REVIEWED By Olivia Yu at 10:27 am, Oct 24, 2018

1RP-4787 DELINEATION AND REMEDIATION REPORT NGL Release

Lea County, New Mexico

Latitude: N33° 14' 58.20" Longitude: W103° 06' 07.73"

LAI Project No. 17-0177-01

August 30, 2018

Prepared for:

Targa Midstream Services, LLC P.O. Box 1689 Lovington, New Mexico 88260

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, Texas 79701

Mark J. Larson, P.G. Certified Professional Geologist #10490

This Page Intentionally Left Blank

Table of Contents

1.0	INTRODUCTION	2
1.1		
1.2	-	
1.3	Remediation Action Levels	
1.4		
2.0	RELEASE DELINEATION AND REMEDIATION CONFIRMATION	
	RECOMMENDATION	
3.0	RECUMINEINDATION	

Tables

Table 1	Initial Soil Sample Analytical Data Summary
Table 2	Delineation and Remediation Soil Sample Analytical Data Summary
Figures	
Figure 1	Topographic Map
Figure 2	Aerial Map Showing Release Area and Initial Soil Sample Locations
Figure 3	Aerial Map Showing Microblaze Application Area
Figure 4	Aerial Map Showing Delineation and Remediation Confirmation Soil

Sample Locations

Appendices	
Appendix A	Initial C-141
Appendix B	OCD Communications
Appendix C	Laboratory Reports
Appendix D	Photographs
Appendix E	Final C-141

1RP-4787 Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico August 30, 2018

1.0 INTRODUCTION

This delineation and remediation report is submitted to the New Mexico Oil Conservation Division (OCD) District 1 on behalf of Targa Midstream Services, LLC (Targa) for a natural gas liquids (NGL) release from a 6 inch poly line (Site). The release occurred in Unit J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East, Lea County, New Mexico. The geodetic position is North 33° 14' 58.20" and West 103° 06' 07.73". Figure 1 presents a topographic map.

1.1 Background

On August 5, 2017, Targa was notified of the release which was due to valve failure from corrosion on a 6 inch poly line. The line was isolated, blown down and the valve was removed. Targa estimated approximately 7 barrels (bbl) of NGL and 425 thousand cubic feet (Mcf) of gas was released. Wind dispersed NGL as a mist approximately 2,900 feet north and northwest from the source. NGL was dispersed over an area measuring approximately 1,257,240 square feet or about 28.86 acres. No liquid was recovered. Targa representatives submitted the initial C-141 to the OCD District 1 on August 11, 2017. The OCD assigned the release remediation permit number 1RP-4787 with conditions. Appendix A presents the OCD approved initial C-141.

1.2 Physical Setting

The physical setting is as follows:

- Elevation is approximately 3,825 feet above mean sea level (amsl);
- Topography slopes gently toward the east;
- Surface water accumulates in a low area located southeast of the Site;
- The soils are designated as "Kimbrough-Lea complex" and "Kimbrough Gravelly Loam", consisting of calcareous alluvium derived from reworking the Blackwater Draw (Pleistocene) and Ogallala (Pliocene) formations, in descending order;
- The soil developed over cemented material (caliche);
- The upper geological unit is the Tertiary-age Blackwater Draw and Ogallala formations, in descending order, comprised of very fine to medium-grained quartz sand and gravel, with minor amount of silt and clay with indistinct to massive crossbeds;
- The Ogallala formation is underlain by clay, silty clay, shale and sandstone of the Chinle formation (Triassic) and is about 75 feet thick;
- The nearest fresh water well is located about 900 feet southwest (cross gradient) in Unit L (NW/4, SW/4), Section 28, Township 12 South, Range 38 East;
- The well is used for livestock watering and has a reported depth to groundwater of approximately 18 feet below ground surface (bgs).

1RP-4787

Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico August 30, 2018

1.3 Remediation Action Levels

Remediation action levels (RRAL) were calculated for benzene, BTEX and TPH based on the following criteria established by the OCD in *"Guidelines for Remediation of Leaks, Spills and Releases, August 13,* 1993":

Criteria	Result	Score
Depth-to-Groundwater	<50 feet	20
Wellhead Protection Area	Yes	20
Distance to Surface Water Body	<200 Horizontal Feet	20

The following RRAL apply to the release for ranking score: 60

- Benzene 10 mg/Kg
- BTEX 50 mg/Kg
- TPH 100 mg/Kg

The delineation limit for chloride in soil is 250 mg/Kg, plus 10 feet further in depth with concentrations below 250 mg/Kg.

1.4 Initial Soil Samples and Microblaze® Application

August 7, 2017, personnel from Larson & Associates, Inc. (LAI) met at the Site with Targa personnel and the landowner (Jeff Decker) to discuss the release. LAI personnel used a hand trowel to collect surface soil samples at seven (7) locations (S-1 through S-7) beginning near the source (S-1) and terminating about 1,000 feet north and northwest of the source (S-7). The soil samples were collected between ground surface and about 6 inches below ground surface (bgs). The samples were collected in laboratory containers and delivered under preservation and chain of custody to Permian Basin Environmental Lab (PBEL) in Midland, Texas. The laboratory analyzed the samples for BTEX (sum of benzene, toluene, ethylbenzene and xylenes) by EPA SW-846 Method 8021B, total petroleum hydrocarbons (TPH) by Method 8015M including gasoline range organics (GRO), diesel range organics (DRO) and oil range organics (ORO), and chloride by Method 300. Table 1 presents the initial soil sample analytical data summary. Figure 2 presents an aerial map showing the initial soil sample locations.

Benzene and BTEX were below the RRAL in samples S-1 through S-7. TPH exceeded the RRAL in samples of 100 milligrams per kilogram (mg/Kg) in samples S-1 (12,850 mg/Kg), S-2 (3,920 mg/Kg) and S-3 (411.3 mg/Kg). Chloride was above 250 mg/Kg in samples S-1 (2,680 mg/kg) and S-2 (1,640 mg/Kg).

Between August 8 and 25, 2017, LAI personnel treated the spill area with Microblaze microbial amendment. An 8% solution of Microblaze amendment and water was applied to soil and vegetation between the source and sample location S-4. A 6% solution of Microblaze amendment and water was

1RP-4787 Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico August 30, 2018

applied to soil and vegetation between sample locations S-4 and S-7. A 3% solution of Microblaze amendment and water was applied to soil and vegetation over the remaining release area beyond sample location S-7. Figure 3 presents an aerial map of the Microblaze application area.

2.0 RELEASE DELINEATION AND REMEDIATION CONFIRMATION

On August 16, 2017, LAI submitted a delineation plan to OCD District 1, on behalf of Targa, in response to the initial C-141. The delineation plan proposed the following:

- Collect soil samples to delineate TPH and chloride vertically at sample locations S-1, S-2, S-3, S-4 and S-6; and
- Collect soil samples at five (5) locations (S-8 through S-12) outside the release area east, west and south to horizontally delineate the release.

OCD approved the delineation plan on October 16, 2017. Appendix B presents OCD correspondence.

Between October 17, 2017 and December 5, 2017, LAI personnel collected delineation and remediation confirmation soil samples with direct push technology (DPT) at locations S-1 through S-4 and S-6. Soil samples were collected from ground surface to approximately 6 inches bgs to assess bioremediation of hydrocarbons with Microblaze[®], from 6 inches to 1 foot bgs and every 1 foot thereafter (i.e., 1 to 2, 2 to 3 feet) until refusal on calcihe which occurred between approximately 2 and 3 feet bgs. The DPT core barrel was equipped with dedicated polyethylene liners to minimize sample cross contamination. Soil samples were collected at locations S-7 through S-24 from ground surface to approximately 6 inches bgs with a stainless steel hand auger. The auger bucket was thoroughly cleaned between samples with a solution of potable water and laboratory grade detergent (Alkonox[®]) and rinsed with distilled water.

On December 5, 2017, Scarborough Drilling, Inc. (SDI) used an air rotary rig and jam tube sampler to collect deeper soil samples at locations S-1 and S-2 for chloride delineation. Soil samples were collected from S-1 at 5 to 6 feet, 10 to 11 feet, 15 to 16 feet and 20 to 21 feet. Soil samples were collected from S-2 at 5 to 6 feet, 10 to 11 feet and 15 to 16 feet. The borings were plugged with bentonite. The samples were collected in laboratory supplied sample jars that were labeled, preserved and delivered under chain of custody to Permian Basin Environmental Laboratory (PBEL) in Midland, Texas. The laboratory analyzed the samples for TPH by EPA SW-846 Method 8015M, including GRO, DRO and ORO, and chloride by EPA Method 300. Table 2 presents the delineation and remediation confirmation soil sample analytical data summary. Figure 4 presents an aerial map showing the delineation and remediation confirmation sample locations. Appendix C presents the laboratory report.

1RP-4787 Delineation and Remediation Report Targa Midstream Services, LLC Lea County, New Mexico August 30, 2018

The laboratory reported TPH above the reporting limit (RL) initially in the following samples:

- S-1, 0.0 0.5' (127 mg/Kg)
- S-2, 0.0 0.5' (194.9 mg/Kg)
- S-20, 0.0 0.5' (111 mg/Kg)
- S-21, 0.0 0.5' (107.3 mg/Kg)

The laboratory results demonstrate that Microblaze[®] reduced the TPH concentrations at locations S-1, 0.0 to 0.5 feet and S-2, 0.0 to 0.5 feet by about 99.01 percent and 95.03 percent, respectively. Microblaze[®] reduced the TPH concentration at S-3, 0.0 to 0.5 feet from 411.3 mg/Kg to less than the analytical method reporting limit (29.1 mg/Kg). Soil samples S-20 (111 mg/Kg) and S-21 (107.3 mg/Kg) were collected outside the spray area and reported TPH concentrations slightly above the RRAL (100 mg/Kg).

Chloride decreased at location S-1, 0.0 to 0.5 feet from 2,680 mg/Kg to 617 mg/Kg and S-2, 0.0 to 0.5 feet from 1,640 mg/Kg to 26.3 mg/Kg following treatment with Microblaze[®]. Chloride was delineated vertically to 250 mg/Kg and maintained for 10 additional feet in depth at locations S-1 and S-2. Chloride was below 250 mg/Kg in the remaining samples except S-12, 0.0 to 0.5 feet (489 mg/Kg) which is the background sample collected south and upwind from the release. Appendix D presents photographs.

3.0 RECOMMENDATION

Based on the reduction in TPH concentrations at S-1 (99.01%) and S-2 (95.03%) and TPH concentrations marginally above the RRAL (100 mg/Kg) in samples S-20 (111 mg/Kg) and S-21 (107.3 mg/Kg), located outside the spray area, Targa recommends no further action for TPH. Chloride was delineated within the release area to 250 mg/Kg plus 10 feet further in depth with concentrations below 250 mg/Kg. Chloride was 489 mg/Kg in the background sample (S-12) located upwind (south) of the release. Targa therefore recommends no further action for chlorides. For these reasons, Targa requests closure for remediation permit number 1RP-4787. Appendix E presents the final C-141.

TABLES

•.

Table 1 IRP-4787

1RP-4787

Initial Soil Sample Analytical Data Summary

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

				rea con	Lea county, New Mexico	CO			Page 1 of 1
sample	Collection Date	Depth (Inches)	Benzene (mg/Kg)	BTEX (me/Ke)	C6 - C10 (mg/Kg)	>C10 - C28 (mg/Kg)	>C28 - C35	HdL	Chloride
RRAL:			10	50	10101	19,119,111	1911/9111	100	(BN/SIII) *250
S-1	08/07/2017	9 - 0	0.0738	11.9838	1,650	9,760	1,440	12,850	2,680
S-2	08/07/2017	9 - 0	<0.0241	0.4464	239	3,120	560	3,920	1,640
S-3	08/07/2017	9 - 0	<0.0227	<0.1591	<28.4	345	66.3	411.3	96.9
S-4	08/07/2017	9 - 0	<0.0217	<0.1521	<27.2	89.1	<27.2	89.1	10.5
S-5	08/07/2017	0 - 6	<0.0217	<0.1521	<27.2	<27.2	<27.2	<27.2	4.72
S-6	08/07/2017	0 - 6	<0.0213	<0.1491	<26.6	36.9	<26.6	36.9	7.73
S-7	08/07/2017	9 - 0	<0.0233	<0.1629	<29.1	<29.1	<29.1	<29.1	7.45
Notes: Labo	Notes: Laboratory analysis performed by Permian	performed by I		nvironmental L	ab. Midland. Te	Basin Environmental Lab. Midland. Texas. bv SW-846 Method 8021B (BTEX). Method	Method 8021B	(RTFX) Matho	

u, iviiuiariu, rexas, by SW-846 ivietnog 8U21B (BLEX), ivietnog 8015M (GRO, DRO and ORO) and Method 300 (chloride).

Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

*: OCD delineation limit

Bold and highlighted denotes analyte detected at concentration above the OCD Recommended Remediation Action Level (RRAL)

Table 2

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

Sample Collection Date Depth Status G.G.10 >C10-C28 >CC8-C35 Tell Collection RNA.:	Sample								
Date (Feet) (mg/kg) (2.2	Collection	Depth	Status	C6 - C10	>C10 - C28	>C28 - C35	HdT	Chloride
100 1011/2017 0.0 - 0.5 Pre Microbiaze 1.650 9,60 1,440 1.250 10/11/2017 10 - 10 00 0.5 Post Microbiaze 2.8.7 127 2.8.7 127 10/11/2017 10 - 20 In-Situ <29.4 76.9 <29.4 76.9 10/11/2017 2.0 - 30 In-Situ <29.4 76.9 <29.4 76.9 10/11/2017 10 - 0.0 In-Situ <29.4 76.9 <29.4 76.9 12/05/2017 15 - 16 In-Situ <29.4 76.9 <39.20 78.3 12/05/2017 15 - 16 In-Situ <29.1 76.9 53.00 43.8 12/05/2017 10 - 10 In-Situ <29.1 78.3 78.3 12/05/2017 10 - 10 In-Situ <29.1 78.3 78.3 12/05/2017 10 - 10 In-Situ <29.1 78.3 78.3 12/05/2017 10 - 11 In-Situ 28.1 16.0 34.9 <t< th=""><th></th><th>Date</th><th>(Feet)</th><th></th><th>(mg/Kg)</th><th>(mg/Kg)</th><th>(mg/Kg)</th><th>(mg/Kg)</th><th>(mg/Kg)</th></t<>		Date	(Feet)		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
08/07/2017 0.00.5 Pre Microblaze 1,500 1,440 1,277 1,277 10/17/2017 0.5-1.0 hn-5(tu ~ 29.4 79.9 ~ 29.4 76.9 10/17/2017 0.5-1.0 hn-5(tu ~ 29.4 76.9 ~ 29.4 76.9 10/17/2017 10-11 nn-5(tu ~ 29.4 76.9 ~ 29.4 76.9 12/05/2017 10-11 nn-5(tu ~ 29.4 76.9 ~ 29.4 76.9 12/05/2017 10-11 nn-5(tu ~ -2.94 76.9 ~ -2.94 76.9 12/05/2017 10-12 nn-5(tu ~ -2.94 76.9 ~ -2.87 74.3 12/05/2017 10-12 nn-5(tu ~ -2.81 34.9 39.7 38.7 12/05/2017 10-12.0 nn-5(tu ~ -2.81 34.8 29.4 38.7 12/05/2017 10-12.0 nn-5(tu ~ -2.81 34.8 29.2 38.7 12/05/2017 10-17/2017 10-10.2 not Microblaze	RRAL:							100	*250
10/17/2017 0.0-0.5 Prest Microbiate 2.8.1 1.2/1 1.2/1 10/17/2017 0.5-2.0 Post Microbiate 2.9.4 7.6.9 2.9.4 7.6.9 10/17/2017 1.0-2.0 In-Situ 2.9.4 7.6.9 2.9.4 7.6.9 12/05/2017 1.0-11 In-Situ 2.9.4 7.6.9 2.9.4 7.6.9 12/05/2017 10-11 In-Situ 2.9.4 7.6.9 2.9.4 7.6.9 12/05/2017 10-11 In-Situ 2.9.4 7.6.9 2.9.4 7.6.9 12/05/2017 10-11 In-Situ 2.9.1 7.6.9 3.9.0 3.9.0 10/17/2017 10-2.0 Pre Microbiaze 2.9.1 3.8.7 2.8.7 3.8.7 10/17/2017 10-2.0 In-Situ 2.8.1 3.4.9 3.9.9 3.4.9 12/05/2017 15-16 In-Situ 2.8.7 2.8.7 2.8.7 3.8.7 12/05/2017 15-16 In-Situ 2.8.7 2.8.7 2.8.7 <t< td=""><td>S-1</td><td>08/07/2017</td><td>1</td><td>Pre Microblaze</td><td>1,650</td><td>9,760</td><td>1,440</td><td>12,850</td><td>2,680</td></t<>	S-1	08/07/2017	1	Pre Microblaze	1,650	9,760	1,440	12,850	2,680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1102/11/01	L	Post Microblero	1.822	171	/.87>	171	/19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		/107//1/01	1		4.622	6.67	<29.4	6.6/	866
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/107//1/01	1.0 - 2.0	In-Situ	<30.1	44.3	<30.1	44.3	563
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/1//201/	2.0 - 3.0	In-Situ	<29.4	76.9	<29.4	76.9	208
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12/05/2017	1	In-Situ	1	1	I	1	13.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12/05/2017	1	In-Situ	1	1	I	ł	10.3
12/05/2017 $20 - 21$ In-Situ $$ $$ $$ 08/07/2017 00 - 0.5 Pre Microblaze 239 3120 560 3920 3920 10/17/2017 0.0 - 0.5 Post Microblaze 231 160 34.9 194.9 10/17/2017 0.0 - 0.5 Post Microblaze 231.1 818.7 238.7		12/05/2017	1	In-Situ	1	1	i	1	2.56
08/07/2017 0.0-0.5 Pre Microblaze 239 3.120 560 3.920 10/17/2017 0.0-0.5 Post Microblaze <28.1		12/05/2017	1	In-Situ	1	1	1	1	<1.09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S-2	08/07/2017	0.0 - 0.5	Pre Microblaze	239	3,120	560	3,920	1.640
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/17/2017	0.0 - 0.5	Post Microblaze	<28.1	160	34.9	194.9	26.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/17/2017	0.5 - 1.0	Post Microblaze	<29.1	34.8	<29.1	34.8	49.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/17/2017	1.0 - 2.0	In-Situ	<28.7	<28.7	<28.7	<38.7	196
12/05/2017 10-11 In-Situ -		12/05/2017	5-6	In-Situ	I	I	1	1	<1.06
12/05/201715-16In-Situ08/07/20170.0-0.5Pre Microblaze < 28.4 345 66.3 411.3 08/07/20170.0-0.5Post Microblaze < 29.1 < 29.1 < 29.1 < 29.1 10/17/20170.0-0.5Post Microblaze < 23.8 < 27.8 < 27.8 < 27.8 10/17/20171.0-2.0Pre Microblaze < 27.8 < 27.8 < 27.8 < 27.8 10/17/20170.0-0.5Pre Microblaze < 27.8 < 27.8 < 27.8 < 27.8 10/17/20170.0-0.5Pre Microblaze < 27.8 < 27.8 < 27.8 < 27.8 10/17/20170.0-0.5Pre Microblaze < 27.2 < 27.2 < 27.2 < 27.2 10/17/20171.0-2.0In-situ < 28.7 < 28.7 < 28.7 < 28.7 08/07/20170.0-0.5Pre Microblaze < 27.2 < 27.2 < 27.2 < 27.2 08/07/20170.0-0.5Pre Microblaze < 26.6 < 26.6 < 26.6 < 26.6 08/07/20170.0-0.5Pre Microblaze < 27.2 < 27.2 < 27.2 < 27.2 08/07/20170.0-0.5Pre Microblaze < 26.6 < 26.6 < 26.6 < 26.6 08/07/20170.0-0.5Pre Microblaze < 27.2 < 27.2 < 27.2 < 27.2 08/07/20170.0-0.5Pre Microblaze < 26.6 < 26.6 < 26.6 < 26.6 08/07/20170.0-0.5Pre Microblaze		12/05/2017	10 - 11	In-Situ	I	1	I	1	<1.08
08/07/2017 0.0-0.5 Pre Microblaze <28.4 345 66.3 411.3 10/17/2017 0.0-0.5 Post Microblaze <29.1		12/05/2017	15 - 16	In-Situ	1	1	1	L	<1.06
10/17/20170.00.00.5Post Microblaze < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 < 29.1 <td>S-3</td> <td>7107/20/80</td> <td>00-05</td> <td>Pre Microhlaze</td> <td>284</td> <td>345</td> <td>66.3</td> <td>4112</td> <td>96.9</td>	S-3	7107/20/80	00-05	Pre Microhlaze	284	345	66.3	4112	96.9
10/17/2017 0.5 - 1.0 Post Microbiaze <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <29.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.7 <28.7 <27.8 <27.7 <28.7 <27.7 <28.7 <27.7 <28.7 <27.7 <28.7 <27.8 <27.7 <28.7 <27.8 <27.2 <27.2 <27.2 <27.2 <27.2 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28		10/17/2017	0.0 - 0.5	Post Microblaze	<29.1	<29.1	<29.1	<29.1	8.16
10/17/2017 1.0 - 2.0 In-situ <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.6		10/17/2017	0.5 - 1.0	Post Microblaze	<29.8	<29.8	<29.8	<29.8	71.2
08/07/2017 0.0 - 0.5 Pre Microblaze <27.2 89.1 <27.2 89.1 0.0 </td <td></td> <td>10/17/2017</td> <td>1.0 - 2.0</td> <td>In-situ</td> <td><27.8</td> <td><27.8</td> <td><27.8</td> <td><27.8</td> <td>50.1</td>		10/17/2017	1.0 - 2.0	In-situ	<27.8	<27.8	<27.8	<27.8	50.1
10/17/2017 0.0 - 0.5 Post Microblaze <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.8 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.8 <28	S-4	08/07/2017	0.0 - 0.5	Pre Microblaze	<27.2	89.1	<27.2	89.1	10.5
10/17/2017 0.5 - 1.0 Post Microblaze <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.4 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27		10/17/2017	0.0 - 0.5	Post Microblaze	<27.8	<27.8	<27.8	<27.8	1.11
10/17/2017 1.0 - 2.0 In-situ <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.7 <28.4 <28.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.9 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.6 <26.9 <26.9 <26.9 <26.9 <26.9 <28.4 <28.4 <28.4 <28.4 <28.6 <28.6 <28.6		10/17/2017	0.5 - 1.0	Post Microblaze	<27.2	<27.2	<27.2	<27.2	<1.09
08/07/2017 0.0 - 0.5 Pre Microblaze <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.2 <27.		10/17/2017	1.0 - 2.0	In-situ	<28.7	<28.7	<28.7	<28.7	12.0
08/07/2017 0.0 - 0.5 Pre Microblaze <26.6 36.9 <26.6 36.9 10/17/2017 0.0 - 0.5 Post Microblaze <26.6	S-5	08/07/2017	0.0 - 0.5	Pre Microblaze	<27.2	<27.2	<27.2	<27.2	4.72
0.0 - 0.5 Post Microblaze <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.6 <26.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <20.4 <td>S-6</td> <td>08/07/2017</td> <td>0.0 - 0.5</td> <td>Pre Microblaze</td> <td><26.6</td> <td>36.9</td> <td><26.6</td> <td>36.9</td> <td>7.73</td>	S-6	08/07/2017	0.0 - 0.5	Pre Microblaze	<26.6	36.9	<26.6	36.9	7.73
0.5 - 1.0 Post Microblaze <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <29.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <td></td> <td>10/17/2017</td> <td>0.0 - 0.5</td> <td>Post Microblaze</td> <td><26.6</td> <td><26.6</td> <td><26.6</td> <td><26.6</td> <td><1.06</td>		10/17/2017	0.0 - 0.5	Post Microblaze	<26.6	<26.6	<26.6	<26.6	<1.06
1.0 - 2.0 In-situ <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4 <28.4		10/17/2017	0.5 - 1.0	Post Microblaze	<29.4	<29.4	<29.4	<29.4	<1.18
2.0 - 3.0 In-situ <26.9 <26.9 <26.9 <26.9		10/17/2017	1.0 - 2.0	In-situ	<28.4	<28.4	<28.4	<28.4	<1.14
		10/17/2017	2.0 - 3.0	In-situ	<26.9	<26.9	<26.9	<26.9	<1.08

Table 2

Delineation and Remediation Soil Sample Analytical Data Summary 1RP-4787

Targa Midstream Services, LLC, Decker Leak

UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East

Lea County, New Mexico

ŠĔ	Depth (Inches)	Status	C6 - C10 (mg/Kg)	>C10 - C28 (mg/Kg)	>C28 - C35 (mg/Kg)	TPH (me/Ke)	Chloride (mg/Kg)
	4		5	10-10-1	19.19.11	100	*250
0.0 - 0.5		Post Microblaze	<29.1	<29.1	<29.1	<29.1	7.45
0.0 - 0.5 0	0	Outside Spray Area	<26.9	<26.9	<26.9	<26.9	3.02
0.0 - 0.5 0	0	Outside Spray Area	<25.5	<25.5	<25.5	<25.5	5.33
0.0 - 0.5 01	ō	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	2.68
0.0 - 0.5 0	0	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	3.73
0.0 - 0.5 Bai	Ba	Background/Upwind	<26.6	<26.6	<26.6	<26.6	489
0.0 - 0.5 01	O	Outside Spray Area	<26.9	<26.9	<26.9	<26.9	3.06
0.0 - 0.5 Ou	no	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	3.21
0.0 - 0.5 Ou	no	Outside Spray Area	<26.0	<26.0	<26.0	<26.0	4.60
0.0 - 0.5 Out	Out	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	2.35
0.0 - 0.5 Out	Out	Outside Spray Area	<26.3	<26.3	<26.3	<26.3	2.56
0.0 - 0.5 Out	Out	Outside Spray Area	<26.6	<26.6	<26.6	<26.6	3.35
0.0 - 0.5 Out	Outs	Outside Spray Area	<27.2	55.2	41.8	97.0	2.47
0.0 - 0.5 Out	Out	Outside Spray Area	<27.5	71.9	40.0	111	<1.10
0.0 - 0.5 Out	Out	Outside Spray Area	<27.8	70.3	37.0	107.3	<1.11
0.0 - 0.5 Pc	bd	ost Microblaze	<26.6	<26.6	<26.6	<26.6	<1.06
0.0 - 0.5 Pc		ost Microblaze	<26.3	<26.3	<26.3	<26.3	<1.05
0.0 - 0.5 Pc		oct Microhlazo	0962	76.0	0907	<769	<1.08

Table 2

1RP-4787

Delineation and Remediation Soil Sample Analytical Data Summary UL J (NW/4, SE/4), Section 28, Township 12 South, Range 38 East Targa Midstream Services, LLC, Decker Leak

Lea County, New Mexico

Page 3 of 3

Notes: analysis performed by Permian Basin Environmental Lab, Midland, Texas, by SW-846 Method 8015M (TPH) and Method 300 (chloride). Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

*: OCD delineation limit

Bold and highlighted denotes analyte detected at concentration above the OCD Recommended Remediation Action Level (RRAL)

FIGURES

Figure 1 - Topographic Map

Figure 2 - Aerial Map Showing Release Area and Initial Soil Sample Locations

Figure 4 - Aerial Map Showing Delineation and Remediation Confirmation Soil Sample Locations

APPENDIX A

.

Initial C-141

District 1 1625 N. French Dr., Hobbs, NM 88240 District 11 811 S. Fitst St., Artesia, NM 88210 District 111 1000 Rio Brazos Road, Aztec, NM 87410 District 1V

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 0. 1 0, 1 . 5

Form C-141 Revised August 8, 2011

pOY1722353426

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC

	nets Di Saut	a Fe, NM 8750	5	Sa	nta Fe	. NM 875	05			
			Rel	ease Notific		visit-		ction	1	
	DBox: P.C		am Servi		(DPERAT Contact: Ra Telephone N	OR ndy Duncan No. (575)631-7(65		ial Report 🛛 Final Report
				1		acinty ryp	e: Gas gatherin	ig line		
Surface Ov	vner: Jell I	Jecker		Mineral O	wher	State			API No	
Unit Letter	C	TT 1.	0	where the second s		OF REI				
C. G	Section 28	Township 12S	Range 38E	Feet from the	North/	South Line	Feet from the	East/	West Line	County Lea
				L	atitude	: Longitu	le:			Au
				NAT	URE	OF RELI				
Type of Rele	case: Gas ai	nd pipeline lie	quids			Volume of 7 BBLS c	Release:: f liquid, 425 mef	gas	Volume F NA	Recovered:
Source of Re						8/5/2017.7		e:		Hour of Discovery 7, 7:30 PM
Was Immediate Notice Given?					uired	If YES, To	whom?			
By Whom?						Date and H	and the second se			
Was a Water	course Reac		Yes 🖾	No		If YES, Vo	lume Impacting t	he Wat	ercourse.	
If a Watercou	urse was Imp	pacted, Descri	be Fully.*				IVED /ia Yu at 2	:35	pm, Au	ıg 11, 2017
Describe Cau Targa's 6" po installed. Th	oly pipeline	was discovere	d leaking		ternal co	prosion on a	2" valve. The lin	ie was i	solated, blo	wn down and a new valve
Describe Are	a Affected a	nd Cleanup A	ction Tak	en.*						
The leak caus	sed hydrocar	bon spraying	over the a	ffected area. The	e area af					
						fected is bein	g determined and	l deline	ated by Lar	son and Associates.
I hereby certi regulations al public health should their o or the enviror	l operators a or the enviro operations ha oment. In ad	re required to onment. The we failed to a Idition, NMO	ven above) report an acceptanc dequately CD accep	is true and comple d/or file certain re c of a C-141 repor investigate and re	ete to the lease no t by the mediate	e best of my tifications ar NMOCD ma contamination	knowledge and u d perform corree rked as "Final Ro on that pose a thr	ndersta tive act eport" c eat to g	nd that purs ions for rela locs not reli round water	son and Associates. want to NMOCD rules and eases which may endanger eve the operator of liability r, surface water, human health ompliance with any other
I hereby certi regulations al public health should their o or the enviror federal, state,	l operators a or the enviro operations ha oment. In ad	re required to onment. The we failed to a Idition, NMO	ven above) report an acceptanc dequately CD accep	is true and comple d/or file certain re c of a C-141 repor investigate and re	ete to the lease no t by the mediate	e best of my tifications ar NMOCD ma contamination	knowledge and u d perform corree rked as "Final Ro n that pose a thre the operator of 1	ndersta tive act 2port" o eat to g respons	nd that purs ions for rele loes not reli round water ibility for co	uant to NMOCD rules and cases which may endanger eve the operator of liability , surface water, human health
I hereby certi regulations al public health should their o or the enviror federal, state, Signature:	or the environment of the enviro	re required to onment. The twe failed to a Idition, NMO s and/or regu	ven above) report an acceptanc dequately CD accep	is true and comple d/or file certain re c of a C-141 repor investigate and re	ete to the lease no τ by the mediate eport do	e best of my tifications ar NMOCD ma contamination es not relieve	knowledge and u d perform corree rked as "Final Ro n that pose a thre the operator of 1	ndersta tive act cport" c cat to g cespons SERV	nd that purs ions for rela loes not reli round water ibility for co <u>ATION</u>	uant to NMOCD rules and cases which may endanger eve the operator of liability , surface water, human health ompliance with any other
I hereby certi regulations al public health should their o or the enviror federal, state, Signature: Printed Name	I operators a or the enviro operations ha ment. In ad or local law	re required to onment. The twe failed to a Idition, NMO s and/or regu	ven above) report an acceptanc dequately CD accep	is true and comple d/or file certain re c of a C-141 repor investigate and re	ete to the lease no t by the mediate eport do	e best of my tifications ar NMOCD ma contamination es not relieve	knowledge and u d perform corree rked as "Final Ro on that pose a thre the operator of r <u>OIL CONS</u> Invironmental Sp 8/11/2017	ndersta tive act cport" c cat to g espons SERV occialis	nd that purs ions for rela loes not reli round water ibility for co <u>ATION</u>	uant to NMOCD rules and cases which may endanger eve the operator of liability c, surface water, human health ompliance with any other <u>DIVISION</u>
I hereby certi regulations al public health should their o	I operators a or the enviro operations ha ment. In ad or local law moly (Randy Dur anager	ne required to comment. The twe failed to a idition, NMO s and/or regu	ven above o report an acceptanc dequately CD accep lations.	is true and comple d/or file certain re c of a C-141 repor investigate and re	ete to the lease no t by the mediate eport do	e best of my tifications ar NMOCD ma contamination es not relieve approved by approved by approved by approved by approved by	knowledge and u d perform corree rked as "Final Ro on that pose a thre the operator of r <u>OIL CONS</u> Invironmental Sp 8/11/2017	ndersta tive act cport" c cat to g espons SERV	nd that purs ions for rele loes not reli round water ibility for ca <u>'ATION</u> D t:	uant to NMOCD rules and cases which may endanger eve the operator of liability , surface water, human health ompliance with any other <u>DIVISION</u>

fOY1722353253

Operator/Responsible Party,

The OCD has received the form C-141 you provided on _8/10/2017_ regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number _1RP-4787__ has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District _1_ office in __Hobbs____ on or before _9/11/2017_. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

• Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.

• Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.

• Nominal detection limits for field and laboratory analyses must be provided.

• Composite sampling is not generally allowed.

• Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

•Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.

• If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.

• Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold OCD Environmental Bureau Chief 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505-476-3465 jim.griswold@state.nm.us

APPENDIX B

OCD Communications

Mark Larson

From:	Yu, Olivia, EMNRD [Olivia, Yu@state.nm.us]
Sent:	Monday, October 16, 2017 10:52 AM
To:	Mark Larson
Cc:	'Higginbotham, Christina'; 'Wrangham, Calvin W.'; 'Duncan, Randy'; 'England, Ralph E.'; 'Klein, Cindy D.'
Subject:	RE: 1RP-4787 - Delineation Plan for NGL Release
Attachments:	approved_1RP-4787 - Delination Pan, NGL Release, Lea County, New Mexico, August 16, 2017.pdf; 1RP4787_approvedFigure 2 - Aerial Map Showing Soil Sample Locations.pdf

Dear Mr. Larson:

NMOCD approved of the additional delineation and sampling of the overspray area for 1RP-4787. Please see attachments for your records.

Thanks,

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Mark Larson [mailto:Mark@laenvironmental.com] Sent: Monday, October 2, 2017 3:59 PM

To: Yu, Olivia, EMNRD <Olivia.Yu@state.nm.us>

Cc: 'Higginbotham, Christina' <chigginbotham@targaresources.com>; 'Wrangham, Calvin W.' <CalvinWrangham@targaresources.com>; 'Duncan, Randy' <RDuncan@targaresources.com>; 'England, Ralph E.' <REngland@targaresources.com>; 'Klein, Cindy D.' <CynthiaKlein@targaresources.com> Subject: Re: 1RP-4787 - Delineation Plan for NGL Release

Olivia,

This message is submitted to the New Mexico Oil Conservation Division (OCD on behalf of Targa Midstream Services, LLC (Targa) in response to your request for additional information pertaining to delineation samples from the overspray are for 1RP-4787. Please find the attached exhibit showing proposed locations for collecting confirmation soil samples (0 to 6 inches) from the overspray area north of S-7. The samples will be analyzed for total petroleum hydrocarbons (TPH) including gasoline range organics (GRO) diesel range organics and oil range organics (ORO) by EPA WSW-846 Method 8015M and chloride by Method 300. Please contact Christina Higginbotham with Targa at (713) 584-1396 or email <u>chigginbotham@targaresources.com</u> or me if you have questions or if we are approved the proceed.

Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432-556-8656 Fax – 432-687-0456 mark@laenvironmental.com

arson & ssociates, Inc.

"Serving the Permian Basin Since 2000"

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us] Sent: Friday, September 22, 2017 12:29 PM To: Mark Larson Ce: 'Higginbotham, Christina'; 'Wrangham, Calvin W.'; 'Duncan, Randy'; 'Klein, Cindy D.'; 'England, Ralph E.' Subject: RE: Re: 1RP-4787 - Delineation Plan for NGL Release

Dear Mr. Larson:

Please address this concern regarding the delineation/release characterization workplan for 1RP-4787. What is the rationale for absence of sample locations north of S-7? If this is overspray area, NMOCD still requires verification that soil in this area are within permissible limits. Laboratory analyses of surface soil samples (0-6") representative of the overspray area are required.

Thanks, Olivia

From: Mark Larson [mailto:Mark@laenvironmental.com] Sent: Wednesday, September 20, 2017 3:43 PM To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>> Cc: 'Higginbotham, Christina' <<u>chigginbotham@targaresour</u>

Cc: 'Higginbotham, Christina' <<u>chigginbotham@targaresources.com</u>>; 'Wrangham, Calvin W.' <<u>CalvinWrangham@targaresources.com</u>>; 'Duncan, Randy' <<u>RDuncan@targaresources.com</u>>; 'Klein, Cindy D.' <<u>CynthiaKlein@targaresources.com</u>>; 'England, Ralph E.' <<u>REngland@targaresources.com</u>> Subject: FW: Re: 1RP-4787 - Delineation Plan for NGL Release I'm following up on the attached delineation plan that was submitted for 1RP-4787 on August 17, 2017. Please contact me if you have questions. Mark

From: Mark Larson Sent: Thursday, August 17, 2017 4:55 PM To: 'Yu, Olivia, EMNRD' Cc: 'Higginbotham, Christina'; 'Wrangham, Calvin W.'; 'Duncan, Randy'; 'Klein, Cindy D.'; 'REngland@targaresources.com' Subject: Re: 1RP-4787 - Delineation Plan for NGL Release

Olivia,

Larson & Associates, Inc. (LAI), on behalf of Targa Midstream Services, LLC (Targa), submits the attached document as the plan to delineate the release of natural gas liquids (NGL) from a 6 inch poly line in connection with 1RP-4787. LAI initiated remediation by application of Microblaze® microbial amendment to reduce hydrocarbons staining on vegetation and soil. The document presents the laboratory analysis of initial surface soil samples collected on August 7, 2017. Please contact Christina Higginbotham with Targa at (713) 584-1396 or email chigginbotham@targaresources.com or me if you have questions or if we arre approved the proceed.

Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office – 432-687-0901 Cell – 432-556-8656 Fax – 432-687-0456 <u>mark@laenvironmental.com</u>

arson & _____ ssociates, Inc.

"Serving the Permian Basin Since 2000"

APPROVED

By Olivia Yu at 9:38 am, Oct 16, 2017

NMOCD approved of the proposed additional delineation for 1RP-4787.

1RP-4787 DELINEATION PLAN

NGL Release

Lea County, New Mexico

Latitude: N33° 14' 58.20" Longitude: W103° 06' 07.73"

LAI Project No. 17-0177-01

August 16, 2017

Prepared for:

Targa Midstream Services, LLC P.O. Box 1689 Lovington, New Mexico 88260

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, Texas 79701

Mark J. Larson, P.G. Certified Professional Geologist #10490

Figure 2 - Aerial Map Showing Spray Area and Surface Soil Sample Location, August 7, 2017

Mark Larson

From:	Yu, Olivia, EMNRD [Olivia.Yu@state.nm.us]
Sent:	Friday, September 22, 2017 12:29 PM
To:	Mark Larson
Cc:	'Higginbotham, Christina'; 'Wrangham, Calvin W.'; 'Duncan, Randy'; 'Klein, Cindy D.'; 'England, Ralph E.'
Subject:	RE: Re: 1RP-4787 - Delineation Plan for NGL Release

Dear Mr. Larson:

Please address this concern regarding the delineation/release characterization workplan for 1RP-4787. What is the rationale for absence of sample locations north of S-7? If this is overspray area, NMOCD still requires verification that soil in this area are within permissible limits. Laboratory analyses of surface soil samples (0-6") representative of the overspray area are required.

Thanks, Olivia

From: Mark Larson [mailto:Mark@laenvironmental.com] Sent: Wednesday, September 20, 2017 3:43 PM To: Yu, Olivia, EMNRD < Olivia.Yu@state.nm.us> Cc: 'Higginbotham, Christina' < chigginbotham@targaresources.com >; 'Wrangham, Calvin W.' < CalvinWrangham@targaresources.com >; 'Duncan, Randy' <<u>RDuncan@targaresources.com</u>>; 'Klein, Cindy D.' <<u>CynthiaKlein@targaresources.com</u>>; 'England, Ralph E.' <<u>REngland@targaresources.com</u>> Subject: FW: Re: 1RP-4787 - Delineation Plan for NGL Release

Hello Olivia,

I'm following up on the attached delineation plan that was submitted for 1RP-4787 on August 17, 2017. Please contact me if you have questions. Mark

From: Mark Larson Sent: Thursday, August 17, 2017 4:55 PM To: 'Yu, Olivia, EMNRD' Cc: 'Higginbotham, Christina'; 'Wrangham, Calvin W.'; 'Duncan, Randy'; 'Klein, Cindy D.'; 'REngland@targaresources.com' Subject: Re: 1RP-4787 - Delineation Plan for NGL Release

Olivia,

Larson & Associates, Inc. (LAI), on behalf of Targa Midstream Services, LLC (Targa), submits the attached document as the plan to delineate the release of natural gas liquids (NGL) from a 6 inch poly line in connection with 1RP-4787. LAI initiated remediation by application of Microblaze® microbial amendment to reduce hydrocarbons staining on vegetation and soil. The document presents the laboratory analysis of initial surface soil samples collected on August 7, 2017. Please contact Christina Higginbotham with Targa at (713) 584-1396 or email chigginbotham@targaresources.com or me if you have questions or if we arre approved the proceed.

Respectfully,

Mark J. Larson, P.G. President/Sr. Project Manager 507 N. Marienfeld St., Suite 205 Midland, Texas 79701 Office - 432-687-0901 Cell - 432- 556-8656 Fax-432-687-0456 mark@laenvironmental.com

arson & _____ ssociates, Inc.

"Serving the Permian Basin Since 2000"

Mark Larson

Subject: FW: [EXTERNAL] RE: C-141, Targa Midstream Scvs, Saunders Plt. 8-5-17.pdf Attachments: 1RP4787.pdf

From: Yu, Olivia, EMNRD [mailto:Olivia.Yu@state.nm.us] Sent: Friday, August 11, 2017 3:05 PM To: Klein, Cindy S. Cc: Duncan, Randy; agroves@slo.state.nm.us Subject: [EXTERNAL] RE: C-141, Targa Midstream Scvs, Saunders Plt. 8-5-17.pdf

Dear Ms. Klein:

Note: Please provide the GPS coordinates of the beginning and the end of the release location in C & G of Section 28-T12S-R38E.

The 1RP	for this incident	t is				
4787	8/11/2017	А	Targa Midstream Srvcs.	Saunders Plant	12S-38E-28C&G	8/5/2017

Please note that a release characterization/delineation workplan as detailed in the attachment must be approved by NMOCD BEFORE any remediation work.

Thanks,

Olivia Yu Environmental Specialist NMOCD, District I <u>Olivia.yu@state.nm.us</u> 575-393-6161 x113

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations.

From: Klein, Cindy S. [mailto:CynthiaKlein@targaresources.com] Sent: Thursday, August 10, 2017 9:36 AM To: Yu, Olivia, EMNRD <<u>Olivia.Yu@state.nm.us</u>> Cc: Duncan, Randy <<u>RDuncan@targaresources.com</u>> Subject: C-141, Targa Midstream Scvs, Saunders Plt. 8-5-17.pdf

Ms. Yu,

Please find attached a C-141 for pipeline leak that occurred on August 5, 2017. Please let me know if you have any questions.

Thank You, Cindy Klein

Cindy Klein • <u>Targa Midstream Services LLC</u> • ES&H Supervisor Saunders Gas Plant, Lovington NM | Office: 575.396.3221 Ext. 238 |Cell: 575.631.7093 |Fax: 575.396.7702 email: <u>cklein@targaresources.com</u>

This email (including any attachments and accompanying emails) may contain proprietary and confidential information. If you are not the intended recipient, please telephone the sender and immediately delete this email (including any attachments and accompanying emails). Please do not replicate, disclose, distribute, forward, or retain this e-mail or any part of this email. Thank you. Attention: This message was sent from someone outside of Targo Resources. Always use caution when opening unsolicited attachments or links, even if they appear to have been sent by someone you know.

APPENDIX C

Laboratory Report

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Decker Leak Project Number: 17-0177-01 Location:

Lab Order Number: 7J23004

NELAP/TCEQ # T104704516-16-7

Report Date: 10/30/17

1			
Larson & Associates, Inc.	Project:	Decker Leak	Fax: (432) 687-0456
 P.O. Box 50685	Project Number:	17-0177-01	
Midland TX, 79710	Project Manager:	Mark Larson	

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-8	7J23004-01	Soil	10/20/17 12:30	10-23-2017 09:08
S-9	7J23004-02	Soil	10/20/17 11:20	10-23-2017 09:08
S-10	7J23004-03	Soil	10/20/17 12:30	10-23-2017 09:08
S-11	7J23004-04	Soil	10/20/17 11:10	10-23-2017 09:08
S-12	7J23004-05	Soil	10/20/17 11:00	10-23-2017 09:08
S-13	7J23004-06	Soil	10/20/17 11:30	10-23-2017 09:08
S-14	7J23004-07	Soil	10/20/17 11:35	10-23-2017 09:08
S-15	7J23004-08	Soil	10/20/17 11:45	10-23-2017 09:08
S-16	7J23004-09	Soil	10/20/17 12:10	10-23-2017 09:08
S-17	7J23004-10	Soil	10/20/17 13:20	10-23-2017 09:08
S-18	7J23004-11	Soil	10/20/17 12:15	10-23-2017 09:08
S-19	7J23004-12	Soil	10/20/17 12:50	10-23-2017 09:08
S-20	7J23004-13	Soil	10/20/17 12:55	10-23-2017 09:08
S-21	7J23004-14	Soil	10/20/17 13:05	10-23-2017 09:08
S-22	7323004-15	Soil	10/20/17 11:40	10-23-2017 09:08
S-23	7J23004-16	Soil	10/20/17 11:50	10-23-2017 09:08
S-24	7J23004-17	Soil	10/20/17 12:00	10-23-2017 09:08

Larson & Associates, Inc.	Project: Decker Leal	c Fax: (432) 687-0456
P.O. Box 50685	Project Number: 17-0177-01	
Midland TX, 79710	Project Manager: Mark Larso	1

S-8 7J23004-01 (Soil)

	······································	Reporting]
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
•••••••••••••••••••••••••••••••••••••••		n Basin Ei	ivironmo	ntal Lab, L					

General Chemistry Parameters by EPA / Stan	dard Method	s							
Chloride	3.02	1.08	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	7.0	0.1	%	I	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 by EF	A Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	I	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	I.	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-130		P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		133 %	70-130		P7J2313	10/23/17	10/24/17	TPH 8015M	S-GC
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	١	[CALC]	10/23/17	10/24/17	calc	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.		Proj	eci: Decker	Leak				Fax: (432) 68	7-0456
P.O. Box 50685		Project Num							
Midland TX, 79710		Project Mana	ger: Mark La	arson					
			S-9						
		7J23	004-02 (Soi	l)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EPA /	Standard Method	s							
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	5.33	1.02	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
Chloride % Moisture	5.33 2.0	1.02 0.1	mg/kg dry %	1	P7J2505 P7J2403	10/25/17 10/24/17	10/25/17 10/24/17	EPA 300.0 ASTM D2216	
	2.0	0.1		1					
% Moisture Fotal Petroleum Hydrocarbons C6-C35 1	2.0	0.1		1 1 1					
% Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 1</u> C6-C12	2.0 by EPA Method 80	0.1 <u>15M</u>	%	1 1 1 1	P7J2403	10/24/17	10/24/17	ASTM D2216	
% Moisture	2.0 by EPA Method 80 ND	0.1 15M 25.5	% mg/kg dry	1 1 1 1 1 1	P7J2403 P7J2313	10/24/17	10/24/17	ASTM D2216 TPH 8015M	
% Moisture Fotal Petroleum Hydrocarbons C6-C35 1 C6-C12 ≻C12-C28 ≻C28-C35	2.0 by EPA Method 80 ND ND	0.1 15M 25.5 25.5	% mg/kg dry mg/kg dry	1 1 1 1 1 30	P7J2403 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M	
% Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 1</u> C6-C12 -C12-C28	2.0 by EPA Method 80 ND ND	0.1 15M 25.5 25.5 25.5	% mg/kg dry mg/kg dry mg/kg dry		P7J2403 P7J2313 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M TPH 8015M	

Larson & Associates, Inc. P.O. Box 50685		-	ect: Decker L ber: 17-0177-					Fax: (432) 68	7-0456
Midland TX, 79710		5	ger: Mark La						
			S-10						
		7J23	004-03 (Soil))					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Porn	uan Rasin I	Invironment	allah I	D				
General Chemistry Parameters by EPA			Silvironnien	iai Lab, I	L, F,				
Chloride	2.68	1.05	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
6 Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
otal Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
urrogate: 1-Chlorooctane		114 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	
urrogate: o-Terphenyl		131 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	S-G

Larson & Associates, Inc.		Proj	ect: Deeker l	Leak				Fax: (432) 68'	7-0456
P.O. Box 50685			ber: 17-0177						
Midland TX, 79710		•	ger: Mark La						
			S-11						
		7J23	004-04 (Soil	l)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	ital Lab, I	L.P.				
	Perm	ian Basin E	Invironmen	ital Lab, I	L.P.				
General Chemistry Parameters by EPA . Chloride	/ Standard Method:	5		11 Lab, 1	P7J2505	10/25/17	10/25/17	EPA 300.0	
			me/kg dry %	11 Lab, 1		10/25/17 10/24/17	10/25/17	EPA 300.0 ASTM D2216	
Chloride	<u>/ Standard Method:</u> 3.73 5.0	s 1.05 0.1	mg/kg dry	111 Lab, 1	P7J2505				
Chloride % Moisture	<u>/ Standard Method:</u> 3.73 5.0	s 1.05 0.1	mg/kg dry	Ital Lab, I	P7J2505				
Chloride % Moisture Fotal Petroleum Hydrocarbons C6-C35	/ Standard Method: 3.73 5.0 by EPA Method 801	s 1.05 0.1 15M	mg/kg dry %	ITAL LAB, I	P7J2505 P7J2403	10/24/17	10/24/17	ASTM D2216	
Chloride % Moisture Fotal Petroleum Hydrocarbons C6-C35 %-C12	/ Standard Method: 3.73 5.0 by EPA Method 801 ND	s 1.05 0.1 5M 26.3	mg/kg dry % mg/kg dry	ITAL LAB, I	P7J2505 P7J2403 P7J2313	10/24/17	10/24/17	ASTM D2216 TPH 8015M	
Chloride 6 Moisture <u>Fotal Petroleum Hydrocarbons C6-C35</u> 26-C12 -C12-C28 -C28-C35	/ Standard Method: 3.73 5.0 by EPA Method 801 ND ND	s 1.05 0.1 26.3 26.3	mg/kg dry % mg/kg dry mg/kg dry	1 1 1 1 1	P7J2505 P7J2403 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M	
Chloride 6 Moisture Cotal Petroleum Hydrocarbons C6-C35 26-C12 -C12-C28	/ Standard Method: 3.73 5.0 by EPA Method 801 ND ND	s 1.05 0.1 5M 26.3 26.3 26.3	mg/kg dry % mg/kg dry mg/kg dry mg/kg dry	1 1 1 1 1 30	P7J2505 P7J2403 P7J2313 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M TPH 8015M	

Larson & Associates, Inc.		Proj	ect: Decker	Leak				Fax: (432) 68	7-0456
P.O. Box 50685		Project Num							
Midland TX, 79710		Project Mana	ger: Mark L	arson					
			S-12						
		7J23	004-05 (Soi	I)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		ian Basin E		,					
General Chemistry Parameters by EPA	/ Standard Method	5							~~~~~
<u>General Chemistry Parameters by EPA</u> Chloride	<u>/ Standard Method</u> 489	s1.06	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
		•	mg/kg dry %	1	P7J2505 P7J2403	10/25/17 10/24/17	10/25/17 10/24/17	EPA 300.0 ASTM D2216	
Chloride % Moisture	489 6.0	1.06 0.1		1					
Chloride % Moisture Total Petroleum Hydrocarbons C6-C35	489 6.0	1.06 0.1	%	1 1					
Chloride	489 6.0 by EPA Method 80	1.06 0.1 I5M	%	1 1 1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Chloride % Moisture Total Petroleum Hydrocarbons C6-C35 C6-C12	489 6.0 by EPA Method 80 ND	1.06 0.1 I5M 26.6	% mg/kg dry	1 1 1 1 1	P7J2403 P7J2313	10/24/17	10/24/17	ASTM D2216 TPH 8015M	
Chloride % Moisture Total Petroleum Hydrocarbons C6-C35 C6-C12 >C12-C28 >C28-C35	489 6.0 by EPA Method 80 ND ND	1.06 0.1 15M 26.6 26.6	% mg/kg dry mg/kg dry	1	P7J2403 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M	
Chloride % Moisture <u>Total Petroleum Hydrocarbons C6-C35</u> C6-C12 >C12-C28	489 6.0 by EPA Method 80 ND ND	1.06 0.1 15M 26.6 26.6 26.6	% mg/kg dry mg/kg dry mg/kg dry	1 1 1 1 30	P7J2403 P7J2313 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M TPH 8015M	
Larson & Associates, Inc.		Proi	ect: Decker	Leak				Fax: (432) 68	7-0456
-------------------------------------	------------------	---------------	-------------	-------------	---------	----------	----------	---------------	--------
P.O. Box 50685		Project Num							
Midland TX, 79710		Project Mana							
			S-13						
		7 J2 3	004-06 (Soi	l)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	nian Basin H	Environmen	ital Lab, I	L.P.				
General Chemistry Parameters by EPA	Standard Method	5							
Chloride	3.06	1.08	mg/kg dry	1	P732505	10/25/17	10/25/17	EPA 300.0	
% Moisture	7.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-1	30	P7J2313	10/23/17	10/24/17	TPH 8015M	
				• •	P7J2313	10/23/17	10/24/17	TPH 8015M	
Survogate: o-Terphenyl		134 %	70-1	30	1752313	10/25/17	10/24/17	1111 8012M	\$-G(

Larson & Associates, Inc.		Proj	ect: Decker l	leak				Fax: (432) 68	7-0456
P.O. Box 50685		,	ber: 17-0177						
Midland TX, 79710			ger: Mark La						
			S-14						
		7J23	004-07 (Soil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	tian Basin I	Environmen	tal Lab, I	P.				
General Chemistry Parameters by EPA /	Standard Method	<u>s</u>							
Chloride	3.21	1.05	mg/kg dry	1	P7J2505	10/25/17	10/25/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 b	by EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	}	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		109 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		125 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

Larson & Associates, Inc.		Proi	eet: Decker L	eak				Fax: (432) 68	7-0456
P.O. Box 50685		Ť	ber: 17-0177-						
Midland TX, 79710		Project Mana	ger: Mark Lar	son					
			S-15						
,		7J23	004-08 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Commit Chamberry Domination Ins MDA			Environment	al Lab, I	L.P.				
<u>General Chemistry Parameters by EPA /</u> Chloride	Standard Method 4.60	<u>s</u> 1,04	mg/kg dry		P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	4.0	0.1	%	I	P7J2403	10/24/17	10/24/17	ASTM D2216	
<u> Fotal Petroleum Hydrocarbons C6-C35 I</u>	by EPA Method 80	15M							
C6-C12	ND	26.0	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>012-028	1112								
>C28-C35	ND	26.0	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
			mg/kg dry 70-13		P7J2313 P7J2313	10/23/17 10/23/17	10/24/17 10/24/17	TPH 8015M TPH 8015M	
•C28-C35		26.0)					

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.		Proj	eet: Decker L	eak				Fax: (432) 68	7-0456
P.O. Box 50685			ber: 17-0177-						
Midland TX, 79710		Project Mana	ger: Mark La	rson			· ·		
			S-16						
		7J23	004-09 (Soil)						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin H	Invironment	al Lab, I	L.P.				
General Chemistry Parameters by EPA /	Standard Method	s							
Chloride	2.35	1.05	mg/kg dry	1	P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	5.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 I	oy EPA Method 80	15M							
C6-C12	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		127 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		144 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	S-G(
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	calc	

Larson & Associates, Inc.		Proj	ect: Decker L	cak				Fax: (432) 68	7-0456
P.O. Box 50685		5	ber: 17-0177-						
Midland TX, 79710			ger: Mark Lai						
			S-17						
		7J23	004-10 (Soil)						
i la		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EPA /	······································			·····	171720E			EDA 200 0	
Chloride % Moisture	2.56 5.0	1.05	mg/kg dry %	1	P7J2505 P7J2403	10/25/17 10/24/17	10/26/17 10/24/17	EPA 300.0 ASTM D2216	
Total Petroleum Hydrocarbons C6-C35 I									
	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P7J2313	10/23/17	10/24/17	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	I	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: 1-Chlorooctane		117 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	
Surrogate: o-Terphenyl		134 %	70-13	0	P7J2313	10/23/17	10/24/17	TPH 8015M	S-G
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	10/23/17	10/24/17	cale	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc.		Proj	ect: Decker	Leak				Fax: (432) 681	7-0456
P.O. Box 50685		Project Num	per: 17-0173	7-01					
Midland TX, 79710	1	Project Mana	ger: Mark L	arson					
			S-18						
		7J23	004-11 (Soi	l)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>General Chemistry Parameters by EPA /</u> Chloride									
Embride	3.35	1.06	mg/kg dry	1	P7J2505	10/25/17	10/26/17	EPA 300.0	
% Moisture	3.35 6.0	1.06 0.1	mg/kg dry %	1	P7J2505 P7J2403	10/25/17 10/24/17	10/26/17 10/24/17	EPA 300.0 ASTM D2216	
% Moisture	6.0	0.1		1					
% Moisture Fotal Petroleum Hydrocarbons C6-C35 I	6.0	0.1		1					
% Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 I</u> C6-C12	6.0 by EPA Method 80	0.1 15M	%	1 1 1	P7J2403	10/24/17	10/24/17	ASTM D2216	
	6.0 by EPA Method 80 ND	0.1 15M 26.6	% mg/kg dry	1 1 1 1	P7J2403 P7J2313	10/24/17	10/24/17	ASTM D2216 TPH 8015M	
% Moisture Fotal Petroleum Hydrocarbons C6-C35 C6-C12 >C12-C28 >C28-C35	6.0 by EPA Method 80 ND ND	0.1 15M 26.6 26.6	% mg/kg dry mg/kg dry	1	P7J2403 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M	
% Moisture <u>Fotal Petroleum Hydrocarbons C6-C35 </u> C6-C12 >C12-C28	6.0 by EPA Method 80 ND ND	0.1 15M 26.6 26.6 26.6	% mg/kg dry mg/kg dry mg/kg dry	1	P7J2403 P7J2313 P7J2313 P7J2313	10/24/17 10/23/17 10/23/17 10/23/17	10/24/17 10/24/17 10/24/17 10/24/17	ASTM D2216 TPH 8015M TPH 8015M TPH 8015M	

Larson & Associates, Inc.	, Inc. Project: Decker Leak									
P.O. Box 50685		Project Numl	per: 17-0177	-01						
Midland TX, 79710	I	roject Manag	ger: Mark L	arson						
			S-19							
		7J23	004-12 (Soi	l)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	Dorm	ian Basin E	hvironmor	tol I ab 1	р					
			ava onmer	ITAJ 1./AU, J						
General Chemistry Parameters by EP					P7J2505		10/07/110	EPA 300.0		
Chloride % Moisture	2.47 8.0	1.09 0.1	mg/kg dry %	1	P7J2303 P7J2403	10/25/17	10/26/17 10/24/17	ASTM D2216		
			,,	•	1102105	10/24/17	10/24/17			
<u>Fotal Petroleum Hydrocarbons C6-C3</u>	5 by EPA Method 80	15M								
C6-C12	ND	27.2	mg/kg dry	I	P7J2313	10/23/17	10/26/17	TPH 8015M		
C12-C28	55.2	27.2	mg/kg dry	I	P7J2313	10/23/17	10/26/17	TPH 8015M		
-C28-C35	41.8	27.2	mg/kg dry	1	P7J2313	10/23/17	10/26/17	TPH 8015M		
urrogate: 1-Chlorooctane		116 %	70-J	30	P7,J2313	10/23/17	10/26/17	TPH 8015M		
Surrogate: o-Terphenyl		130 %	70-1	30	P7J2313	10/23/17	10/26/17	TPH 8015M		
Total Petroleum Hydrocarbon C6-C35	96.9	27.2	mg/kg dry	ł	[CALC]	10/23/17	10/26/17	calc		

Larson & Associates, Inc.		Proje	ect: Decker	Leak				Fax: (432) 68	7-0456
P.O. Box 50685		Project Numb	per: 17-0177	7-01					
Midland TX, 79710	ſ	Project Manag	ger: Mark L	arson					
			S-20						
		7J230)04-13 (Soi	l)					
	D	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Result		Gints	Difution	Daten	rieparea	Anatyzeu	memod	110103
	Perm	ian Basin E	lnvironmei	ntal Lab, l	L.P.				
General Chemistry Parameters by EPA	A / Standard Method	s							
Chloride	ND	1.10	mg/kg dry	1	P7J2603	10/26/17	10/26/17	EPA 300.0	
% Moisture	9.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
<u> Total Petroleum Hydrocarbons C6-C3</u>	5 by EPA Method 80	15M							
C6-C12	ND	27.5	mg/kg dry	1	P7J2313	10/23/17	10/26/17	TPH 8015M	
>C12-C28	71.0	27.5	mg/kg dry	ĩ	P7J2313	10/23/17	10/26/17	TPH 8015M	
>C28-C35	40.0	27.5	mg/kg dry	1	P7J2313	10/23/17	10/26/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-1	30	P7J2313	10/23/17	10/26/17	TPH 8015M	
- Surrogate: o-Terphenyl		133 %	70-1	30	P7J2313	10/23/17	10/26/17	TPH 8015M	S-G(
Total Petroleum Hydrocarbon C6-C35	111	27.5	mg/kg dry	1	[CALC]	10/23/17	10/26/17	calc	

Larson & Associates, Inc.		Proj	ect: Decker	Leak				Fax: (432) 68	7-0456
P.O. Box 50685		Project Num	per: 17-0173	-01					
Midland TX, 79710		Project Mana	ger: Mark L	arson					
			S-21						
<u></u>		7J23	004-14 (Soi	l)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmer	ital Lab, I	P.				
General Chemistry Parameters by EP	A / Standard Method	<u>s</u>							
Chloride	ND	1.11	mg/kg dry	١	P7J2603	10/26/17	10/26/17	EPA 300.0	
% Moisture	10.0	0.1	%	ł	P7J2403	10/24/17	10/24/17	ASTM D2216	
<u> Total Petroleum Hydrocarbons C6-C3</u>	5 by EPA Method 80	I5M							
C6-C12	ND	27.8	mg/kg dry	l	P7J2313	10/23/17	10/26/17	TPH 8015M	
>C12-C28	70.3	27.8	mg/kg dry	L	P7J2313	10/23/17	10/26/17	TPH 8015M	
>C28-C35	37.0	27.8	mg/kg dry	l	P7J2313	10/23/17	10/26/17	TPH 8015M	
Surrogate: 1-Chlorooctane		118 %	70-1	30	P7J2313	10/23/17	10/26/17	TPH 8015M	
Surrogate: o-Terphenyl		135 %	70-1	30	P7J2313	10/23/17	10/26/17	TPH 8015M	S-G(
Total Petroleum Hydrocarbon C6-C35	107	27.8	mg/kg dry	1	[CALC]	10/23/17	10/26/17	calc	

Larson & Associates, Inc.		Proj	ect: Decker l	eak				Fax: (432) 68'	7-0456
P.O. Box 50685		Project Numl	per: 17-0177	-01					
Midland TX, 79710		Project Manag	ger: Mark La	irson					
			S-22						
		7J23	004-15 (Soil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EP/		iian Basin E s		tai Lab, i					
Chloride	ND	1.06	mg/kg dry	l	P7J2603	10/26/17	10/26/17	EPA 300.0	
% Moisture	6.0	0.1	%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Total Petroleum Hydrocarbons C6-C3	5 by EPA Method 80	15M							
C6-C12	ND	26.6	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
		00 / 4/	70-1	10	P7J2408	10/24/17	10/26/17	TPH 8015M	
Surrogate: 1-Chlorooctane		88.6 %	70-1.	50	1702400		10120111		
Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl		88.0 % 98.1 %	70-1.		P7J2408	10/24/17	10/26/17	TPH 8015M	

Larson & Associates, Inc.		Proj	ect: Decker I	.eak				Fax: (432) 687	7-0456
P.O. Box 50685		Project Num	per: 17-0177	-01					
Midland TX, 79710	I	Project Manaj	ger: Mark La	rson					
			S-23						
		7J23	004-16 (Soil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	Invironmen	tal Lab, I	P.				
General Chemistry Parameters by EP.	A / Standard Method	s							
Chloride	ND	1.05	mg/kg dry	1	P7J2603	10/26/17	10/26/17	EPA 300.0	
			n /						
% Moisture	5.0	0.1	%	I	P7J2403	10/24/17	10/24/17	ASTM D2216	
% Moisture Fotal Petroleum Hydrocarbons C6-C3			%	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
Fotal Petroleum Hydrocarbons C6-C3			% mg/kg dry	 l	P7J2403 P7J2408	10/24/17	10/24/17	ASTM D2216 TPH 8015M	
	5 by EPA Method 80	15M		 					
Total Petroleum Hydrocarbons C6-C3 C6-C12	5 by EPA Method 80 ND	15M 26.3	mg/kg dry	 	P7J2408	10/24/17	10/26/17	TPH 8015M	
Fotal Petroleum Hydrocarbons C6-C3 C6-C12 *C12-C28	5 by EPA Method 80 ND ND	15M 26.3 26.3	mg/kg dry mg/kg dry	1 1 1 30	P7J2408 P7J2408	10/24/17 10/24/17	10/26/17 10/26/17	TPH 8015M TPH 8015M	
Fotal Petroleum Hydrocarbons C6-C3 C6-C12 •C12-C28 •C28-C35	5 by EPA Method 80 ND ND	26.3 26.3 26.3	mg/kg dry mg/kg dry mg/kg dry		P7J2408 P7J2408 P7J2408 P7J2408	10/24/17 10/24/17 10/24/17	10/26/17 10/26/17 10/26/17	TPH 8015M TPH 8015M TPH 8015M	

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proje Project Numb Project Manag		-01				Fax: (432) 681	7-0456
			S-24						
		7J230	104-17 (Soi	l)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
General Chemistry Parameters by EPA	/ Standard Method				P7J2603	10/26/17	10/26/17	EPA 300.0	
Chloride % Moisture	ND 7.0	1.08 0.1	mg/kg dry %	1	P7J2403	10/24/17	10/24/17	ASTM D2216	
fotal Petroleum Hydrocarbons C6-C35	by EPA Method 80	15M							
C6-C12	ND	26.9	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
-C12-C28	ND	26.9	mg/kg dry	ł	P7J2408	10/24/17	10/26/17	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P7J2408	10/24/17	10/26/17	TPH 8015M	
Surrogate: 1-Chlorooctane		89.7 %	70-,	130	P7J2408	10/24/17	10/26/17	TPH 8015M	
Surrogate: o-Terphenyl		97.7 %	70	130	P7J2408	10/24/17	10/26/17	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CAI.C]	10/24/17	10/26/17	calc	

[Larson & Associates, Inc.	Project:	Decker Leak	Fax: (432) 687-0456
	P.O. Box 50685	Project Number:	17-0177-01	
	Midland TX, 79710	Project Manager:	Mark Larson	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		lan Dasin								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2403 - *** DEFAULT PREP ***										
Biank (P7J2403-BLK1)				Prepared &	& Analyzed:	10/24/17				
% Moisture	ND	0.1	%							
Blank (P7J2403-BLK2)				Prepared &	& Analyzed	: 10/24/17				
% Moisture	ND	0.1	%							
Duplicate (P7J2403-DUP1)	Sou	rce: 7J23002-	-09	Prepared d	& Analyzed	: 10/24/17				
% Moísture	8.0	0.1	%		9.0			11.8	20	
Duplicate (P7J2403-DUP2)	Sou	irce: 7J23002-	-36	Prepared a	& Analyzed	: 10/24/17				
% Moisture	11.0	0.1	%		10.0			9.52	20	
Duplicate (P7J2403-DUP3)	Sou	tree: 7J23004	-03	Prepared a	& Analyzed	: 10/24/17				
% Moisture	4.0	0.1	%		5.0			22.2	20	ŀ
Duplicate (P7J2403-DUP4)	So	arce: 7J23006	-05	Prepared	& Analyzed	1: 10/24/17				
% Moisture	4.0	0.1	%	······	5.0			22.2	20	F
Batch P7J2505 - *** DEFAULT PREP ***										
LCS (P7J2505-BS1)				Prepared	& Analyzed	1: 10/25/17				
Chloride	413	1.00	mg/kg wet			103	80-120			
LCS Dup (P7J2505-BSD1)				Prepared	& Analyzed	d: 10/25/17				
Chloride	416	1.00	mg/kg wet			104	80-120	0.761	20	
	5n	urce: 7J19018	1-02	Prepared	& Analyze	d: 10/25/17				
Duplicate (P7J2505-DUP1) Chloride	938	28.4			937			0.0910	20	

Permian Basin Environmental Lab, L.P.

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source	6 - 13 - 13 - 17	%REC	0.00	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Lama	Notes
Batch P7J2505 - *** DEFAULT PREP	***							·····		
Duplicate (P7J2505-DUP2)	Sou	rce: 7J23004-	-03	Prepared 8	c Analyzed:	10/25/17				
Chloride	2.79	1.05	mg/kg dry		2.68			3.85	20	
Matrix Spike (P7J2505-MS1)	Sou	rce: 7J19018	-02	Prepared &	t Analyzed:	10/25/17				
Chloride	3380	28.4	mg/kg dry	2270	937	107	80-120			
Batch P7J2603 - *** DEFAULT PREP	***									
Blank (P7J2603-BLK1)				Prepared &	Analyzed:	10/26/17				
Chloride	ND	1.00	mg/kg wet							
LCS (P7J2603-BS1)				Prepared &	& Analyzed	: 10/26/17				
Chloride	427	1.00	mg/kg wet	400		107	80-120			
LCS Dup (P7J2603-BSD1)				Prepared a	& Analyzed	: 10/26/17				
Chloride	426	1.00	mg/kg wet	400		106	80-120	0.190	20	
Duplicate (P7J2603-DUP1)	Sou	rce: 7J23004	-13	Prepared a	& Analyzed	: 10/26/17				
Chloride	ND	1.10	mg/kg dry		ND				20	
Duplicate (P7J2603-DUP2)	Soi	irce: 7J24001	-06	Prepared of	& Analyzed	: 10/26/17				
Chłoride	5860	29.8	mg/kg dry		5730			2.21	20	
Matrix Spike (P7J2603-MS1)	S01	irce: 7J23004	-13	Prepared	& Analyzed	: 10/26/17				
Chloride	1190	1.10	mg/kg dry	1100	ND	108	80-120			

Permian Basin Environmental Lab, L.P.

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian	Racin	Environmental	Lah	1. P
rerman	Dasm	Елиноншенца	LAD	L.I.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2313 - General Preparation (GC	2)				· · · · · · · · · · · · · · · · · · ·					
Blank (P7J2313-BLK1)				Prepared:	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	ND	25.0	mg/kg wet							
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	11							
Surrogate: 1-Chlorooctane	124		"	100		124	70-130			
Surrogate: o-Terphenyl	71.6		8	50.0		143	70-130			S-GC
LCS (P7J2313-BS1)				Prepared:	10/23/17 A	nalyzed: 10)/24/17			
C6-C12	1200	25.0	mg/kg wet	1000		120	75-125			
>C12-C28	1170	25.0	v	1000		117	75-125			
Surrogate: 1-Chlorooctane	124		н	100		124	70-130			
Surrogate: o-Terphenyl	69.5		<i>te</i>	50.0		139	70-130			S-G(
LCS Dup (P7J2313-BSD1)				Prepared:	10/23/17 A	nalyzed: 10)/24/17			
C6-C12	1220	25.0	mg/kg wet	1000		122	75-125	1.76	20	
>C12-C28	1190	25.0	"	1000		119	75-125	1.86	20	
Surrogate: 1-Chlorooctane	128		ŧ	100		128	70-130			
Surrogate: o-Terphenyl	70.7			50.0		141	70-130			S-G(
Calibration Blank (P7J2313-CCB1)				Prepared:	10/23/17 A	nalyzed: 10)/24/17			
C6-C12	13.0		mg/kg wei	,						
>C12-C28	10.6									
Surrogate: 1-Chlorooctane	122		и	100		122	70-130			
Surrogate: o-Terphenyl	69.8		12	50.0		140	70-130			S-G0
Calibration Blank (P7J2313-CCB2)				Prepared:	10/23/17 A	nalyzed: 10	0/24/17			
C6-C12	12.8		mg/kg wet							
>C12-C28	14.1		0							
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	70.0		"	50.0		140	70-130			S-G0

Permian Basin Environmental Lab, L.P.

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2313 - General Preparation (G	GC)						·			
Calibration Check (P7J2313-CCV1)				Prepared: 1	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	556	25.0	mg/kg wet	500		111	85-115			
>C12-C28	501	25.0		500		100	85-115			
Surrogate: 1-Chlorooctane	115		н	100		115	70-130	., .,		
Surrogate: o-Terphenyl	61.9		п	50.0		124	70-130			
Calibration Check (P7J2313-CCV2)				Prepared: 1	10/23/17 A	nalyzed: 10	/24/17			
C6-C12	529	25.0	mg/kg wet	500		106	85-115			
>C12-C28	507	25.0	11	500		101	85-115			
Surrogate: 1-Chloroactane	114		v	100		114	70-130			
Surrogate: o-Terphenyl	64.0		"	50.0		128	70-130			
Calibration Check (P7J2313-CCV3)				Prepared:	10/23/17 A	nalyzed: 10	/25/17			
C6-C12	563	25.0	mg/kg wet	500		113	85-115			
>C12-C28	570	25.0	н	500		114	85-115			
Surrogate: 1-Chloroactane	123		ø	100		123	70-130			
Surrogate: o-Terphenyl	64.0		"	50.0		128	70-130			
Matrix Spike (P7J2313-MS1)	Sou	rce: 7J20002	-03	Prepared:	10/23/17 A	nalyzed: 10)/24/17			
C6-C12	1210	30.9	mg/kg dry	1230	13.2	96.7	75-125			
>C12-C28	1130	30.9	0	1230	20.9	90.1	75-125			
Surrogate: 1-Chlorooctane	137			123	••••	Ш	70-130			
Surrogate: o-Terphenyl	79.1		"	61.7		128	70-130			
Matrix Spike Dup (P7J2313-MSD1)	Sou	rce: 7J20002	-03	Prepared:	10/23/17 A	nalyzed: 10)/24/17			
C6-C12	1180	30.9	mg/kg dry	1230	13.2	94.9	75-125	1.94	20	
>C12-C28	1130	30.9	р	1230	20.9	90.2	75-125	0.0799	20	
Surrogate: 1-Chlorooctane	146		"	123		118	70-130			
Surrogate: o-Terphenyl	73.3		**	61.7		119	70-130			

Permian Basin Environmental Lab, L.P.

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2408 - General Preparation (GC)									
Blank (P7J2408-BLK1)				Prenared	10/24/17 Ai	aalvzed: 10	/25/17			
C6-C12	ND	25.0	mg/kg wet			10131.00. 10				
>C12-C28	ND	25.0								
>C28-C35	ND	25.0	"							
Surrogate: 1-Chloroactane	102		······ //	100		102	70-130			
Surrogate: o-Terphenyl	56,9		11	50.0		114	70-130			
LCS (P7J2408-BS1)				Prepared: 1	0/24/17 Ar	nalvzed: 10	/25/17			
C6-C12	1000	25.0	mg/kg wet	1000		100	75-125			
>C12-C28	959	25.0	н	1000		95.9	75-125			
Surrogate: 1-Chlorooctane	123	***********	н И	100		123	70-130		•••••••••••••••••••••••••••••••••••••••	
Surrogate: o-Terphenyl	60.5		п	50.0		121	70-130			
LCS Dup (P7J2408-BSD1)				Prepared: 1	0/24/17 Ar	nalvzed: 10	/25/17			
C6-C12	928	25.0	mg/kg wet	1000		92.8	75-125	7.90	20	
>C12-C28	935	25.0	0	1000		93.5	75-125	2.51	20	
Surrogate: 1-Chlorooctane	126		n n	100		126	70-130			
Surrogate: o-Terphenyl	58.3		"	50.0		117	70-130			
Calibration Blank (P7J2408-CCB1)				Prepared: 1	0/24/17 Ar	alvzed: 10	/25/17			
C6-C12	15.2	· ·····	mg/kg wet							
•C12-C28	9.00		0							
Surrogate: 1-Chlorooctane	107		н	100		107	70-130			
Surrogate: o-Terphenyl	62.4		"	50.0		125	70-130			
Calibration Check (P7J2408-CCV1)				Prepared: 1	0/24/17 An	alvzed: 10	/25/17			
C6-C12	563	25.0	mg/kg wet	500		113	85-115			
·C12-C28	570	25.0		500		114	85-115			
urrogate: 1-Chlorooctane	123			100	• • • • •	123	70-130			· · · · · ·
urrogate: o-Terphenyl	64.0		"	50.0		128	70-130			

Permian Basin Environmental Lab, L.P.

Project: Decker Leak Project Number: 17-0177-01 Project Manager: Mark Larson

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7J2408 - General Preparation (G	<u>C)</u>									
Calibration Check (P7J2408-CCV2)				Prepared: 1	10/24/17 A	nalyzed: 10	/26/17			
C6-C12	525	25.0	mg/kg wet	500		105	85-115			
>C12-C28	488	25.0	н	500		97.6	85-115			
Surrogate: 1-Chlorooctane	121	•••••••••••••••••••••••••••••••••••••••	"	100		121	70-130			
Surrogate: o-Terphenyl	62.8		"	50.0		126	70-130			
Calibration Check (P7J2408-CCV3)				Prepared:	10/24/17 A	nalyzed: 10	/26/17			
C6-C12	526	25.0	mg/kg wet	500		105	85-115			
>C12-C28	511	25.0		500		102	85-115			
Surrogate: 1-Chlorooctane	129			100		129	20-130		5.1	
Surrogate: o-Terphenyl	63.8		и	50.0		128	70-130			
Matrix Spike (P7J2408-MS1)	Sou	rce: 7J24009	-21	Prepared: 1	10/24/17 A	nalyzed: 10	/26/17			
C6-C12	4610	137	mg/kg dry	1100	5290	NR	75-125			
>C12-C28	1340	137	11	1100	669	60.9	75-125			
Surrogate: 1-Chlorooctane			"	110		101	70-130			
Surrogate: o-Terphenyl	48.7		и	54.9		88.7	70-130			
Matrix Spike Dup (P7J2408-MSD1)	Sou	rce: 7J24009	-21	Prepared:	10/24/17 A	nalyzed: 10	/26/17			
C6-C12	4600	137	mg/kg dry	1100	5290	NR	75-125	NR	20	
>C12-C28	1310	137	"	1100	669	58.6	75-125	3.85	20	
Surrogate: 1-Chlorooctane	114		"	110		104	70-130			
Surrogate: o-Terphenyl	52.4		"	54.9		95.4	70-130			

1			
Larson & Associates, Inc.	Project:	Decker Leak	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	17-0177-01	
Midland TX, 79710	Project Manager:	Mark Larson	

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

R2	The RPD exceeded the acceptance limit.
BULK	Samples received in Bulk soil containers
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis

- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

ya e Cara A

10/30/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Date:

	RELINQUISHED BY:(Signature) DATE/TIME RECEI	REUNQUISHED BY:(Signature) DATE/TIME RECEI		s-22 15 / 11:40 / 1	S-21 14 1:05	<u>S-20 (3) 12:55) </u>	S-19 12 12:50	S-18 1 12:15	S-17 10 1:20 /	5-16 9 / 12:10 / /	S-15 & / 1245 / 1	S-14 1 / W:35		5.12 21.2	S-11 4 11:10	5	12	1 S 25:31 02101 1 8-8	Field Sample I.D. Lab # Date Time Matrix # of Cont	OT=OTHER	ē	Environmental Consultants Data Reported to:		
	RECEIVED BY: (Signature) 2 DAY 1 OTHER []	RECEIVED BY: (Signature)	EIVED BY: (Signature) TURN AROUND TIME	XX		XX	XX	XX	XX		××	××	××	1	XX	XX	××		ICE UNPRES UNPRE	545 C 10 10 10 10 10 10 10 10 10 10 10 10 10	# ``	LAI PROJECT LOCATIO	200 PO #:	200 PO #:
WHAND DELIVERED ILCF-U		CUSTODY SEALS DECKEN CONTACT INCLUSED	LABORATORY USE ONLY:	×	×.	X	X	×	· · · · · · · · · · · · · · · · · · ·	×	×	×	×	×	×	×	*		2010 1030 1030 1030 1030 1030 1030 1030		202020 202020	VECKE	AB WORK ORDER #	AB WORK O

	(4)	RELINQUISHEDRY:(Signature) DATE/TIME F	לא (Signature) DATE/TIME	DATE/TIME							10120 12:00	5-23 16 10/20 11:50 S	⊌M Field Sample I.D. Laò # Date Time Matrix	TIME ZONE: Time zone/State:	o W=WATER A=AIR	TRRP report? S=SOIL P=PAINT	Data Reported to:	ates, Inc.	A arson &s	
		RECEIVED BY: (Signature) 2 DAY 1 OTHER (1	RECEIVED BY: (Signature)	RECEIVED BY: (Signature) TURN AROUND TIME									# of Conta HCI HNO ₃ H ₂ SO ₄ I ICE UNPRESE STO 5 STO 5	NaOH C RVED	A SOLUTION		432-087-0901 LAI PROJECT #: 17-017 7-01	Midland, TX 79701 PROJECT LOCATION OR NAME:	507 N. Marienfeld, Ste. 200 DATE: 10/23/11	
filter	- HAND DELIVERED	CARRIER BILL #	CUSTODY SEALS - DBROKEN WANTACT UNOT USED	LABORATORY USE ONLY:							*		3 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	10 10 50 1	TCIP JOC		COLLECTOR: C.F	NAME: DECKER LEAK		USTO

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Mark Larson Larson & Associates, Inc. P.O. Box 50685 Midland, TX 79710

Project: Targa Decker Leak Project Number: 17-0177-01 Location:

Lab Order Number: 7L05010

NELAP/TCEQ # T104704516-16-7

Report Date: 12/07/17

}			
Larson & Associates, Inc.	Project:	Targa Decker Leak	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	5	
Midland TX, 79710	Project Manager:	Mark Larson	
 			1

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-1 5'-6'	7L05010-01	Soil	12/05/17 10:10	12-05-2017 15:45
S-1 10'-11'	7L05010-02	Soil	12/05/17 10:13	12-05-2017 15:45
S-1 15'-16'	7L05010-03	Soil	12/05/17 10:15	12-05-2017 15:45
S-1 20'-21'	71_05010-04	Soil	12/05/17 10:16	12-05-2017 15:45
S-2 5'-6'	7L05010-05	Soil	12/05/17 10:39	12-05-2017 15:45
S-2 10'-11'	7L05010-06	Soil	12/05/17 10:43	12-05-2017 15:45
S-2 15'-16'	7L05010-07	Soil	12/05/17 10:47	12-05-2017 15:45

Larson & Associates, Inc.	Project:	Targa Decker Leak	Fax: (432) 687-0456
P.O. Box 50685	Project Number:	17-0177-01	
Midland TX, 79710	Project Manager:	Mark Larson	
			1

			-1 5'-6' D10-01 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Pern	ian Basin E	nvironme	ntal Lab, 1	P.				
General Chemistry Parame	ters by EPA / Standard Method	is							
Chloride	13,5	1.08	mg/kg dry	1	P7L0604	12/06/17	12/07/17	EPA 300.0	

%

1

P7L0601

12/06/17

12/06/17

ASTM D2216

0.1

7.0

Permian B	lasin Enviror	unental La	b, L.P.
-----------	---------------	------------	---------

% Moisture

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Num roject Mana		7-01	x			Fax: (432) 68	7-0456
			1 10'-11' 010-02 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Mcthod	Notes
	Permi	an Basin E	nvironme	ntal Lab, I	L .P.				
<u>General Chemistry Parameters by E</u>	PA / Standard Methods	I							
Chloride % Moisture	10.3 8.0	1.09 0.1	mg/kg dry %	1	P7L0604 P7L0601	12/06/17 12/06/17	12/07/17 12/06/17	EPA 300.0 ASTM D2216	

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		roject Num	ect: Targa l ber: 17-017 ger: Mark l	7-01	k			Fax: (432) 68	7-0456
			-1 15'-16' 010-03 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin I	Invironme	ntal Lab, l	L.P.				
<u>General Chemistry Parameters by F</u>	PA / Standard Methods								
Chloride % Moisture	2.56 7.0	1.08 0.1	mg/kg dry %	1	P7L0604 P7L0601	12/06/17 12/06/17	12/07/17	EPA 300.0 ASTM D2216	······

1400 Rankin HWY Midland, TX 79701 432-686-7235

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		oject Num	jeet: Targa l ber: 17-017 ger: Mark I	7-01	k			Fax: (432) 68	37-0456
			-1 20'-21' 6010-04 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permia	n Basin E	2 nvironme	ntal Lab, I	L.P.				
General Chemistry Parameters by E	PA / Standard Methods								
Chloride % Moisture	ND 8.0	1.09 0.1	mg/kg dry %	1	P71.0604 P7L0601	12/06/17 12/06/17	12/07/17	EPA 300.0 ASTM D2216	

Permian Basin Environmental Lab, L.P.

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		roject Num	eet: Targa l ber: 17-017 ger: Mark L	7-01	k			Fax: (432) 68	7-0456
			8-2 5'-6' 010-05 (So	il)					
Analyte	Result	Reporting Límit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin F	Invironme	ntal Lab, I	L.P.				
<u>General Chemistry Parameters by E</u>	PA / Standard Methods								
Chloride % Moisture	ND 6.0	1.06 0.1	mg/kg dry %	1	P7L0604 P7L0601	12/06/17	12/07/17	EPA 300.0 ASTM D2216	

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Num roject Mana		7-01	5			Fax: (432) 68	37-0456
		-	2 10'-11' 010-06 (So	H)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Permi	an Basin E	nvironme	ntał Lab, I	L.P.				
<u>General Chemistry Parameters by E</u>	PA / Standard Methods								
Chloride % Moisture	ND 7.0	1.08 0.1	mg/kg dry %	1	P7L0604 P7L0601	12/06/17 12/06/17	12/07/17 12/06/17	EPA 300.0 ASTM D2216	

Larson & Associates, Inc. P.O. Box 50685 Midland TX, 79710		Proj Project Num Project Mana		7-01	k			Fax: (432) 68	37-0456
			2 15'-16' 010-07 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Perm	ian Basin E	nvironmei	ital Lab, I	L.P.				
General Chemistry Parameters by I	EPA / Standard Methods								
Chloride % Moisture	ND 6.0	1.06 0.1	mg/kg dry %	1	P7L0604 P7L0601	12/06/17 12/06/17	12/07/17 12/06/17	EPA 300.0 ASTM D2216	

1400 Rankin HWY Midland, TX 79701 432-686-7235

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Límits	RPD	RPD Limit	Notes
Batch P7L0601 - *** DEFAULT PREP ***										····
Blank (P7L0601-BLK1)				Prepared &	Analyzed	12/06/17			······	
6 Moisture	ND	0.1	%			12/00/11				
Duplicate (P7L0601-DUP1)	Sou	rce: 7L05002-	-18	Prepared &	Analyzed:	12/06/17				
6 Moisture	11.0	0.1	%		12.0			8.70	20	
Duplicate (P7L0601-DUP2)	Sou	rce: 7L05009-	01	Prepared &	Analyzed:	12/06/17				
6 Moisture	4.0	0.1	%		5.0			22.2	20	
Batch P7L0604 - *** DEFAULT PREP ***	<u> </u>									
Bank (P7L0604-BLK1)				Prepared: 1	2/06/17 A	nalyzed: 12	2/07/17			
hloride	ND	1.00	mg/kg wet		i					
CS (P7L0604-BS1)				Prepared: I	2/06/17 A	nalvzed: 12	2/07/17			
hloride	420	1.00	mg/kg wet	400		105	80-120			
CS Dup (P7L0604-BSD1)				Prepared: 1	2/06/17 A	nalvzed: 12	2/07/17			
hloríde	426	1.00	mg/kg wet	400		107	80-120	1.55	20	
uplicate (P7L0604-DUP1)	Sou	·ce: 7L05003-	01	Prepared: 1	2/06/17 A	nalvzed: 12	/07/17			
hloríde	10800		mg/kg dry		10800			0.509	20	
uplicate (P7L0604-DUP2)	Sou	ce: 7L05010-	01	Prepared: 1	2/06/17 A	alvzed: 12	/07/17			
hloride	12.9		mg/kg dry	· ····································	13.5	MIJ200. 12		4.55	20	· · · · · · · · · · · · · · · ·
latrix Spike (P7L0604-MS1)	Sour	ce: 7L05003-	01	Prepared: 1	2/06/17 A	nalvzed: 12	/07/17			
hloride	16500	·····	mg/kg dry	5430	10800	104	80-120			

	·····	
Larson & Associates, Inc.	Project: Targa Decker Leak	Fax: (432) 687-0456
P.O. Box 50685	Project Number: 17-0177-01	
Midland TX, 79710	Project Manager: Mark Larson	

Notes and Definitions

BULK	Samples received in Bulk soil containers
DET.	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

andar San Arabit Yanga Albaras Report Approved By: Date: 12/7/2017

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

1400 Rankin HWY Midland, TX 79701 432-686-7235

こうしゅう

APPENDIX D

Photographs

1RP-4787

Delineation Plan – NGL Release Targa Midstream Services, LLC Lea County, New Mexico

Source of Release Viewing North

Source of Release

1RP-4787 Delineation Plan – NGL Release Targa Midstream Services, LLC Lea County, New Mexico

Release Area Viewing from South to North

Soil Sample Location S-1 Viewing South

Release Area Viewing South from Soil Sample Location S-2

Release Area Viewing South from Soil Sample Location S-3

Release Area Viewing South from Soil Sample Location S-5

Release Area Viewing South from Soil Sample Location S-7

Release Area after Microblaze[®] Application Viewing North, September 25, 2017

Release Area after Microblaze $^{f B}$ Application Viewing North, September 25, 2017

Release Area after Microblaze[®] Application Viewing North, September 25, 2017

APPENDIX E

Final C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S., First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S., St., Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Targa Midstream Services, L.P.	OGRID 24650
Contact Name Cindy Klein	Contact Telephone 575-631-7093
Contact email Cklein@targaresources.com	Incident # (assigned by OCD) 1RP-4787
Contact mailing address P.O. Box 67, Monument, NM 8	8265

Location of Release Source

Latitude 33° 14' 58.20" North

Longitude <u>103° 06' 07.73"</u> West

(NAL) 83 in decimal degrees to 5 decimal places)		
Site Name NGL Release	Site Type gas and pipeline liquids	
Date Release Discovered 8/5/2017	API# (if applicable)	

Unit Letter	Section	Township	Range	County	
C,G	28	128	38E	Lea	

Surface Owner: X State Federal Tribal Private (Name: _____

Nature and Volume of Release

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
X Produced Water	Volume Released (bbls) 7 bbls	Volume Recovered (bbls) N/A
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
X Natural Gas	Volume Released (Mcf) 425	Volume Recovered (Mcf) N/A
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Targa's 6" poly pipeline was discovered leaking as the result of external corrosion on a 2" valve. The line was isolated, blown down and a new valve was installed.

Form C-141

Page 2

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🗶 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

X The source of the release has been stopped.

X The impacted area has been secured to protect human health and the environment.

x Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

X All free liquids and recoverable materials have been removed and managed appropriately.

0

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Date: 9/04/18	
Telephone: 575-631-7093	_
	Date: <u>9/04/18</u> Telephone: <u>575-631-7093</u>

Received by:

Date:

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Will the shall suggest doubt to prove duptor bounds the area offected by the release?	<u>18</u> (ft bgs)
What is the shallowest depth to groundwater beneath the area affected by the release?	(n ogs)
Did this release impact groundwater or surface water?	Yes X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗴 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗶 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗶 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🕅 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗶 No
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No
Are the lateral extents of the release overlying a subsurface mine?	Yes X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗶 No
Are the lateral extents of the release within a 100-year floodplain?	Yes X No
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

X Field data

- X Data table of soil contaminant concentration data
- X Depth to water determination
- X Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- X Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexic	0	Incident ID	
Page 4	Oil Conservation Divi	Conservation Division		
			Facility ID	
			Application ID	
public health or the enviro failed to adequately invest	iz Klein	by the OCD does not release a threat to groundwate rator of responsibility for Title: ES&F	ieve the operator of liability shore er, surface water, human health or r compliance with any other fede H Supervisor	uld their operations have or the environment. In
OCD Only Received by:				

Form C-141

Page 5

State of New Mexico Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 				
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.			
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.				
Extents of contamination must be fully delineated.				
Contamination does not cause an imminent risk to human health, the environment, or groundwater.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Cindy Klein Signature: Unity Klein Title: ES&H Supervisor Date: 9/04/18				
email: Cklein@targaresources.com	Telephone: 575-631-7093			
OCD Only				
Received by:	Date:			
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved			
Signature:	Date:			

Form C-141

Page 6

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

X A scaled site and sampling diagram as described in 19.15.29.11 NMAC

X Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

X Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

X Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Cindy Klein	Title: ES&H Supervisor		
Signature: Cuich llein	Date: 9/04/18		
email: Cklein@targaresources.com	Telephone: 575-631-7093		

OCD Only

Received by:

Date:	-			

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:	
Printed Name:	Title:	