UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

OCD - HOBBS 07/20/2020 RECEIVED

FORM APPROVED

6. If Indian, Allotee or Tribe Name

5. Lease Serial No. NMNM125402

I OIGH III I I I ED
OMB No. 1004-0137
Expires: January 31, 2018

APPLICATION FOR PERMIT TO DRILL OR REENTER

1a. Type of work: DRILL REE	ENTER			7. If Unit or CA Agreen	nent, Name and No.
1b. Type of Well: Oil Well Gas Well Othe	er			8. Lease Name and Wel	I.M.
1c. Type of Completion: Hydraulic Fracturing Sing	gle Zone	Multiple Zone		COMANCHE 25-36 FI	
2. Name of Operator CAZA OPERATING LLC [249099]				9. API Well No. 30-	025-47449
	b. Phone No 432) 682-7	o. (include area cod 424	e)	10. Field and Pool, or E WC-025 G-09 S26361	
4. Location of Well (Report location clearly and in accordance with	h any State	requirements.*)		11. Sec., T. R. M. or Bl	and Survey or Area
At surface NWNE / 349 FNL / 1500 FEL / LAT 32.020502	2 / LONG -	103.3175249		SEC 25/T26S/R35E/N	MP
At proposed prod. zone LOT 2 / 40 FSL / 2240 FEL / LAT 3	32.0004163	3 / LONG -103.319	8978		
14. Distance in miles and direction from nearest town or post office 9 miles	*			12. County or Parish LEA	13. State NM
location to nearest 350 feet	16. No of act	res in lease	17. Spacii 240.0	ng Unit dedicated to this v	well
to nearest well, drilling, completed.	19. Proposed 2263 feet /	1 Depth ' 19744 feet		BIA Bond No. in file	
	22. Approxir 02/29/2020	mate date work will	start*	23. Estimated duration 30 days	
	24. Attacl	nments			
The following, completed in accordance with the requirements of O (as applicable)	Inshore Oil a	and Gas Order No.	I, and the H	Iydraulic Fracturing rule	per 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the Item 20 above).	e operation	s unless covered by an ex	isting bond on file (see
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).	Lands, the	5. Operator certific6. Such other site sp BLM.		mation and/or plans as ma	y be requested by the
25. Signature		(Printed/Typed)		Da	
(Electronic Submission)	TONY	SAM / Ph: (432)	682-7424	08	/29/2019
Title VP Operations					
Approved by (Signature)		(Printed/Typed)		Da	
(Electronic Submission)		ayton / Ph: (575)	234-5959	05	/29/2020
Title Assistant Field Manager Lands & Minerals	Office Carlsb	ad Field Office			
Application approval does not warrant or certify that the applicant happlicant to conduct operations thereon. Conditions of approval, if any, are attached.	nolds legal o	r equitable title to the	nose rights	in the subject lease which	would entitle the

GCP Rec 07/20/20220

SL

APPROVED WITH CONDITIONS **Approval Date: 05/29/2020**

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency

of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

*(Instructions on page 2)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

07/19/2020

APD ID: 10400046050

Well Type: OIL WELL

Submission Date: 08/29/2019

Highlighted data reflects the most recent changes

Operator Name: CAZA OPERATING LLC

Well Number: 1H

Show Final Text

Well Name: COMANCHE 25-36 FED STATE COM

Well Work Type: Drill

Section 1 - General

BLM Office: CARLSBAD User: Tony B Sam Title: VP Operations

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM125402 Lease Acres: 320

Surface access agreement in place? Allotted? Reservation:

Agreement in place? NO Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO APD Operator: CAZA OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: CAZA OPERATING LLC

Operator Address: 200 N. Loraine Street, Suite 1550

Operator PO Box:

Operator City: Midland State: TX

Operator Phone: (432)682-7424 Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NEW Master Development Plan name: Comanche 25-36 Fed State

Well in Master SUPO?

Master SUPO name:

Well in Master Drilling Plan? Master Drilling Plan name:

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: WC-025 G-09 Pool Name: WC-025 G-09

S263619C S263619C

Zip: 79701

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 1H

Well Class: HORIZONTAL

Comanche 25-36 Fed State Com

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:

Well sub-Type: DELINEATION

Describe sub-type:

Distance to town: 9 Miles Distance to nearest well: 2200 FT Distance to lease line: 350 FT

Reservoir well spacing assigned acres Measurement: 240 Acres

Well plat: COMANCHE_25_36_FEDERAL_STATE_1H___C_102_signed_20191108082942.pdf

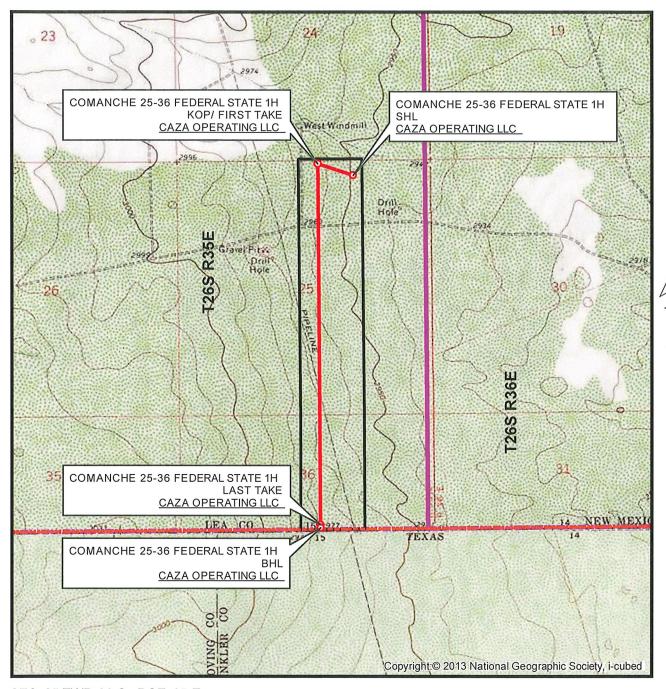
Well work start Date: 02/29/2020 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88


Survey number: R4029_001_A Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	349	FNL	150	FEL	26S	35E	25	Aliquot	32.02050	-	LEA	NEW	NEW	F	NMNM	294	0	0	Υ
Leg			0					NWNE	2	103.3175		MEXI			125402	6			
#1										249		СО	СО						
KOP	100	FNL	222	FEL	26S	35E	25	Aliquot	32.02118	-	LEA	NEW	NEW	F	NMNM	-	117	116	Υ
Leg			5					NWNE	95	103.3198			MEXI		125402	873	47	84	
#1										656		СО	СО			8			
PPP	100	FNL	222	FEL	26S	35E	25	Aliquot	32.02118	-	LEA	NEW	NEW	F	NMNM	-	126	122	Υ
Leg			5					NWNE	95	103.3196		MEXI	I		125402	931	00	61	
#1-1										564		CO	CO			5			

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce from this lease?
PPP	0	FNL	224	FEL	26S	35E	36	Aliquot	32.00688		LEA	1	NEW	S	STATE	-	173	122	Υ
Leg			0					NWNE	1	103.3199		MEXI				929	87	38	
#1-2										37		СО	СО			2			
EXIT	100	FSL	224	FEL	26S	35E	36	Lot	32.00058	-	LEA	NEW	NEW	S	STATE	-	196	122	Υ
Leg			0					2	12	103.3198		MEXI				931	84	63	
#1										979		CO	CO			7			
BHL	40	FSL	224	FEL	26S	35E	36	Lot	32.00041	-	LEA	NEW	NEW	S	STATE	-	197	122	Υ
Leg			0					2	63	103.3198		MEXI				931		63	
#1										978		co	CO			7			

LOCATION VERIFICATION MAP

SEC. 25 TWP. 26-S RGE. 35-E

SURVEY: N.M.P.M. COUNTY: LEA

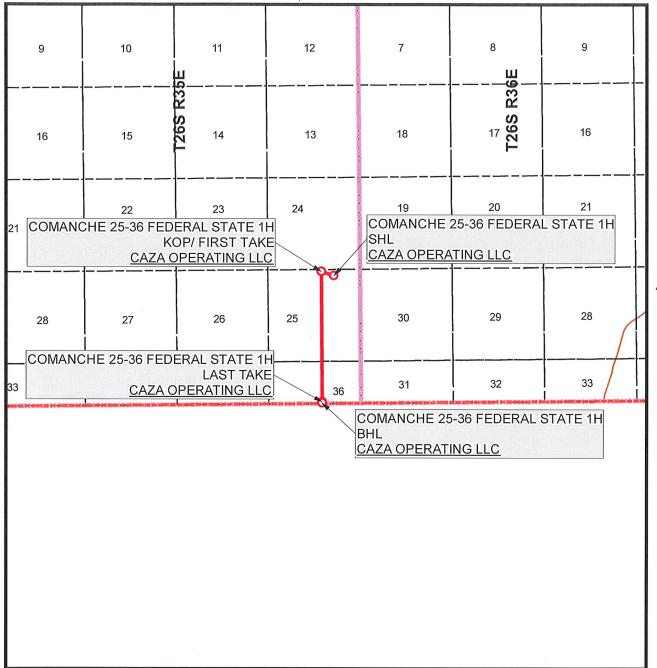
OPERATOR: CAZA OPERATING LLC DESCRIPTION: 349' FNL & 1500' FEL

ELEVATION: 2946'

LEASE: COMANCHE 25-36 FEDERAL STATE

U.S.G.S. TOPOGRAPHIC MAP: JAVELINA BASIN, NM,TX.

1 " = 2,000 ' CONTOUR INTERVAL = 10'



SHEET 2 OF 3

PREPARED BY: R-SQUARED GLOBAL, LLC 1309 LOUISVILLE AVENUE, MONROE, LA 71201 318-323-6900 OFFICE

JOB No. R4029_001_A

VICINITY MAP

SEC. 25 TWP. 26-S RGE. 35-E

SURVEY: N.M.P.M. COUNTY: LEA

OPERATOR: CAZA OPERATING LLC DESCRIPTION: 349' FNL & 1500' FEL

ELEVATION: 2946'

LEASE: COMANCHE 25-36 FEDERAL STATE

U.S.G.S. TOPOGRAPHIC MAP: JAVELINA BASIN, NM,TX.

1"=1 MILE

PREPARED BY:
R-SQUARED GLOBAL, LLC
1309 LOUISVILLE AVENUE, MONROE, LA 71201
318-323-6900 OFFICE
JOB No. R4029_001_A

N

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

07/19/2020

APD ID: 10400046050

Well Type: OIL WELL

Submission Date: 08/29/2019

Highlighted data reflects the most recent changes

Operator Name: CAZA OPERATING LLC

Well Number: 1H

Show Final Text

Well Name: COMANCHE 25-36 FED STATE COM

Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
521106		2940	0	0	OTHER : Surface dirt	NONE	N
521107	RUSTLER	2268	672	672	DOLOMITE, LIMESTONE, OTHER, SILTSTONE : Carbonate	USEABLE WATER	N
521108	TOP SALT	2121	819	819	SALT	NONE	N
521109	BASE OF SALT	-1739	4679	4682	SALT	NONE	N
521110	DELAWARE	-2080	5020	5025	CONGLOMERATE, LIMESTONE, SANDSTONE	NATURAL GAS, OIL	N
521111	BRUSHY CANYON	-4506	7446	7464	CONGLOMERATE, LIMESTONE, SANDSTONE	NATURAL GAS, OIL	N
521112	BONE SPRING	-5806	8746	8771	DOLOMITE, LIMESTONE, OTHER, SANDSTONE : carbonate	NONE	N
521113	BONE SPRING 1ST	-7557	10497	10532	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
521114	BONE SPRING 2ND	-7903	10843	10880	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
521115	BONE SPRING 3RD	-8810	11750	11791	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
521116	WOLFCAMP	-9122	12062	12137	SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 18000

Equipment: Rotating head with a rating of 500psi will be used. A remote kill line and gas buster will be used

Requesting Variance? YES

Variance request: Variance is requested for the use of a coflex hose for the choke line to from the BOP to the choke manifold. A variance is requested to use 1502(15,000psi working pressure) hammer unions downstream of the Choke Manifold used to connect the mud/gas separator and panic line. See choke manifold diagram Variance is requested to have a 5M Annular which will be tested to 100% working pressure. Prior to drilling into the producing zone the mud weight will be 12.2ppg. Flow checks will be conducted every connection. Pit drills will be performed each tour. If the well flows the upper pipe rams will be used to shut in the well. The wait and weight method will be used to kill the well in the event of a kick.

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Testing Procedure: Minimum Working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 13-3/8 inch casing shoe shall be 10000 (10M) psi. 10M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips the minimum wait time before cut-off is eight hours after bumping the pug. BOP/BOPE testing can begin after cut-off or once cement reaches 500PSI compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (18 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater prior to initiating the test (see casing segment as lead cement may be critical item). a. The results of the test shall be reported to the appropriate BLM office. b. All Tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. c. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. 5M Annular which will be tested to 100% working pressure

Choke Diagram Attachment:

 $Comanche_25_36_State_Fed_Com_1H___10M_Choke_Schematic_20191108083646.pdf$

Comanche_25_36_State_Fed_Com_1H___Coflex_Hyd_Test_Cert_20191108083646.pdf

Comanche_25_36_State_Fed_Com_1H___Coflex_Hose_Test_Chart_20191108083648.pdf

BOP Diagram Attachment:

Comanche_25_36_State_Fed_Com_1H___10M_BOP_Schematic_20191108083653.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	CONDUCT OR	26	20.0	NEW	API	N	0	120	0	120	2962	2842	120	H-40		SLIM LINE HIGH PERFORMA NCE						
2	SURFACE	17.5	13.375	NEW	API	N	0	794	0	794	2962	2168	794	J-55	54.5	ST&C	3.08	1	DRY	11.8 8	DRY	11.8 8
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	7200	0	7183	2940	-4221	7200	HCL -80	40	BUTT	1.13	1.09	DRY	2.41	DRY	2.41
	INTERMED IATE	12.2 5	9.625	NEW	API	N	7200	9177	7183	9150	-4221	-6188	1977	HCL -80	47	BUTT	1.49	1.3	DRY	11.6 9	DRY	11.6 9
	PRODUCTI ON	8.5	5.5	NEW	API	N	0	19744	0	12286	2940	-9324	19744	P- 110	20	BUTT	1.39	1.58	DRY	2.61	DRY	2.61

Well Name: COMANCHE 25-36 FED STATE COM	Well Number: 1H
Casing Attachments	
Casing ID: 1 String Type: CONDUCTOR	
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
Casing ID: 2 String Type: SURFACE	
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
Comanche_25_36_State_Fed_Com_1HCasing	_and_Cement_Design_20191108083743.pdf
Casing ID: 3 String Type: INTERMEDIATE	
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
Comanche_25_36_State_Fed_Com_1HCasing	_and_Cement_Design_20191108083859.pdf

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Casing Attachments

Casing ID: 4 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Comanche_25_36_State_Fed_Com_1H___Casing_and_Cement_Design_20191108083953.pdf

Casing ID: 5 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Comanche_25_36_State_Fed_Com_1H___Casing_and_Cement_Design_20191108084037.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Тор МБ	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
CONDUCTOR	Lead		0	120	140	1.35	14.8	135	5	Class C	CaCl2

SURFACE	Lead	0	494	355	1.93	13.5	685	100	Class C	4% bwoc Bentonite II +
										2% bwoc Calcium
										Chloride + 0.25 lbs/sack
										Cello Flake + 0.005%
										bwoc Static Free +
										0.005 gps FP- 6L

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Tail		494	794	309	1.35	14.8	417	100	Class C	1.5% bwoc Calcium Chloride + 0.005 lbs/sack Static Free + 0.005 gps FP-6L
INTERMEDIATE	Lead	4900	0	4800	1395	2.13	12.6	2971	100	Class C	(35:65) + Poz (Fly Ash) + 4% bwoc Bentonite II + 5% bwoc MPA-5 + 0.25% bwoc FL-52 + 5 lbs/sack LCM- 1 + 0.125 lbs/sack Cello Flake + 0.005 lbs/sack Static Free + 0.005 gps FP-6L + 1.2% bwoc Sodium Metasilicate + 5% bwow Sodium Chloride
INTERMEDIATE	Tail		4800	4900	150	1.35	14.8	202	100	Class C	CaCl2
INTERMEDIATE	Lead	4900	4900	8677	1105	2.13	12.6	2353	100	Class C	(35:65) + Poz (Fly Ash) + 4% bwoc Bentonite II + 5% bwoc MPA-5 + 0.25% bwoc FL-52 + 5 lbs/sack LCM- 1 + 0.125 lbs/sack Cello Flake + 0.005 lbs/sack Static Free + 0.005 gps FP-6L + 1.2% bwoc Sodium Metasilicate + 5% bwow Sodium Chloride
INTERMEDIATE	Tail		8677	9177	232	1.35	14.8	313	100	Class C	CaCl2
PRODUCTION	Lead		0	1150 0	2475	2.38	11.8	5890	100	Class H	(50:50) + Poz (Fly Ash) + 10% bwoc Bentonite II + 5% bwow Sodium Chloride + 5 lbs/sack LCM-1 + 0.005 lbs/sack Static Free + 0.005 gps FP-6L
PRODUCTION	Tail		1150 0	1974	2270	1.62	13.2	3677	100	Class H	(15:61:11) Poz (Fly Ash):Class H Cement:CSE-2 + 4% Sodium Chloride + 3 lbs/sack LCM-1 + 0.6% bwoc FL-25 + FP-6L + 0.005% bwoc Static Free

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud will be on location to control any abnormal conditions encountered. Such as but not limited to a kick, lost circulation and hole sloughing

Describe the mud monitoring system utilized: A Pason PVT system will be rigged up prior to spudding the well. A volume monitoring system that measures, calculates, and displays readings from the mud system on the rig to alert the rig crew of impending gas kicks and lost circulation issues. Components a) PVT Pit Bull monitor: Acts as the heart of the system, containing all the controls, switches, and alarms. Typically, it is mounted near the driller's console. b) Junction box: Provides a safe, convenient place for making the wiring connections. c) Mud probes: Measure the volume of drilling fluid in each individual tank. d) Flow sensor: Measures the relative amount of mud flowing in the return line

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	794	SPUD MUD	8.4	8.9	62.8	0.1	9.5	2	0	0	
794	9150	SALT SATURATED	9.2	10	75	0.1	9.5	2	150000	0	
9150	1228 6	OIL-BASED MUD	9.2	12.5	90	0.4	9.5	6	135000	18	

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

no production tests

List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

no coring

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7973 Anticipated Surface Pressure: 5275

Anticipated Bottom Hole Temperature(F): 169

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Comanche 25 36 Fed State Com 1H H2S Plan 20190822082122.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

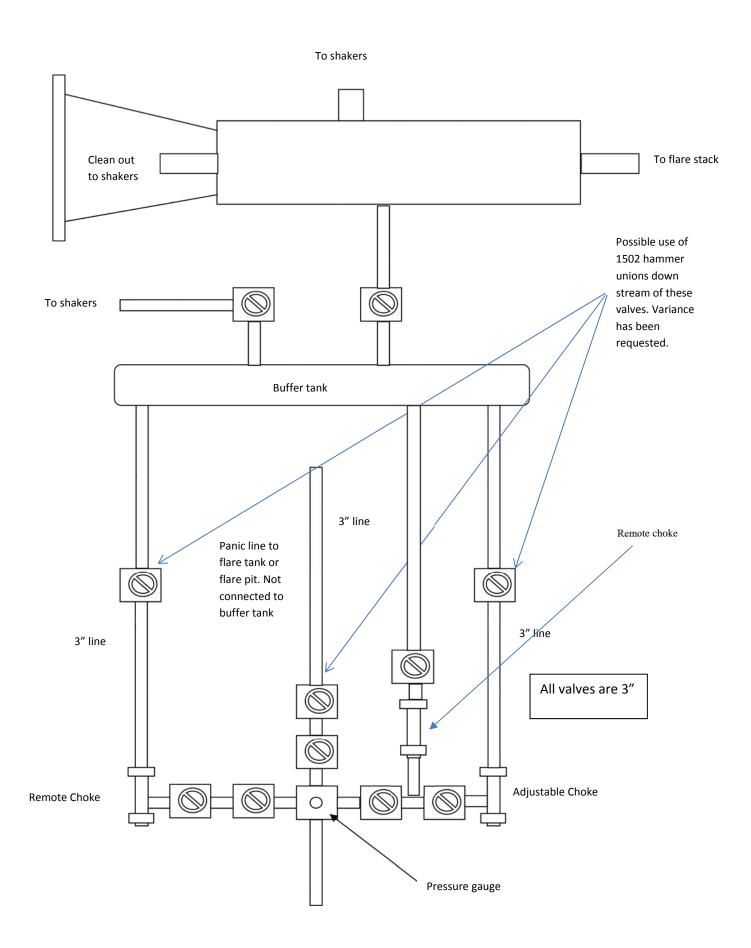
```
190815_Comanche_25_36_Fed_State_Com_1H___Directional_Plot_20190822082148.pdf
190815_Comanche_25_36_Fed_State_Com_1H___Directional_Plan_20190822082148.pdf
Comanche_25_36_State_Fed_Com_1H___Multi_Bowl_Wellhead_20191108092103.pdf
```

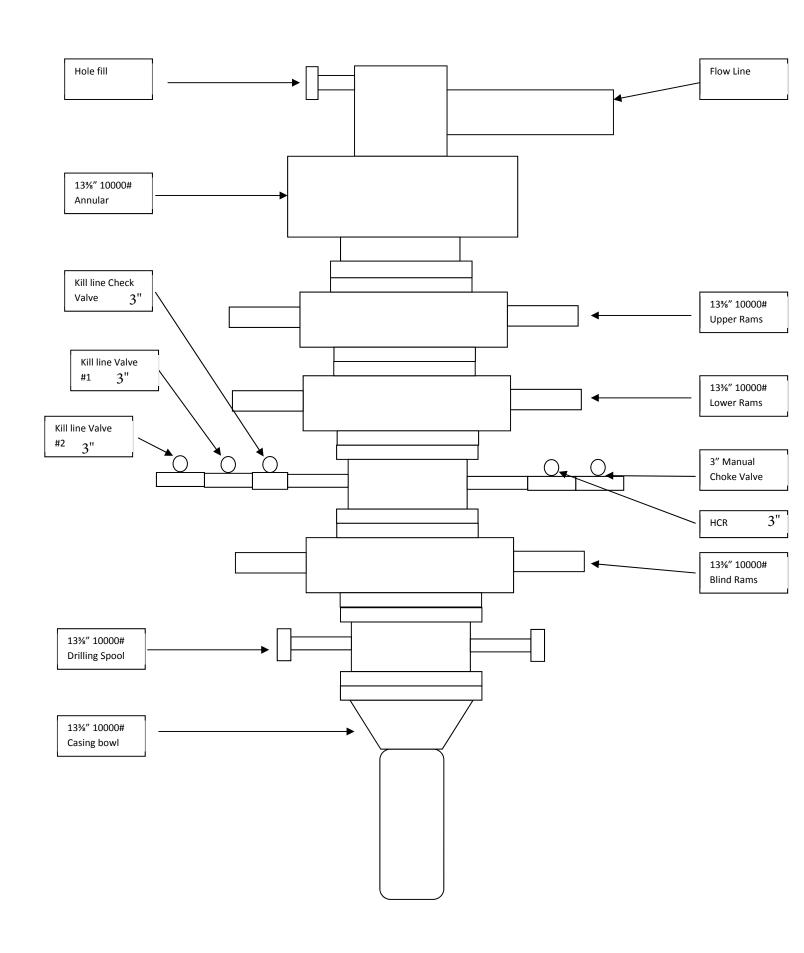
Other proposed operations facets description:

A multi bowl well head will be used. There is a 1-5/8" slot for a grout string on the 13-3/8" hanger if required.

Other proposed operations facets attachment:

```
Comanche_25_36_Fed_State_Com_1H___Closed_Loop_Diagram_Design_Plan_20190822082253.pdf


Comanche_25_36_Fed_State_Com_1H___Gas_Capture_Plan_20190822082253.pdf


Comanche_25_36_Fed_State_Com_1H___Closed_Loop_Design_Operating_and_Closure_Plan_20190822082253.pdf

Comanche_25_36_State_Fed_Com_1H___Interim_Reclamation_Plat_20191108084625.pdf
```

Other Variance attachment:

Comanche_25_36_State_Fed_Com_1H___Multi_Bowl_Wellhead_20191108092138.pdf

Operator	Caza Operating LLC	
Well Name & No.	Comanche 1H	
County	Lea	
Location (S/T/R/Ali)		
Lease Number		
ATS or EC#		APD### or EC###

Name	
Date	
Version	

Remarks

Type of Casing	Size of Hole (in)	Size of Casing (in)	Weight per Foot (lbs/ft)	Grade	Yield	Coupling #:	Top (ft)	Bottom (MD)	Setting Depth (TVD) (TVD of entire string) (ft)		Max Mud Weight (ppg)	ID	Drift ID	Cplg OD
Surface	17.500	13.375	54.50	j	55	stc	0	794	794	8.40	8.90	12.6150	12.4900	14.3750
Int 1	12.250	9.625	40.00	hcl	80	btc	0	7200	9150	9.20	10.00	8.8350	8.7500	10.6250
Int 1 Taper 1	12.250	9.625	47.00	hcl	80	btc	7200	9177	9150	9.20	10.00	8.6810	8.6250	10.6250
<choose casing=""></choose>														
Prod 1	8.500	5.500	20.00	р	110	btc	0	19744	12286	9.20	12.50	4.7780	4.6530	6.0500
<choose casing=""></choose>														
.01														

	Cement													
	Surface			Int 1		Prod 1			<choose casing=""></choose>			<choose casing=""></choose>		>
TOC	0		TOC	0		TOC	0		TOC			TOC		
DV Depth			DV Depth	4900		DV Depth			DV Depth			DV Depth		
	Sacks	Yield (ft3/sx)			Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)
Lead	355	1.93	Lead	1105	2.13	Lead 1	2475	2.38	Lead 1			Lead 1		
Tail	309	1.35	Tail	232	1.35	Tail 1	2270	1.62	Tail 1			Tail 1		
DV Lead			DV Lead	1395	2.13	DV Lead			DV Lead			DV Lead		
DV Tail			DV Tail	150	1.35	DV Tail			DV Tail			DV Tail		
Cmt Added	1102.30	cuft	Cement Added	2666.9 / 3173.9	cuft	Cement Added	9567.90	cuft	Cement Added	#N/A	cuft	Cement Added	#N/A	cuft
Cmt Req.	552	cuft	Cement Req.	1339.5 / 1573.9	cuft	Cement Req.	4784	cuft	Cement Req.	0	cuft	Cement Req.	0	cuft
Excess	99.86%		Excess	99.1% / 101.7%		Excess	99.99%		Excess	#N/A		Excess	#N/A	

Prod 1

psi

System

Max. Surf. Pressure

BOP Required

Clearances	in Hole	In Surface	In Int 1	In Int 1 Taper 1		In Prod 1	
Surface	Pass = 1.5625						
Int 1	Pass = 0.8125	Pass = 0.995					
Int 1 Taper 1	Pass = 0.8125	No Overlap	No Overlap				
Prod 1	Pass = 1.225	Pass = 3.2825	Pass = 1.3925	Pass = 1.3155	No Overlap		

BOP Requirements After the Shoe
Int 1

5275 psi

10M System

Safety Factors	Joint/Body	Collapse	Burst	Alt Burst
Surface	11.88	3.08	0.57	1.00
Int 1	2.41	1.13	0.72	1.09
Int 1 Taper 1	11.69	1.49	0.86	1.30
Prod 1	2.61	1.39	1.58	2.40

		BOP Requiren	1
	Surface		
Max. Surf. Pressure	2740 psi	Max. Surf. Pressure	Ī
BOP Required	3M System	BOP Required	
	<choose casing=""></choose>		
Max. Surf. Pressure	psi		
BOP Required	System		

Operator	Caza Operating LLC	
Well Name & No.	Comanche 1H	
County	Lea	
Location (S/T/R/Ali)		
Lease Number		
ATS or EC#		APD### or EC###

Name	
Date	
Version	

Remarks

Type of Casing	Size of Hole (in)	Size of Casing (in)	Weight per Foot (lbs/ft)	Grade	Yield	Coupling #:	Top (ft)	Bottom (MD)	Setting Depth (TVD) (TVD of entire string) (ft)		Max Mud Weight (ppg)	ID	Drift ID	Cplg OD
Surface	17.500	13.375	54.50	j	55	stc	0	794	794	8.40	8.90	12.6150	12.4900	14.3750
Int 1	12.250	9.625	40.00	hcl	80	btc	0	7200	9150	9.20	10.00	8.8350	8.7500	10.6250
Int 1 Taper 1	12.250	9.625	47.00	hcl	80	btc	7200	9177	9150	9.20	10.00	8.6810	8.6250	10.6250
<choose casing=""></choose>														
Prod 1	8.500	5.500	20.00	р	110	btc	0	19744	12286	9.20	12.50	4.7780	4.6530	6.0500
<choose casing=""></choose>														
.01														

	Cement													
	Surface			Int 1		Prod 1			<choose casing=""></choose>			<choose casing=""></choose>		>
TOC	0		TOC	0		TOC	0		TOC			TOC		
DV Depth			DV Depth	4900		DV Depth			DV Depth			DV Depth		
	Sacks	Yield (ft3/sx)			Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)
Lead	355	1.93	Lead	1105	2.13	Lead 1	2475	2.38	Lead 1			Lead 1		
Tail	309	1.35	Tail	232	1.35	Tail 1	2270	1.62	Tail 1			Tail 1		
DV Lead			DV Lead	1395	2.13	DV Lead			DV Lead			DV Lead		
DV Tail			DV Tail	150	1.35	DV Tail			DV Tail			DV Tail		
Cmt Added	1102.30	cuft	Cement Added	2666.9 / 3173.9	cuft	Cement Added	9567.90	cuft	Cement Added	#N/A	cuft	Cement Added	#N/A	cuft
Cmt Req.	552	cuft	Cement Req.	1339.5 / 1573.9	cuft	Cement Req.	4784	cuft	Cement Req.	0	cuft	Cement Req.	0	cuft
Excess	99.86%		Excess	99.1% / 101.7%		Excess	99.99%		Excess	#N/A		Excess	#N/A	

Prod 1

psi

System

Max. Surf. Pressure

BOP Required

Clearances	in Hole	In Surface	In Int 1	In Int 1 Taper 1		In Prod 1	
Surface	Pass = 1.5625						
Int 1	Pass = 0.8125	Pass = 0.995					
Int 1 Taper 1	Pass = 0.8125	No Overlap	No Overlap				
Prod 1	Pass = 1.225	Pass = 3.2825	Pass = 1.3925	Pass = 1.3155	No Overlap		

BOP Requirements After the Shoe
Int 1

5275 psi

10M System

Safety Factors	Joint/Body	Collapse	Burst	Alt Burst
Surface	11.88	3.08	0.57	1.00
Int 1	2.41	1.13	0.72	1.09
Int 1 Taper 1	11.69	1.49	0.86	1.30
Prod 1	2.61	1.39	1.58	2.40

		BOP Requiren	1
	Surface		
Max. Surf. Pressure	2740 psi	Max. Surf. Pressure	Ī
BOP Required	3M System	BOP Required	
	<choose casing=""></choose>		
Max. Surf. Pressure	psi		
BOP Required	System		

In a Lesser Prairie-Chicken section.

13 3/8	surface	csg in a	17 1/2	inch hole.	<u>D</u>	esign Facto	<u>rs</u>	SUR	FACE	1
Segment	#/ft	Gr	ade	Coupling	Joint	Collapse	Burst	Length	Weight	ALT Bu
"A"	54.50	·	55	ST&C	11.60	3.01	0.6	813	44,309	1.
"B"								0	0	
w/8.4#/g	mud, 30min Sfc	Csg Test psig	: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	813	44,309]
Comparison of	of Proposed to	Minimum o	Required C	ement Volume	es_					j
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist	1
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg	
17 1/2	0.6946	1036	1819	638	185	8.90	2641	3M	1.56	1
Burst Frac Gra	dient(s) for Se	gment(s) A	, B = 3.36, b	All > 0.70,						ĺ

9 5/8	casing in	side the	13 3/8			Design Fa	ctors	INTERN	MEDIATE
Segment	#/ft	Gra	ade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	40.00		80	LT&C	2.00	1.14	0.99	5,200	208,000
"B"	40.00	HCL	80	LT&C	5.36	1.13	0.99	2,000	80,000
"C"	47.00	HCL	80	LT&C	13.50	1.55	1.18	1,643	77,221
"D"								0	0
w/8.4#/g	mud, 30min Sfc	: Csg Test psig:	883				Totals:	8,843	365,221
The c	ement volum	e(s) are inte	nded to ach	ieve a top of	0	ft from su	ırface or a	813	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
12 1/4	0.3132	2672	5506	2828	95	10.00	3105	5M	0.81
							sum of sx	Σ CuFt	Σ%excess
Settin	g Depths for	D V I ool(s):	4100				Sulli Ol SX	Z Cui t	27000000
	t by stage %:	D V Tool(s):	4100 57				2585	5506	95
excess cm	t by stage % :	• • •							
excess cm lass 'C' tail cn	t by stage % :	128	57	11, 0.8, c, d	All > 0.70, OI	ζ			
excess cm ass 'C' tail cn arst Frac Gra	t by stage %: nt yld > 1.35 dient(s) for Se	128 egment(s): A	57 , B, C, D = 1.3	11, 0.8, c, d mt proposed			2585	5506	95
excess cm lass 'C' tail cn	t by stage % :	128 egment(s): A	57 , B, C, D = 1.3				2585 Id overlap t	5506	95 Is csg shoe.
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment	t by stage %: nt yld > 1.35 dient(s) for Se	128 egment(s): A	57 , B, C, D = 1.: Tail cr			g below cou	2585 Id overlap t	5506	95 Is csg shoe.
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A"	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00	128 side the Gra	57 , B, C, D = 1.: Tail cr 9 5/8 ade 110	mt proposed Coupling BUTT	Body 2.61	below cou <u>Design Fac</u> Collapse 2	2585 Id overlap t ctors P Burst 2.18	5506 he previou	95 Is csg shoe. N Weight 234,940
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft	128 side the Gra	57 , B, C, D = 1.: Tail cr 9 5/8 ade	mt proposed Coupling	I for the cso	below cou Design Fac Collapse	2585 d overlap t ctors P Burst	5506 he previou RODUCTIO Length	95 Is csg shoe. N Weight 234,940 159,940
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B"	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00	side the Gra	57 Tail cr 9 5/8 ade 110 110	mt proposed Coupling BUTT	Body 2.61	below cou <u>Design Fac</u> <u>Collapse</u> 2 1.73	2585 Id overlap t ctors P Burst 2.18	he previou RODUCTIO Length 11,747	95 Is csg shoe. N Weight 234,940
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B"	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00 20.00 mud, 30min Sfc	side the Gra	57 Tail cr 9 5/8 ade 110 110 2,584	Coupling BUTT BUTT	Body 2.61	below cou Design Fac Collapse 2 1.73	2585 Id overlap t ctors P Burst 2.18 2.18	5506 he previou RODUCTIO Length 11,747 7,997 19,744	95 Is csg shoe. N Weight 234,940 159,940 394,880
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B" w/8.4#/g B	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00 20.00 mud, 30min Sfc Segmen	side the Gra P Cosg Test psig: nt Design	57 Tail cr 9 5/8 ade 110 110 2,584	Coupling BUTT BUTT	For the csg Body 2.61 7.56	below cou <u>Design Fac</u> <u>Collapse</u> 2 1.73	2585 Id overlap t ctors P Burst 2.18 2.18 Totals:	5506 he previou RODUCTIO Length 11,747 7,997 19,744	95 Is csg shoe. N Weight 234,940 159,940 394,880
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B" w/8.4#/g B No Pil	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00 20.00 mud, 30min Sfc Segment ot Hole Plan	ngment(s): A side the Gra P Cosg Test psig: nt Design	57 Tail cr 9 5/8 ade 110 110 2,584 Factors MTD 19744	Coupling BUTT BUTT would be: Max VTD 12286	Body 2.61 7.56	below cou Design Fac Collapse 2 1.73	2585 Id overlap t ctors P Burst 2.18 2.18 Totals: if it were a	5506 he previou RODUCTIO Length 11,747 7,997 19,744 vertical we	95 Weight 234,940 159,940 394,880 ellbore. MEOC 12587
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B" w/8.4#/g B No Pil	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00 20.00 mud, 30min Sfc Segmen	egment(s): A side the Gra P Cosg Test psig: nt Design nned e(s) are inter	57 Tail cr 9 5/8 ade 110 110 2,584 Factors MTD 19744 nded to ach	Coupling BUTT BUTT would be: Max VTD 12286 ieve a top of	Body 2.61 7.56 59.47 Csg VD 12286 0	Design Factorial Design	2585 Id overlap to totals: 2.18 2.18 2.18 Totals: if it were a Doglege 90 urface or a	he previou RODUCTIO Length 11,747 7,997 19,744 vertical we Severity°	95 Weight 234,940 159,940 394,880 ellbore. MEOC 12587 overlap.
excess cm ass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B" w/8.4#/g B No Pil	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00 20.00 mud, 30min Sfc Segment ot Hole Plan	ngment(s): A side the Gra P Cosg Test psig: nt Design	57 Tail cr 9 5/8 ade 110 110 2,584 Factors MTD 19744	Coupling BUTT BUTT would be: Max VTD 12286	Body 2.61 7.56 59.47 Csg VD 12286 0	Design Factorial Design	2585 Id overlap t ctors P Burst 2.18 2.18 Totals: if it were a Dogleg° 90	he previou RODUCTIO Length 11,747 7,997 19,744 vertical we Severity° 11	95 Weight 234,940 159,940 394,880 ellbore. MEOC 12587
excess cm lass 'C' tail cn urst Frac Gra 5 1/2 Segment "A" "B" w/8.4#/g B No Pil	t by stage %: nt yld > 1.35 dient(s) for Se casing ins #/ft 20.00 20.00 mud, 30min Sfo Segme ot Hole Planement volume	egment(s): A side the Gra P Cosg Test psig: nt Design nned e(s) are inter	57 Tail cr 9 5/8 ade 110 110 2,584 Factors MTD 19744 nded to ach	Coupling BUTT BUTT would be: Max VTD 12286 ieve a top of	Body 2.61 7.56 59.47 Csg VD 12286 0	Design Factorial Design	2585 Id overlap to totals: 2.18 2.18 2.18 Totals: if it were a Doglege 90 urface or a	he previou RODUCTIO Length 11,747 7,997 19,744 vertical we Severity° 11 8843	95 Weight 234,940 159,940 394,880 ellbore. MEOC 12587 overlap.

Carlsbad Field Office 8/22/2019

Operator	Caza Operating LLC	
Well Name & No.	Comanche 1H	
County	Lea	
Location (S/T/R/Ali)		
Lease Number		
ATS or EC#		APD### or EC###

Name	
Date	
Version	

Remarks

Type of Casing	Size of Hole	Size of Casing	Weight per Foot	Grade	Yield	Coupling #:	Тор	Bottom (MD)	Setting Depth (TVD) (TVD of entire string)		Max Mud Weight	ID	Drift ID	Cplg OD
	(in)	(in)	(lbs/ft)				(ft)	(ft)	(ft)	(ppg)	(ppg)			
Surface	17.500	13.375	54.50	j	55	stc	0	794	794	8.40	8.90	12.6150	12.4900	14.3750
Int 1	12.250	9.625	40.00	hcl	80	btc	0	7200	9150	9.20	10.00	8.8350	8.7500	10.6250
Int 1 Taper 1	12.250	9.625	47.00	hcl	80	btc	7200	9177	9150	9.20	10.00	8.6810	8.6250	10.6250
<choose casing=""></choose>														
Prod 1	8.500	5.500	20.00	р	110	btc	0	19744	12286	9.20	12.50	4.7780	4.6530	6.0500
<choose casing=""></choose>														
<choose casing=""></choose>														

	Cement													
	Surface			Int 1			Prod 1			<choose casing=""></choose>		<choose casing=""></choose>		
TOC	0		TOC	0		TOC	0		TOC			TOC		
DV Depth			DV Depth	4900		DV Depth			DV Depth			DV Depth		
	Sacks	Yield (ft3/sx)			Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)
Lead	355	1.93	Lead	1105	2.13	Lead 1	2475	2.38	Lead 1			Lead 1		
Tail	309	1.35	Tail	232	1.35	Tail 1	2270	1.62	Tail 1			Tail 1		
DV Lead			DV Lead	1395	2.13	DV Lead			DV Lead			DV Lead		
DV Tail			DV Tail	150	1.35	DV Tail			DV Tail			DV Tail		
Cmt Added	1102.30	cuft	Cement Added	2666.9 / 3173.9	cuft	Cement Added	9567.90	cuft	Cement Added	#N/A	cuft	Cement Added	#N/A	cuft
Cmt Req.	552	cuft	Cement Req.	1339.5 / 1573.9	cuft	Cement Req.	4784	cuft	Cement Req.	0	cuft	Cement Req.	0	cuft
Excess	99.86%		Excess	99.1% / 101.7%		Excess	99.99%		Excess	#N/A		Excess	#N/A	

Prod 1

psi

System

Max. Surf. Pressure

BOP Required

Clearances	in Hole	In Surface	In Int 1	In Int 1 Taper 1		In Prod 1	
Surface	Pass = 1.5625						
Int 1	Pass = 0.8125	Pass = 0.995					
Int 1 Taper 1	Pass = 0.8125	No Overlap	No Overlap				
Prod 1	Pass = 1.225	Pass = 3.2825	Pass = 1.3925	Pass = 1.3155	No Overlap		

BOP Requirements After the Shoe
Int 1

5275 psi

10M System

Safety Factors	Joint/Body	Collapse	Burst	Alt Burst
Surface	11.88	3.08	0.57	1.00
Int 1	2.41	1.13	0.72	1.09
Int 1 Taper 1	11.69	1.49	0.86	1.30
Prod 1	2.61	1.39	1.58	2.40

		BOP Requiren	n
	Surface		
Max. Surf. Pressure	2740 psi	Max. Surf. Pressure	Ī
BOP Required	3M System	BOP Required	
	<choose casing=""></choose>		
Max. Surf. Pressure	psi		
BOP Required	System		

Operator	Caza Operating LLC	
Well Name & No.	Comanche 1H	
County	Lea	
Location (S/T/R/Ali)		
Lease Number		
ATS or EC#		APD### or EC###

Name	
Date	
Version	

Remarks

Type of Casing	Size of Hole (in)	Size of Casing (in)	Weight per Foot (lbs/ft)	Grade	Yield	Coupling #:	Top (ft)		Setting Depth (TVD) (TVD of entire string) (ft)		Max Mud Weight (ppg)	ID	Drift ID	Cplg OD
Surface	17.500	13.375	54.50	j	55	stc	0	794	794	8.40	8.90	12.6150	12.4900	14.3750
Int 1	12.250	9.625	40.00	hcl	80	btc	0	7200	9150	9.20	10.00	8.8350	8.7500	10.6250
Int 1 Taper 1	12.250	9.625	47.00	hcl	80	btc	7200	9177	9150	9.20	10.00	8.6810	8.6250	10.6250
<choose casing=""></choose>														
Prod 1	8.500	5.500	20.00	р	110	btc	0	19744	12286	9.20	12.50	4.7780	4.6530	6.0500
<choose casing=""></choose>														
.01														

	Cement													
	Surface Int 1		Prod 1		<choose casing=""></choose>			<choose casing=""></choose>						
TOC	0		TOC	0		TOC	0		TOC			TOC		
DV Depth			DV Depth	4900		DV Depth			DV Depth			DV Depth		
	Sacks	Yield (ft3/sx)			Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)		Sacks	Yield (ft3/sx)
Lead	355	1.93	Lead	1105	2.13	Lead 1	2475	2.38	Lead 1			Lead 1		
Tail	309	1.35	Tail	232	1.35	Tail 1	2270	1.62	Tail 1			Tail 1		
DV Lead			DV Lead	1395	2.13	DV Lead			DV Lead			DV Lead		
DV Tail			DV Tail	150	1.35	DV Tail			DV Tail			DV Tail		
Cmt Added	1102.30	cuft	Cement Added	2666.9 / 3173.9	cuft	Cement Added	9567.90	cuft	Cement Added	#N/A	cuft	Cement Added	#N/A	cuft
Cmt Req.	552	cuft	Cement Req.	1339.5 / 1573.9	cuft	Cement Req.	4784	cuft	Cement Req.	0	cuft	Cement Req.	0	cuft
Excess	99.86%		Excess	99.1% / 101.7%		Excess	99.99%		Excess	#N/A		Excess	#N/A	

Prod 1

psi

System

Max. Surf. Pressure

BOP Required

Clearances	in Hole	In Surface	In Int 1	In Int 1 Taper 1		In Prod 1	
Surface	Pass = 1.5625						
Int 1	Pass = 0.8125	Pass = 0.995					
Int 1 Taper 1	Pass = 0.8125	No Overlap	No Overlap				
Prod 1	Pass = 1.225	Pass = 3.2825	Pass = 1.3925	Pass = 1.3155	No Overlap		

BOP Requirements After the Shoe
Int 1

5275 psi

10M System

Safety Factors	Joint/Body	Collapse	Burst	Alt Burst
Surface	11.88	3.08	0.57	1.00
Int 1	2.41	1.13	0.72	1.09
Int 1 Taper 1	11.69	1.49	0.86	1.30
Prod 1	2.61	1.39	1.58	2.40

		BOP Requiren	n
	Surface		
Max. Surf. Pressure	2740 psi	Max. Surf. Pressure	
BOP Required	3M System	BOP Required	
	<choose casing=""></choose>		
Max. Surf. Pressure	psi		
BOP Required	System		

Caza Oil and Gas, Inc

H2S Drilling Operations Plan
Sioux 25-36 State Fed Com 9H
Lea County, New Mexico

Prepared by: Steve Morris Date: 06/27/2018

Table of Contents

H2S Contingency Plan Section	3
Scope:	3
Objective:	3
Emergency Procedures Section	4
Emergency Procedures	4
Emergency Procedure Implementation	4
Simulated Blowout Control Drills	5
Ignition Procedures	8
Responsibility:	8
Instructions for Igniting the Well:	8
Training Program	9
Emergency Equipment Requirements	9
CHECK LISTS	12
Status Check List	12
Procedural Check List	13
Briefing Procedures	14
Pre-Spud Meeting	14
Evacuation Plan	15
General Plan	15
Emergency Assistance Telephone List	15
MAPS AND PLATS	16

H2S Contingency Plan Section

Scope:

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, of following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H2S).

Objective:

Prevent any and all accidents, and prevent the uncontrolled release of H2S into the atmosphere.

Provide proper evacuation procedures to cope with emergencies.

Provide immediate and adequate medical attention should an injury occur.

Implementation: This plan, with all details, is to be fully implemented 1000' before drilling into the first sour zone.

Emergency Response Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency.

Emergency Equipment and Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well.

Training Provisions: This section outlines the training provisions that must be adhered to 1000' before drilling into the first sour zone.

Emergency Call Lists: Included are the telephone numbers of all persons that would need to be contacted, should an H2S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public safety personnel will be made aware of the drilling of this well.

Check Lists: Status check lists and procedural check lists have been included to ensure adherence to the plan.

General Information: A general information section has been included to supply support information.

Emergency Procedures Section

Emergency Procedures

- I. In the event of any evidence of H2S level above 10 ppm, take the following steps immediately:
 - A. Secure breathing apparatus.
 - B. Order non-essential personnel out of the danger zone.
 - C. Take steps to determine if the H2S level can be corrected or suppressed, and if so, proceed with normal operations.

II. If uncontrollable conditions occur, proceed with the following:

- A. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify necessary public safety personnel and the New Mexico Oil & Gas of the situation.
- B. Remove all personnel to the safe briefing area.
- C. Notify public safety personnel for help with maintaining roadblocks and implementing evacuation.
- D. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.

III. Responsibility:

- A. The company approved supervisor shall be responsible for the total implementation of the plan.
- B. The company approved supervisor shall be in complete command during any emergency.
- C. The company approved supervisor shall designate a backup supervisor in the event that he/she is not available.

Emergency Procedure Implementation

I. Drilling or Tripping:

- A. All Personnel
 - 1. When alarm sounds, don escape unit and report to upwind safe briefing area.
 - 2. Check status of other personnel (buddy system).
 - 3. Secure breathing apparatus.
 - 4. Wait for orders from supervisor.

B. Drilling Foreman

- 1. Report to the upwind safe briefing area.
- 2. Don breathing apparatus and return to the point of release with the Tool pusher of Driller (buddy system).
- 3. Determine the concentration of H2S.
- 4. Address the situation and take appropriate control measures.

C. Tool Pusher

- 1. Report to the upwind safe briefing area.
- 2. Don breathing apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system).

- 3. Determine the concentration.
- 4. Address the situation and take appropriate control measures.

D. Driller

- 1. Check the status of other personnel (in a rescue attempt, always use the buddy system).
- 2. Assign the least essential person to notify the Drilling Foreman and Tool Pusher, in the event of their absence.
- 3. Assume the responsibility of the Drilling Foreman and the Tool Pusher until they arrive, in the event of their absence.

E. Derrick Man and Floor Hands

1. Remain in the upwind safe briefing area until otherwise instructed by a supervisor.

F. Mud Engineer

- 1. Report to the upwind safe briefing area.
- 2. When instructed, begin check of mud for PH level and H2S level.

G. Safety Personnel

- 1. Don breathing apparatus.
- 2. Check the status of all personnel.
- 3. Wait for instructions from Drilling Foreman or Tool Pusher.

II. Taking a Kick:

- A. All personnel report to the upwind safe briefing area.
- B. Follow standard BOP procedures.

III. Open Hole Logging:

- A. All unnecessary personnel should leave the rig floor.
- B. Drilling Foreman and Safety personnel should monitor the conditions and make necessary safety equipment recommendations.

IV. Running Casing or Plugging:

- A. Follow "Drilling or Tripping" procedures.
- B. Assure that all personnel have access to protective equipment.

Simulated Blowout Control Drills

All drills will be initiated by activating alarm devices (air horn). One long blast on the air horn for ACTUAL and SIMULATED blowout control drills. This operation will be performed by the Drilling Foreman or Tool Pusher at least one time per week for each of the following conditions, with each crew:

Drill #1 On-bottom Drilling

Drill #2 Tripping Drill Pipe

In each of these drills, the initial reaction time to shutting in the well shall be timed as well as the total time for the crew to complete its entire put drill assignment. The times must be recorded on the IADC Driller's log as "Blowout Control Drill".

Drill No.:

Reaction Time to Shut-in: minutes, seconds.

Total Time to Complete Assignment: minutes, seconds.

I. Drill Overviews:

- A. Drill No. 1 On-bottom Drilling
 - 1. Sound the alarm immediately.
 - 2. Stop the rotary and hoist the Kelly joint above the rotary table.
 - 3. Stop the circulatory pump.
 - 4. Close the drill pipe rams.
 - 5. Record casing and drill pipe shut-in pressures and pit volume increases.
- B. Drill No. 2 Tripping Drill Pipe:
 - 1. Sound the alarm immediately.
 - 2. Position the upper tool joint just above the rotary table and set the slips.
 - 3. Install a full opening valve inside blowout preventer tool in order to close the drill pipe.
 - 4. Close the drill pipe rams.
 - 5. Record the shut-in annular pressure.

II. Crew Assignments

- A. Drill No. 1 On-bottom Drilling:
 - 1. Driller
 - a) Stop the rotary and hoist the Kelly joint above the rotary table.
 - b) Stop the circulatory pump.
 - c) Check flow.
 - d) If flowing, sound the alarm immediately.
 - e) Record the shut-in drill pipe pressure.
 - Determine the mud weight increase needed or other courses of action.
 - 2. Derrick Man
 - a) Open choke line valve at BOP.
 - b) Signal Floor Man #1 at accumulator that choke line is open.
 - c) Close choke upstream valve after pipe rams have been closed.
 - d) Read the shut-in annular pressure and report readings to Driller.
 - 3. Floor Man #1
 - a) Close the pipe rams after receiving the signal from the Derrick Man.
 - b) Report to Driller for further instructions.
 - 4. Floor Man #2
 - a) Notify the Tool Pusher and Operator Representative of the H2S alarms.
 - b) Check for open fires and, if safe to do so, extinguish them.
 - c) Stop all welding operations.
 - d) Turn-off all non-explosive proof lights and instruments.

e) Report to Driller for further instructions.

5. Tool Pusher

- a) Report to the rig floor.
- b) Have a meeting with all crews.
- c) Compile and summarize all information.
- d) Calculate the proper kill weight.
- e) Ensure that proper well procedures are put into action.

6. Operator Representative

- a) Notify the Drilling Superintendent.
- b) Determine if an emergency exists and if so, activate the contingency plan.

B. Drill No. 2 – Tripping Pipe:

1. Driller

- a) Sound the alarm immediately when mud volume increase has been detected.
- b) Position the upper tool joint just above the rotary table and set slips.
- c) Install a full opening valve or inside blowout preventer tool to close the drill pipe.
- d) Check flow.
- e) Record all data reported by the crew.
- f) Determine the course of action.

2. Derrick Man

- a) Come down out of derrick.
- b) Notify Tool Pusher and Operator Representative.
- c) Check for open fires and, if safe to do so, extinguish them.
- d) Stop all welding operations.
- e) Report to Driller for further instructions.

3. Floor Man #1

- a) Pick up full opening valve or inside blowout preventer tool and slab into tool join above rotary table (with Floor Man #2)
- b) Tighten valve with back-up tongs.
- c) Close pipe rams after signal from Floor Man #2.
- d) Read accumulator pressure and check for possible high pressure fluid leaks in valves or piping.
- e) Report to Driller for further instructions.

4. Floor Man #2

- a) Pick-up full opening valve or inside blowout preventer tool and tab into tool joint above rotary table (with Floor Man #1)
- b) Position back-up tongs on drill pipe.
- c) Open choke line valve at BOP.
- d) Signal Floor Man #1 at accumulator that choke line is open.
- e) Close choke and upstream valve after pipe rams have been closed.
- f) Check for leaks on BOP stack and choke manifold.

- g) Read annular pressure.
- h) Report readings to the Driller.
- 5. Tool Pusher
 - a) Report to the rig floor.
 - b) Have a meeting with all of the crews.
 - c) Compile and summarize all information.
 - d) See that proper well kill procedures are put into action.
- 6. Operator Representative
 - a) Notify Drilling Superintendent.
 - b) Determine if an emergency exists, and if so, activate the contingency plan

Ignition Procedures

Responsibility:

The decision to ignite the well is responsibility of the DRILLING FOREMAN in concurrence with the STATE POLICE. In the event of the Drilling Foreman is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- Two people are required for the actual igniting operation. Both men must wear selfcontained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Foreman is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Foreman.

NOTE: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide, which is also highly toxic. Do not assume the area is safe after the well is ignited.

Training Program

When working in an area where Hydrogen Sulfide (H2S) might be encountered, definite training requirements for all personnel must be carried out. The Company Supervisor will ensure that all personnel at the well site have had adequate training in the following:

- 1. Hazards and Characteristics of Hydrogen Sulfide.
- 2. Physicals effects of Hydrogen Sulfide on the human body.
- 3. Toxicity of Hydrogen Sulfide and Sulfur Dioxide.
- 4. H2S detection, emergency alarm and sensor location.
- 5. Emergency rescue.
- 6. Resuscitators.
- 7. First aid and artificial resuscitation.
- 8. The effects of Hydrogen Sulfide on metals.
- 9. Location safety.

Service company personnel and visiting personnel must be notified if the zone contains H2S, and each service company must provide adequate training and equipment for their employees before they arrive at the well site.

Emergency Equipment Requirements

Lease Entrance Sign:

Should be located at the lease entrance with the following information:

CAUTION- POTENTIAL POISON GAS HYDROGEN SULFIDE

Well Control Equipment:

- A flare line will be located a minimum of 150' from the wellhead to be ignited by a flare gun.
- The choke manifold will include a remotely operated choke.
- A mud/gas separator will be installed to separate gas from the drilling mud.

Mud Program:

The drilling mud program has been designed to minimize the volume of hydrogen sulfide (H2S) circulated to surface. The operator will have the necessary mud products on location to minimize the hazards while drilling in H2S-bearing zones.

Metallurgy:

- All drill strings, casings, tubing, wellhead equipment, the blowout preventer, the drilling spool, kill lines, choke manifold and lines, and all valves shall be suitable for H2S service.
- All elastomers used for packing and seals shall be H2S trim.

Respiratory Equipment:

• Fresh air breathing equipment should be placed at the safe briefing areas and should include the following: Two SCBA's will be placed at each briefing area. A moveable breathing air trailer with 2 SCBA's, 5 work/escape units, ample breathing air hose and manifolds will be on location. The breathing air hose will be installed on the rig floor and derrick along with breathing air manifolds so that it will not restrict work activity. All employees that may wear respiratory will complete a MEQ and be quantitative fit tested 1000' prior to the 1st zone that may contain H2S.

Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they
 may be seen from any point on location. More will be used if necessary
 for wind consciousness.
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times. (Corners of location).

Hydrogen Sulfide Detector and Alarms:

- 1 Four channel H2S monitor with audible and visual alarms, strategically located to be seen and heard by all employees working on the well site. All sensors will be bump tested or calibrated if necessary on a weekly basis.
 The alarms will be set to visually alarm at 10 PPM and audible at 14 PPM.
- Four (4) sensors located as follows: #1 -Rig Floor, #2 & #3- Bell Nipple, #4- End of flow line where wellbore fluid is discharged.
- Portable color metric tube detector with tubes will be stored in the Tool Pusher trailer.

Well Condition Sign and Flags:

The Well Condition Sign with flags should be placed a minimum of 150' before entry to the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN - Normal Operating Conditions

YELLOW - Potential Danger

RED - Danger, H2S Gas Present

Auxiliary Rescue Equipment:

- Stretcher (drilling contractor)
- 2- 100' OSHA approved Rescue lines (drilling contractor)
- First Aid Kit properly stocked (drilling contractor)

Mud Inspection Equipment:

Garret Gas Train or Hach Tester for inspection of Hydrogen Sulfide in the drilling mud system.

Fire Extinguishers:

Adequate fire extinguishers shall be located at strategic locations (provided by drilling contractor)

Blowout Preventer:

- The well shall have hydraulic BOP equipment for the anticipated BHP.
- The BOP should be tested upon installation.
- BOP, Choke Line and Kill Line will be tested as specified by Operator.

Confined Space Monitor:

There should be a portable multi-gas monitor with at least 3 sensors (02, LEL & H2S). This instrument should be used to test the atmosphere of any confined space before entering. It should also be used for atmospheric testing for LEL gas before beginning any type of Hot Work. Proper calibration documentation will need to be provided. (Supplied by Drilling Contractor)

Communication Equipment:

- Proper communication equipment such as cell phones or 2 -way radios should be available at the rig.
- Radio communication shall be available for communication between the company man's trailer, rig floor and the tool pusher's trailer.
- Communication equipment shall be available on the vehicles.

Special Control Equipment:

- Hydraulic BOP equipment with remote control on the ground.
- Rotating head at the surface casing point.
- BOP, Choke Manifold and Process Flow Diagrams (see the attached previously submitted)
- Patriot Rig #5 SM Choke Manifold Equipment (see the attached previously submitted)

Evacuation Plan:

- Evacuation routes should be established prior to spudding the well.
- Should be discussed with all rig personnel.

Designated Areas:

Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- Designated smoking area.

Safe Briefing Areas:

- Two safe briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area.
- Personal protective equipment should be stored at both briefing areas or if a
 moveable cascade trailer is used, it should be kept upwind of existing winds.
 When wind is from the prevailing direction, both briefing areas should be
 accessible.

NOTES:

- Additional personal H2S monitors are available for all employees on location.
- Automatic Flare Igniters are recommended for installation on the rig.

CHECK LISTS

Status Check List

Note: Date each item as they are implemented.

- 1. Sign at location entrance.
- 2. Two (2) wind socks (in required locations).
- 3. Wind Streamers (if required).
- 4. SCBA's on location for all rig personnel and mud loggers.
- 5. Air packs, inspected and ready for use.
- 6. Spare bottles for each air pack (if required).
- 7. Cascade system for refilling air bottles.
- 8. Cascade system and hose line hook up.
- 9. Choke manifold hooked-up and tested. (Before drilling out surface casing.)
- 10. Remote Hydraulic BOP control (hooked-up and tested before drilling out surface casing).
- 11. BOP tested (before drilling out surface casing).
- 12. Mud engineer on location with equipment to test mud for H2S.
- 13. Safe Briefing Areas set-up.
- 14. Well Condition sign and flags on location and ready.
- 15. Hydrogen Sulfide detection system hooked-up & tested.
- 16. Hydrogen Sulfide alarm system hooked-up & tested.
- 17. Stretcher on location at Safe Briefing Area.
- 18.2-100' OSHA Approved Life Lines on location.
- 19.1-20# Fire Extinguisher in safety trailer.
- 20. Confined Space Monitor on location and tested.
- 21. All rig crews and supervisor trained (as required).
- 22. Access restricted for unauthorized personnel.
- 23. Drills on H2S and well control procedures.
- 24. All outside service contractors advised of potential H2S on the well.
- 25. NO SMOKING sign posted.
- 26. H2S Detector Pump w/tubes on location.
- 27.25mm Flare Gun on location w/flares.
- 28. Automatic Flare Igniter installed on rig.

Procedural Check List

Perform the following on each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to insure that they have not been tampered with.
- 3. Check pressure on the supply air bottles to make sure they are capable of recharging.
- 4. Make sure all of the Hydrogen Sulfide detection systems are operative.

Perform the following each week:

 Check each piece of breathing equipment to make sure that they are fully charged and operational. This requires that the air cylinder be opened and the mask assembly be put on and tested to make sure that the regulators and masks are properly working. Negative and positive pressure should be conducted on all masks.

- 2. BOP skills.
- 3. Check supply pressure on BOP accumulator stand-by source.
- 4. Check all breathing air mask assemblies to see that straps are loosened and turned back, ready to use.
- 5. Check pressure on cascade air cylinders to make sure they are fully charged and ready to use for refill purposes if necessary.
- 6. Check all cascade system regulators to make sure they work properly.
- 7. Perform breathing drills with on-site personnel.
- 8. Check the following supplies for availability:
 - Stretcher
 - Safety Belts and ropes.
 - Spare air bottles.
 - Spare oxygen bottles (if resuscitator required).
 - Gas Detector Pump and tubes.
 - Emergency telephone lists.
- 9. Test the Confined Space Monitor to verify the batteries are good and that the unit is in good working condition and has been properly calibrated according to manufacturer's recommendations.

Briefing Procedures

The following scheduled briefings will be held to ensure the effective drilling and operation of this project:

Pre-Spud Meeting

Date: Prior to spudding the well.

Attendance: Drilling Supervisor

Drilling Engineer
Drilling Foreman
Rig Tool Pushers
Mud Engineer

All Safety Personnel

Key Service Company Personnel

Purpose: Review and discuss the well program, step-by-step, to ensure complete understanding of assignments and responsibilities.

Evacuation Plan

General Plan

The direct lines of action prepared by Caza SAFETY, to protect the public from hazardous gas situations are as follows:

- 1. When the company approved supervisor (Drilling Foremen, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the Area Map.
- 2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.

NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

5. After the discharge of gas has been controlled, "Company" safety personnel will determine when the area is safe for re-entry.

Emergency Assistance Telephone List

PUBLIC SAFETY: 911 or

Lea County Sheriff or Police	(575) 396-3611
Fire Department	.(575) 397-9308
Hospital	(575) 492-5000
Ambulance	911
Department of Public Safety	(392) 392-5588
Oil Conservation Division	.(575) 748-1823
New Mexico Energy, Minerals & Natural Resources Department	. (575) 748-1283

Caza Oil and Gas, Inc:

Office	(423) 682-7424
VP Operations: Tony Sam	
Office	(423) 682-7424
Cell	(432) 556-6708
Project Manager: Steve Morris	
Cell	(972) 835-3315
Project Manager: Joel Stockford	
Cell	(972) 835-3349

The geologic zones that will be encountered during drilling may contain hazardous quantities of H2S. The accompanying map illustrates the affected areas of the community. The residents within this radius will be notified via a hand delivered written notice describing the activities, potential hazards, and conditions of evacuation, evacuation drill siren alarms and other precautionary measures.

Evacuee Description:

Residents: THERE ARE NO RESIDENTS WITHIN 3000' ROE.

Notification Process:

A continuous siren audible to all residence will be activated, signaling evacuation of previously notified and informed residents.

Evacuation Plan:

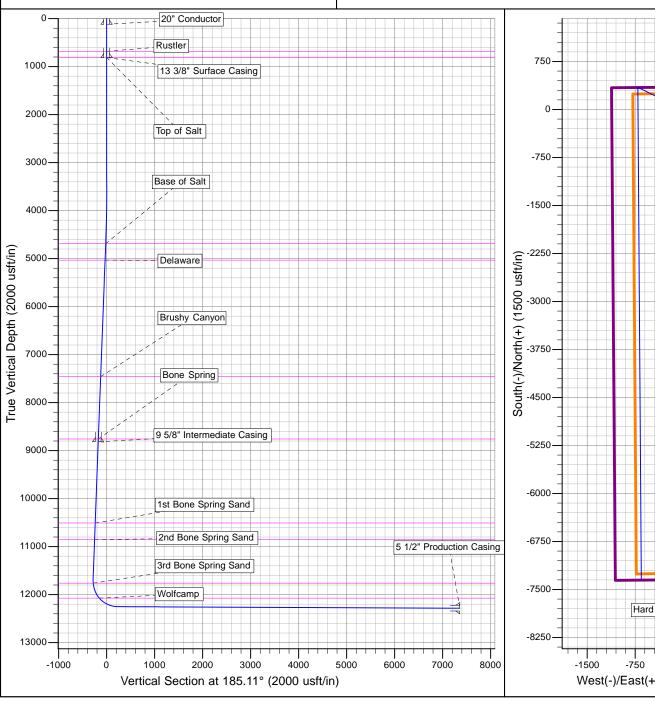
All evacuees will migrate laterally toward the wind direction.

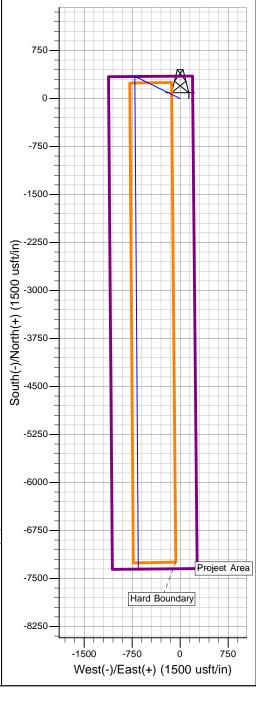
Caza Oil and Gas, Inc. will identify all home bound or highly susceptible individuals and make special evacuation preparations, interfacing with the local and emergency medical service as necessary.

MAPS AND PLATS

See the attached map showing the 3000' ROE clarification.

Project: Comanche 25-36 Fed State Com 1H Site: Comanche 25-36 Fed State Com 1H Well: Comanche 25-36 Fed State Com 1H Wellbore: Comanche 25-36 Fed State Com 1H Design: 190815 Comanche 25-36 Fed State Com 1H





Azimuths to Grid North True North: -0.54° Magnetic North: 5.90°

Magnetic Field Strength: 47706.6snT Dip Angle: 59.83° Date: 8/15/2019 Model: IGRF2010

	CASING DETAILS				FORMATION TOP DETAI	LS	
TVD MD 120.0 120.0 813.0 813.0 8818.0 8843.5 12285.9 19744.0	Name 20" Conductor 13 3/8" Surface Casing 9 5/8" Intermediate Casing 5 1/2" Production Casing	Size 20 13-3/8 9-5/8 5-1/2	TVDPath 684.0 809.0 4691.0 5032.0 7458.0 8758.0 10509.0 10855.0 11762.0 12074.0	MDPath 684.0 809.0 4693.8 5036.7 7476.1 8783.2 10543.9 10891.8 11803.1 12146.1	Formation Rustler Top of Salt Base of Salt Delaware Brushy Canyon Bone Spring 1st Bone Spring Sand 2nd Bone Spring Sand 3rd Bone Spring Sand Wolfcamp	DipAngle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DipDir

Caza Operating LLC

Comanche 25-36 Fed State Com 1H Comanche 25-36 Fed State Com 1H Comanche 25-36 Fed State Com 1H Comanche 25-36 Fed State Com 1H

Plan: 190815 Comanche 25-36 Fed State Com 1H

Morcor Standard Plan

19 August, 2019

Design:

Morcor Engineering

Morcor Standard Plan

Company: Caza Operating LLC

Project:Comanche 25-36 Fed State Com 1HSite:Comanche 25-36 Fed State Com 1HWell:Comanche 25-36 Fed State Com 1HWellbore:Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:
TVD Reference:

MD Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Database: EDM 5000.1 Single User Db

Project Comanche 25-36 Fed State Com 1H

190815 Comanche 25-36 Fed State Com 1H

Map System: US State Plane 1983
Geo Datum: North American Datum 1983

Map Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

Site Comanche 25-36 Fed State Com 1H

Northing: 372,676.60 usft Site Position: Latitude: 32° 1' 13.801 N From: Мар Easting: 856,148.00 usft Longitude: 103° 19' 3.266 W **Position Uncertainty:** 17 " **Grid Convergence:** 0.54 1.0 usft Slot Radius:

Well Comanche 25-36 Fed State Com 1H

 Well Position
 +N/-S
 0.0 usft
 Northing:
 372,676.60 usft
 Latitude:
 32° 1′ 13.801 N

 +E/-W
 0.0 usft
 Easting:
 856,148.00 usft
 Longitude:
 103° 19′ 3.266 W

Position Uncertainty 1.0 usft Wellhead Elevation: usft Ground Level: 2,940.0 usft

Wellbore Comanche 25-36 Fed State Com 1H

Magnetics Model Name Sample Date Declination Dip Angle Field Strength

(°) (°) (nT)

IGRF2010 8/15/2019 6.44 59.83 47,707

Design 190815 Comanche 25-36 Fed State Com 1H

Audit Notes:

Version: Phase: **PLAN** Tie On Depth: 0.0 **Vertical Section:** Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 185.11

Survey Tool Program Date 8/15/2019

From To

(usft)Survey (Wellbore)Tool NameDescription0.019,744.0190815 Comanche 25-36 Fed State ComMWDMWD - Standard

Morcor Standard Plan

Caza Operating LLC Company:

Project: Comanche 25-36 Fed State Com 1H Site: Comanche 25-36 Fed State Com 1H Well: Comanche 25-36 Fed State Com 1H Wellbore: Comanche 25-36 Fed State Com 1H Design: 190815 Comanche 25-36 Fed State Com 1H Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference:

Grid **Survey Calculation Method:** Minimum Curvature

nned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
0.0	0.00	0.00	0.0	-2,962.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
100.0	0.00	0.00	100.0	-2,862.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
120.0	0.00	0.00	120.0	-2,842.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
20" Conductor										
200.0	0.00	0.00	200.0	-2,762.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
300.0	0.00	0.00	300.0	-2,662.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
400.0	0.00	0.00	400.0	-2,562.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
500.0	0.00	0.00	500.0	-2,462.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
600.0	0.00	0.00	600.0	-2,362.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
694.0	0.00	0.00	694.0	-2,268.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
Rustler										
700.0	0.00	0.00	700.0	-2,262.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
794.0	0.00	0.00	794.0	-2,168.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
13 3/8" Surface	Casing									
800.0	0.00	0.00	800.0	-2,162.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
819.0	0.00	0.00	819.0	-2,143.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
Top of Salt										
900.0	0.00	0.00	900.0	-2,062.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,000.0	0.00	0.00	1,000.0	-1,962.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,100.0	0.00	0.00	1,100.0	-1,862.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,200.0	0.00	0.00	1,200.0	-1,762.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,300.0	0.00	0.00	1,300.0	-1,662.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,400.0	0.00	0.00	1,400.0	-1,562.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,500.0	0.00	0.00	1,500.0	-1,462.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,600.0	0.00	0.00	1,600.0	-1,362.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,700.0	0.00	0.00	1,700.0	-1,262.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,800.0	0.00	0.00	1,800.0	-1,162.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00
1,900.0	0.00	0.00	1,900.0	-1,062.0	0.0	0.0	856,148.00	372,676.60	0.00	0.00

Morcor Standard Plan

Caza Operating LLC Company:

Project: Comanche 25-36 Fed State Com 1H Site: Comanche 25-36 Fed State Com 1H Well: Comanche 25-36 Fed State Com 1H Wellbore: Comanche 25-36 Fed State Com 1H Design: 190815 Comanche 25-36 Fed State Com 1H Local Co-ordinate Reference:

Well Comanche 25-36 Fed State Com 1H TVD Reference: WELL @ 2962.0usft (Original Well Elev) MD Reference: WELL @ 2962.0usft (Original Well Elev)

Grid

North Reference:

Survey Calculation Method: Minimum Curvature

2,100.0 2,200.0 2,300.0 2,400.0 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TVD (usft) 2,000.0 2,100.0 2,200.0 2,300.0 2,400.0 2,500.0 2,600.0 2,700.0	TVDSS (usft) -962.0 -862.0 -762.0 -662.0 -562.0 -462.0 -362.0	N/S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	E/W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Easting (usft) 856,148.00 856,148.00 856,148.00 856,148.00 856,148.00 856,148.00	Northing (usft) 372,676.60 372,676.60 372,676.60 372,676.60 372,676.60 372,676.60	V. Sec (usft) 0.00 0.00 0.00 0.00 0.00 0.00	DLeg (°/100usft) 0 0 0
2,100.0 2,200.0 2,300.0 2,400.0 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	2,100.0 2,200.0 2,300.0 2,400.0 2,500.0 2,600.0 2,700.0	-862.0 -762.0 -662.0 -562.0 -462.0 -362.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	856,148.00 856,148.00 856,148.00 856,148.00	372,676.60 372,676.60 372,676.60 372,676.60	0.00 0.00 0.00 0.00	0.
2,200.0 2,300.0 2,400.0 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	2,200.0 2,300.0 2,400.0 2,500.0 2,600.0 2,700.0	-762.0 -662.0 -562.0 -462.0 -362.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	856,148.00 856,148.00 856,148.00	372,676.60 372,676.60 372,676.60	0.00 0.00 0.00	0
2,300.0 2,400.0 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	2,300.0 2,400.0 2,500.0 2,600.0 2,700.0	-662.0 -562.0 -462.0 -362.0	0.0 0.0 0.0	0.0 0.0	856,148.00 856,148.00	372,676.60 372,676.60	0.00 0.00	C
2,400.0 2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	2,400.0 2,500.0 2,600.0 2,700.0	-562.0 -462.0 -362.0	0.0 0.0	0.0	856,148.00	372,676.60	0.00	
2,500.0 2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	2,500.0 2,600.0 2,700.0	-462.0 -362.0	0.0					(
2,600.0 2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00 0.00	0.00 0.00 0.00	2,600.0 2,700.0	-362.0		0.0	856,148.00	372,676.60		
2,700.0 2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00 0.00	0.00 0.00	2,700.0		0.0				0.00	(
2,800.0 2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00			0.0	0.0	856,148.00	372,676.60	0.00	
2,900.0 3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0				-262.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,000.0 3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00		2,800.0	-162.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,100.0 3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00	2,900.0	-62.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,200.0 3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00	3,000.0	38.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,300.0 3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00	3,100.0	138.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,400.0 3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00	3,200.0	238.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,500.0 3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00	3,300.0	338.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,600.0 3,700.0 3,800.0 3,900.0	0.00	0.00	3,400.0	438.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,700.0 3,800.0 3,900.0	0.00	0.00	3,500.0	538.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,800.0 3,900.0	0.00	0.00	3,600.0	638.0	0.0	0.0	856,148.00	372,676.60	0.00	
3,900.0	0.00	0.00	3,700.0	738.0	0.0	0.0	856,148.00	372,676.60	0.00	
	0.00	0.00	3,800.0	838.0	0.0	0.0	856,148.00	372,676.60	0.00	
4,000.0	0.00	0.00	3,900.0	938.0	0.0	0.0	856,148.00	372,676.60	0.00	
	0.00	0.00	4,000.0	1,038.0	0.0	0.0	856,148.00	372,676.60	0.00	
4,047.0	0.00	0.00	4,047.0	1,085.0	0.0	0.0	856,148.00	372,676.60	0.00	
Start Build 3.00										
		296.00	4,100.0	1,138.0	0.3	-0.7	856,147.34	372,676.92	-0.26	
	1.59	296.00	4,199.8	1,237.8	2.7	-5.5	856,142.49	372,679.29	-2.18	
4,247.0	1.59 4.59 6.00	296.00	4,246.6	1,284.6	4.6	-9.4	856,138.60	372,681.19	-3.73	

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Planned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
4,300.0	6.00	296.00	4,299.3	1,337.3	7.0	-14.4	856,133.62	372,683.61	-5.71	0.00
4,400.0	6.00	296.00	4,398.8	1,436.8	11.6	-23.8	856,124.22	372,688.20	-9.43	0.00
4,500.0	6.00	296.00	4,498.2	1,536.2	16.2	-33.2	856,114.83	372,692.78	-13.16	0.00
4,600.0	6.00	296.00	4,597.7	1,635.7	20.8	-42.6	856,105.43	372,697.36	-16.89	0.00
4,700.0	6.00	296.00	4,697.2	1,735.2	25.3	-52.0	856,096.04	372,701.94	-20.61	0.00
4,703.9	6.00	296.00	4,701.0	1,739.0	25.5	-52.3	856,095.67	372,702.12	-20.76	0.00
Base of Salt										
4,800.0	6.00	296.00	4,796.6	1,834.6	29.9	-61.4	856,086.64	372,706.53	-24.34	0.00
4,900.0	6.00	296.00	4,896.1	1,934.1	34.5	-70.8	856,077.25	372,711.11	-28.07	0.00
5,000.0	6.00	296.00	4,995.5	2,033.5	39.1	-80.1	856,067.85	372,715.69	-31.79	0.00
5,046.7	6.00	296.00	5,042.0	2,080.0	41.2	-84.5	856,063.46	372,717.83	-33.53	0.00
Delaware										
5,100.0	6.00	296.00	5,095.0	2,133.0	43.7	-89.5	856,058.46	372,720.27	-35.52	0.00
5,200.0	6.00	296.00	5,194.4	2,232.4	48.3	-98.9	856,049.06	372,724.86	-39.25	0.00
5,300.0	6.00	296.00	5,293.9	2,331.9	52.8	-108.3	856,039.67	372,729.44	-42.97	0.00
5,400.0	6.00	296.00	5,393.3	2,431.3	57.4	-117.7	856,030.27	372,734.02	-46.70	0.00
5,500.0	6.00	296.00	5,492.8	2,530.8	62.0	-127.1	856,020.88	372,738.60	-50.43	0.00
5,600.0	6.00	296.00	5,592.2	2,630.2	66.6	-136.5	856,011.48	372,743.18	-54.15	0.00
5,700.0	6.00	296.00	5,691.7	2,729.7	71.2	-145.9	856,002.09	372,747.77	-57.88	0.00
5,800.0	6.00	296.00	5,791.1	2,829.1	75.7	-155.3	855,992.69	372,752.35	-61.61	0.00
5,900.0	6.00	296.00	5,890.6	2,928.6	80.3	-164.7	855,983.30	372,756.93	-65.33	0.00
6,000.0	6.00	296.00	5,990.0	3,028.0	84.9	-174.1	855,973.90	372,761.51	-69.06	0.00
6,100.0	6.00	296.00	6,089.5	3,127.5	89.5	-183.5	855,964.51	372,766.10	-72.79	0.00
6,200.0	6.00	296.00	6,188.9	3,226.9	94.1	-192.9	855,955.11	372,770.68	-76.51	0.00
6,300.0	6.00	296.00	6,288.4	3,326.4	98.7	-202.3	855,945.72	372,775.26	-80.24	0.00
6,400.0	6.00	296.00	6,387.8	3,425.8	103.2	-211.7	855,936.32	372,779.84	-83.97	0.00
6,500.0	6.00	296.00	6,487.3	3,525.3	107.8	-221.1	855,926.93	372,784.42	-87.69	0.00

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Planned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
6,600.0	6.00	296.00	6,586.7	3,624.7	112.4	-230.5	855,917.53	372,789.01	-91.42	0.00
6,700.0	6.00	296.00	6,686.2	3,724.2	117.0	-239.9	855,908.14	372,793.59	-95.15	0.00
6,800.0	6.00	296.00	6,785.6	3,823.6	121.6	-249.3	855,898.74	372,798.17	-98.87	0.00
6,900.0	6.00	296.00	6,885.1	3,923.1	126.2	-258.7	855,889.35	372,802.75	-102.60	0.00
7,000.0	6.00	296.00	6,984.6	4,022.6	130.7	-268.0	855,879.95	372,807.34	-106.33	0.00
7,100.0	6.00	296.00	7,084.0	4,122.0	135.3	-277.4	855,870.56	372,811.92	-110.05	0.00
7,200.0	6.00	296.00	7,183.5	4,221.5	139.9	-286.8	855,861.16	372,816.50	-113.78	0.00
7,300.0	6.00	296.00	7,282.9	4,320.9	144.5	-296.2	855,851.77	372,821.08	-117.51	0.00
7,400.0	6.00	296.00	7,382.4	4,420.4	149.1	-305.6	855,842.37	372,825.66	-121.23	0.00
7,486.1	6.00	296.00	7,468.0	4,506.0	153.0	-313.7	855,834.28	372,829.61	-124.44	0.00
Brushy Canyon										
7,500.0	6.00	296.00	7,481.8	4,519.8	153.6	-315.0	855,832.98	372,830.25	-124.96	0.00
7,600.0	6.00	296.00	7,581.3	4,619.3	158.2	-324.4	855,823.58	372,834.83	-128.69	0.00
7,700.0	6.00	296.00	7,680.7	4,718.7	162.8	-333.8	855,814.19	372,839.41	-132.41	0.00
7,800.0	6.00	296.00	7,780.2	4,818.2	167.4	-343.2	855,804.79	372,843.99	-136.14	0.00
7,900.0	6.00	296.00	7,879.6	4,917.6	172.0	-352.6	855,795.40	372,848.58	-139.87	0.00
8,000.0	6.00	296.00	7,979.1	5,017.1	176.6	-362.0	855,786.00	372,853.16	-143.59	0.00
8,100.0	6.00	296.00	8,078.5	5,116.5	181.1	-371.4	855,776.61	372,857.74	-147.32	0.00
8,200.0	6.00	296.00	8,178.0	5,216.0	185.7	-380.8	855,767.21	372,862.32	-151.05	0.00
8,300.0	6.00	296.00	8,277.4	5,315.4	190.3	-390.2	855,757.82	372,866.90	-154.78	0.00
8,400.0	6.00	296.00	8,376.9	5,414.9	194.9	-399.6	855,748.42	372,871.49	-158.50	0.00
8,500.0	6.00	296.00	8,476.3	5,514.3	199.5	-409.0	855,739.03	372,876.07	-162.23	0.00
8,600.0	6.00	296.00	8,575.8	5,613.8	204.1	-418.4	855,729.63	372,880.65	-165.96	0.00
8,700.0	6.00	296.00	8,675.2	5,713.2	208.6	-427.8	855,720.24	372,885.23	-169.68	0.00
8,793.3	6.00	296.00	8,768.0	5,806.0	212.9	-436.5	855,711.48	372,889.51	-173.16	0.00
Bone Spring										
8,800.0	6.00	296.00	8,774.7	5,812.7	213.2	-437.2	855,710.84	372,889.82	-173.41	0.00

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

ed Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
8,843.5	6.00	296.00	8,818.0	5,856.0	215.2	-441.2	855,706.75	372,891.81	-175.03	0.
9 5/8" Intermedia	iate Casing									
8,900.0	6.00	296.00	8,874.1	5,912.1	217.8	-446.6	855,701.45	372,894.40	-177.14	0.
9,000.0	6.00	296.00	8,973.6	6,011.6	222.4	-455.9	855,692.05	372,898.98	-180.86	0
9,100.0	6.00	296.00	9,073.0	6,111.0	227.0	-465.3	855,682.66	372,903.56	-184.59	0
9,200.0	6.00	296.00	9,172.5	6,210.5	231.5	-474.7	855,673.26	372,908.14	-188.32	0
9,300.0	6.00	296.00	9,272.0	6,310.0	236.1	-484.1	855,663.87	372,912.73	-192.04	0
9,400.0	6.00	296.00	9,371.4	6,409.4	240.7	-493.5	855,654.47	372,917.31	-195.77	0
9,500.0	6.00	296.00	9,470.9	6,508.9	245.3	-502.9	855,645.08	372,921.89	-199.50	C
9,600.0	6.00	296.00	9,570.3	6,608.3	249.9	-512.3	855,635.68	372,926.47	-203.22	0
9,700.0	6.00	296.00	9,669.8	6,707.8	254.5	-521.7	855,626.29	372,931.06	-206.95	C
9,800.0	6.00	296.00	9,769.2	6,807.2	259.0	-531.1	855,616.89	372,935.64	-210.68	C
9,900.0	6.00	296.00	9,868.7	6,906.7	263.6	-540.5	855,607.50	372,940.22	-214.40	C
10,000.0	6.00	296.00	9,968.1	7,006.1	268.2	-549.9	855,598.10	372,944.80	-218.13	(
10,100.0	6.00	296.00	10,067.6	7,105.6	272.8	-559.3	855,588.71	372,949.38	-221.86	(
10,200.0	6.00	296.00	10,167.0	7,205.0	277.4	-568.7	855,579.31	372,953.97	-225.58	C
10,300.0	6.00	296.00	10,266.5	7,304.5	281.9	-578.1	855,569.92	372,958.55	-229.31	C
10,400.0	6.00	296.00	10,365.9	7,403.9	286.5	-587.5	855,560.52	372,963.13	-233.04	C
10,500.0	6.00	296.00	10,465.4	7,503.4	291.1	-596.9	855,551.13	372,967.71	-236.76	C
10,553.9	6.00	296.00	10,519.0	7,557.0	293.6	-601.9	855,546.06	372,970.18	-238.77	C
1st Bone Spring										
10,600.0	6.00	296.00	10,564.8	7,602.8	295.7	-606.3	855,541.73	372,972.30	-240.49	C
10,700.0	6.00	296.00	10,664.3	7,702.3	300.3	-615.7	855,532.34	372,976.88	-244.22	C
10,800.0	6.00	296.00	10,763.7	7,801.7	304.9	-625.1	855,522.94	372,981.46	-247.94	C
10,900.0	6.00	296.00	10,863.2	7,901.2	309.4	-634.4	855,513.55	372,986.04	-251.67	(
10,901.8	6.00	296.00	10,865.0	7,903.0	309.5	-634.6	855,513.38	372,986.13	-251.74	C
2nd Bone Spring	g Sand									

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
11,000.0	6.00	296.00	10,962.6	8,000.6	314.0	-643.8	855,504.16	372,990.62	-255.40	0.00
11,100.0	6.00	296.00	11,062.1	8,100.1	318.6	-653.2	855,494.76	372,995.21	-259.12	0.00
11,200.0	6.00	296.00	11,161.5	8,199.5	323.2	-662.6	855,485.37	372,999.79	-262.85	0.0
11,300.0	6.00	296.00	11,261.0	8,299.0	327.8	-672.0	855,475.97	373,004.37	-266.58	0.0
11,400.0	6.00	296.00	11,360.4	8,398.4	332.4	-681.4	855,466.58	373,008.95	-270.30	0.0
11,500.0	6.00	296.00	11,459.9	8,497.9	336.9	-690.8	855,457.18	373,013.54	-274.03	0.0
11,600.0	6.00	296.00	11,559.4	8,597.4	341.5	-700.2	855,447.79	373,018.12	-277.76	0.00
11,647.0	6.00	296.00	11,606.1	8,644.1	343.7	-704.6	855,443.37	373,020.27	-279.51	0.0
Start Drop -6.00	2.02	296.00	44.050.0	0.000.0	245.5	700.0	055 420 74	272.000.00	200.00	0.0
11,700.0	2.82		11,658.9	8,696.9	345.5	-708.3	855,439.71	373,022.06	-280.96	6.0
11,747.0	0.00	0.00	11,705.9	8,743.9	346.0	-709.3	855,438.67	373,022.56	-281.37	6.0
Start Build 8.00 11,800.0	4.24	179.60	11,758.9	8,796.9	344.0	-709.3	855,438.68	373,020.60	-279.42	8.0
11,813.2	5.29	179.60	11,772.0	8,810.0	342.9	-709.3	855,438.69	373,019.51	-278.33	8.0
3rd Bone Spring S			,2.0	0,0.0.0	0.2.0		333, 133.33	0.0,0.0.0.	2.0.00	0.0
11,847.0	8.00	179.60	11,805.6	8,843.6	339.0	-709.3	855,438.72	373,015.59	-274.44	8.0
Start Build 11.04										
11,900.0	13.85	179.60	11,857.6	8,895.6	329.0	-709.2	855,438.79	373,005.55	-264.44	11.0
12,000.0	24.90	179.60	11,951.8	8,989.8	295.8	-709.0	855,439.02	372,972.43	-231.47	11.0
12,100.0	35.94	179.60	12,037.9	9,075.9	245.3	-708.6	855,439.37	372,921.87	-181.15	11.0
12,159.6	42.52	179.60	12,084.0	9,122.0	207.6	-708.4	855,439.63	372,884.23	-143.68	11.0
Wolfcamp										
12,200.0	46.99	179.60	12,112.7	9,150.7	179.2	-708.2	855,439.83	372,855.76	-115.34	11.0
12,300.0	58.03	179.60	12,173.5	9,211.5	99.9	-707.6	855,440.39	372,776.54	-36.48	11.0
12,400.0	69.08	179.60	12,218.0	9,256.0	10.5	-707.0	855,441.01	372,687.15	52.50	11.0
12,500.0	80.12	179.60	12,244.5	9,282.5	-85.7	-706.3	855,441.68	372,590.89	148.32	11.0
12,587.0	89.73	179.60	12,252.2	9,290.2	-172.3	-705.7	855,442.29	372,504.33	234.47	11.0
Start 7157.0 hold	at 12587.0 MD									

Morcor Standard Plan

Caza Operating LLC Company:

Project: Comanche 25-36 Fed State Com 1H Site: Comanche 25-36 Fed State Com 1H Well: Comanche 25-36 Fed State Com 1H Wellbore: Comanche 25-36 Fed State Com 1H Design: 190815 Comanche 25-36 Fed State Com 1H Local Co-ordinate Reference:

Well Comanche 25-36 Fed State Com 1H TVD Reference: WELL @ 2962.0usft (Original Well Elev) MD Reference: WELL @ 2962.0usft (Original Well Elev)

Grid

North Reference:

Survey Calculation Method: Minimum Curvature

EDM 5000.1 Single User Db Database:

yn: 19	90815 Comanche 25	-36 Fed State Com 1H				Database:		EDM 5000.1 Single	e User Db	
ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
12,600.0	89.73	179.60	12,252.2	9,290.2	-185.3	-705.6	855,442.38	372,491.33	247.41	0.0
12,700.0	89.73	179.60	12,252.7	9,290.7	-285.3	-704.9	855,443.07	372,391.34	346.95	0.0
12,800.0	89.73	179.60	12,253.2	9,291.2	-385.3	-704.2	855,443.77	372,291.34	446.49	0.0
12,900.0	89.73	179.60	12,253.6	9,291.6	-485.3	-703.5	855,444.47	372,191.34	546.02	0.0
13,000.0	89.73	179.60	12,254.1	9,292.1	-585.3	-702.8	855,445.17	372,091.35	645.56	0.0
13,100.0	89.73	179.60	12,254.6	9,292.6	-685.2	-702.1	855,445.87	371,991.35	745.09	0.0
13,200.0	89.73	179.60	12,255.0	9,293.0	-785.2	-701.4	855,446.57	371,891.35	844.63	0.0
13,300.0	89.73	179.60	12,255.5	9,293.5	-885.2	-700.7	855,447.26	371,791.36	944.17	0.0
13,400.0	89.73	179.60	12,256.0	9,294.0	-985.2	-700.0	855,447.96	371,691.36	1,043.70	0.0
13,500.0	89.73	179.60	12,256.5	9,294.5	-1,085.2	-699.3	855,448.66	371,591.37	1,143.24	0.0
13,600.0	89.73	179.60	12,256.9	9,294.9	-1,185.2	-698.6	855,449.36	371,491.37	1,242.78	0.0
13,700.0	89.73	179.60	12,257.4	9,295.4	-1,285.2	-697.9	855,450.06	371,391.37	1,342.31	0.0
13,800.0	89.73	179.60	12,257.9	9,295.9	-1,385.2	-697.2	855,450.75	371,291.38	1,441.85	0.0
13,900.0	89.73	179.60	12,258.3	9,296.3	-1,485.2	-696.5	855,451.45	371,191.38	1,541.39	0.0
14,000.0	89.73	179.60	12,258.8	9,296.8	-1,585.2	-695.8	855,452.15	371,091.38	1,640.92	0.0
14,100.0	89.73	179.60	12,259.3	9,297.3	-1,685.2	-695.2	855,452.85	370,991.39	1,740.46	0.0
14,200.0	89.73	179.60	12,259.8	9,297.8	-1,785.2	-694.5	855,453.55	370,891.39	1,839.99	0.0
14,300.0	89.73	179.60	12,260.2	9,298.2	-1,885.2	-693.8	855,454.24	370,791.39	1,939.53	0.0
14,400.0	89.73	179.60	12,260.7	9,298.7	-1,985.2	-693.1	855,454.94	370,691.40	2,039.07	0.0
14,500.0	89.73	179.60	12,261.2	9,299.2	-2,085.2	-692.4	855,455.64	370,591.40	2,138.60	0.0
14,600.0	89.73	179.60	12,261.6	9,299.6	-2,185.2	-691.7	855,456.34	370,491.40	2,238.14	0.0
14,700.0	89.73	179.60	12,262.1	9,300.1	-2,285.2	-691.0	855,457.04	370,391.41	2,337.68	0.0
14,800.0	89.73	179.60	12,262.6	9,300.6	-2,385.2	-690.3	855,457.74	370,291.41	2,437.21	0.0
14,900.0	89.73	179.60	12,263.1	9,301.1	-2,485.2	-689.6	855,458.43	370,191.41	2,536.75	0.0
15,000.0	89.73	179.60	12,263.5	9,301.5	-2,585.2	-688.9	855,459.13	370,091.42	2,636.29	0.0
15,100.0	89.73	179.60	12,264.0	9,302.0	-2,685.2	-688.2	855,459.83	369,991.42	2,735.82	0.0
15,200.0	89.73	179.60	12,264.5	9,302.5	-2,785.2	-687.5	855,460.53	369,891.43	2,835.36	0.0

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H

Site: Comanche 25-36 Fed State Com 1H

Well: Comanche 25-36 Fed State Com 1H

Wellbore: Comanche 25-36 Fed State Com 1H

Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

TVD Reference: W
MD Reference: W

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

gn: 190	8 15 Comanche 25	-36 Fed State Com 1H	ate Com 1H Database: EDM 5000.		EDM 5000.1 Single	3000. I Siligie Osei Db				
ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
15,300.0	89.73	179.60	12,264.9	9,302.9	-2,885.2	-686.8	855,461.23	369,791.43	2,934.89	0.
15,400.0	89.73	179.60	12,265.4	9,303.4	-2,985.2	-686.1	855,461.92	369,691.43	3,034.43	0
15,500.0	89.73	179.60	12,265.9	9,303.9	-3,085.2	-685.4	855,462.62	369,591.44	3,133.97	0
15,600.0	89.73	179.60	12,266.4	9,304.4	-3,185.2	-684.7	855,463.32	369,491.44	3,233.50	0
15,700.0	89.73	179.60	12,266.8	9,304.8	-3,285.2	-684.0	855,464.02	369,391.44	3,333.04	0
15,800.0	89.73	179.60	12,267.3	9,305.3	-3,385.2	-683.3	855,464.72	369,291.45	3,432.58	C
15,900.0	89.73	179.60	12,267.8	9,305.8	-3,485.1	-682.6	855,465.41	369,191.45	3,532.11	C
16,000.0	89.73	179.60	12,268.2	9,306.2	-3,585.1	-681.9	855,466.11	369,091.45	3,631.65	0
16,100.0	89.73	179.60	12,268.7	9,306.7	-3,685.1	-681.2	855,466.81	368,991.46	3,731.19	C
16,200.0	89.73	179.60	12,269.2	9,307.2	-3,785.1	-680.5	855,467.51	368,891.46	3,830.72	(
16,300.0	89.73	179.60	12,269.6	9,307.6	-3,885.1	-679.8	855,468.21	368,791.46	3,930.26	(
16,400.0	89.73	179.60	12,270.1	9,308.1	-3,985.1	-679.1	855,468.91	368,691.47	4,029.79	(
16,500.0	89.73	179.60	12,270.6	9,308.6	-4,085.1	-678.4	855,469.60	368,591.47	4,129.33	C
16,600.0	89.73	179.60	12,271.1	9,309.1	-4,185.1	-677.7	855,470.30	368,491.47	4,228.87	(
16,700.0	89.73	179.60	12,271.5	9,309.5	-4,285.1	-677.0	855,471.00	368,391.48	4,328.40	(
16,800.0	89.73	179.60	12,272.0	9,310.0	-4,385.1	-676.3	855,471.70	368,291.48	4,427.94	(
16,900.0	89.73	179.60	12,272.5	9,310.5	-4,485.1	-675.6	855,472.40	368,191.49	4,527.48	(
17,000.0	89.73	179.60	12,272.9	9,310.9	-4,585.1	-674.9	855,473.09	368,091.49	4,627.01	(
17,100.0	89.73	179.60	12,273.4	9,311.4	-4,685.1	-674.2	855,473.79	367,991.49	4,726.55	(
17,200.0	89.73	179.60	12,273.9	9,311.9	-4,785.1	-673.5	855,474.49	367,891.50	4,826.09	(
17,300.0	89.73	179.60	12,274.4	9,312.4	-4,885.1	-672.8	855,475.19	367,791.50	4,925.62	(
17,400.0	89.73	179.60	12,274.8	9,312.8	-4,985.1	-672.1	855,475.89	367,691.50	5,025.16	(
17,500.0	89.73	179.60	12,275.3	9,313.3	-5,085.1	-671.4	855,476.58	367,591.51	5,124.69	(
17,600.0	89.73	179.60	12,275.8	9,313.8	-5,185.1	-670.7	855,477.28	367,491.51	5,224.23	(
17,700.0	89.73	179.60	12,276.2	9,314.2	-5,285.1	-670.0	855,477.98	367,391.51	5,323.77	(
17,800.0	89.73	179.60	12,276.7	9,314.7	-5,385.1	-669.3	855,478.68	367,291.52	5,423.30	(
17,900.0	89.73	179.60	12,277.2	9,315.2	-5,485.1	-668.6	855,479.38	367,191.52	5,522.84	(

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

TVD Reference: WELL @ 2962.0usft (Original Well Elev)
MD Reference: WELL @ 2962.0usft (Original Well Elev)

Grid

Well Comanche 25-36 Fed State Com 1H

North Reference:

Survey Calculation Method: Minimum Curvature

Database: EDM 5000.1 Single User Db

ned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
18,000.0	89.73	179.60	12,277.7	9,315.7	-5,585.1	-667.9	855,480.08	367,091.52	5,622.38	0.0
18,100.0	89.73	179.60	12,278.1	9,316.1	-5,685.1	-667.2	855,480.77	366,991.53	5,721.91	0.0
18,200.0	89.73	179.60	12,278.6	9,316.6	-5,785.1	-666.5	855,481.47	366,891.53	5,821.45	0.0
18,300.0	89.73	179.60	12,279.1	9,317.1	-5,885.1	-665.8	855,482.17	366,791.54	5,920.99	0.0
18,400.0	89.73	179.60	12,279.5	9,317.5	-5,985.1	-665.1	855,482.87	366,691.54	6,020.52	0.0
18,500.0	89.73	179.60	12,280.0	9,318.0	-6,085.1	-664.4	855,483.57	366,591.54	6,120.06	0.0
18,600.0	89.73	179.60	12,280.5	9,318.5	-6,185.1	-663.7	855,484.26	366,491.55	6,219.59	0.0
18,700.0	89.73	179.60	12,281.0	9,319.0	-6,285.1	-663.0	855,484.96	366,391.55	6,319.13	0.0
18,800.0	89.73	179.60	12,281.4	9,319.4	-6,385.0	-662.3	855,485.66	366,291.55	6,418.67	0.0
18,900.0	89.73	179.60	12,281.9	9,319.9	-6,485.0	-661.6	855,486.36	366,191.56	6,518.20	0.0
19,000.0	89.73	179.60	12,282.4	9,320.4	-6,585.0	-660.9	855,487.06	366,091.56	6,617.74	0.0
19,100.0	89.73	179.60	12,282.8	9,320.8	-6,685.0	-660.2	855,487.75	365,991.56	6,717.28	0.0
19,200.0	89.73	179.60	12,283.3	9,321.3	-6,785.0	-659.5	855,488.45	365,891.57	6,816.81	0.0
19,300.0	89.73	179.60	12,283.8	9,321.8	-6,885.0	-658.8	855,489.15	365,791.57	6,916.35	0.0
19,400.0	89.73	179.60	12,284.3	9,322.3	-6,985.0	-658.2	855,489.85	365,691.57	7,015.89	0.0
19,500.0	89.73	179.60	12,284.7	9,322.7	-7,085.0	-657.5	855,490.55	365,591.58	7,115.42	0.0
19,600.0	89.73	179.60	12,285.2	9,323.2	-7,185.0	-656.8	855,491.24	365,491.58	7,214.96	0.0
19,700.0	89.73	179.60	12,285.7	9,323.7	-7,285.0	-656.1	855,491.94	365,391.58	7,314.49	0.0
19,744.0	89.73	179.60	12,285.9	9,323.9	-7,329.0	-655.7	855,492.25	365,347.59	7,358.29	0.0

TD at 19744.0 - 5 1/2" Production Casing

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

Local Co-ordinate Reference:

Well Comanche 25-36 Fed State Com 1H WELL @ 2962.0usft (Original Well Elev)

TVD Reference: WELL @ 2962.0usft (Original Well Elev)
MD Reference: WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Database: EDM 5000.1 Single User Db

Casing Points

Measured Depth (usft)	Vertical Depth (usft)	Name	Casing Diameter (")	Hole Diameter (")
120.0	120.0	20" Conductor	20	26
794.0	794.0	13 3/8" Surface Casing	13-3/8	17-1/2
8,843.	8,818.0	9 5/8" Intermediate Casing	9-5/8	12-1/4
19,744.0	12,285.9	5 1/2" Production Casing	5-1/2	8-1/2

-	o	rı	m	а	tı	o	n	s

Depth	Vertical Depth (usft)	Name	Dip (°)	Dip Direction (°)
10,901.8	10,865.0	2nd Bone Spring Sand	0.00	
4,703.9	4,701.0	Base of Salt	0.00	
10,553.9	10,519.0	1st Bone Spring Sand	0.00	
12,159.6	12,084.0	Wolfcamp	0.00	
819.0	819.0	Top of Salt	0.00	
7,486.1	7,468.0	Brushy Canyon	0.00	
694.0	694.0	Rustler	0.00	
8,793.3	8,768.0	Bone Spring	0.00	
11,813.2	11,772.0	3rd Bone Spring Sand	0.00	
5,046.7	5,042.0	Delaware	0.00	

Morcor Standard Plan

Company: Caza Operating LLC

Project: Comanche 25-36 Fed State Com 1H
Site: Comanche 25-36 Fed State Com 1H
Well: Comanche 25-36 Fed State Com 1H
Wellbore: Comanche 25-36 Fed State Com 1H
Design: 190815 Comanche 25-36 Fed State Com 1H

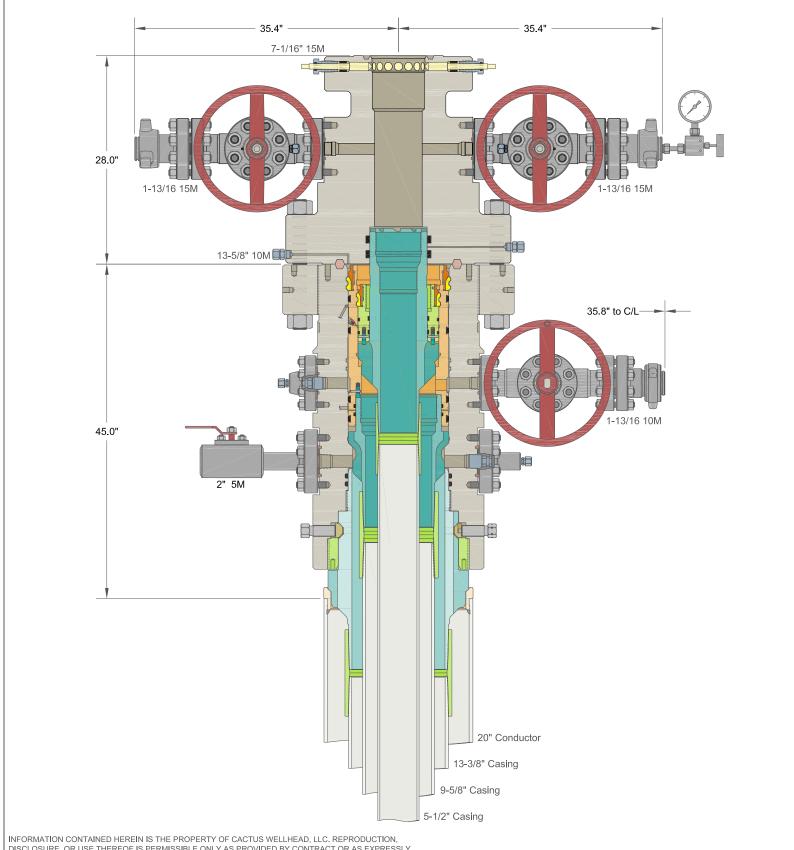
Local Co-ordinate Reference: Well Comanche 25-36 Fed State Com 1H

TVD Reference: WELL @ 2962.0usft (Original Well Elev)

WELL @ 2962.0usft (Original Well Elev) WELL @ 2962.0usft (Original Well Elev)

North Reference: Grid

MD Reference:

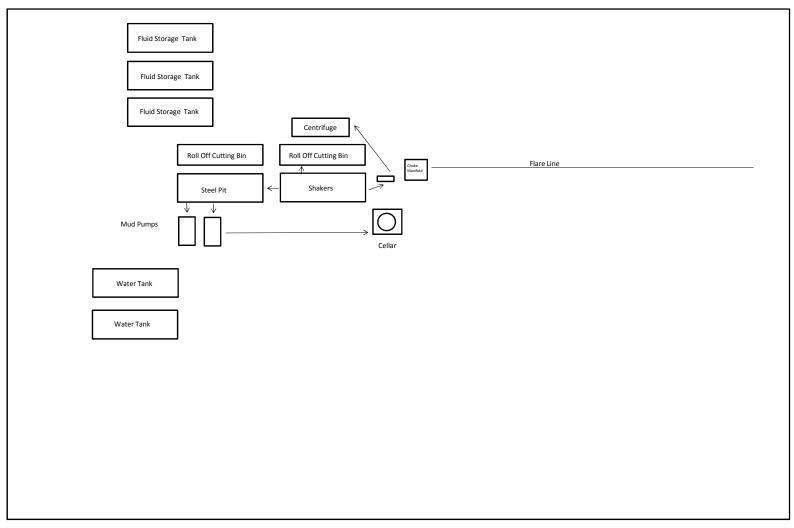

Survey Calculation Method: Minimum Curvature

Database: EDM 5000.1 Single User Db

Plan Annotations

Measured	Vertical	Local Coord	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
4,047.0	4,047.0	0.0	0.0	Start Build 3.00
4,247.0	4,246.6	4.6	-9.4	Start 7400.0 hold at 4247.0 MD
11,647.0	11,606.1	343.7	-704.6	Start Drop -6.00
11,747.0	11,705.9	346.0	-709.3	Start Build 8.00
11,847.0	11,805.6	339.0	-709.3	Start Build 11.04
12,587.0	12,252.2	-172.3	-705.7	Start 7157.0 hold at 12587.0 MD
19,744.0	12,285.9	-7,329.0	-655.7	TD at 19744.0

Checked By: Date: Date:



INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

ALL DIMENSIONS APPROXIMATE

CACTUS WELLHEAD LLC	_	CAZA PETROLE PERMIAN BASII	
13-3/8" x 9-5/8" x 5-1/2" MBU-3T-CFL-R-DBLO Wellhead System	DRAWN	DLE	25SEP19
With 13-5/8" 10M x 7-1/16" 15M CTH-DBLHPS Tubing Head	APPRV		
And 13-3/8", 9-5/8" & 5-1/2" Mandrel Casing Hangers	DRAWING NO	ODE000	3135

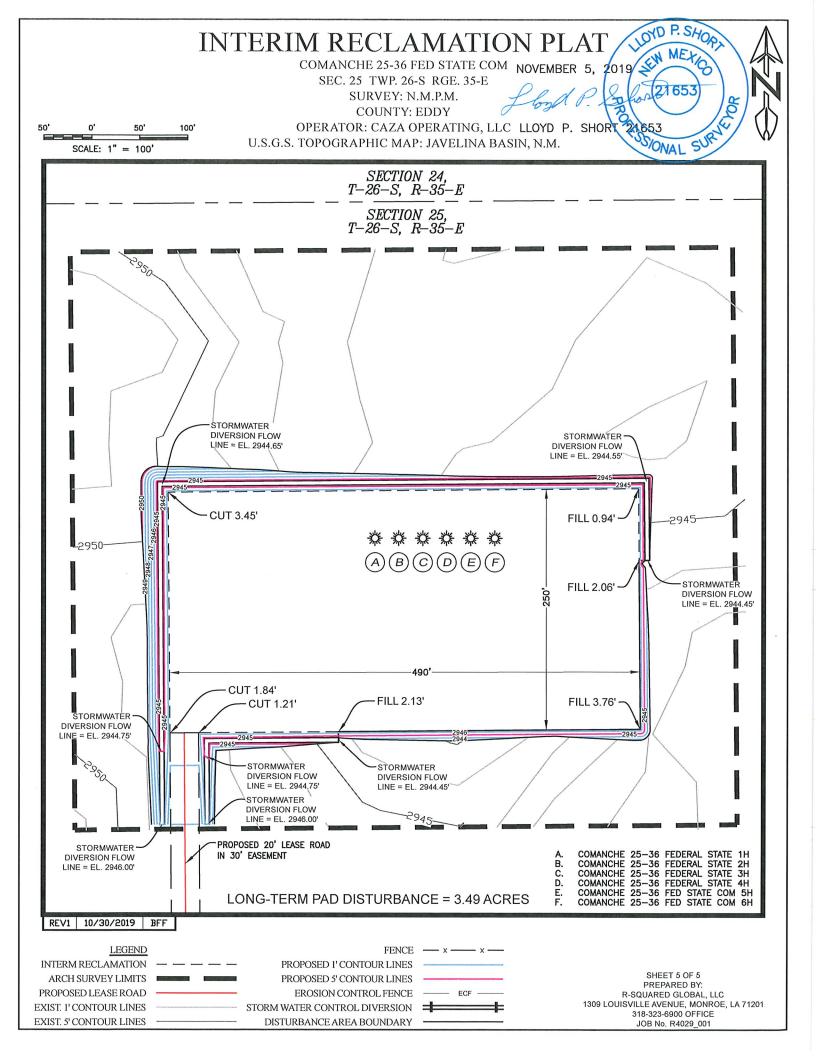
Closed Loop Diagram Design Plan

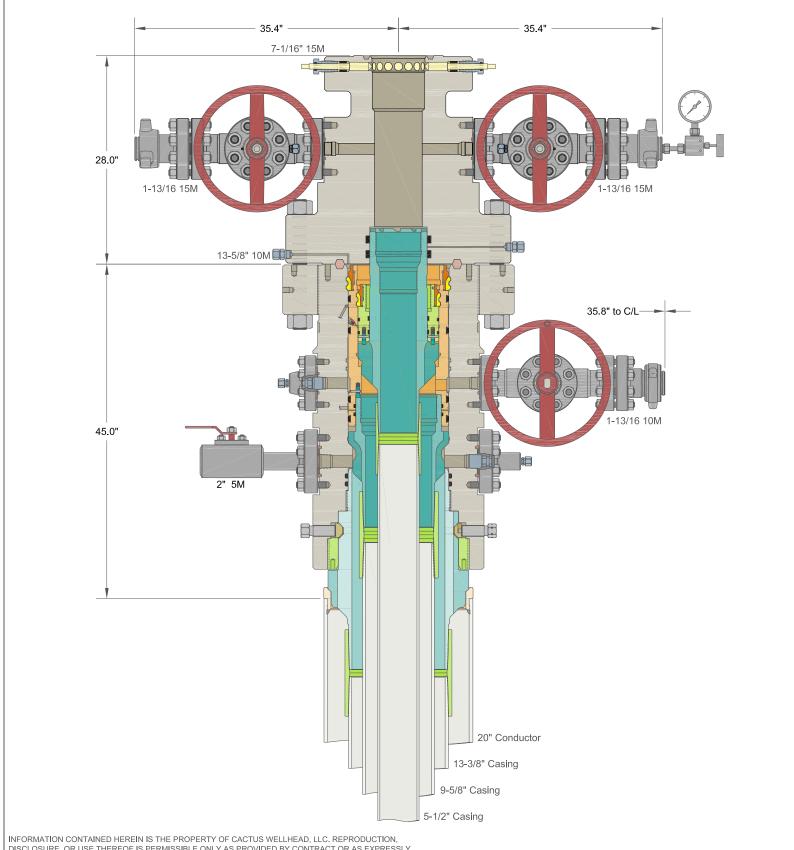
Design Plan, Operating Plan and Maintenance Plan, and Closure Plan for the OCD form C-144

Design Plan:

Fluid and cuttings coming from drilling operations will pass over the shale shaker with the cuttings going to the haul off bin and the cleaned fluid returning to the working steel pits.

Equipment Includes:


- 1-670bbl steel working pit
- 2-100bbl steel working suction pits
- 2-500bbl steel tanks
- 2-20yd³ steel haul off bins
- 2-pumps (HHF-1600)
- 2-Shale shakers
- 1-Centrifuge
- 1-Desilter/Desander


Operating and Maintenance Plan:

Inspection to occur every tour for proper operation of system and individual components. If any problems are found they will be repaired and/or corrected immediately.

Closure Plan:

All haul off bins containing cuttings will be removed from location and hauled to R-360 (NM-01-0006) disposal site located 30 miles east of Carlsbad.

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

ALL DIMENSIONS APPROXIMATE

CACTUS WELLHEAD LLC	_	CAZA PETROLE PERMIAN BASII	
13-3/8" x 9-5/8" x 5-1/2" MBU-3T-CFL-R-DBLO Wellhead System	DRAWN	DLE	25SEP19
With 13-5/8" 10M x 7-1/16" 15M CTH-DBLHPS Tubing Head	APPRV		
And 13-3/8", 9-5/8" & 5-1/2" Mandrel Casing Hangers	DRAWING NO	ODE000	3135

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS	$C\Delta$	PTI	IRE	PΙ	ΔN
11717	_/				

Date: 8/15/2019	
■ Original	Operator & OGRID No.: 249099
☐ Amended - Reason for Amendment:	

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Comanche 25-36 Fed State Com 1H		B-25-26S-35E	350'FNL 1515'FEL	1000	flared	

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to <u>Verdsado</u> and will be connected to <u>Versado</u> low/high pressure gathering system located in Lea County, New Mexico. It will require 1000' of pipeline to connect the facility to low/high pressure gathering system. <u>Caza</u> provides (periodically) to <u>Versado</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Caza</u> and <u>Versado</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Versado</u> Processing Plant located in Sec.29, Twn.21S, Rng.37E, Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Versado</u> system at that time. Based on current information, it is <u>Caza's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

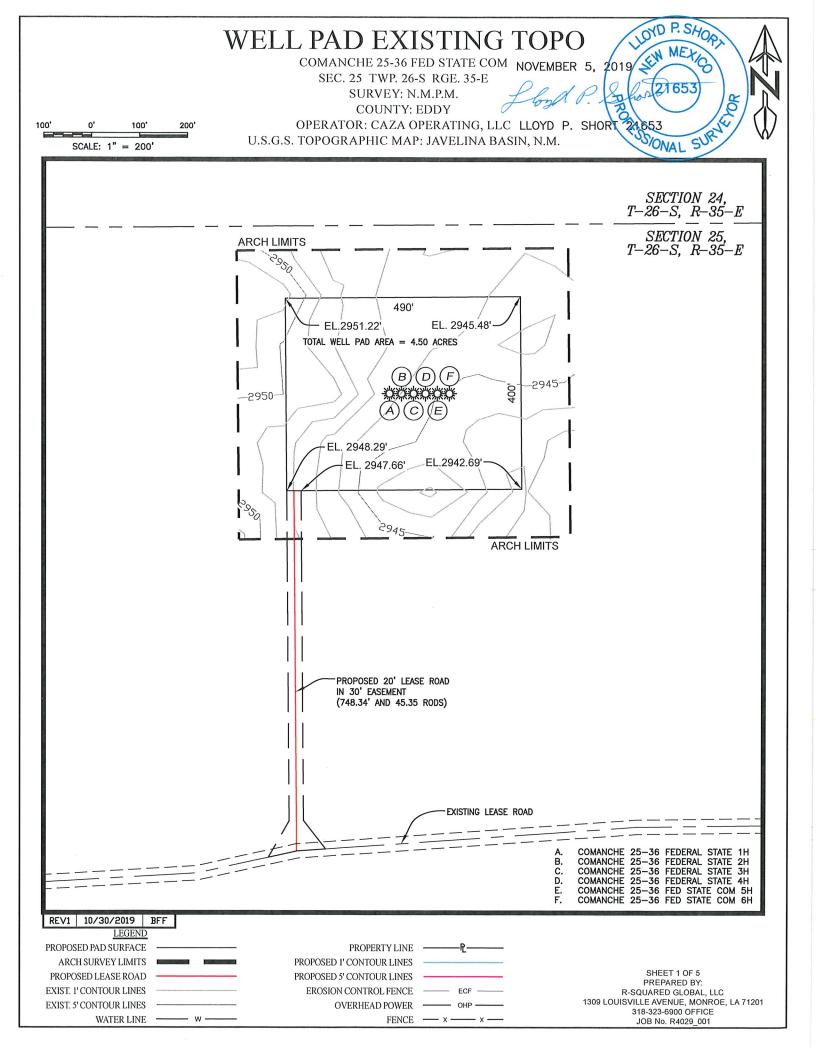
- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Design Plan, Operating Plan and Maintenance Plan, and Closure Plan for the OCD form C-144

Design Plan:

Fluid and cuttings coming from drilling operations will pass over the shale shaker with the cuttings going to the haul off bin and the cleaned fluid returning to the working steel pits.

Equipment Includes:


- 1-670bbl steel working pit
- 2-100bbl steel working suction pits
- 2-500bbl steel tanks
- 2-20yd3 steel haul off bins
- 2-pumps (HHF-1600)
- 2-Shale shakers
- 1-Centrifuge
- 1-Desilter/Desander

Operating and Maintenance Plan:

Inspection to occur every tour for proper operation of system and individual components. If any problems are found they will be repaired and/or corrected immediately.

Closure Plan:

All haul off bins containing cuttings will be removed from location and hauled to R-360 (NM-01-0006) disposal site located 30 miles east of Carlsbad.

LEGEND PROPOSED WELL PAD COMANCHE 25-36 FED STATE COM ARCH SURVEY LIMITS SEC. 25 TWP. 26-S RGE. 35-E PROPOSED LEASE ROAD SURVEY: N.M.P.M. OVERHEAD POWER LINE -— OHP -COUNTY: LEA SECTION LINE -OPERATOR: CAZA OPERATING, LLC EXISTING WATERLINE _____ W ____ U.S.G.S. TOPOGRAPHIC MAP: JAVELINA BASIN, N.M. FENCE -x-COMANCHE 25-36 FEDERAL STATE 1H CAZA OPERATING, LLC 349' FNL 1500' FEL, SECTION 25 NAD 83, SPCS NM EAST COMANCHE 25-36 FEDERAL STATE 2H CAZA OPERATING, LLC 349' FNL 1475' FEL, SECTION 25 NAD 83, SPCS NM EAST NAU 63, SPGS NM EAST X: 856188.05' / Y: 372677.42' LAT: 32.02050152N / LON: 103.31744465W NAD 27, SPGS NM EAST X: 814999.51' / Y: 372620.05' LAT: 32.02037415N / LON: 103.31698714W X: 856163.15' / Y: 372677.39' LAT: 32.02050208N / LON: 103.31752499W NAD 27, SPCS NM EAST X: 814974.61' / Y: 372620.02' LAT: 32.02037471N / LON: 103.31706748W ELEVATION = 2946' ELEVATION = 2946° SECTION 24, T-26-S, R-35-E690 SECTION 25,

8

2952.9' COMANCHE-25-36 FEDERAL STATE 2H

25-36 FEDERAL

2948.5

8

COMANCHE

STATE 1H

25-36 FEDERAL STATE 3H

COMANCHE

COMANCHE 25-36 FEDERAL STATE 4H

-215

100

80

WELL PAD TOPO

100' n' 100 200 SCALE: 1" = 200

COMANCHE 25-36 FEDERAL STATE 3H CAZA OPERATING, LLC CAZA OPERATING, LLC

350' FNL 1450' FEL, SECTION 25

NAD 83, SPCS NM EAST

X: 856213.14' / Y: 372677.40'

LAT: 32.02050082N / LON:103.31736372W

NAD 27, SPCS NM EAST

X: 815024.60' / Y: 372620.03'

LAT: 32.02037345N / LON:103.31690622W

ELEVATION = 2946' ELEVATION = 2946'

8

2944.0'

COMANCHE

25-36 FED STATE

COMANCHE 25-36 FED STATE COM 6H

2942.7

COM 5H

150

100

8

100'

8

COMANCHE 25-36 FEDERAL STATE 4H
CAZA OPERATING, LLC
350' FNL 1425' FEL, SECTION 25
NAD 83, SPCS NM EAST
X:856238.05' / Y:372677.38'

LAT: 32.02050011N / LON:103.31728337W
NAD 27, SPCS NM EAST
X:815049.51' / Y:372620.01'

LAT: 32.02037275N / LON:103.31682587W

ELEVATION = 2946'

COMANCHE 25-36 FED STATE COM 5H CAZA OPERATING, LLC 350' FNL 1400' FEL, SECTION 25 NAD 83, SPCS NM EAST X: 856263.14' / Y: 372677.43'
LAT: 32.02049961N / LON: 103.3172024W
NAD 27, SPCS NM EAST X: 8150743.60' / Y: 372620.06' LAT: 32.02037225N / LON: 103.3167449W ELEVATION = 2945'

COMANCHE 25-36 FED STATE COM 6H CAZA OPERATING, LLC 350' FNL 1375' FEL, SECTION 25 NAD 83, SPCS NM EAST X:856288.11' / Y:372677.43' LAT: 32.02049896N / LON:103.31712184W NAD 27, SPCS NM EAST

X: 815099.57' / Y: 372620.06' LAT: 32.02037160N / LON: 103.31666434W ELEVATION = 2945'

REV 1

NOTE: THIS IS NOT A BOUNDARY SURVEY, APPARENT PROPERTY CORNERS AND PROPERTY LINES ARE SHOWN FOR INFORMATION ONLY. BOUNDARY DATA SHOWN IS FROM STATE OF NEW MEXICO OIL CONSERVATION DIVISION FORM C-102 INCLUDED IN THIS SUBMITTAL.

T-26-S, R-35-E

NOVEMBER 05, 2019

byd P. S

490

25

490

690'

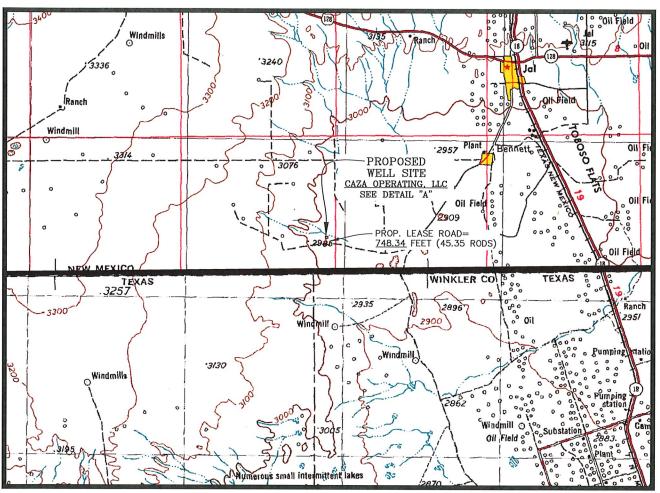
PROP. LEASE ROAD= 748.34 FEET (45.35 RODS)

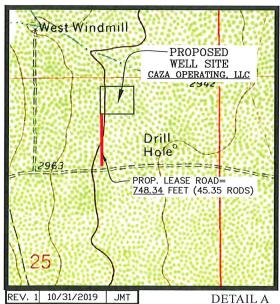
LOYD P. SHOP EN METO 21653 SIFONA LLOYD P

SHEET 4 OF 5

PREPARED BY: R-SQUARED GLOBAL, LLC
1909 LOUISVILLE AVENUE, MONROE, LA 71201 318-323-6900 OFFICE JOB No. R4029_001

VICINITY AND EXISTING ROADS MAP


COMANCHE 25-36 FED STATE COM

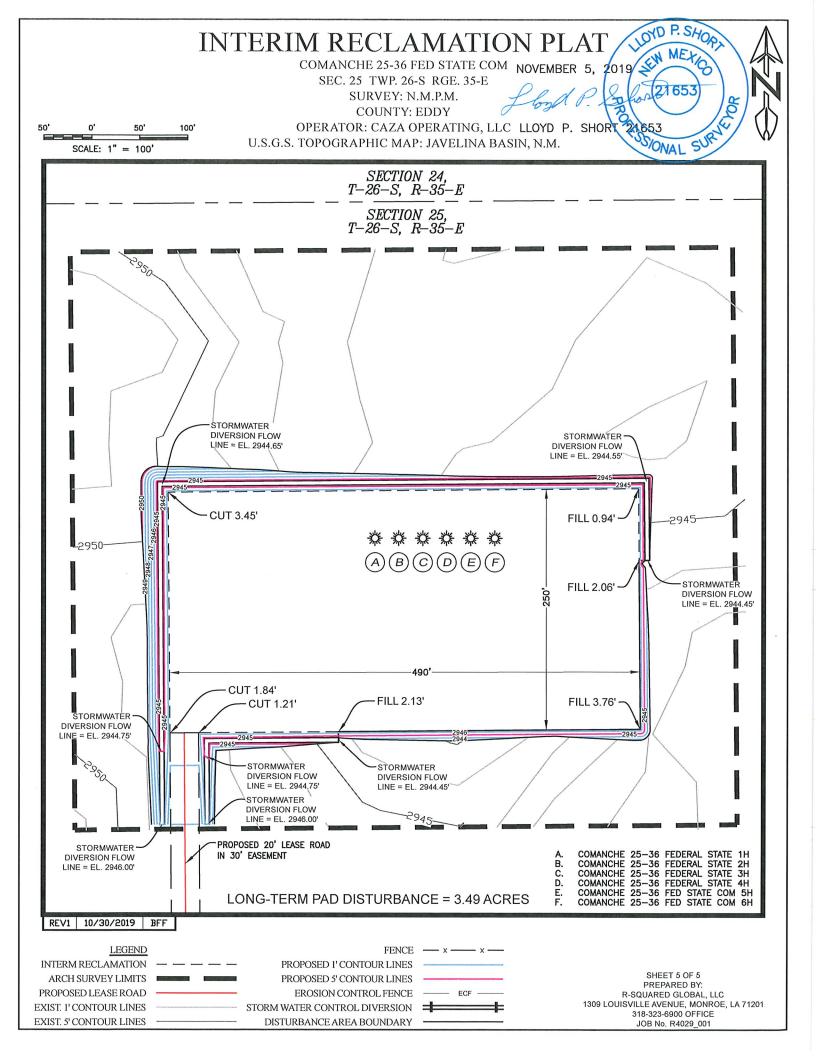

SEC. 25 TWP. 26-S RGE. 35-E SURVEY: N.M.P.M.

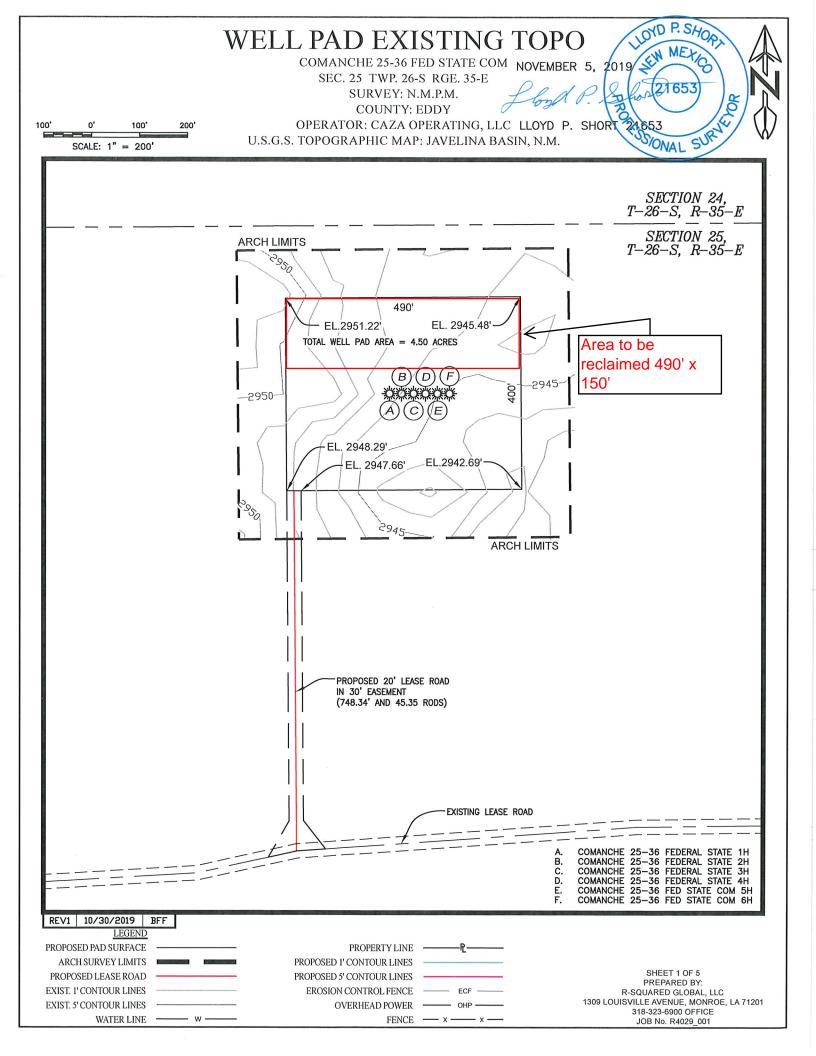
COUNTY: LEA

OPERATOR: CAZA OPERATING, LLC

U.S.G.S. TOPOGRAPHIC MAP: JAVELINA BASIN, N.M.

N.T.S.


SCALE: 1" = 20,000' CONTOUR INTERVAL = 100'


DIRECTIONS TO LOCATION:

BEGINNING AT THE INTERSECTION OF NM HWY 18 AND US HWY 128, HEAD SOUTH ON NM HWY 18 FOR 1.3 MILES, TO WHITWORTH DR. TURN RIGHT ONTO WHITWORTH DR., HEADING WEST FOR 0.4 MILES TO NM HWY 205 (FRYING PAN RD.) TURN LEFT ONTO NM HWY 205, HEADING SOUTH FOR 7.3 MILES, TO BECKHAM RANCH RD. TURN RIGHT ONTO BECKHAM RANCH RD., HEADING WEST FOR 3.7 MILES STAYING ON THE MAIN LEASE RD., TO THE PROPOSED LEASE RD. FOR THE COMANCHE 25–36 FED COM 1H–2H–3H–4H–5H–6H WELL LOCATION PAD. TURN RIGHT ONTO SAID PROPOSED LEASE RD., HEADING NORTH FOR 0.1 MILES, ENTERING THE SOUTHWEST CORNER OF SAID WELL LOCATION PAD.

SHEET 5 OF 5

PREPARED BY:
R-SQUARED GLOBAL, ILC
1309 LOUISVILLE AVENUE, MONROE, LA 71201
318-323-6900 OFFICE
JOB No. R4029_001

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

PWD disturbance (acres):

APD ID: 10400046050 **Submission Date:** 08/29/2019

Operator Name: CAZA OPERATING LLC

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Operator Name: CAZA OPERATING LLC

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: CAZA OPERATING LLC

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Operator Name: CAZA OPERATING LLC

Well Name: COMANCHE 25-36 FED STATE COM Well Number: 1H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

07/19/2020

APD ID: 10400046050

Operator Name: CAZA OPERATING LLC

Well Name: COMANCHE 25-36 FED STATE COM

Well Type: OIL WELL

Submission Date: 08/29/2019

Highlighted data reflects the most recent changes

Show Final Text

Well Work Type: Drill

Well Number: 1H

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB000471

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico

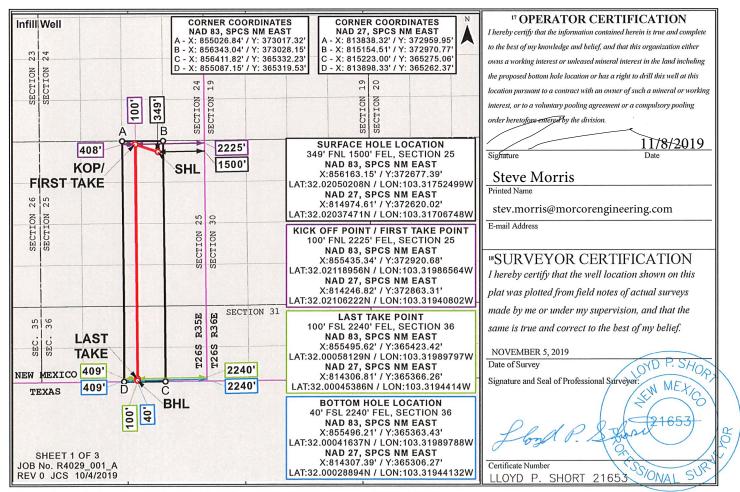
Form C-102 Revised August 1, 2011 Submit one copy to appropriate

☐ AMENDED REPORT

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

OCD - HOBBS 07|20|2020 RECEIVED

District Office


1220 South St. Francis Dr. Santa Fe, NM 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

WEBE ECCITION TO NOTE TO EBETON TON EN						
¹ API Number		² Pool Code	³ Pool Name			
30-025-47449		98234	WC-025 G-09 S263619C; WOLFCAMP			
⁴ Property Code		⁵ Pı	operty Name	⁶ Well Number		
328896 COMANCHE 25-			-36 FEDERAL STATE	1H		
⁷ OGRID No.		8 O _J	⁹ Elevation			
249099		CAZA OPERATING LLC				

¹⁰ Surface Location UL or lot no. Feet from the North/South line Feet from the East/West line Range Lot Idn County Section Township 25 349 NORTH 1500 EAST LEA В 26S 35E ¹¹ Bottom Hole Location If Different From Surface East/West line UL or lot no. Section Township Lot Idn Feet from the North/South line Feet from the County Range G(L2)36 26S 35E 40 SOUTH 2240 **EAST** LEA 12 Dedicated Acres Joint or Infill ¹⁴ Consolidation Code ⁵ Order No. 233.27

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

OCD - HOBBS 07/20/2020 Submit Original to Appropriate District Office

GAS CAPTURE PLAN

Date: 8/15/2019	
Original	Operator & OGRID No.: 249099
☐ Amended - Reason for Amendment:	

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
		(ULSTK)		WIC17D	Venteu	
Comanche 25-36 Fed State Com 1H		B-25-26S-35E	350'FNL 1515'FEL	1000	flared	
3	0-025-474	49				

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to <u>Verdsado</u> and will be connected to <u>Versado</u> low/high pressure gathering system located in Lea County, New Mexico. It will require 1000' of pipeline to connect the facility to low/high pressure gathering system. <u>Caza</u> provides (periodically) to <u>Versado</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Caza</u> and <u>Versado</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Versado</u> Processing Plant located in Sec.29, Twn.21S, Rng.37E, Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Versado</u> system at that time. Based on current information, it is <u>Caza's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines