Fom 3160-3 (August 2007) UNITED S DEPARTMENT OF BUREAU OF LANI APPLICATION FOR PERMI	THE INTERIOR D MANAGEMENT	AUG 0 5 2	011		APPROVED . 1004-0137 Ily 31, 2010			
la. Type of work: 🗹 DRILL	REENTER			7 If Unit or CA Agree	ement, Name	and No.		
ib. Type of Well: ✔ Oil Well Gas Well Oth	ple Zone	8. Lease Name and Well No. Sharbro Federat #11 3 D57						
2. Name of Operator EnerVest Operating LLC	43199>	,		9. API Well No. 30- 015¹02.6	402	79		
^{3a.} Address 1001 Fannin Street, Suite 800 Houston, Texas 77002	10. Field and Pool, or Exploratory Sand Dunes, Bone Springs 53804							
4. Location of Well (Report location clearly and in accordan	11. Sec., T. R. M. or Blk. and Survey or Area							
At surface 1980' FSL, 660 FEL, Unit Letter I				Section 7, T-23-S, I	R-32-E			
At proposed prod. zone 14. Distance in miles and direction from nearest town or post of 39 miles west and north of Jal, New Mexico	office*	<u></u>		12. County or Parish Lea	13 N	. State		
 15. Distance from proposed* 660' location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of a 280	40 acr		sing Unit dedicated to this well es				
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	I, drilling, completed, h this lease, ft. 8,900' NMB00							
1 Elevations (Show whether DF, KDB, RT, GL, etc.) 3554' GL	22. Approxit 06/15/201	mate date work will sta 1	art*	23. Estimated duration 2 weeks				
	24. Attac	chments						
he following, completed in accordance with the requirements	s of Onshore Oil and Gas	Order No.1, must be	attached to the	nis form:				
 Well plat certified by a registered surveyor. A Drilling Plan. 		Item 20 above)	· ·	ons unless covered by an	existing bond	l on file (see		
3. A Surface Use Plan (if the location is on National Fore SUPO must be filed with the appropriate Forest Service C		 Operator certif Such other site BLM. 		formation and/or plans a	s may be requi	ired by the		
25. Signature Bridget Helfsic	Name Bridg	(Printed/Typed) get Helfrich			Date 5-	le-11		
Approved by (Signature) ISI George MCDonney	Name	(Printed/Typed)	R . 10.		Date AUG	- 4_2011		
Title FIELD MANAGER	Office	, C	ARLSBA	AD FIELD OFFICE				
Application approval does not warrant or certify that the app conduct operations thereon. Conditions of approval, if any, are attached.	licant holds legal or equi	itable title to those rig	thts in the su	bject lease which would	• •			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n States any false, fictitious or fraudulent statements or represe	nake it a crime for any p ntations as to any matter	person knowingly and within its jurisdiction.	willfully to	make to any department	or agency of the	he United		
(Continued on page 2)				*(Ins	tructions of	n page 2)		
Carlsbad Controlled Water Basin			Ke	087051	<i>II</i>			

SEE ATTACHED FOR CONDITIONS OF APPROVAL

.

.

· ····

AUG 0 8 2011

Approval Subject to General Requirements & Special Stipulations Attached LOCATION VERIFICATION MAP

EXHIBIT 2

VICINITY MAP

-

.

T 22 S $\stackrel{\text{M}}{\overset{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}}}}}}}}}$	13
19 20 21 22 23 24 19 20 21 22 23 30 29 28 27 26 25 30 29 28 27 26 31 32 33 34 35 36 31 32 33 34 35 6 5 4 3 2 1 6 5 4 3 2 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 14 13 18 17 16 15 14 19 20 21 22 23 24 19 20 21 22 23	
31 32 33 34 35 36 31 32 33 34 35 6 5 4 3 2 1 6 5 4 3 2 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 7 8 9 10 11 12 7 8 9 10 11 12 13 18 17 16 15 14 13 19 20 21 22 23 24 19 20 21 2	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
T 23 S	
7 8 9 10 11 12 7 8 9 10 11 Fig. Rg 18 17 16 15 14 13 18 17 16 15 14 T 23 S 19 20 21 22 23 24 19 20 21 22 23	
T 23 S	
	/
ALL 30 29 28 27 26 25 30 29 28 27 26 MIL 1000	
6 5 4 2 2 1 6 5 4 3 2	2
	12

EXHIBIT 3

OPERATOR OPERATING, LLC

LEASE_____SHARBRO_FEDERAL___

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF ST. HWY. #128 AND CO. RD. #789 (RED ROAD), GO NORTH ON RED ROAD APPROX. 5.1 MILES. TURN RIGHT AND GO EAST APPROX. 1.8 MILES. TURN RIGHT AND GO SOUTH APPROX. 0.5 MILES TO A PROPOSED ROAD SURVEY. FOLLOW ROAD SURVEY 131 FEET EAST TO THIS LOCATION.

SHARBRO FEDERAL #11 WELL LOCATED 1980 FEET FROM THE SOUTH LINE AND 660 FEET FROM THE EAST LINE OF SECTION 7, TOWNSHIP 23 SOUTH, RANGE 32 EAST, N.M.P.M., LEA COUNTY, NEW MEXICO.

 Survey
 Date:
 3/19/11
 Sheet
 1
 of
 1
 Sheets

 W.O.
 Number:
 11.13.0873
 Dr
 By:
 LA
 Rev
 1:N/A

 Date:
 4/20/11
 REL:
 1110391
 11130873
 Scale:
 1"=100"

LOCATION VERIFICATION MAP

EXHIBIT 6

EXHIBIT 7

MOBBS OCD

ENERVEST OPERATING, LLC

AUG 0 5 2011

SHARBRO FEDERAL #11

RECEIVED

LEA COUNTY, NM

1980' FSL & 660' FEL

1. The estimated tops of geologic markers are as follows:

Rustler Anhydrite 915' Ramsey Sand 4625' Avalon Sand 8556' Top of Salt 4360' Cherry Canyon 5529' TD 8900' Brushy Canyon Base of Salt 4530' 6828' Lamar Lime 4600' Bone Spring 8485'

The estimated depths at which anticipated water, oil or gas bearing formations are expected to be encountered:

Water: 150-250'

Oil or Gas: 5600-8700'

- 3. PRESSURE CONTROL EQUIPMENT: A 13-5/8" BOPE will be installed on the 13-3/8" casing and rated for at least 3M. BOP systems will be consistent with API RP 53. Pressure tests will be conducted before drilling out from under all casing strings which are set and cemented in place. Blowout preventer controls will be installed prior to drilling the surface plug and will remain in use until the well is completed or abandoned. Preventers will be inspected and operated at least daily to ensure good mechanical working order, and this inspection recorded on the daily drilling report. See Exhibit 9.
 - AUXILIARY EQUIPMENT: Kelly cock, pit level indicators, flow sensor equipment, and a sub 3A. with full opening valve to fit the drill pipe and drill collars will be available on the rig floor in the open position at all times for use when the Kelly is not in use.

PROPOSED CASING AND CEMENTING PROGRAM: 4.

Α. Casing Program: (All New)

A. Casing Program: (All New)					Lee COA					
Hole Size	Casing Size	Wt/ft	Grade	Thread	Interval	Length	Safety Factors			
17-1/2"	13-3/8"	48#	H-40	STC	0-925'	925'1040				
12 ¼"	8-5/8"	32#	J-55	STC	0-4600'	4600'	1.32 (c) 1.41 (b) 2.73 (t)			
7-7/8"	5-1/2"	17#	N-80	LTC	0-8900'	8900'-	1.48 (c) 1.55 (b) 2.33 (t)			

В. **Cementing Program:**

13-3/8" Surface Casing: 925'

Lead - 580 sx lite prem cmt w/2% CaCl₂ + 0.125 ppsx Poly-E-Flake + 5 lb Gilsonite (wt. 12.30 ppg, Yield 1.95 ft^3/sx)

Tail - 180 sx Class G prem cmt w/2% CaCl₂ + 0.125 ppsx Poly-E-Flake (wt. 15.80 ppg, Yield 1.17 ft³/sx). Cement to surface using 100% excess cement.

8-5/8" Intermediate Casing: 4,600':

Lead - 1150 sxs lite prem cmt + 12% salt + .1% Versaset (wt. 12.50 ppg, Yield 2.01 ft³/sxs) Tail: 300 sx 50/50 Poz prem + 12% Salt + .1% Versaset (wt. 13.50 ppg, Yield 1.44 ft³/sx. Cement to surface using 50% excess cement.

5-1/2" Production Casing - 8900;

1st stage: Lead w/260 sxs lite prem cmt + 5 ppg/sx Gilsonite + .125 ppg/sx Poly-E-Flake + .3% HR-5 + 1 ppg/sx Pheno Seal Medium (wt. 12.30 ppg, Yiëld 1.93 ft³/sx) Tail w/100 sxs 50/50 Poz prem + 2.5 ppg/sx Gilsonite + .125ppg/sx Poly-E-Flake + .3% Halad(R)-9 + .1% CFR-3 (wt. 13.50 ppg, Yield 1.29 ft³/sx). DV Tool set at approx. 6000'. 2nd stage: Lead w/180 lite prem cmt + 5 ppg/sx gilsonite + .125 ppg/sx Poly-E-Flake + .2% Halad(R)-9 (wt. 12.30 ppg, Yield 1.92 ft³/sx) Tail w/50 sx of Class "G" prem cmt + .3% Halad(R)-9 (wt 15.80 ppg; Yield 1.15 ft³ sx Tie back

1 and (K)-9 (wt 15.80 ppg; Yield 1.15 ft sx <u>The back</u> to Intermediate Casing (4000'). Volumes to be adjusted using 25% excess cement.

5. MUD PROGRAM AND AUXILIARY EQUIPMENT:

Interval	Type	<u>Weight</u>	Viscosity	Fluid Loss
0-925-4600	FW Gel	8.4-8.9	32-26	N/C
925-4600	Brine	10.0	28	N/C
4600-TD	Cut Brine	8.9-9.3	28	<15.0

Sufficient mud material to maintain mud properties, control lost circulation and contain a blow out will be available at the well site during drilling operations. Mud will be checked hourly by rig personnel.

6. EVALUATION PROGRAM:

Samples:	Every 10' from intermediate casing to TD
Logging:	G/R/N from surface to TD; Dual Induction Spectra G/R, Litho Density
	from 4500' to TD
Coring:	None anticipated
DST's:	None anticipated

7. ABNORMAL CONDITIONS AND ANTICIPATED BHP:

From 0-925':	Anticipated Max. BHP: 250 psi
From 925 – 4600':	Anticipated Max. BHP: 750 psi
From 4600 – 8,900' (TD):	Anticipated Max. BHP: 2620 psi

Anticipated Potential Hazards: None

Abnormal Pressures Anticipated: None

Lost circulation Zones Anticipated: per COA - Glorieta, Delaware, Bone Spring

 H_2S Zones Anticipated: Per COA – Bone Springs – Hydrogen Sulfide Drilling Plan to be activated 500' prior to drilling the Bone Spring formation.

Maximum Bottom Hole Temperature: 160° F

8. ANTICIPATED STARTING DATE:

Plans are to drill this well as soon as possible after receiving approval. It should take approximately 16 days to drill the well with completion taking another 10 days. This well lies in the CRMA prairie chicken area as defined by the 1966 NM GAP analysis study; NM State University. ENERVEST OPERATING, LLC REQUESTS AN EXEMPTION FROM THE MARCH 15-JUNE 15 PRAIRIE CHICKEN STIPS FOR THE DRILLING, COMPLETION & WORKOVER PHASES OF THIS WELL. EnerVest contends that there are no prairie chickens in this area, as supported by the attached field survey prepared by Auburn University in 2000, attached to the Surface Use of Operations.

Sharbro Federal 11 Drilling Plan

[CUADD										
		RO FEDI			•	ENE			RATING		
TYPE FIELD	VERTICAL SAND DUNES	·	RIG COUNTY	LEA				DATE ELEVATION	6/22/2011		
GAS/OIL	OIL		MUD					CEMENT	0,000 GL		
			EC. 7, T23S, R32E					SBHT	NA		
COMMENTS: NOTE:	OBJECTIVE	FORMATIONS	S: BONE SPRING SAND, AV	ALON SA	ND						
MUD- LOGGER	SURVEYS	WOB/GPM BIT	FORMATION TOPS HOLE SIZES		VERTICAL DEPTH		MUD WEIGHT	OPEN HOLE LOGS	CEMENT	WELLHEAD	REMARKS
									Cement to surface	e (100% Exces	s)
	300'/600'/TD		17-1/2"			8	8.4-8.9	GR/N (C H.)		•	
S	et Surface Ca	Insert sing 25' into th	Rustler Anhydrite Est 903' 13-3/8" 48# H-40 STC Casin e Rustler Anhydrite	▫▂┛	925						
	Every 1000' or less	10/25/700 PDC Motor	12-1/4"				10 ppg Brine		Cement to surfac	е (50% Ореп Н	ole Excess)
								GR/N (C.H.)			
					4,000		OC (5-1	2" String)			
			Top of Sal	t	4,360						
			Base of Sal	t 🗐 🕄 🛛	4,530						ъ.
			Lamar Lime 8-5/8" 32# J-55 STC Casing	? <u>3</u>	4 600						
			Ramsey Sanc	- 20	4,600 4,625	- 4					
			······, ····		,,						
	Every 1000' or less	10/25/500 PDC	Cherry Canyon	1	5,529		9-9 3 Out Brine				
		Motor									
<u>6,000'</u> I₃S Equip. Operational	I		7-7/8"			E)V Tool @	3 6,000'	Bring cement into Use 15% Excess Stage 1 (Estimate	Over OH Caline	asing @ 4000' r Volume
									Stage 2 (Estimate	d Volume):	
			Brushy Canyon		6,828						
			Bone Spring		8,485		I	Dual Inductio	n, Spectra GR, Lith	o Density Neutro	n j
			Avalon Sand		8,556						
			-1/2" 17# N-80 LTC Casing		8,900	×					
		· · · · · · · · · · · · · · · · · · ·		·····			i	Office		······································	
Έ#				Regulatory	Janet Bienski			713 495 1571			

•

Sand Dunes Choke Manifold & Piping Configuration

EXHIBIT 9A

CLOSED LOOP SCHEMATIC SHARBRO FEDERAL #11

SAND DUNES LOCATION LAYOUT

ENERVEST OPERATING LLC

CLOSED-LOOP DESIGN PLAN

EnerVest Operating LLC ("EnerVest") shall design and construct its closed-loop system closed-loop system to ensure the confinement of oil, gas or water to prevent uncontrolled releases.

The design plan for the closed-loop system shall use appropriate engineering principles and practices and follow applicable manufacturers' requirements. The plan shall include operating and maintenance procedures and a closure plan, as set out below. For further information on the closed-loop system design, please see the attached diagram.

EnerVest's closed loop system will not use a drying pad, temporary pit, below grade tank or sump. It will use an aboveground haul-off bin suitable for holding solids and fluids from rig operations. No fencing will be constructed around the closed-loop system. Signage shall be posted per the C-144 form to which this plan is attached.

CLOSED-LOOP OPERATING AND MAINTENANCE PLAN

EnerVest shall operate and maintain the closed-loop system in a manner that will contain solids and liquids, maintain the system's integrity, prevent contamination of fresh water and protect public health and the environment. To attain this goal, the following procedures will be followed:

1. EnerVest shall recycle, reuse or reclaim or dispose of all drilling fluids in a manner approved by NMOCD rules.

2. EnerVest shall not discharge into or store any hazardous waste in the closed-loop system, including the haul-off bin, nor shall it allow miscellaneous solid waste or debris into same.

3. The haul-off bin will be of sufficient volume to maintain a safe freeboard prior to disposal of the solids and liquids from rig operations. Disposal will be done on a periodic basis, whenever a haul-off bin is determined to be at full volume capacity. The solids and liquids in the closed-loop system will be transported off the drill site and disposed at the NMOCD-permitted disposal facility or facilities listed below. The designated NMOCD-permitted disposal facility is:

Disposal Facility:

Controlled Recovery, Inc. Gandy Marley, Inc. NMOCD Permit No.:

HOBBS OCD

AUG 0 5 201

RECEIVED

NM-01-0006 DP-1041

4. The closed-loop system will be inspected at least daily while the drilling or workover rig is on-site EnerVest shall maintain a log of such inspections.

5. If some component of the closed-loop system develops a leak, or if any penetration of a component occurs below the liquid's surface, then EnerVest shall promptly remove all liquid above the damage or leak line, notify the appropriate NMOCD district office within 48 hours of the discovery and repair the damage or replace the affected closed-loop system component.

CLOSED-LOOP CLOSURE PLAN

The closure for this drill site is not subject to the closure requirements for temporary pits specified in Subsection B of 19.15.17.13, NMAC, as EnerVest will not use any temporary pits in conjunction with its closed-loop system. The closure for this drill site is not subject to the closure requirements for closed-loop systems using drying pads specified in Subsection D of 19.15.17.13, NMAC, as ENERVEST will not use any drying pads in conjunction with its closed-loop system. Further, the closed-loop system operations and associated activities will all be performed on the drilling pad, and will not be performed on or in areas that will not be used for future service and operations. The closure for the closed-loop system at this site will be performed as follows:

1. Immediately following termination of rig operations, all solids and liquids remaining in the closed-loop system will be transported in the haul-off bin or bins to the NMOCD-permitted facility(jes) listed above.

2. The closed-loop system components, including any and all haul-off bins, will be removed from the location in conjunction with the move of the drilling or completion rig from the well site.

3. Within six months from the date that EnerVest releases the drilling or workover rig, EnerVest will complete and execute items 9 and 10 of the attached C-144 CLEZ and file same with the appropriate NMOCD district office.