# **WAFMSS**

#### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: JAYHAWK 7-6 FED FEE COM

**APD ID:** 10400032749

Submission Date: 08/03/2018

Highlighted data reflects the most recent changes

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Well Number: 7H

# **Section 1 - Geologic Formations**

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

| Formation<br>ID | Formation Name  | Elevation | True Vertical<br>Depth | Measured<br>Depth | Lithologies     | Mineral Resources | Producing |
|-----------------|-----------------|-----------|------------------------|-------------------|-----------------|-------------------|-----------|
| 1               | <br>            | 3315      | 0                      | 0                 | OTHER : Surface | NONE              | No        |
| 2               | RUSTLER         | 2424      | 891                    | 891               | SANDSTONE       | NONE              | No        |
| 3               | TOP SALT        | 2064      | 1251                   | 1251              | SALT            | NONE              | No        |
| 4               | BELL CANYON     | -1646     | 4961                   | 4961              | SANDSTONE       | NATURAL GAS,OIL   | No        |
| 5               | BASE OF SALT    | -1646     | 4961                   | 4961              | LIMESTONE       | NONE              | No        |
| 6               | CHERRY CANYON   | -2986     | 6301                   | 6301              | SANDSTONE       | NATURAL GAS,OIL   | No        |
| 7               | BRUSHY CANYON   | -4616     | 7931                   | 7931              | SANDSTONE       | NATURAL GAS,OIL   | No        |
| 8               | BONE SPRING     | -6126     | 9441                   | 9441              | SHALE           | NATURAL GAS,OIL   | No        |
| 9               | BONE SPRING 1ST | -7066     | 10381                  | 10381             | SANDSTONE       | NATURAL GAS,OIL   | No        |
| 10              | BONE SPRING 2ND | -7606     | 10921                  | 10921             | SANDSTONE       | NATURAL GAS,OIL   | No        |
| 11              | BONE SPRING 3RD | -8756     | 12071                  | 12071             | SANDSTONE       | NATURAL GAS,OIL   | No        |
| 12              | WOLFCAMP        | -9176     | 12491                  | 12491             | SHALE           | NATURAL GAS,OIL   | Yes       |
| 13              | STRAWN          | -11696    | 15011                  | 15011             | LIMESTONE       | NATURAL GAS,OIL   | No        |

Section 2 - Blowout Prevention

Drilling Plan Data Report

01/14/2019

Well Number: 7H

#### Pressure Rating (PSI): 10M

#### Rating Depth: 12626

**Equipment:** BOP/BOPE will be installed per Onshore Oil & amp; Gas Order #2 requirements prior to drilling below intermediate casing, a 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & amp; Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

#### Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

**Testing Procedure:** A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. 5M annular on 10M system will be tested to 100% of rated working pressure.

#### Choke Diagram Attachment:

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_10M\_BOPE\_CHK\_20180803102330.pdf

#### **BOP Diagram Attachment:**

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_10M\_BOPE\_CHK\_20180803102341.pdf

Pressure Rating (PSI): 5M

Rating Depth: 12626

**Equipment:** BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

#### Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

**Testing Procedure:** A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

#### **Choke Diagram Attachment:**

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_5M\_BOPE\_\_CK\_20180803102406.pdf

#### **BOP Diagram Attachment:**

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_5M\_BOPE\_\_CK\_20180803102417.pdf

Well Number: 7H

# **Section 3 - Casing**

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade     | Weight | Joint Type          | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|-----------|--------|---------------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | SURFACE          | 14.7<br>5 | 10.75    | NEW       | API      | N              | 0          | 900           | 0           | 900            |             |                | 900                            | J-55      | 40.5   | STC                 | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
|           | INTERMED<br>IATE | 9.87<br>5 | 7.625    | NEW       | API      | N              | 0          | 12080         | 0           | 12053          |             |                | 12080                          | P-<br>110 |        | OTHER -<br>BTC      | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
|           | INTERMED<br>IATE | 8.75      | 7.625    | NEW       | API      | N              | 12080      | 12980         | 12053       | 12626          |             |                |                                | P-<br>110 | -      | OTHER -<br>FLUSHMAX |             | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |
|           | PRODUCTI<br>ON   | 6.75      | 5.5      | NEW       | API      | N              | 0          | 22670         | 0           | 12626          |             |                | 22670                          | P-<br>110 |        | OTHER -<br>VAM SG   | 1.12<br>5   | 1.25     | BUOY          | 1.6      | BUOY         | 1.6     |

#### **Casing Attachments**

Casing ID: 1

String Type: SURFACE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

### Casing Design Assumptions and Worksheet(s):

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Surf\_Csg\_Ass\_20180803102459.pdf

Well Number: 7H

#### **Casing Attachments**

Casing ID: 2 String Type: INTERMEDIATE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

#### Casing Design Assumptions and Worksheet(s):

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Int\_Csg\_Ass\_20180803102539.pdf

Casing ID: 3 String Type: INTERMEDIATE

**Inspection Document:** 

**Spec Document:** 

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Int\_Csg\_Ass\_20180803102629.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

 $Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Prod\_Csg\_Ass\_20180803102653.pdf$ 

**Section 4 - Cement** 

### Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: JAYHAWK 7-6 FED FEE COM

Well Number: 7H

| String Type  | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type   | Additives |
|--------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|---------------|-----------|
| INTERMEDIATE | Lead      |                     | 0      | 0         | 0            | 0     | 0       | 0     |         | SEE DRLG PLAN | N/A       |

| SURFACE | Lead | 0 | 900 | 560 | 1.34 | 14.8 | 750 | 50 | CLASS C | 1% Calcium Chloride |
|---------|------|---|-----|-----|------|------|-----|----|---------|---------------------|
|         |      |   |     |     |      |      |     |    |         |                     |

| INTERMEDIATE | Lead | 0         | 8980      | 358        | 3.27 | 9    | 1172 | 30 | TUNED   | Tuned Light                                                                                              |
|--------------|------|-----------|-----------|------------|------|------|------|----|---------|----------------------------------------------------------------------------------------------------------|
| INTERMEDIATE | Tail | 8980      | 1298<br>0 | 614        | 1.6  | 13.2 | 982  | 30 |         | Poz (Fly Ash) + 0.5%<br>bwoc HALAD-344 +<br>0.4% bwoc CFR-3 +<br>0.2% BWOC HR-601 +<br>2% bwoc Bentonite |
| PRODUCTION   | Lead | 1278<br>0 | 2267<br>0 | 775.6<br>7 | 1.33 | 13.2 | 1032 | 25 | Class H | 0.125 lbs/sack Poly-E-<br>Flake                                                                          |

# Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

**Describe what will be on location to control well or mitigate other conditions:** Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

**Circulating Medium Table** 

Well Number: 7H

| Top Depth | Bottom Depth | Mud Type          | Min Weight (Ibs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Hd | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |
|-----------|--------------|-------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------|
| 0         | 900          | SPUD MUD          | 8.33                 | 9                    |                     |                             |    | 2              |                |                 |                            |
| 900       | 1298<br>0    | SALT<br>SATURATED | 9                    | 10                   |                     |                             |    | 2              |                |                 |                            |
| 900       | 1298<br>0    | SALT<br>SATURATED | 9                    | 10                   |                     |                             |    | 2              |                |                 |                            |
| 1298<br>0 | 2267<br>0    | OIL-BASED<br>MUD  | 10                   | 12                   |                     |                             |    | 12             |                |                 |                            |

# Section 6 - Test, Logging, Coring

### List of production tests including testing procedures, equipment and safety measures:

Will run GRMWD from TD to from KOP. Cement bond logs will be run in vertical to determine top of cement. Stated logs run will be in the Completion Report and submitted to the BLM.

List of open and cased hole logs run in the well:

CALIPER,CBL,DS,GR,MUDLOG

Coring operation description for the well:

N/A

# **Section 7 - Pressure**

Anticipated Bottom Hole Pressure: 7879

Anticipated Surface Pressure: 5101.28

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_H2S\_Plan\_20180803102905.pdf

Well Number: 7H

## **Section 8 - Other Information**

### Proposed horizontal/directional/multi-lateral plan submission:

Jayhawk\_7\_6\_FED\_FEE\_COM\_7H\_DIR\_SVY\_20180803102918.pdf

### Other proposed operations facets description:

MULTI-BOWL VERBIAGE MULTI-BOWL WELLHEAD - 2 VARIATIONS OF 10M 10M ANNULAR VARIANCE DOC & SCHEMATIC CLOSED LOOP DESIGN PLAN DRILLING PLAN AC REPORT CO-FLEX HOSE SPUDDER RIG REQUEST GCP FORM SPEC SHEETS - 5

### Other proposed operations facets attachment:

5.5\_x\_20\_P110\_EC\_VAMSG\_20180803103609.pdf 5.5\_x\_20\_P110\_EC\_VAMTOP\_HT\_20180803103611.pdf 7.625\_29.70\_P110\_Flushmax\_20180803103611.pdf 8.625\_32\_P110EC\_7.875\_SD\_20180803103612.pdf Jayhawk 7 6 Fed Fee Com 7H Spudder Rig Info 20180803103614.pdf 8.625\_32\_P110EC\_VAM\_FJL\_NA\_7.875\_SD\_20180803103613.PDF Javhawk 7 6 FED FEE COM 7H AC Report 20180803103615.pdf Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Annular\_Preventer\_Summary\_20180803103616.pdf Javhawk 7 6 Fed Fee Com 7H Clsd Loop 20180803103618.pdf Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_MB\_Wellhd\_5M\_\_Use\_for\_Wolfcamp\_5M\_Only\_20180803103622.pdf Jayhawk 7 6 Fed Fee Com 7H MB Wellhd 10M 2 20180803103624.PDF Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_MB\_Wellhd\_10M\_20180803103626.pdf Jayhawk\_7\_6\_FED\_FEE\_COM\_7H\_Plot\_20180803103627.pdf Jayhawk 7 6 Fed Fee Com 7H 10M BOPE DR and CLS Exc Schem Ann Exc 20180803103650.pdf Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_GCP\_Form\_20180803103652.pdf 10M\_BOPE\_DR\_CLS\_RKL\_20181205123911.pdf Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Drilling\_Doc\_R2\_20181219083252.pdf Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_MB\_Verb\_5M\_20181219083403.pdf Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_MB\_Verb\_10M\_R\_20181219083403.pdf

# Other Variance attachment:

Jayhawk\_7\_6\_Fed\_Fee\_Com\_7H\_Co\_flex\_20180803103704.pdf













Casing Assumptions and Load Cases

Intermediate

| Intermediate Casing Burst Design |                         |                              |  |  |  |  |  |
|----------------------------------|-------------------------|------------------------------|--|--|--|--|--|
| Load Case                        | External Pressure       | Internal Pressure            |  |  |  |  |  |
| Pressure Test                    | Formation Pore Pressure | Max mud weight of next hole- |  |  |  |  |  |
|                                  |                         | section plus Test psi        |  |  |  |  |  |
| Drill Ahead                      | Formation Pore Pressure | Max mud weight of next hole  |  |  |  |  |  |
|                                  |                         | section                      |  |  |  |  |  |
| Fracture @ Shoe                  | Formation Pore Pressure | Dry gas                      |  |  |  |  |  |

| Intermediate Casing Collapse Design |                                         |                   |  |  |  |  |  |
|-------------------------------------|-----------------------------------------|-------------------|--|--|--|--|--|
| Load Case                           | External Pressure                       | Internal Pressure |  |  |  |  |  |
| Full Evacuation                     | Water gradient in cement, mud above TOC | None              |  |  |  |  |  |
| Cementing                           | Wet cement weight                       | Water (8.33ppg)   |  |  |  |  |  |

| Intermediate Casing Tension Design |         |  |  |  |  |  |
|------------------------------------|---------|--|--|--|--|--|
| Load Case Assumptions              |         |  |  |  |  |  |
| Overpull                           | 100kips |  |  |  |  |  |
| Runing in hole                     | 2 ft/s  |  |  |  |  |  |
| Service Loads                      | N/A     |  |  |  |  |  |

Casing Assumptions and Load Cases

Intermediate

| Intermediate Casing Burst Design |                         |                              |  |  |  |  |  |
|----------------------------------|-------------------------|------------------------------|--|--|--|--|--|
| Load Case                        | External Pressure       | Internal Pressure            |  |  |  |  |  |
| Pressure Test                    | Formation Pore Pressure | Max mud weight of next hole- |  |  |  |  |  |
|                                  |                         | section plus Test psi        |  |  |  |  |  |
| Drill Ahead                      | Formation Pore Pressure | Max mud weight of next hole  |  |  |  |  |  |
|                                  |                         | section                      |  |  |  |  |  |
| Fracture @ Shoe                  | Formation Pore Pressure | Dry gas                      |  |  |  |  |  |

| Intermediate Casing Collapse Design |                                         |                   |  |  |  |  |  |
|-------------------------------------|-----------------------------------------|-------------------|--|--|--|--|--|
| Load Case                           | External Pressure                       | Internal Pressure |  |  |  |  |  |
| Full Evacuation                     | Water gradient in cement, mud above TOC | None              |  |  |  |  |  |
| Cementing                           | Wet cement weight                       | Water (8.33ppg)   |  |  |  |  |  |

| Intermediate Casing Tension Design |         |  |  |  |  |  |
|------------------------------------|---------|--|--|--|--|--|
| Load Case Assumptions              |         |  |  |  |  |  |
| Overpull                           | 100kips |  |  |  |  |  |
| Runing in hole                     | 2 ft/s  |  |  |  |  |  |
| Service Loads                      | N/A     |  |  |  |  |  |

Production

| Production Casing Burst Design |                         |                                  |
|--------------------------------|-------------------------|----------------------------------|
| Load Case                      | External Pressure       | Internal Pressure                |
| Pressure Test                  | Formation Pore Pressure | Fluid in hole (water or produced |
|                                |                         | water) + test psi                |
| Tubing Leak                    | Formation Pore Pressure | Packer @ KOP, leak below         |
|                                |                         | surface 8.6 ppg packer fluid     |
| Stimulation                    | Formation Pore Pressure | Max frac pressure with heaviest  |
|                                |                         | frac fluid                       |

| Production Casing Collapse Design |                                          |                   |
|-----------------------------------|------------------------------------------|-------------------|
| Load Case                         | External Pressure                        | Internal Pressure |
| Full Evacuation                   | Water gradient in cement, mud above TOC. | None              |
| Cementing                         | Wet cement weight                        | Water (8.33ppg)   |

| Production Casing Tension Design |         |  |
|----------------------------------|---------|--|
| Load Case Assumptions            |         |  |
| Overpull                         | 100kips |  |
| Runing in hole                   | 2 ft/s  |  |
| Service Loads                    | N/A     |  |

Surface

| Surface Casing Burst Design |                         |                                |
|-----------------------------|-------------------------|--------------------------------|
| Load Case                   | External Pressure       | Internal Pressure              |
| Pressure Test               | Formation Pore Pressure | Max mud weight of next hole-   |
|                             |                         | section plus Test psi          |
| Drill Ahead                 | Formation Pore Pressure | Max mud weight of next hole    |
|                             |                         | section                        |
| Displace to Gas             | Formation Pore Pressure | Dry gas from next casing point |

| Surface Casing Collapse Design |                                         |                   |
|--------------------------------|-----------------------------------------|-------------------|
| Load Case                      | External Pressure                       | Internal Pressure |
| Full Evacuation                | Water gradient in cement, mud above TOC | None              |
| Cementing                      | Wet cement weight                       | Water (8.33ppg)   |

| Surface Casing Tension Design |             |  |
|-------------------------------|-------------|--|
| Load Case                     | Assumptions |  |
| Overpull                      | 100kips     |  |
| Runing in hole                | 3 ft/s      |  |
| Service Loads                 | N/A         |  |