

CORE ANALYSIS PROCEDURES

FOR

PATTERSON PETROLEUM LP

MOHICAN '28' STATE # 1

LEA COUNTY, NEW MEXICO

The Rotary Sidewalls were delivered to Rotary Laboratories, Inc.

Gases from the Sidewalls were measured by Hot Wire Chromatography and reported in Gas Units.

A brief Lithological Description of the Sidewalls was recorded.

A description of the Fluorescence of the Sidewalls was recorded.

Ultraviolet Light Photographs were taken of the Sidewalls for a permanent record.

Natural Light Photographs were taken of the Sidewalls for a permanent record.

Composite Photographs of the Sidewall End Trims were taken under Natural and Ultraviolet Light.

The Sidewalls were extracted utilizing the Dean Stark method.

The fluids were measured by the Dean Stark method.

Porosities were measured in a Boyle's Law Porosimeter utilizing Helium.

Permeabilities were measured in a Hassler Sleeve Permeameter utilizing Nitrogen at 300 psi confining pressure.

Test samples of a known permeability were measured before and after the Sidewall permeabilities were measured.

ROTARY SIDEWALL CORE ANALYSIS

PATTERSON PETROLEUM LP MOHICAN '28' STATE # 1 LEA COUNTY, NEW MEXICO A.P.I. NUMBER : FIELD : Wildcat LOCATION : FILE NO.: 031123-1

DATE: November 23, 2003 ANALYSTS: WH, SB, PK

DEAN STARK EXTRACTION

SAMPLE	DEPTH	GRAIN	POROSITY	PERM	SATURA	TIONS	GAS	FLUORESCENCE	
NO.	ft	DENSITY	%	mD	Sw	So	UNITS	%	LITHOLOGY
and the same of the same of the same		and the second of the second o	the sand any features of the sand and the sa					· · · · · · · · · · · · · · · · · · ·	
1	12,929.0	2.66	9.7	0.34	82.2	0.0	3	0	Ss opaq-wht-gy vf-mgr sbrnd-ang sslty
2	12,930.0	2.65	9.3	0.33	84.2	0.0	4	0	Ss opaq-wht-gy vf-mgr sbrnd-ang ssity

