9-5-4-5-17	1024	4-5		1558	s	1		115					1		N							-			
5 SB-9- 5-9-10-17	1024	9-10		1001	s	1						-	1		X			1							
6 SB-9- S-19-20-17	1024	19-20		TIME	s	1		-		-	+	+	1	K	K			-		+		-			-
7 513-9-5-29-30-	710211	29-30		UNT	S	1		-	+	+	-	+	1	K	$\langle \rangle$		-	-		-		liall			-
60 A C 20 40	ITIDAT	3940		1001	s	1		-	+	-	+	+	1	1	\sim		-	-		-		Hold	-	_	-
8 75-9-5-54-70- 32 A.S. 10-50-	TUDAT		- I.	1010		-		-		-	+	+	-	1				-	+	-		Hold	_		-
9 5 D-9-5- 49-90-	11024	49.50	V	1011	S	1			+	-	-	+	1		1			-		-		Hob			
10 00-1-3-0,9-1-11	1025	0,51	10/25	0745	-	1				_			1		1										1.2
Turnaround Time (Business days)					(Data Deli	verable	Inform	ation	- 1				- 2	10-			-		2	-				
Same Day TAT	5 Day TAT		12.2	Lev	el II Std	QC				Leve	el IV (Full Da	ta Pkg	/raw e	data)			lei	mp:	X	5	IR II	D:R-8		
Next Day EMERGENCY	7 Day TAT			Lev	el III Sta	d QC+ F	orms			TRR	RP Lev	vel IV						CF	:(0-6	2 : -0.2 3: +0	°C)				
2 Day EMERGENCY	Contract TAT	10.00	1.1	Lev	el 3 (CL	P Form	s)			UST	/RG	-411						~	(6-2	3: +0	.2°C)	0			
3 Day EMERGENCY				TRF	RP Chee	klist												Co	rrect	ed Te	mp:	22			-
TAT Starts Day received by Lab, if														_	-	-	FI	D-EX/U	JPS: Tra	cking #		0			-
Relinquished by Sampter	SAMPLE CUSTOR	DY MUST BE	DOCUMENT	Received	ACH TIM	E SAMPL	ES CH	ANGE				ed By:		R DEL	WERY	IData	Time:	_	Receiv	SA					-
1 REMADGONS		Date Time	1410	IKI	110	d.	1	H		2	quisi	eu by.				Date	Time:		2	m m	QUA.	nel V	Min	\	12
Relinquished by:		Date Time		Received	By:	0		0	F	Relin	quish	ed By:			11	Date	Time:		Receiv	ed By:		acc p	VIII I		
3 Relinquished by:		Date Time		3 Received	By:	_	-	-		4 Custo	ody S	eal #	-	_	Pres	erved	where a	plicable	4	Onl	pé (Cooler Temp.	Thermo	Corr. Factor	
5				5																X		2.2			

Notice: Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service, Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liability will be limited to the cost of samples. Any samples received by Xenco but not analyzed will be involced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

Stafford,Texas (281-240-4200) Dallas Texas (214-902-0300)			onio, Texas Texas (43)			+)										izona (480-3	55-0900				
					www.xe	enco.co	m					_		Xenco	Quote 1			Xenco Job	' S	lelder	1
Client / Reporting Information									3							Analytical I	nformati	on	TT	1	Matrix Codes
Company Name / Branch: GHD / Houston			me/Number:	ect Info	rmation							-	-								W = Water
Company Address:		LPU #89 Project Los	/ 074287	-			-		_			_	_								S = Soil/Sed/Solid
320 Rothway St. #100, Houston TX 77040		Lea Count																			GW =Ground Water DW = Drinking Wate
Email: Phone No: Chris.Knight@ghd.com 512-506-88		Invoice To					_			-		-	-								P = Product SW = Surface water
	03																				SL = Sludge OW =Ocean/Sea Wa
Project Contact: Scott.Foord@ghd.com		PO Numbe	r:							_	_	_	_								WI = Wipe O = Oil
Samplers's Name Rebecca Jones	-	1	-	-		-		_	_		_	_	_								WW= Waste Water
		Collectio	n 1	1			Numb	per of p	prese	rved	bott	es		e	e						A = Air
No. Field ID / Point of Collection	Sample Depth	Date	Time	Matrix	# of bottles	Ţ	laOH/Zn cetate	INO3	2804	HOH	IaHSO4	VEOH	IONE	Chloride	Moisture					-	Field Comments
1 SB-7-S-4-5-171025	4-5	10/25	0748	S	1		29		-	2	2	2	1	5	1		1				Field Comments
2 58-7-5-9-10-171025	9-10	11	0751	s	1				-		1	1	1	7			-			1	
3 53-7-5-19-20-171025	19-20		1754	s	1		-		-		+	+	1	7			-				
4 SB-7-5-29-30-17/025	24-30		0757	s	1		-		-	-	1	-	1	7			-			11010	d
\$ 53-7-5-39-40-171025	39-40		0800	s	1		-			-	+	+	1	0			-			Hoid	1
6 5B-7-5-49-50-171025	49.50		0803	s	1		-		-	-	+	+	1	0			+			10	
7 58-8-5-0.5-1-171025	0.51	11	1)X40	s	1		-		-	+	+	+	1	0			+		++	TIOP	0
\$ SB-8-5-4-5-171025	4-5		0843	s	1				+	+	+	-	1	0			+			-	
· DB-8-5-9-10-171025	9-10	11	0840	S	1				+	+	+	+	1	0			-				
10 58-8-5-19-20-171025	19-20	1	0849	S	1				-	+	+	+	-	0			-				
Turnaround Time (Business days)	IT VQV	I VZ	port		Data Del	verable	Informa	ation	-	1	-	-	- 1				Notes		11	-	
Same Day TAT 5 Day T	т		Le	vel II Sto	1 QC				Leve		Full C	Data I	Pkg /	raw d	ata)				ne	-	
Next Day EMERGENCY 7 Day TA	r -	1	Le	vel III St	d QC+ F	orms			TRR	PLe	vel IV						Te	mp:C	2,5		RID:R-8
2 Day EMERGENCY Contract	TAT		Le	vel 3 (Cl	LP Form	15)	1		UST	/RG	-411	1	-				CF		-0.2°C		
3 Day EMERGENCY				RP Che	cklist	-			-								0		3: +0.2		0
TAT Starts Day received by Lab, if received									-				-		-	FI	Co	rrecte	d Tem	p: 2	S
Relinguistled by Sampler	USTODY MUST B	DOCUMEN	TED BELOW	ACH TIN	E SAMP	ES CHA	NGE P						IRIER	DELN			1	6 11			()
1 RULLORAS	Date Tim	-1416	Received	By:					2	quist	ned B	y:				Date Time:		Received	Mou	m 0 0	Mith
Relinquished by:	Date Tim		Received	By:				1	Relin	quist	ned B	y:				Date Time:		Received	By:	nue	District
Relinquished by:	Date Tim Date Tim		Received 3 Received	-				4	4		ieal #					Date Time: rved where ap		Received	By:		
	Sale run			-1.				1	Jubil		out #				11626	were where ap	Pilcable		On Ice	Cooler Ten	np. Thermo. Corr. Facto

5 Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the Client if such loses are due to circumstances beyond the control of Xenco. A minimum charge of \$75 will be applied to each project. Xenco's liablify will be limited to the cost of samples received by Xenco but not analyzed will be invoiced at \$5 per sample. These terms will be enforced unless previously negotiated under a fully executed client contract.

-	N
V7	XENCO
	LABORATORIES
-	×

Setting the Standard since 1990 Stafford, Texas (281-240-4200)

Dallas Texas (214-902-0300)

CHAIN OF CUSTODY

San Antonio, Texas (210-509-3334)

Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

					www.xe	enco.c	moc						Xence	o Quote		Xenco .	Job#	Stelder	21
															Analytical In	formation	-		Matrix Codes
Client / Reporting Information			Proi	ect Info	mation	1													
Company Name / Branch: GHD / Houston		Project Nar	me/Number:								-	-							W = Water
Company Address:		LPU #89 Project Loc		_		_	_						_						S = Soil/Sed/Solid
6320 Rothway St, #100, Houston TX 77040		Lea County												1.1		1 1 1			GW =Ground Water DW = Drinking Water
	-															1 1 1			P = Product
Email: Phone No Chris.Knight@ghd.com 512-506-8		Invoice To:														111			SW = Surface water
																1 1 1			SL = Sludge OW =Ocean/Sea Wate
Project Contact: Scott.Foord@ghd.com							_			_	_					1 1 1			WI = Wipe
Samplers's Name Rebecca Jones		PO Number												11					O = Oil
		Collection			1	1	Mumi	and of	nraea	mind	bottle	~	11						WW= Waste Water A = Air
No. Field ID / Point of Collection		Jongotto							Picse	I	Jounes	T	de	Moisture				_	
rito. Field ID / Point of Collection	Sample				# of		VaOH/Zn Acetate		8	T	1 804		Chloride	istu					
	Depth	Date	Time	Matrix	bottles	P	Acet	FONH	12804	LaOH	VaHSO	NONE	5	Ň				F	eld Comments
1 DB-8-5-29-30-17100	25 29-30	1025	0852	s	1					1	-	1	N					Hold	
5B-X-S-30-40-1710	25 3940	1	1855	S	1		-	+ +	-	+	+	1	1	*					
2 0 0 0 0 0 0 0 0 0	C DOCO		0000	-	-			$\left \right $	-	+	+	1	1	1	-			Hold	
3 35-8-3- 49-90-11102	3 99-50	V	0858	S	1		-				-	1		1				Hold	
4 JUN-1-1024	-	10/24	-	S	1							1	N	N					
5		11		S	1		-		-		-	1	N	N					
			/	s	1		-		-	+	+		1	*		+ + +			/
6				-	-	-	-		1	-	-	-	1	1					
7		/		S	1				N			1		1					
8	/	1		S	1					X		1		5				/	6
9		1 0		S	1	-					V	1		N				/	
10			-	s	1		-		-	+			1	X					
Turnaround Time (Business days)		1	12000	-	-	Buarabl	e Inform	ation		_	_	1.	1			No			
-						reidor	e intorna		- 0			-			-		2	C	
Same Day TAT 5 Day T	TAT		Lev	vel II Sto	QC				Leve	H IV (Full Da	ita Pk	g /raw	data)		Ter	np: 2	.) II	RID:R-8
Next Day EMERGENCY	T	1.1.1.1.	Lev	el III St	d QC+ F	Forms			TRR	PLev	el IV					CF	(0-6: -0.2°	(C)	
2 Day EMERGENCY Contrac		-				-							-	-			10 00. 0		
2 Day EMERGENCY Contrac	t TAT		Lev	rel 3 (Cl	P Form	ns)			UST	/RG	-411						(6-23: +0.	20) 7	-
3 Day EMERGENCY			TR	RP Che	cklist											Cor	(6-23: +0. rected Ter	mp: Z	. 5
TAT Starts Day received by Lab, if received	by 5:00 pm	-		-						_					EE	D-EX / UF a. 11			100
SAMPLE	CUSTODY MUST BE	DOCUMENT	ED BELOW E	ACH TIN	E SAMP	LES CH	ANGE P	OSSES	SSION.	INCL	JDING (COUR	ER DEL	NERY		Dexi of 0. In	()	5	
Relinquished by Sampler And	Pate Time	-Juno	Received	By:				1	Relind	quish	ed By:				Date Time:	Recei	vert By	AAD V	
Relinguished by:	Date Time		1	Den					2		10	_		_		2	Maur	UL A	MITH
a state of the sta	Date 11me		Received	by:					Relind	quish	ed By:				Date Time:	Recei	ved By:	15	
Relinquished by:	Date Time		3 Received	By:				-	4 Custo	dy S	al#	_	-	Pres	erved where ap	4	On Ice	Coolar Tomr	Thermo, Corr, Factor
	Part Inte			-1.				1	54310	ay a	ual #			ries	arved where ap	pricable	-VT	Cooler Temp.	mermo. Corr. Factor

Notice: Notice: Signature of this document and relinquishment of samples and subtractives a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service, Xenco will be liable only for the cost of samples and shall not assume any responsibility for any be enforced unless previously negotiated under a fully executed client contract.

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: GHD Services, INC- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/26/2017 02:10:00 PM Temperature Measuring device used : R8 Work Order #: 566621 Comments Sample Receipt Checklist 2.3 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Date: 10/26/2017

Checklist completed by: Shawnee Smith Checklist reviewed by: Mark South Kelsey Brooks

Date: 10/26/2017

Appendix C 2018 Work Plan

Reference No. 074287

July 13, 2018

Ms. Olivia Yu Environmental Specialist New Mexico Oil Conservation Division – District 1 1625 N. French Drive Hobbs, New Mexico 88240

Re: 2018 Work Plan – Additional Soil Assessment LPU No. 89 (1RP-4017) Lea County, New Mexico

Dear Ms. Yu,

1. Project Information

The Site is located in Unit E, Section 31, Township 16 South, Range 37 East, approximately 5.00-miles southeast of Lovington, in eastern Lea County, New Mexico. The LPU No. 89 well was plugged and abandoned in July 2010. A dry hole marker is present at the location and surface equipment has been removed from the Site.

Information available from various sources including the Petroleum Recovery Research Center (PRRC) Mapping Portal, current GHD managed groundwater site(s) data, and the United States Geological Survey (USGS) Current Water Database for the Nation, concludes:

- a) the depth to groundwater from the deepest impacted soil at the Site is less than 50-feet bgs;
- b) the nearest private domestic water source is greater than 200-feet from the release site;
- c) the nearest public/municipal water source is greater than 1,000-feet from the release site; and
- d) the release site lies more than 1,000 horizontal feet from the nearest surface water body.

Localized depth to groundwater was confirmed to be approximately 97 feet below ground surface (bgs) in 2017 based on gauging information from monitoring wells MW-1 through MW-5 associated with the LPU-96 Site (RP-1665) located approximately 0.5 miles south/southwest of the Site.

Consequently, the NMOCD total ranking criteria score is twenty (20) for the Site as depth from chloride impacted soil to groundwater is estimated at less than 50 feet. The anticipated site-specific RRALs to be applied to this location by the NMOCD are 10 mg/kg for benzene, 50 mg/kg for total BTEX, 100 mg/kg for total TPH, and 600 mg/kg for horizontal and 250 mg/kg for vertical delineation of chloride.

In an August 28, 2017 telephone conversation between Bernard Bockisch (GHD) and Jim Griswold (NMOCD Environmental Bureau Chief), GHD was informed that the NMOCD is accepting chloride concentrations of 600 mg/kg for the horizontal delineation assessment clean up levels.

In September 2015, GHD subcontractor Harrison Cooper, Inc. (HCI) advanced four soil borings (SB-1 through SB-4) utilizing an air-rotary drilling rig to depths of approximately 50 feet bgs. Following approval of a Work Plan submitted to NMOCD in August 2016, GHD and subcontractor Diamondback Services (Diamondback) initiated excavation activities at the Site in September 2016 to remove chloride impacted soils within the well pad to a depth of approximately 4 feet bgs. Soil samples were collected from the sidewalls of the excavation limits and field screened for chloride. During field screening activities, it was determined that horizontal delineation of the impacted soils had not been achieved. As such, additional site assessment/delineation activities were determined necessary and the excavation activities were suspended.

In 2017, a two-phase geophysical investigation was completed and six additional soil borings were subsequently advanced (SB-5 through SB-10) at the Site. Soil samples were collected from each boring for analytical analyses in an attempt to further delineate the horizontal and vertical extents of the chloride impact. Soil sample analytical results are depicted on Figure 1.

Analytical results associated with assessment activities conducted in 2017 indicate the horizontal extents of the chloride impact in soil have not been fully delineated. The vertical extent of chloride impact appears delineated to concentrations protective of groundwater, and confined to shallow soils less than 60 feet bgs.

2. 2018 Scope of Work

On February 13, 2018, GHD and Chevron representatives met with NMOCD and the New Mexico State Land Office (NMSLO) regarding further delineation activities and future remedial actions addressing the presence of chloride concentrations at the Site. Further delineation activities recommended include the advancement of two soil borings to 70 feet bgs (see Figure 1). The specific locations of the soil borings have been determined based on the geophysical survey and previous soil sample analytical results. The following sections outline the scope of work that will be completed by GHD.

2.1 Task I – Soil Boring Installation Activities

GHD is proposing the installation of two soil borings up to 70 feet bgs southeast of the impacted area to further screen soil for chloride impact. GHD will coordinate all subsurface utility clearance activities prior to initiating drilling activities. A New Mexico 811 utility locate will be completed at least 48 hours prior to mobilization. In addition to the utility locate, a geophysical survey will be completed for each of the proposed boring locations.

The soil boring program will consist of the following:

- An air rotary drilling rig will be used to advance two soil borings to an anticipated maximum depth of 70 feet bgs. The two soil boring locations will be located to the south and southeast of the release area (see Figure 1).
- Soil samples will be collected at 5, 10, 15 and 20 feet bgs, and every 10 feet thereafter. Soils will be field screened for chloride during drilling activities by mixing soil samples with de-ionized water. The rinsate will be analyzed using Hach chloride test strips.
- Soil cuttings and samples will be visually inspected and logged according to the Unified Soil Classification System.
- Borings will not be advanced into the groundwater table; therefore, a plugging plan will not be required by the New Mexico State Engineer's Office.
- Soil borings will be backfilled with the cuttings from the borings up to 10 feet bgs, and then with hydrated bentonite pellets from 10 feet bgs to the ground surface. Remaining soil cuttings will be thin spread on site, pending field screening results.
- Selected soil samples will be submitted to the analytical laboratory for analysis of chloride by EPA Method 300.

2.2 Task II - Reporting

A summary report will be prepared following completion of all field activities and receipt of the finalized analytical data. The report will summarize the results of the soil assessment and will include a sample location map, tabulation of the soil analytical results, photographic documentation, and boring logs. The report will also include conclusions and future recommendations, as appropriate. The report will be finalized and submitted to the NMCOD and the NMSLO.

If you have any questions, please contact me at 713-734-3090.

Sincerely,

GHD

2

Scott Foord, P.G. Project Manager

SF/sh/1

Encl.

Attachment: Figure 1 – Proposed Soil Boring Location Map

CAD File: I:\CAD\Files\07----\074287-CEMC-LPU # 89\Proposed\074287-00(Proposed-02)GN-DL001.dwg

New Mexico East (US Feet)

PROPOSED SOIL BORING LOCATION MAP

			_
	263	1.700 20110	8
12 20 20 20 20 20 20 20 20 20 20 20 20 20	120	1	RC.
		1. A. S. M. (20) 244	ε.
		A STATE OF A STATE	80
		M.C. St.	1
to proper a set man			16
L. M. Carton			6
A. Maria Carl			di.
WAR - CONTRACTOR		2-2-10-20-00-00-00-00-00-00-00-00-00-00-00-00	10
		Carl and the second	
			0
AND THE MESSAGE		State State State State	1
at a los a last		The state of the state	
Mark a The			
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			1
the second and a start of		State of the state of the	*
EL Charles			
The share			
1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1			43
			2
			2
States States		and a start of the	2.5
Mark - 51 - 2	100		2
e a secondaria	24.14	and the stand of the	50
	10	States Prove and	24
10 R.	22.3		10
St. 2. 35 Stor Marg		and the subscript of	12
and a start of the start of the			
-2 09/18/15	401		12
5' 20' 25' 30' 5.1 25.6 26.0 17.1	40' 21.2	50' 8.52	2
A	200		10
-rest No.	2010	The Orthogon	1
Contraction of the second			10
and the second		A STATE OF THE ACTUAL OF	6.
STREET, STREET	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CLARGE STREET		LEGEND	•
		Proposed Soil Boring Location	
-60'		Soil Boring Location - 2011	
97		Soil Boring Location - 2015 Soil Boring Location - 2017	
COMPANY OF THE OWNER	$\overline{\oplus}$	LPU #89 Well Marker	
	Depth	Depth of Sample (ft)	
Children and and	TPH	Total Petroleum Hydrocarbons Concentration (mg/kg)	
Cal- 1 - 2 - 2 - 2 - 2	DRO	TPH as Diesel Range Organics	
and the set of the	GRO *	TPH as Gasoline Range Organics Indicates Duplicate Sample	
Walley and the			
		Lat/Long: 32.881111° North, 103.29512°	West

074287-00 May 7, 2018

FIGURE 1