Form 3160-3 (June 2015)

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018
Lassa Sarial No

UNITED STATES	•					
DEPARTMENT OF THE IN	-			5. Lease Serial No.		
BUREAU OF LAND MANA						
APPLICATION FOR PERMIT TO D	RILL OR I	REENTER		6. If Indian, Allotee of	or Tribe Na	ıme
la. Type of work: DRILL RE	EENTER			7. If Unit or CA Agre	ement, Na	ime and No.
	her	_		8. Lease Name and V	Vell No.	
1c. Type of Completion: Hydraulic Fracturing Sin	ngle Zone	Multiple Zone		327861	A	
2. Name of Operator 325830				9. API Well No. 30	-025-47	7057
3a. Address	3b. Phone N	o. (include area cod	(e)	10. Field and Pool, o	r Explorato	ory 97895
4. Location of Well (Report location clearly and in accordance w	vith any State	requirements.*)		11. Sec., T. R. M. or	Blk. and S	urvey or Area
At surface						
At proposed prod. zone						
14. Distance in miles and direction from nearest town or post office	ce*			12. County or Parish	1	13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of ac			ng Unit dedicated to th	is well	
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed	d Depth	20. BLM/	BIA Bond No. in file		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxim	mate date work will	start*	23. Estimated duration	n	
	24. Attacl	hments				
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil	and Gas Order No. 1	, and the H	lydraulic Fracturing ru	le per 43 C	CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the Item 20 above).	e operation	s unless covered by an	existing bo	and on file (see
3. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office)		Operator certific Such other site sp BLM.		mation and/or plans as i	may be requ	uested by the
25. Signature	Name	(Printed/Typed)			Date	
Title						
Approved by (Signature)	Name	(Printed/Typed)			Date	
Title	Office					
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	t holds legal o	or equitable title to the	nose rights	in the subject lease wh	ich would	entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of					ıy departm	nent or agency
GCP Rec 03312020				1/		

APPROVED WITH CONDITIONS Approval Date: 03/30/2020

SL

*(Instructions on page 2)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

ASCENT ENERGY LLC **OPERATOR'S NAME:** LEASE NO.: NMNM129263 LOCATION: SECTION 19, T21S, R33E, NMPM **COUNTY:** LEA COUNTY, NEW MEXICO WELL NAME & NO.: 601H – HORSESHOE FED COM **SURFACE HOLE FOOTAGE:** 300'/N & 1995'/E BOTTOM HOLE FOOTAGE 100'/N & 2310'/E WELL NAME & NO.: 602H - HORSESHOE FED COM 300'/N & 675'/E SURFACE HOLE FOOTAGE: **BOTTOM HOLE FOOTAGE** 100'/N & 990'/E COA

H2S	Yes	O No	
Potash	None	Secretary	● R-111-P
Cave/Karst Potential	• Low	Medium	O High
Cave/Karst Potential	Critical		
Variance	None	• Flex Hose	Other
Wellhead	Conventional	• Multibowl	O Both
Other	✓ 4 String Area		₩ WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	▼ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into an **unknown formation in the Hat Mesa Pool**. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Casing Design:

1. The 13-3/8 inch surface casing shall be set at approximately 1635 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 3600 feet. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 - Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- ❖ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ❖ In WIPP Areas cement must come to surface on the first three casing strings.

- ❖ In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ❖ Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The **7-5/8** inch 2nd intermediate casing shall be set at approximately **5265** feet. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **50 feet** on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least **50 feet** on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Page 5 of 10

Approval Date: 03/30/2020

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Page 6 of 10

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

- lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

NMK11282019

Page 10 of 10

NAME: Brian Wood

Title: President

Email address:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification Data Report

Signed on: 12/06/2018

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Street Address: 37 Ve	rano Looop	
City: Santa Fe	State: NM	Zip: 87508
Phone: (505)466-8120		
Email address: afmss	@permitswest.com	
Field Repres	sentative	
Representative Name	:	
Street Address:		
City:	State:	Zip:
Phone:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

03/30/2020

APD ID: 10400036975

Submission Date: 12/06/2018

Highlighted data reflects the most recent changes

Operator Name: ASCENT ENERGY LLC

Well Name: HORSESHOE FED COM

Well Number: 602H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID: 10400036975 **Tie to previous NOS?** N

Submission Date: 12/06/2018

BLM Office: CARLSBAD

User: Brian Wood Title: President

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM129263

Surface access agreement in place?

Lease Acres: 160

Allotted?

Reservation:

Zip: 80202

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Permitting Agent? NO

Keep application confidential? YES

...

APD Operator: ASCENT ENERGY LLC

Operator letter of designation:

Operator Info

Operator Organization Name: ASCENT ENERGY LLC

Operator Address: 1621 18th Street, Suite 200

Operator PO Box:

Operator City: Denver State: CO

Operator Phone: (720)710-8999

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: HORSESHOE FED COM Well Number: 602H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: WC-025 G-08 Pool Name:

S213304D; BONE SPRING

Is the proposed well in an area containing other mineral resources? POTASH

Well Name: HORSESHOE FED COM Well Number: 602H

Is the proposed well in an area containing other mineral resources? POTASH

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 602H

Well Class: HORIZONTAL

HORSESHOE EAST

Number of Lorent

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Reservoir well spacing assigned acres Measurement: 160 Acres

Well plat: HS_602H_C102_GCP_20191024093544.pdf

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 23782 Reference Datum:

	_																		
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	300	FNL	675	FEL	21S	33E	19	Aliquot	32.47082	-	LEA	NEW	NEW	S	STATE	379	0	0	
Leg								NENE	9	103.6053		I	MEXI			3			
#1										52		CO	СО						
KOP	100	FSL	990	FEL	21S	33E	18	Aliquot	32.47193	-	LEA	NEW	NEW	S	STATE	-	112	112	
Leg								SESE		103.6063		MEXI	I			743	41	27	
#1										76		CO	CO			4			
PPP	100	FSL	990	FEL	21S	33E	18	Aliquot	32.47193	-	LEA	NEW	NEW	S	STATE	-	112	112	
Leg								SESE		103.6063		I	MEXI			743	41	27	
#1-1										76		СО	СО			4			

Well Name: HORSESHOE FED COM Well Number: 602H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
EXIT Leg #1	100	FNL	990	FEL	21S	33E	18	Aliquot NENE	32.48588 5	- 103.6063 84	LEA	1	NEW MEXI CO	F	NMNM 129263	- 800 7	172 84	118 00	
BHL Leg #1	100	FNL	990	FEL	21S	33E	18	Aliquot NENE	32.48588 5	- 103.6063 84	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 129263	- 800 7	172 84	118 00	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

03/30/2020

APD ID: 10400036975

Well Type: OIL WELL

Submission Date: 12/06/2018

Highlighted data reflects the most recent changes

Operator Name: ASCENT ENERGY LLC

Well Number: 602H

Show Final Text

Well Name: HORSESHOE FED COM

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	_
567482	QUATERNARY	3793	0	0		NONE	N
354623	RUSTLER	2187	1606	1606	SANDSTONE	NONE	N
567483	SALADO	1832	1961	1961	SALT	OTHER : Salt	N
567484	BASE OF SALT	401	3392	3392	SALT	OTHER : Salt	N
567485	TANSILL	255	3538	3539	DOLOMITE	NONE	N
567486	YATES	89	3704	3705	SANDSTONE	NONE	N
354624	CAPITAN REEF	-236	4029	4031	LIMESTONE, OTHER	USEABLE WATER	N
567487	DELAWARE SAND	-1456	5249	5254		NATURAL GAS, OIL	N
354625	BELL CANYON	-1661	5454	5459	SANDSTONE	NATURAL GAS, OIL	N
354620	CHERRY CANYON	-1967	5760	5766	SANDSTONE	NATURAL GAS, OIL	N
354626	BRUSHY CANYON	-3336	7129	7138	SANDSTONE	NATURAL GAS, OIL	N
354627	BONE SPRING LIME	-5083	8876	8890	OTHER : Carbonate	NATURAL GAS, OIL	N
354621	AVALON SAND	-5267	9060	99074	SHALE	CO2, NATURAL GAS, OIL	N
354628	BONE SPRING 1ST	-6222	10015	10029	SANDSTONE	NATURAL GAS, OIL	N
354622	BONE SPRING 2ND	-6770	10563	10577	OTHER, SANDSTONE, SHALE : Carbonate	NATURAL GAS, OIL	N
567488	BONE SPRING 3RD	-7318	11111	11125	OTHER : Carbonate	NATURAL GAS, OIL	N
354629	BONE SPRING 3RD	-7795	11588	11633	SANDSTONE	NATURAL GAS, OIL	Y

Well Name: HORSESHOE FED COM Well Number: 602H

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 15000

Equipment: A 15,000' 5,000 psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A top drive check valve and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. The wellhead will be a multi-bowl speed head.

Requesting Variance? YES

Variance request: Ascent requests a variance to run a multi-bowl speed head for setting the Intermediate 1, Intermediate 2, and Production Strings. Ascent requests a variance to drill this well using a co-flex line between the BOP and choke manifold (instead of the 4" OD steel line). Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Ascent requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, after drilling surface, 1st intermediate, and 2nd intermediate hole sections and cementing 2nd intermediate casing, a 10M dry hole cap with bleed off valve will be installed. The rig will then walk to another well on the pad. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Testing Procedure: After surface casing is set and the BOP is nippled up, the BOP pressure tests will be made with a third party tester to 250 psi low, 5000 psi high, and the annular preventer will be tested to 2,500 psi. The BOP will be tested in this manner after nipple-up if any break of the stack occurs as wells as every 30 days.

Choke Diagram Attachment:

HS_602H_BOP_Choke_20191020135138.pdf

BOP Diagram Attachment:

HS_602H_BOP_Choke_20191020135145.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	CONDUCT OR	30	20.0	NEW	API	N	0	80	0	80	3793	3673	1	OTH ER	-	OTHER - Weld						
2	SURFACE	17.5	13.375	NEW	API	N	0	1635	0	1635	3793	1993	1635	J-55	54.5	ST&C	1.4	2.89	DRY	1.8	DRY	2
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3600	0	3600	3793	193	3600	J-55	40	LT&C	1.4	1.7	DRY	1.8	DRY	2

Well Name: HORSESHOE FED COM Well Number: 602H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	INTERMED IATE	8.75	7.625	NEW	API	N	0	5265	0	5260	3793	-1407	5265	HCP -110		OTHER - EZGO FJ3	3.12	3	DRY	1.8	DRY	2
5	PRODUCTI ON	6.75	5.5	NEW	API	N	0	17284	0	11800		-8007	17284	HCP -110	-	OTHER - EZGO FJ3	2.1	1.2	DRY	1.3	DRY	2.28

Casing	Attachments
--------	--------------------

asing Attachments	
Casing ID: 1	String Type: CONDUCTOR
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumpt	tions and Worksheet(s):
Casing ID: 2	String Type: SURFACE
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumpt	tions and Worksheet(s):
Horseshoe_Casing	_Design_Assumptions_20191021155327.pdf

Page 3 of 7

Operator Name: ASCENT ENERGY LLC
Well Name: HORSESHOE FED COM Well Number: 602H
Casing Attachments
Casing ID: 3 String Type: INTERMEDIATE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Horseshoe_Casing_Design_Assumptions_20191021155340.pdf
Casing ID: 4 String Type: INTERMEDIATE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
7.625_EZGO_Casing_Spec_20191020135843.pdf
Horseshoe_Casing_Design_Assumptions_20191021155350.pdf
Casing ID: 5 String Type: PRODUCTION
Inspection Document:
Spec Document:
Toward China Cusa
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
5.5in_EZGO_Casing_Spec_20191020135940.pdf
Horseshoe_Casing_Design_Assumptions_20191021155405.pdf

Well Name: HORSESHOE FED COM Well Number: 602H

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
CONDUCTOR	Lead		0	80	220	1.49	12.9	327		Grout	Bentonite 4% BWOC, Cellophane #/sx, CaCl2 2% BWOC.

SURFACE	Lead	0	1130	885	1.74	13.5	1568	100	Class C HALCEM System	4% Bentonite
SURFACE	Tail	1130	1635	550	1.33	14.8	700	100	Class C HALCEM System	None
INTERMEDIATE	Lead	0	2600	695	1.73	12.7	1627	100	Class C HALCEM System	4% Bentonite
INTERMEDIATE	Tail	2600	3600	485	1.33	14.8	626	100	Class C HALCEM System	None
INTERMEDIATE	Lead	0	3950	220	2.04	12.7	593	50	Class C EconoCem HLC	3% Microbond + 3 lbm/sk Kol-Seal + 0.3% HR-800
INTERMEDIATE	Tail	3950	5260	155	1.37	14.8	200	50	Class C HALCEM System	3% Microbond
PRODUCTION	Lead	0	9400	625	2.89	11	975	25	Class H NeoCem PL	3% Microbond
PRODUCTION	Tail	9400	1728 4	1695	1.47	13.2	818	25	Class H NeoCem PT	3% Microbond

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (e. g., barite, cedar bark) for weight addition and fluid loss control will always be on site. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Describe the mud monitoring system utilized: Electronic Pason mud monitor system complying with Onshore Order 1 will be used.

Circulating Medium Table

Well Name: HORSESHOE FED COM Well Number: 602H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1635	OTHER : Fresh water	8.4	9.6							
1635	3600	OTHER : Brine water	10	10							
5265	1728 4	OTHER : Cut brine/gel	8.5	9.3							
3600	5265	OTHER : Fresh water	8.4	8.6							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Electric Logging Program: No open-hole logs are planned at this time for the pilot hole. GR will be collected while drilling through the MWD tools from 9.625" casing shoe to TD. A 2-person mud logging program will be used from 9.625" casing shoe to TD.

List of open and cased hole logs run in the well:

GR

Coring operation description for the well:

No DSTs or cores are planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6900 Anticipated Surface Pressure: 4304

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

HS 602H H2S Plan 20191020141606.pdf

Well Name: HORSESHOE FED COM Well Number: 602H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Horseshoe_Fed_Com_602H_Plan_20181205143148.pdf

Other proposed operations facets description:

We are planning to use a spudder rig to preset surface casing. Gas Capture Plan attached.

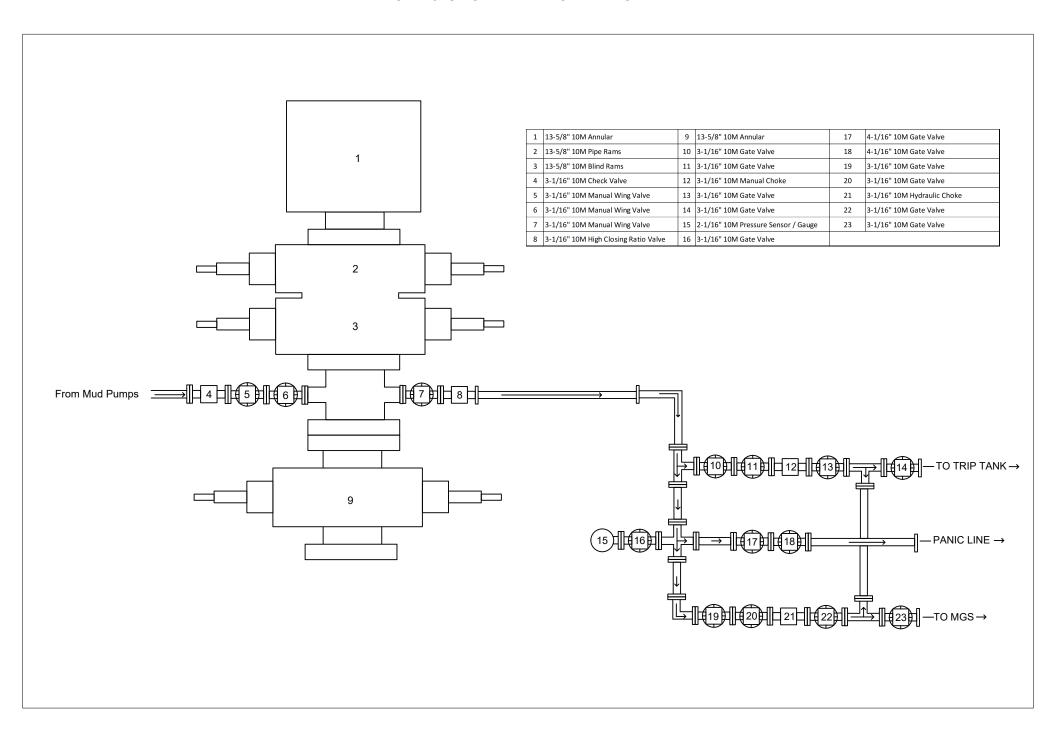
Other proposed operations facets attachment:

Horseshoe_Fed_Com_602H_Gas_Capture_Plan_20181205143159.pdf

HS_602H_CoFlex_Certs_20191020141647.pdf

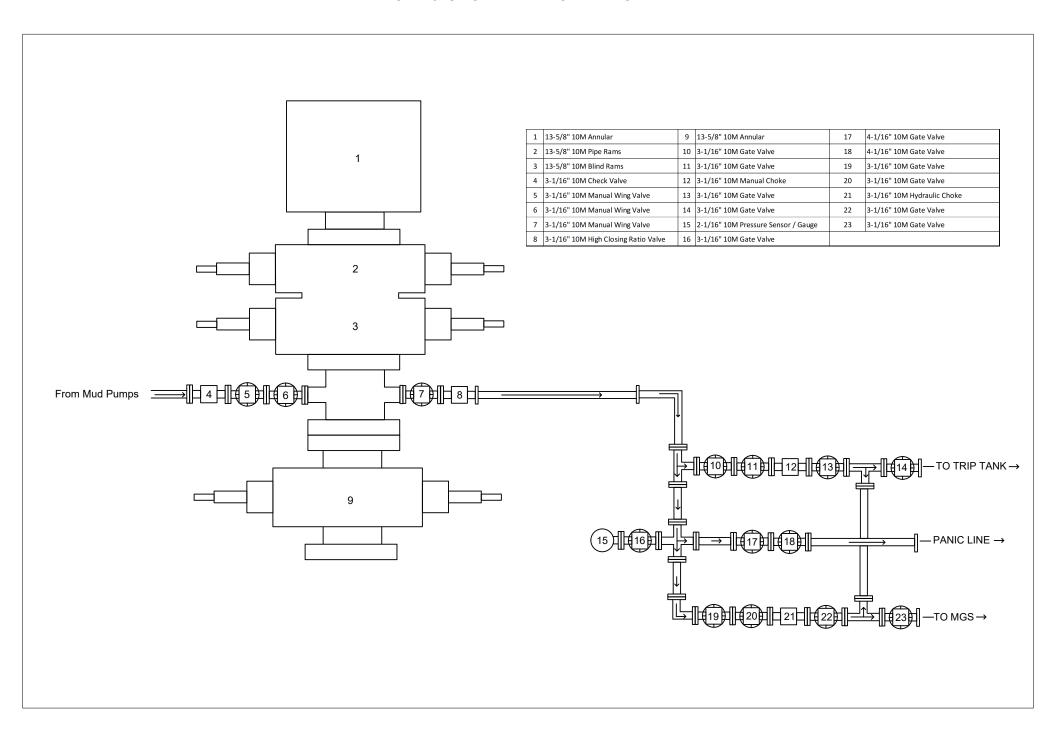
HS_602H_Speedhead_Specs_20191020141656.pdf

HS_602H_Drill_Plan_20191021155745.pdf


Other Variance attachment:

HS_602H_Casing_Cementing_Variance_20191021155758.pdf

HS_602_Surface_Rig_Variance_20191021155804.pdf


ASCENT ENERGY - NABORS X04

BOPE & CHOKE MANIFOLD DIAGRAM

ASCENT ENERGY - NABORS X04

BOPE & CHOKE MANIFOLD DIAGRAM

EZGO™ Connection Data Sheet

Your Requirements

Pipe Size (OD): **7.625 in** Weight: **29.7 lb/ft** Grade: **P-110 HC** Connection: **EZGO™ FJ3**

Material	
Grade	P110 HC
Minimum Yield Strength	125,000 psi
Minimum Ultimate Strength	135,000 psi

Pipe Dimensions	
Nominal OD	7.625 in
Nominal ID	6.875 in
Nominal Wall Thickness	0.375 in
Nominal Weight	29.7 lbs/ft
Plain End Weight	29.06 lbs/ft
Nominal Pipe Body Area	8.541 sq in

Pipe Body Performance	
Minimum Pipe Body Yield Strength	1,069,000 lbs
Minimum Collapse Pressure	7,360 psi
Minimum Internal Yield Pressure	10,760 psi
Hydrostatic Test Pressure	9,800 psi

Torque Values	Harry Harry
Minimum Final Torque	4,600 ft-lbs
Maximum Final Torque	6,000 ft-lbs

EZGO™ Connection Dimension	ıs
Connection OD	7.625 in
Connection ID	6.782 in
Connection Drift Diameter	6.750 in
Make-Up Loss	4.39 in
Joint Efficiency	65.0 %

EZGO™ Connection Performance	1 - 1 A
Joint Strength	694,000 lbs
Compression Rating	416,000 lbs
Collapse Pressure Rating	7,360 psi
Internal Pressure Resistance	10,760 psi
Maximum Uniaxial Bend Rating	29.3°/100 ft
String Length (1.4 Design Factor)	17,060 ft

- Gas Gradient 0.11 For all strings
- Frac Gradient 0.7 For all strings
- 1.5°/ 100ft temperature gradient
- Collapse designed with fully evacuated pipe in mind
- Gas kicks assumed at each shoe
- Strings landed at neutral weight
- Cementing loads based on slurries listed in cement table
- Production string burst designed with frac treating pressures in mind of 8500 psi

EZGO™ Connection Data Sheet

Your Requirements

Pipe Size (OD): 5.50 in Weight: 20 lb/ft Grade: P110 HC Connection: EZGO™ FJ3

Material	
Grade	P-110 HC
Minimum Yield Strength	125,000 psi
Minimum Ultimate Strength	135,000 psi

Pipe Dimensions	450
Nominal OD	5.5 in
Nominal ID	4.778 in
Nominal Wall Thickness	0.361 in
Nominal Weight	20.00 lbs/ft
Plain End Weight	19.83 lbs/ft
Nominal Pipe Body Area	5.828 sq in

Pipe Body Performance	
Minimum Pipe Body Yield Strength	729,000 lbs
Minimum Collapse Pressure	12,090 psi
Minimum Internal Yield Pressure	14,360 psi
Hydrostatic Test Pressure	13,100 psi

Torque Values	
Minimum Final Torque	2,400 ft-lbs
Maximum Final Torque	3,700 ft-lbs

EZGO™ Connection Dimension	s
Connection OD	5.50 in
Connection ID	4.708 in
Connection Drift Diameter	4.653 in
Make-Up Loss	4.64 in
Joint Efficiency	59 %

EZGO™ Connection Performance	· 表 · · · · · · · · · · · · · · · · · ·
Joint Strength	430,000 lbs
Compression Rating	258,000 lbs
Collapse Pressure Rating	12,090 psi
Internal Pressure Resistance	14,360 psi
Maximum Uniaxial Bend Rating	36°/100 ft

- Gas Gradient 0.11 For all strings
- Frac Gradient 0.7 For all strings
- 1.5°/ 100ft temperature gradient
- Collapse designed with fully evacuated pipe in mind
- Gas kicks assumed at each shoe
- Strings landed at neutral weight
- Cementing loads based on slurries listed in cement table
- Production string burst designed with frac treating pressures in mind of 8500 psi

- Gas Gradient 0.11 For all strings
- Frac Gradient 0.7 For all strings
- 1.5°/ 100ft temperature gradient
- Collapse designed with fully evacuated pipe in mind
- Gas kicks assumed at each shoe
- Strings landed at neutral weight
- Cementing loads based on slurries listed in cement table
- Production string burst designed with frac treating pressures in mind of 8500 psi

- Gas Gradient 0.11 For all strings
- Frac Gradient 0.7 For all strings
- 1.5°/ 100ft temperature gradient
- Collapse designed with fully evacuated pipe in mind
- Gas kicks assumed at each shoe
- Strings landed at neutral weight
- Cementing loads based on slurries listed in cement table
- Production string burst designed with frac treating pressures in mind of 8500 psi

New Mexico

LEA HORSESHOE HORSESHOE FED COM 602H

HORSESHOE FED COM 602H

Plan: PWP0

Survey Report - Geographic

06 November, 2018

LGC

Survey Report - Geographic

Company: New Mexico
Project: LEA

Site: HORSESHOE

Site: HORSESHOE

Well: HORSESHOE FED COM 602H
Wellbore: HORSESHOE FED COM 602H

Design: PWP0

Local Co-ordinate Reference:

Well HORSESHOE FED COM 602H

 TVD Reference:
 RKB=3793+25 @ 3818.0usft

 MD Reference:
 RKB=3793+25 @ 3818.0usft

North Reference: True

Survey Calculation Method: Minimum Curvature

Database: Centennial EDM SQL Server

Wellbore	HORSESHOE FED COM 602H									
Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle (°)	Field Strength (nT)					
	IGRF200510	12/31/2009	7.78	60.47	48,935.39457855					

PWP0 Design **Audit Notes: PROTOTYPE** Version: Phase: Tie On Depth: 0.0 **Vertical Section:** Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 356.67

Survey Tool Program

Pate 11/6/2018

From To (usft) (usft) Survey (Wellbore)

Tool Name

Description

0.0 17,284.0 PWP0 (HORSESHOE FED COM 602H)

MWD+IFR1+MS

OWSG MWD + IFR1 + Multi-Station Correction

Planned Survey	1								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
100.0	0.00	0.00	100.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
200.0	0.00	0.00	200.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
300.0	0.00	0.00	300.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
400.0	0.00	0.00	400.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
500.0	0.00	0.00	500.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
600.0	0.00	0.00	600.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
700.0	0.00	0.00	700.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
800.0	0.00	0.00	800.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
900.0	0.00	0.00	900.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,100.0	0.00	0.00	2,100.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,200.0	0.00	0.00	2,200.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,300.0	0.00	0.00	2,300.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,400.0	0.00	0.00	2,400.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,500.0	0.00	0.00	2,500.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,600.0	0.00	0.00	2,600.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,700.0	0.00	0.00	2,700.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,800.0	0.00	0.00	2,800.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
2,900.0	0.00	0.00	2,900.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
3,000.0	0.00	0.00	3,000.0	0.0	0.0	11,789,615.44	2,070,402.21	32° 28' 14.986 N	103° 36' 19.268 W
3,100.0	1.00	234.40	3,100.0	-0.5	-0.7	11,789,614.93	2,070,401.50	32° 28' 14.981 N	103° 36' 19.276 W

LGC

Survey Report - Geographic

TVD Reference:

MD Reference:

Company: New Mexico

Project: LEA

Site: HORSESHOE

Well: HORSESHOE FED COM 602H
Wellbore: HORSESHOE FED COM 602H

Design: PWP0

Local Co-ordinate Reference:

Well HORSESHOE FED COM 602H

RKB=3793+25 @ 3818.0usft RKB=3793+25 @ 3818.0usft

North Reference: True

Survey Calculation Method: Minimum Curvature

Database: Centennial EDM SQL Server

ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
3,200.0	2.00	234.40	3,200.0	-2.0	-2.8	11,789,613.37	2,070,399.40	32° 28′ 14.966 N	103° 36' 19.301
3,300.0	3.00	234.40	3,299.9	-4.6	-6.4	11,789,610.79	2,070,395.88	32° 28' 14.940 N	103° 36' 19.342
3,400.0	4.00	234.40	3,399.7	-8.1	-11.3	11,789,607.17	2,070,390.97	32° 28' 14.905 N	103° 36' 19.400
3,500.0	4.00	234.40	3,499.4	-12.2	-17.0	11,789,603.04	2,070,385.35	32° 28' 14.865 N	103° 36' 19.467
3,600.0	4.00	234.40	3,599.2	-16.2	-22.7	11,789,598.90	2,070,379.73	32° 28′ 14.825 N	103° 36' 19.533
3,700.0	4.00	234.41	3,698.9	-20.3	-28.4	11,789,594.77	2,070,374.11	32° 28′ 14.785 N	103° 36' 19.599
3,800.0	4.00	234.41	3,798.7	-24.4	-34.0	11,789,590.63	2,070,368.49	32° 28′ 14.745 N	103° 36' 19.665
3,900.0	4.00	234.41	3,898.5	-28.4	-39.7	11,789,586.50	2,070,362.87	32° 28' 14.704 N	103° 36' 19.73′
4,000.0	4.00	234.41	3,998.2	-32.5	-45.4	11,789,582.37	2,070,357.25	32° 28′ 14.664 N	103° 36' 19.798
4,100.0	4.00	234.41	4,098.0	-36.5	-51.1	11,789,578.23	2,070,351.63	32° 28′ 14.624 N	103° 36' 19.864
4,200.0	4.00	234.41	4,197.7	-40.6	-56.7	11,789,574.10	2,070,346.01	32° 28′ 14.584 N	103° 36' 19.930
4,300.0	4.00	234.42	4,297.5	-44.7	-62.4	11,789,569.97	2,070,340.39	32° 28' 14.544 N	103° 36' 19.996
4,400.0	4.00	234.42	4,397.2	-48.7	-68.1	11,789,565.84	2,070,334.78	32° 28' 14.504 N	103° 36' 20.063
4,500.0	4.00	234.42	4,497.0	-52.8	-73.7	11,789,561.70	2,070,329.16	32° 28' 14.463 N	103° 36' 20.12
4,600.0	4.00	234.42	4,596.8	-56.8	-79.4	11,789,557.57	2,070,323.54	32° 28' 14.423 N	103° 36' 20.19
4,700.0	4.00	234.42	4,696.5	-60.9	-85.1	11,789,553.44	2,070,317.92	32° 28' 14.383 N	103° 36' 20.26
4,800.0	4.00	234.43	4,796.3	-65.0	-90.8	11,789,549.31	2,070,312.30	32° 28' 14.343 N	103° 36' 20.32
4,900.0	4.00	234.43	4,896.0	-69.0	-96.4	11,789,545.17	2,070,306.68	32° 28' 14.303 N	103° 36' 20.39
5,000.0	4.00	234.43	4,995.8	-73.1	-102.1	11,789,541.04	2,070,301.05	32° 28' 14.263 N	103° 36' 20.46
5,100.0	4.00	234.43	5,095.5	-77.1	-107.8	11,789,536.91	2,070,295.43	32° 28' 14.222 N	103° 36' 20.52
5,200.0	4.00	234.43	5,195.3	-81.2	-113.5	11,789,532.78	2,070,289.81	32° 28' 14.182 N	103° 36' 20.59
5,300.0	4.00	234.43	5,295.0	-85.2	-119.1	11,789,528.65	2,070,284.19	32° 28' 14.142 N	103° 36' 20.65
5,400.0	4.00	234.44	5,394.8	-89.3	-124.8	11,789,524.52	2,070,278.57	32° 28' 14.102 N	103° 36' 20.72
5,500.0	4.00	234.44	5,494.6	-93.4	-130.5	11,789,520.39	2,070,272.95	32° 28' 14.062 N	103° 36' 20.79
5,600.0	4.00	234.44	5,594.3	-97.4	-136.2	11,789,516.26	2,070,267.33	32° 28' 14.022 N	103° 36' 20.85
5,700.0	4.00	234.44	5,694.1	-101.5	-141.8	11,789,512.13	2,070,261.71	32° 28' 13.981 N	103° 36' 20.92
5,800.0	4.00	234.44	5,793.8	-105.5	-147.5	11,789,508.00	2,070,256.09	32° 28' 13.941 N	103° 36' 20.99
5,900.0	4.00	234.45	5,893.6	-109.6	-153.2	11,789,503.87	2,070,250.47	32° 28' 13.901 N	103° 36' 21.05
6,000.0	4.00	234.45	5,993.3	-113.6	-158.9	11,789,499.74	2,070,244.84	32° 28' 13.861 N	103° 36' 21.12
6,100.0	4.00	234.45	6,093.1	-117.7	-164.5	11,789,495.61	2,070,239.22	32° 28' 13.821 N	103° 36' 21.18
6,200.0	4.00	234.45	6,192.9	-121.8	-170.2	11,789,491.48	2,070,233.60	32° 28' 13.781 N	103° 36' 21.25
6,300.0	4.00	234.45	6,292.6	-125.8	-175.9	11,789,487.35	2,070,227.98	32° 28' 13.741 N	103° 36' 21.32
6,400.0	4.00	234.45	6,392.4	-129.9	-181.6	11,789,483.22	2,070,222.36	32° 28' 13.701 N	103° 36' 21.38
6,500.0	4.00	234.46	6,492.1	-133.9	-187.2	11,789,479.09	2,070,216.73	32° 28' 13.660 N	103° 36' 21.45
6,600.0	4.00	234.46	6,591.9	-138.0	-192.9	11,789,474.96	2,070,211.11	32° 28' 13.620 N	103° 36' 21.52
6,700.0	4.00	234.46	6,691.6	-142.0	-198.6	11,789,470.83	2,070,205.49	32° 28' 13.580 N	103° 36' 21.58
6,800.0	4.00	234.46	6,791.4	-146.1	-204.3	11,789,466.70	2,070,199.87	32° 28' 13.540 N	103° 36' 21.65
6,900.0	4.00	234.46	6,891.1	-150.1	-204.3	11,789,462.57	2,070,199.07	32° 28' 13.500 N	103° 36' 21.71
7,000.0	4.00	234.47	6,990.9	-154.2	-215.6	11,789,458.45	2,070,188.62	32° 28' 13.460 N	103° 36' 21.71
7,000.0	4.00	234.47	7,090.7	-154.2	-213.0	11,789,454.32	2,070,183.00	32° 28' 13.420 N	103° 36' 21.85
7,100.0	4.00	234.47	7,190.4	-162.3	-227.0	11,789,450.19	2,070,177.37	32° 28' 13.379 N	103° 36' 21.91
7,200.0	4.00	234.47	7,190.4	-166.4	-232.7	11,789,446.06	2,070,177.37	32° 28' 13.339 N	103° 36' 21.98
7,400.0		234.47	7,389.9	-170.4	-232.7	11,789,441.94		32° 28' 13.299 N	103° 36' 22.05
	4.00			-170.4	-236.3 -244.0		2,070,166.13		
7,500.0	4.00	234.47	7,489.7			11,789,437.81	2,070,160.50	32° 28' 13.259 N	103° 36' 22.11 103° 36' 22.18
7,600.0	4.00	234.48	7,589.4	-178.5	-249.7	11,789,433.68	2,070,154.88	32° 28' 13.219 N	
7,700.0	4.00	234.48	7,689.2	-182.6	-255.4	11,789,429.55	2,070,149.26	32° 28' 13.179 N	103° 36' 22.24
7,800.0	4.00	234.48	7,789.0	-186.6	-261.0	11,789,425.43	2,070,143.63	32° 28' 13.139 N	103° 36' 22.31
7,900.0	4.00	234.48	7,888.7	-190.7	-266.7	11,789,421.30	2,070,138.01	32° 28' 13.099 N	103° 36' 22.38
8,000.0	4.00	234.48	7,988.5	-194.7	-272.4	11,789,417.17	2,070,132.38	32° 28' 13.059 N	103° 36' 22.44
8,100.0	4.00	234.49	8,088.2	-198.8	-278.1	11,789,413.05	2,070,126.76	32° 28' 13.018 N	103° 36' 22.51
8,200.0	4.00	234.49	8,188.0	-202.8	-283.7	11,789,408.92	2,070,121.13	32° 28' 12.978 N	103° 36' 22.58
8,300.0	4.00	234.49	8,287.7	-206.9	-289.4	11,789,404.80	2,070,115.51	32° 28' 12.938 N	103° 36' 22.64
8,400.0	4.00	234.49	8,387.5	-210.9	-295.1	11,789,400.67	2,070,109.88	32° 28' 12.898 N	103° 36' 22.71
8,500.0	4.00	234.49	8,487.3	-215.0	-300.8	11,789,396.55	2,070,104.26	32° 28' 12.858 N	103° 36' 22.77
8,600.0	4.00	234.49	8,587.0	-219.0	-306.5	11,789,392.42	2,070,098.63	32° 28' 12.818 N	103° 36' 22.846

LGC

Survey Report - Geographic

New Mexico Company:

Project: LEA

Site: HORSESHOE

HORSESHOE FED COM 602H Well: Wellbore: HORSESHOE FED COM 602H

Design: PWP0 Local Co-ordinate Reference:

RKB=3793+25 @ 3818.0usft

Well HORSESHOE FED COM 602H

TVD Reference: MD Reference: RKB=3793+25 @ 3818.0usft

North Reference:

Minimum Curvature **Survey Calculation Method:**

Database: Centennial EDM SQL Server

nned Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
8,700.0	4.00	234.50	8,686.8	-223.1	-312.1	11,789,388.29	2,070,093.01	32° 28' 12.778 N	103° 36' 22.91
8,800.0	4.00	234.50	8,786.5	-227.1	-317.8	11,789,384.17	2,070,087.38	32° 28' 12.738 N	103° 36' 22.97
8,900.0	4.00	234.50	8,886.3	-231.2	-323.5	11,789,380.05	2,070,081.76	32° 28′ 12.698 N	103° 36' 23.04
9,000.0	3.00	234.50	8,986.1	-234.7	-328.5	11,789,376.44	2,070,076.83	32° 28′ 12.663 N	103° 36' 23.10
9,100.0	2.00	234.50	9,086.0	-237.3	-332.0	11,789,373.86	2,070,073.32	32° 28' 12.638 N	103° 36' 23.14
9,200.0	1.00	234.50	9,186.0	-238.8	-334.1	11,789,372.31	2,070,071.21	32° 28' 12.623 N	103° 36' 23.16
9,300.0	0.00	0.00	9,286.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
9,400.0	0.00	0.00	9,386.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
9,500.0	0.00	0.00	9,486.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
9,600.0	0.00	0.00	9,586.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
9,700.0	0.00	0.00	9,686.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
9,800.0	0.00	0.00	9,786.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
9,900.0	0.00	0.00	9,886.0	-239.3 -239.3	-334.9 -334.9	11,789,371.79 11,789,371.79	2,070,070.50 2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,000.0 10,100.0	0.00	0.00 0.00	9,986.0 10,086.0	-239.3 -239.3	-334.9 -334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N 32° 28' 12.617 N	103° 36' 23.17 103° 36' 23.17
10,100.0	0.00	0.00	10,086.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,200.0	0.00	0.00	10,186.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,400.0	0.00	0.00	10,286.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,500.0	0.00	0.00	10,486.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,600.0	0.00	0.00	10,586.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,700.0	0.00	0.00	10,686.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,800.0	0.00	0.00	10,786.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
10,900.0	0.00	0.00	10,886.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
11,000.0	0.00	0.00	10,986.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
11,100.0	0.00	0.00	11,086.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
11,200.0	0.00	0.00	11,186.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
11,241.0	0.00	0.00	11,227.0	-239.3	-334.9	11,789,371.79	2,070,070.50	32° 28' 12.617 N	103° 36' 23.17
11,300.0	5.90	0.17	11,285.8	-236.3	-334.9	11,789,374.83	2,070,070.47	32° 28′ 12.648 N	103° 36' 23.17
11,400.0	15.90	0.17	11,383.9	-217.4	-334.8	11,789,393.71	2,070,070.28	32° 28′ 12.834 N	103° 36' 23.17
11,500.0	25.90	0.17	11,477.2	-181.8	-334.7	11,789,429.33	2,070,069.92	32° 28' 13.187 N	103° 36' 23.17
11,600.0	35.89	0.17	11,562.9	-130.5	-334.5	11,789,480.61	2,070,069.40	32° 28' 13.694 N	103° 36' 23.17
11,700.0	45.89	0.17	11,638.4	-65.1	-334.3	11,789,545.99	2,070,068.74	32° 28' 14.342 N	103° 36' 23.17
11,800.0	55.89	0.17	11,701.4	12.4	-334.1	11,789,623.48	2,070,067.96	32° 28' 15.108 N	103° 36' 23.16
11,900.0	65.89	0.17	11,750.0	99.7	-333.9	11,789,710.74	2,070,067.08	32° 28' 15.972 N	103° 36' 23.16
12,000.0	75.89	0.17	11,782.7	194.0	-333.6	11,789,805.10	2,070,066.12	32° 28' 16.906 N	103° 36' 23.16
12,100.0	85.89	0.17	11,798.5	292.6	-333.3	11,789,903.71	2,070,065.13	32° 28' 17.882 N	103° 36' 23.15
12,141.1	90.00	0.17	11,800.0	333.8	-333.2	11,789,944.81	2,070,064.71	32° 28′ 18.289 N	103° 36' 23.15
12,199.2	90.00	0.17	11,800.0	391.8 392.6	-333.0 -333.0	11,790,002.91	2,070,064.12 2,070,064.12	32° 28' 18.864 N	103° 36' 23.15
12,200.0	90.00 90.00	0.17 0.17	11,800.0 11,800.0		-333.0 -332.7	11,790,003.67		32° 28' 18.871 N 32° 28' 19.861 N	103° 36' 23.15 103° 36' 23.15
12,300.0 12,400.0	90.00	0.17	11,800.0 11,800.0	492.6 592.6	-332.1 -332.4	11,790,103.66 11,790,203.66	2,070,063.11 2,070,062.10	32° 28' 20.851 N	103° 36' 23.14
12,400.0	90.00	0.17	11,800.0	692.6	-332.4	11,790,303.65	2,070,061.08	32° 28' 21.840 N	103° 36' 23.14
12,600.0	90.00	0.17	11,800.0	792.6	-331.8	11,790,403.65	2,070,061.08	32° 28' 22.830 N	103° 36' 23.14
12,700.0	90.00	0.17	11,800.0	892.6	-331.5	11,790,503.64	2,070,059.06	32° 28' 23.820 N	103° 36' 23.13
12,800.0	90.00	0.17	11,800.0	992.6	-331.2	11,790,603.64	2,070,058.05	32° 28' 24.809 N	103° 36' 23.13
12,900.0	90.00	0.17	11,800.0	1,092.6	-330.9	11,790,703.63	2,070,057.04	32° 28' 25.799 N	103° 36' 23.13
13,000.0	90.00	0.17	11,800.0	1,192.6	-330.6	11,790,803.63	2,070,056.03	32° 28' 26.789 N	103° 36' 23.12
13,100.0	90.00	0.17	11,800.0	1,292.6	-330.3	11,790,903.62	2,070,055.02	32° 28' 27.778 N	103° 36' 23.12
13,200.0	90.00	0.17	11,800.0	1,392.6	-330.0	11,791,003.62	2,070,054.01	32° 28' 28.768 N	103° 36' 23.12
13,300.0	90.00	0.17	11,800.0	1,492.6	-329.7	11,791,103.61	2,070,053.00	32° 28' 29.757 N	103° 36' 23.11
13,400.0	90.00	0.17	11,800.0	1,592.6	-329.4	11,791,203.61	2,070,051.99	32° 28' 30.747 N	103° 36' 23.11
13,500.0	90.00	0.17	11,800.0	1,692.6	-329.1	11,791,303.60	2,070,050.98	32° 28' 31.737 N	103° 36' 23.1
13,600.0	90.00	0.17	11,800.0	1,792.6	-328.8	11,791,403.60	2,070,049.97	32° 28′ 32.726 N	103° 36' 23.10
13,700.0	90.00	0.17	11,800.0	1,892.6	-328.5	11,791,503.59	2,070,048.96	32° 28′ 33.716 N	103° 36' 23.10
13,800.0	90.00	0.17	11,800.0	1,992.6	-328.2	11,791,603.59	2,070,047.95	32° 28' 34.706 N	103° 36' 23.10

LGC Survey Report - Geographic

Company: New Mexico Project: LEA

Site: HORSESHOE

HORSESHOE FED COM 602H Well:

HORSESHOE FED COM 602H Wellbore:

Design: PWP0 Local Co-ordinate Reference:

TVD Reference: RKB=3793+25 @ 3818.0usft

Well HORSESHOE FED COM 602H

MD Reference: RKB=3793+25 @ 3818.0usft

North Reference:

Minimum Curvature **Survey Calculation Method:**

Database: Centennial EDM SQL Server

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
13,900.0	90.00	0.17	11,800.0	2,092.6	-327.9	11,791,703.58	2,070,046.94	32° 28' 35.695 N	103° 36' 23.097 W
14,000.0	90.00	0.17	11,800.0	2,192.6	-327.6	11,791,803.57	2,070,045.93	32° 28' 36.685 N	103° 36' 23.093 W
14,100.0	90.00	0.17	11,800.0	2,292.6	-327.3	11,791,903.57	2,070,044.92	32° 28' 37.675 N	103° 36' 23.090 W
14,200.0	90.00	0.17	11,800.0	2,392.6	-327.1	11,792,003.56	2,070,043.91	32° 28' 38.664 N	103° 36' 23.086 W
14,300.0	90.00	0.17	11,800.0	2,492.6	-326.8	11,792,103.56	2,070,042.90	32° 28' 39.654 N	103° 36' 23.083 V
14,400.0	90.00	0.17	11,800.0	2,592.6	-326.5	11,792,203.55	2,070,041.89	32° 28' 40.644 N	103° 36' 23.079 V
14,500.0	90.00	0.17	11,800.0	2,692.6	-326.2	11,792,303.55	2,070,040.88	32° 28' 41.633 N	103° 36' 23.076 V
14,600.0	90.00	0.17	11,800.0	2,792.6	-325.9	11,792,403.54	2,070,039.87	32° 28' 42.623 N	103° 36' 23.073 V
14,700.0	90.00	0.17	11,800.0	2,892.6	-325.6	11,792,503.54	2,070,038.86	32° 28' 43.613 N	103° 36' 23.069 V
14,800.0	90.00	0.17	11,800.0	2,992.6	-325.3	11,792,603.53	2,070,037.85	32° 28' 44.602 N	103° 36' 23.066 V
14,900.0	90.00	0.17	11,800.0	3,092.6	-325.0	11,792,703.53	2,070,036.84	32° 28' 45.592 N	103° 36' 23.062 V
15,000.0	90.00	0.17	11,800.0	3,192.6	-324.7	11,792,803.52	2,070,035.83	32° 28' 46.582 N	103° 36' 23.059 V
15,100.0	90.00	0.17	11,800.0	3,292.6	-324.4	11,792,903.52	2,070,034.82	32° 28' 47.571 N	103° 36' 23.055 V
15,200.0	90.00	0.17	11,800.0	3,392.6	-324.1	11,793,003.51	2,070,033.80	32° 28' 48.561 N	103° 36' 23.052 V
15,300.0	90.00	0.17	11,800.0	3,492.6	-323.8	11,793,103.51	2,070,032.79	32° 28' 49.551 N	103° 36' 23.048 V
15,400.0	90.00	0.17	11,800.0	3,592.6	-323.5	11,793,203.50	2,070,031.78	32° 28' 50.540 N	103° 36' 23.045 V
15,500.0	90.00	0.17	11,800.0	3,692.6	-323.2	11,793,303.50	2,070,030.77	32° 28' 51.530 N	103° 36' 23.041 V
15,600.0	90.00	0.17	11,800.0	3,792.6	-322.9	11,793,403.49	2,070,029.76	32° 28' 52.520 N	103° 36' 23.038 \
15,700.0	90.00	0.17	11,800.0	3,892.6	-322.6	11,793,503.49	2,070,028.75	32° 28' 53.509 N	103° 36' 23.035 \
15,800.0	90.00	0.17	11,800.0	3,992.6	-322.3	11,793,603.48	2,070,027.74	32° 28' 54.499 N	103° 36' 23.031 V
15,900.0	90.00	0.17	11,800.0	4,092.6	-322.0	11,793,703.48	2,070,026.73	32° 28' 55.489 N	103° 36' 23.028 V
16,000.0	90.00	0.17	11,800.0	4,192.6	-321.7	11,793,803.47	2,070,025.72	32° 28' 56.478 N	103° 36' 23.024 \
16,100.0	90.00	0.17	11,800.0	4,292.6	-321.4	11,793,903.47	2,070,024.71	32° 28' 57.468 N	103° 36' 23.021 \
16,200.0	90.00	0.17	11,800.0	4,392.6	-321.1	11,794,003.46	2,070,023.70	32° 28' 58.458 N	103° 36' 23.017 \
16,300.0	90.00	0.17	11,800.0	4,492.6	-320.8	11,794,103.46	2,070,022.69	32° 28' 59.447 N	103° 36' 23.014 \
16,400.0	90.00	0.17	11,800.0	4,592.6	-320.5	11,794,203.45	2,070,021.68	32° 29' 0.437 N	103° 36' 23.010 \
16,500.0	90.00	0.17	11,800.0	4,692.6	-320.2	11,794,303.45	2,070,020.67	32° 29' 1.427 N	103° 36' 23.007 \
16,600.0	90.00	0.17	11,800.0	4,792.6	-319.9	11,794,403.44	2,070,019.66	32° 29' 2.416 N	103° 36' 23.003 \
16,700.0	90.00	0.17	11,800.0	4,892.6	-319.6	11,794,503.44	2,070,019.00	32° 29' 3.406 N	103° 36' 23.000 \
16,800.0	90.00	0.17	11,800.0	4,992.6	-319.0	11,794,603.43	2,070,018.63	32° 29' 4.396 N	103° 36' 22.996 \
16,900.0	90.00	0.17	11,800.0	5,092.6	-319.3 -319.0	11,794,703.43	2,070,017.64	32° 29' 5.385 N	103° 36' 22.993 \
17,000.0	90.00	0.17	11,800.0	5,092.6	-319.0 -318.7	11,794,703.43	2,070,016.63	32° 29' 5.385 N	103° 36′ 22.993 \
,			,	,			, ,		
17,100.0	90.00	0.17 0.17	11,800.0	5,292.6	-318.4	11,794,903.42	2,070,014.61	32° 29' 7.365 N	103° 36' 22.986 \ 103° 36' 22.983 \
17,200.0	90.00		11,800.0	5,392.6	-318.2	11,795,003.41	2,070,013.60	32° 29' 8.354 N	
17,284.0	90.00	0.17	11,800.0	5,476.6	-318.2	11,795,087.41	2,070,012.45	32° 29' 9.186 N	103° 36' 22.983 \

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP/BHL - HORSESHOI - plan hits target cer - Point		0.00	11,800.0	5,476.6	-318.2	11,795,087.41	2,070,012.45	32° 29' 9.186 N	103° 36' 22.983 W
FTP - HORSESHOE FE - plan misses target - Circle (radius 50.0	center by 17.3	0.00 Busft at 1220	11,800.0 7.7usft MD (400.3 11800.0 TVD,	-315.6 400.3 N, -333	11,790,011.56 3.0 E)	2,070,081.36	32° 28' 18.947 N	103° 36' 22.953 W
Interp @ 11800.0 (HORS - plan misses target - Point		0.00 usft at 12138	11,800.0 .5usft MD (1	331.1 1800.0 TVD, 3	-331.3 31.1 N, -333.	11,789,942.21 2 E)	2,070,066.64	32° 28' 18.263 N	103° 36' 23.135 W

Checked Bv:	Approved By:	Date:	

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

12/05/2019

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date. 12/03/2018	
□ Original	Operator & OGRID No.: Centennial Resource Production, LLC 372165
☐ Amended - Reason for Amendment:	
This Gas Capture Plan outlines actions to be	taken by the Operator to reduce well/production facility flaring/venting for

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

new completion (new drill, recomplete to new zone, re-frac) activity.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Horseshoe Fed Com 602H	Pending	A-19-21S-33E	300 FNL & 675 FEL	2500MCF/D	Neither	New Well
Horseshoe Fed Com 702H	Pending	A-19-21S-33E	300 FNL & 645 FEL	2500MCF/D	Neither	New Well

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated <u>Lucid Energy Group</u> low/high pressure gathering system located in <u>Lea</u> County, New Mexico. It will require <u>0'</u> of pipeline to connect the facility to low/high pressure gathering system. <u>Centennial Resource Production, LLC</u> provides (periodically) to <u>Lucid Energy Group</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Centennial Resource Production, LLC</u> and <u>Lucid Energy Group</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Red Hills Plant</u> located in Sec. <u>13</u>, Twn. <u>24S</u>, Rng. <u>33E</u>, <u>Lea</u> County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Lucid Energy Group</u> system at that time. Based on current information, it is <u>Centennial Resource Production, LLC</u>'s belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Ascent Energy Drilling Operations Plan SHL 300' FNL & 675' FEL, Sec. 19 BHL 100' FNL & 990' FEL, Sec. 18 T. 21S., R. 33E Lea County, NM

Elevation above Sea Level: 3793'

DRILLING PROGRAM

Proposed Drilling Depth: 17284' MD / 11800' TVD

Type of well:

Horizontal well, no pilot hole

Permitted Well Type:

Oil

Geologic Name of Surface Formation:

Quaternary Deposits

KOP Lat/Long (NAD83):

32.470171 N / -103.606438 W

TD Lat/Long (NAD83):

32.485885 N / -103.606384 W

1. Estimated Tops

Formation	TVD	MD	Lithologies	Bearing
Quaternary Deposits	0	0	Surface	None
Rustler Anhydrite	1606	1606		Salt
Salado	1961	1961	Salt	Salt
Base Salt	3392	3392		Salt
Tansill	3538	3539	Dolomite	None
Yates	3704	3705	Sandstone	
Capitan Reef	4029	4031	Limestone	
Delaware Sands	5249	5254	Sandstone	
Bell Canyon	5454	5459	Sandstone	Hydrocarbons
Cherry Canyon	5760	5766	Sandstone	Hydrocarbons
Brushy Canyon	7129	7138	Sandstone	Hydrocarbons
Bone Spring Lime	8876	8890	Limestone	Hydrocarbons
Avalon	9060	9074	Shale/Limestone	Hydrocarbons
1st Bone Spring Sand	10015	10029	Sandstone	Hydrocarbons
2 nd Bone Spring Carbonate	10251	10265	Limestone	Hydrocarbons
2nd Bone Spring Sand	10563	10577	Sandstone	Hydrocarbons
3 rd Bone Spring Carbonate	11111	11125	Limestone	Hydrocarbons
3 rd Bone Spring Sand	11588	11633	Sandstone	Hydrocarbons
КОР	11226	11241		

Ascent Energy Drilling Operations Plan SHL 300' FNL & 675' FEL, Sec. 19 BHL 100' FNL & 990' FEL, Sec. 18

T. 21S., R. 33E Lea County, NM

TD 18000 17284

2. Notable Zones

3rd Bone Spring is the target formation.

3. Pressure Control

Pressure Control Equipment (See Schematics):

A 15,000′ 5,000 psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A top drive check valve and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. The wellhead will be a multi-bowl speed head.

BOP Test Procedure:

After surface casing is set and the BOP is nippled up, the BOP pressure tests will be made with a third party tester to 250 psi low, 5000 psi high, and the annular preventer will be tested to 2,500 psi. The BOP will be tested in this manner after nipple-up if any break of the stack occurs as wells as every 30 days.

Variance Request:

Ascent requests a variance to run a multi-bowl speed head for setting the Intermediate 1, Intermediate 2, and Production Strings. Ascent requests a variance to drill this well using a co-flex line between the BOP and choke manifold (instead of the 4" OD steel line). Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Ascent requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, after drilling surface, 1st intermediate, and 2nd intermediate hole sections and cementing 2nd intermediate casing, a 10M dry hole cap with bleed off valve will be installed. The rig will then walk to another well on the pad. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

4. Casing & Cement

All Casing will be new.

Section	Hole	Interval	Interval	Casing	Weight	Grade	Conn	Standard	SF	SF	SF	MW
	Size	TVD	MD	OD					Collapse	Burst	Tension	
Cond	30"	0-80'	0-80'	20"	52.78#	5L B	Weld	API				8.5ppg
Surface	17.5"	0-1635'	0-1635′	13.375"	54.5#	J-55	STC	API	1.4	2.89	2.0 Body / 1.8 Conn	9.6ppg
Int	12.25"	0-3600'	0-3600′	9.625"	40#	J-55	LTC	API	1.4	1.7	2.0 Body/ 1.8 Conn	10ppg
2 nd Int	8.75"	0-5260′	0-5265'	7.625"	29.7#	HCP- 110	EZGO FJ3	Non-API	3.12	3.0	2.0 Body/	8.6ppg

Ascent Energy Drilling Operations Plan SHL 300' FNL & 675' FEL, Sec. 19 BHL 100' FNL & 990' FEL, Sec. 18

T. 21S., R. 33E Lea County, NM

											1.8 Conn	
Prod	6.75"	0-	0-	5.5"	20#	HCP-	EZGO	Non-API	2.1	1.2	2.28	9.3ppg
		11,800'	17,284'			110	FJ3				Body/	
											1.3 Conn	

Ascent requests a variance to wave the centralizer requirement for the run 7-5/8" EZGO FJ3 casing inside 8.75" hole. An expansion additive will be used in the cement slurry for the entire length of the 8.75" hole to maximize cement bond and zone isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" EZGO JF3 casing the 6-3/4" hole size. An expansion additive will be used in the cement slurry for the entire length of the 6.75" hole to maximize cement bond and zone isolation.

Section	Type	Тор	Excess	Sacks	Cu Ft.	Wt. ppg	Yld Ft³/sk	Mix Water Gal/sk	Slurry Description
Surface	Lead	0'	100%	885	1568	13.5	1.728	9.21	Class C HALCEM System+ 4% Bentonite
	Tail	1130′	100%	550	700	14.8	1.332	6.42	Class C HALCEM System
Int	Lead	0'	100%	695	1627	12.7	1.728	10.67	Class C HALCEM System+ 4% Bentonite
	Tail	2600'	100%	485	626	14.8	1.332	6.42	Class C HALCEM System
2 nd Int	Lead	0'	50%	220	593	12.7	2.039	10.67	Class C EconoCem HLC + 5% Salt + 3% Microbond + 3 lbm/sk Kol-Seal + 0.3% HR-800
	Tail	3950′	50%	155	200	14.8	1.368	6.42	Class C HALCEM System + 3% Microbond
Production	Lead	0′	25%	625	975	11	2.887	17.38	Class H NeoCem PL + 3% Microbond
	Tail	9400'	25%	1695	818	13.2	1.472	7.47	Class H NeoCem PT + 3% Microbond

5. Mud Program

Section	Interval		Туре	Weight	Viscosity	Water Loss
Surface	0'	1,635'	Fresh Water	8.4-9.6	34-38	N/C
Intermediate	1,635'	3,600'	Brine Water	10	28-34	N/C
2 nd Intermediate	3,600'	5,265'	Fresh Water	8.4-8.6	28-34	N/C
Production	5,265'	17,284'	Cut Brine/Gel	8.5-9.3	28-34	N/C

Electronic Pason mud monitor system complying with Onshore Order 1 will be used. All necessary mud products (e. g., barite, cedar bark) for weight addition and fluid loss control will always be on site. Mud program is subject to change due to hole conditions. A closed loop system will be used.

6. Cores, Tests, & Logs

- Electric Logging Program: No open-hole logs are planned at this time for the pilot hole.
- GR will be collected while drilling through the MWD tools from 9.625" casing shoe to TD.
- A 2-person mud logging program will be used from 9.625" casing shoe to TD.
- No DSTs or cores are planned at this time.

Ascent Energy Drilling Operations Plan SHL 300' FNL & 675' FEL, Sec. 19 BHL 100' FNL & 990' FEL, Sec. 18 T. 21S., R. 33E Lea County, NM

7. Down Hole Conditions

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 6,900 psi. Expected bottom hole temperature is \approx 170° F.

- Kelly cock will be kept in the drill string at all times.
- A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- \bullet H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

Ascent does not anticipate that there will be enough H2S from the surface to the Bone Spring formations to meet the BLM's Onshore Order 6 requirements for the submission of an "H2S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Ascent has an H2S safety package on all wells and an "H2S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be safely flared. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. Other Information

Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 30 days. If production casing is run an additional 60 days will be required to complete and construct surface facilities.

Variance is requested for the option to contract a surface rig to drill surface hole, set surface casing, and cement the surface casing. If the timing between rigs is such that Ascent would not be able to preset the surface casing, then the primary rig will MIRU and drill the well in its entirety.

This is a "fee/fee/Fed" well. Surface owner is the NM State Land Office, P. O. Box 1148, Santa Fe NM 87504; 505 827-4003). First lease penetrated is NM State Land Office lease V0-8700-0001. Ascent is preparing a business lease to file with the NM State Land Office.

Casing/Cementing Variance

Ascent requests a variance to wave the centralizer requirement for the run 7-5/8" EZGO FJ3 casing inside 8.75" hole. An expansion additive will be used in the cement slurry for the entire length of the 8.75" hole to maximize cement bond and zone isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" EZGO JF3 casing the 6-3/4" hole size. An expansion additive will be used in the cement slurry for the entire length of the 6.75" hole to maximize cement bond and zone isolation.

Surface Rig Variance

Variance is requested for the option to contract a surface rig to drill surface hole, set surface casing, and cement the surface casing. If the timing between rigs is such that Ascent would not be able to preset the surface casing, then the primary rig will MIRU and drill the well in its entirety.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

03/30/2020

APD ID: 10400036975

Operator Name: ASCENT ENERGY LLC

Well Name: HORSESHOE FED COM

Well Type: OIL WELL

Submission Date: 12/06/2018

Highlighted data reflects the most

recent changes

Show Final Text

Well Number: 602H Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? NO

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? NO

Attach Well map:

Existing Wells description: Fee/Fee/Fed

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? DEFER

Estimated Production Facilities description: Fee/Fee/Fed

Well Name: HORSESHOE FED COM Well Number: 602H

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: OTHER

Describe type: Dust control, surface casing, intermediate/producing casing, stimulation, Road construction & Maintenance, pad construction

& maintenance

Water source use type: ICE PAD CONSTRUCTION &

MAINTENANCE SURFACE CASING

STIMULATION

DUST CONTROL

ICE ROAD CONSTRUCTION &

MAINTENANCE

INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: PIPELINE

Source land ownership: STATE

Source transportation land ownership: STATE

Water source volume (barrels): 350000 Source volume (acre-feet): 45.112583

Source volume (gal): 14700000

Water source and transportation map:

Horseshoe_Water_Source_Map_20181206120132.pdf

Water source comments:

New water well? NO

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Well Name: HORSESHOE FED COM Well Number: 602H

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: NO

Construction Materials description:

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Fresh water based drilling fluid

Amount of waste: 1500 barrels

Waste disposal frequency: Weekly

Safe containment description: Steel tanks with plastic-lined containment berms

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Commercial, Federal, State, Indian, Private

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Well Name: HORSESHOE FED COM Well Number: 602H

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

HS_602H_Well_Site_Layout_20191024094243.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: No New Surface Disturbance Multiple Well Pad Name: HORSESHOE EAST

Multiple Well Pad Number: 602H

Recontouring attachment:

Drainage/Erosion control construction: Fee/Fee/Fed
Drainage/Erosion control reclamation: Fee/Fee/Fed

Well Name: HORSESHOE FED COM Well Number: 602H

Well pad interim reclamation (acres):

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres):

Other interim reclamation (acres):

Total interim reclamation:

Road interim reclamation (acres):

Well pad proposed disturbance

(acres): 0

Road proposed disturbance (acres): 0

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres): 0

Total proposed disturbance: 0

Disturbance Comments:

Reconstruction method: Fee/Fee/Fed
Topsoil redistribution: Fee/Fee/Fed

Soil treatment: Fee/Fee/Fed

Existing Vegetation at the well pad: Fee/Fee/Fed

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Fee/Fee/Fed

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Fee/Fee/Fed

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Fee/Fee/Fed

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well pad long term disturbance

(acres):

Road long term disturbance (acres):

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres):

Other long term disturbance (acres):

Total long term disturbance:

Well Name: HORSESHOE FED COM Well Number: 602H

Seed Management

Seed Table

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Last Name:

Phone: Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: Fee/Fee/Fed

Weed treatment plan attachment:

Monitoring plan description: Fee/Fee/Fed

Monitoring plan attachment:

Success standards: Fee/Fee/Fed

Pit closure description: Fee/Fee/Fed

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

Well Name: HORSESHOE FED COM Well Number: 602H

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: NM-LANDS

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information: Fee/Fee/Fed

Use a previously conducted onsite? NO

Previous Onsite information:

Other SUPO Attachment

HS_602H_SUPO_Attachments_20191024094315.pdf

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

PWD disturbance (acres):

APD ID: 10400036975 **Submission Date:** 12/06/2018

Operator Name: ASCENT ENERGY LLC

Well Name: HORSESHOE FED COM Well Number: 602H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

PWD surface owner:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Well Name: HORSESHOE FED COM Well Number: 602H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Name: HORSESHOE FED COM Well Number: 602H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Well Name: HORSESHOE FED COM Well Number: 602H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

03/30/2020

APD ID: 10400036975

-NEDOVIII O

Operator Name: ASCENT ENERGY LLC

Well Name: HORSESHOE FED COM

Well Type: OIL WELL

Submission Date: 12/06/2018

Highlighted data reflects the most recent changes

Show Final Text

Well Number: 602H
Well Work Type: Drill

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001471

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: