UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

	Expires. January	51,	_
5. Lease	Serial No.		

6. If Indian, Allotee or Tribe Name

APPLICATION FOR PERMIT TO DRILL OR REENTER

1a. Type of work:	REENTER		7	. If Unit or CA Agre	eement, Na	me and No.
1b. Type of Well: Oil Well Gas Well	Other		8	Lease Name and V	Vell No	
1c. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		. Lease Name and V	Well INO.	
		_		[32052	24]	
2. Name of Operator [260297]			9	API Well No. 30	-025-4	7460
3a. Address	3b. Phone	No. (include area code)		0. Field and Pool, o	r Explorato	ory [98094]
4. Location of Well (Report location clearly and in accordance	e with any Stat	e requirements.*)	1	1. Sec., T. R. M. or	Blk. and Su	irvey or Area
At surface						
At proposed prod. zone						
14. Distance in miles and direction from nearest town or post o	ffice*		1	2. County or Parish	1	3. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	16. No of a	acres in lease 17.	. Spacing	Unit dedicated to the	nis well	
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Propos	ed Depth 20.	BLM/BI	A Bond No. in file		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approx	kimate date work will start	t* 2	3. Estimated duration	on	
	24. Atta	chments				
The following, completed in accordance with the requirements (as applicable)	of Onshore Oi	il and Gas Order No. 1, an	nd the Hyo	draulic Fracturing ru	ıle per 43 C	FR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the op Item 20 above).	perations u	inless covered by an	existing bo	nd on file (see
A Surface Use Plan (if the location is on National Forest Sys SUPO must be filed with the appropriate Forest Service Office).				ation and/or plans as	may be requ	nested by the
25. Signature	Nam	e (Printed/Typed)			Date	
Title						
Approved by (Signature)	Nam	e (Printed/Typed)			Date	
Title	Offic	ce				
Application approval does not warrant or certify that the applic applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ant holds legal	l or equitable title to those	e rights in	the subject lease wh	nich would	entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212,	make it a crin	ne for any person knowing	gly and w	illfully to make to a	ny departm	ent or agency

GCP Rec 07/27/2020

SL

APPROVED WITH CONDITIONS

Approval Date: 07/10/2020

of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

07/15/2020

APD ID: 10400054733

Submission Date: 03/03/2020

Highlighted data reflects the most recent changes

Operator Name: BTA OIL PRODUCERS LLC

Well Number: 20H

Show Final Text

Well Name: ROJO 7811 34-27 FED COM

Well Work Type: Drill

Well Type: OIL WELL

APD ID:

Section 1 - General

 Submission Date: 03/03/2020

BLM Office: CARLSBAD

User: Sammy Hajar **Title:** Regulatory Analyst

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM0005792

Federal/Indian APD: FED

Lease Acres: 680

Surface access agreement in place?

Allotted? Reservation:

Agreement in place? NO Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO

APD Operator: BTA OIL PRODUCERS LLC

Operator letter of designation:

Operator Info

Operator Organization Name: BTA OIL PRODUCERS LLC

Operator Address: 104 S. Pecos

Operator PO Box:

Zip: 79701

Operator City: Midland State: TX

Operator Phone: (432)682-3753

3

Operator i none. (452)002-5750

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: BOBCAT DRAW;

UPPER WOLFCAMP

Is the proposed well in an area containing other mineral resources? NONE

Page 1 of 3

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Is the proposed well in an area containing other mineral resources? NONE

Is the proposed well in a Helium production area? N Use Existing Well Pad? N New surface disturbance?

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: ROJO Number: 20H AND 21H

Well Class: HORIZONTAL 7811 34-27 FED COM
Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:
Well sub-Type: INFILL

Describe sub-type:

Distance to town: 22 Miles Distance to nearest well: 30 FT Distance to lease line: 690 FT

Reservoir well spacing assigned acres Measurement: 240 Acres

Well plat: Rojo_20H_c102_signed_20200303063742.pdf

Well work start Date: 06/08/2020 Duration: 30 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NGVD29

Survey number: Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	260	FSL	690	FW	25S	33E	34	Aliquot	32.08691	-	LEA	NEW	NEW	F	NMNM	332	0	0	Υ
Leg	0			L				NWS	3	103.5665		l	MEXI		000579	5			
#1								W		11		СО	СО		2				
KOP	254	FNL	990	FW	25S	33E	34	Aliquot	32.08728	-	LEA	NEW	NEW	F	NMNM	-	119	119	Υ
Leg	0			L				SWN	8	103.5655		MEXI	MEXI		000579	857	18	03	
#1								W		43		СО	СО		2	8			
PPP	254	FNL	990	FW	25S	33E	34	Aliquot	32.08728	-	LEA	NEW	NEW	F	NMNM	-	123	121	Υ
Leg	0			L				SWN	8	103.5655		ı	MEXI		000579	882	06	51	
#1-1								W		43		CO	CO		2	6			

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	49	FSL	990	FW	25S	33E	27	Aliquot	32.09441		LEA	I	NEW		NMNM	-	149	123	Υ
Leg #1-2				L				SWS W		103.5655 6		MEXI	CO		015091	905 5	00	80	
-																			
EXIT	100	FNL	990	FW	25S	33E	27	Aliquot	32.18051	-	LEA	I	NEW	F	NMNM	-	198	123	Υ
Leg				L				NWN	1	103.5655		MEXI	MEXI		015091	905	00	80	
#1								W		95		CO	CO			5			
BHL	50	FNL	990	FW	25S	33E	27	Aliquot	32.10864	-	LEA	NEW	NEW	F	NMNM	-	200	123	Υ
Leg				L				NWN	9	103.5655		MEXI	MEXI		015091	905	80	80	
#1								W		95		co	CO			5			

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

Well Name: ROJO 7811 34-27 FED COM

Drilling Plan Data Report

07/15/2020

APD ID: 10400054733

Submission Date: 03/03/2020

Highlighted data reflects the most recent changes

Operator Name: BTA OIL PRODUCERS LLC

Well Number: 20H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
677059	QUATERNARY	3325	0	0	ALLUVIUM	NONE	N
677060	RUSTLER	745	2580	2580	ANHYDRITE	NONE	N
677061	TOP SALT	675	2650	2650	SALT	NONE	N
677062	BASE OF SALT	-1375	4700	4700	SALT	NONE	N
677063	DELAWARE	-1600	4925	4925	LIMESTONE	NATURAL GAS, OIL	N
677072	BELL CANYON	-1685	5010	5010	SANDSTONE	NONE	N
677065	CHERRY CANYON	-2945	6270	6270	SANDSTONE	NATURAL GAS, OIL	N
677066	BRUSHY CANYON	-4190	7515	7515	SANDSTONE	NATURAL GAS, OIL	N
677070	BONE SPRING LIME	-5730	9055	9055	LIMESTONE	NATURAL GAS, OIL	N
677073	FIRST BONE SPRING SAND	-6700	10025	10025	SANDSTONE	NATURAL GAS, OIL	Y
677224	BONE SPRING 2ND	-7310	10635	10635	SANDSTONE	NATURAL GAS, OIL	Y
677225	BONE SPRING 3RD	-8372	11697	11697	SANDSTONE	NATURAL GAS, OIL	Y
677226	WOLFCAMP	-8826	12151	12151	SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Pressure Rating (PSI): 10M Rating Depth: 14000

Equipment: The blowout preventer equipment (BOP) shown in Exhibit A will consist of a (10M system) double ram type (10,000 psi WP) preventer and a bag-type (Hydril) preventer (5000 psi WP). Both units will be hydraulically operated and the ram type preventer will be equipped with blind rams on top and 5 drill pipe rams on bottom. The BOPs will be installed on the 10-3/4" surface casing and utilized continuously until total depth is reached. A 2 kill line and 3 choke line will be incorporated in the drilling spool below the ram-type BOP. A remote kill line will be used for the 10M system as per onshore order #2. Other accessory BOP equipment will include a Kelly cock, floor safety valve, choke lines, and choke manifold having a 10,000 psi WP rating. The 5M annular on the 10M system will be tested to 100% of rated working pressure.

Requesting Variance? YES

Variance request: A Choke Hose Variance is requested. See attached test chart and spec. 5M annular variance requested.

Testing Procedure: Pipe rams will be operated and checked each 24-hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily drillers log. All BOPs and associated equipment will be tested as per BLM drilling Operations Order No. 2.

Choke Diagram Attachment:

Choke_Hose___Test_Chart_and_Specs_20190723082742.pdf 10M_choke_mannifold_20200302080700.pdf

BOP Diagram Attachment:

BLM_10M_BOP_with_5M_annular_20200302080730.pdf

10M_annular_variance_20200302080941.pdf

5M_annular_well_control_plan_for_BLM_20200602115140.docx

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	1000	0	1000	3325	2325	1000	J-55	40.5	ST&C	3.7	7.3	DRY	10.4	DRY	15.5
2	INTERMED IATE	9.87 5	7.625	NEW	API	Υ	0	8015	0	8000	3018	-4675	8015	P- 110	29.7	BUTT	1.4	2.4	DRY	4	DRY	3.9
	PRODUCTI ON	6.75	5.5	NEW	API	Υ	0	11660	0	11645	3325	-8320	11660	P- 110	20	BUTT	1.3	1.5	DRY	2.9	DRY	2.7
	INTERMED IATE	8.75	7.625	NEW	API	Υ	8015	11860	8000	11845	-4675	-8520	3845	P- 110	29.7	FJ	1.7	1.6	DRY	2.7	DRY	2.7
	PRODUCTI ON	6.75	5.0	NEW	API	Υ	11660	20080	11645	12380	-8320	-9055	8420	P- 110	18	BUTT	1.3	1.4	DRY	1.7	DRY	1.6

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Rojo_20H_casing_assumption_20200302104553.JPG

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7_5_8_tapered_string_spec_9_7_8_hole_20200302110028.jpg

Casing Design Assumptions and Worksheet(s):

Rojo_20H_casing_assumption_20200302104921.JPG

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5_tapered_string_spec_20200302105556.jpg

Casing Design Assumptions and Worksheet(s):

 $Rojo_20H_casing_assumption_20200302105626.JPG$

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Casing Attachments

Casing ID: 4 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7_5_8_tapered_string_spec_20200302110004.jpg

Casing Design Assumptions and Worksheet(s):

Rojo_20H_casing_assumption_20200302105427.JPG

Casing ID: 5 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5_tapered_string_spec_20200302105723.jpg

Casing Design Assumptions and Worksheet(s):

 $Rojo_20H_casing_assumption_20200302105733.JPG$

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	755	470	1.8	13.5	846	100	Class C	2% CaCl2
SURFACE	Tail		755	1000	200	1.34	14.8	268	100	Class C	2% CaCl2
INTERMEDIATE	Lead	4920	0	4495	720	2.19	12.7	1576. 8	50	Class C	0.5% CaCl2
INTERMEDIATE	Tail		4495	4920	150	1.33	14.8	199.5	50	Class C	1% CaCl2
INTERMEDIATE	Lead		4920	8310	345	2.64	10.5	910.8	25	Class H	0.5% CaCl2

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		8310	1186 0	400	1.19	15.6	476	25	Class H	1% CaCl2
PRODUCTION	Lead		1086 0	1166 0	0	0	0	0		n/a	n/a

PRODUCTION	Lead	1166	2008	900	1.27	14.8	1143	10	Class H	0.1% Fluid Loss
		0	0							

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1000	OTHER : FW SPUD	8.3	8.4							
1000	1186 0	OTHER : DBE	9	9.4							
1186 0	1238 0	OTHER : OBM	11	14							

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Drill Stem Tests will be based on geological sample shows.

List of open and cased hole logs run in the well:

MUD LOG/GEOLOGICAL LITHOLOGY LOG, GAMMA RAY LOG, CEMENT BOND LOG,

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 9013 Anticipated Surface Pressure: 6289

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

BTA_Oil_Producers_LLC___EMERGENCY_CALL_LIST_20190723161502.pdf H2S_Equipment_Schematic_20190723161502.pdf H2S_Plan_20190723161502.pdf

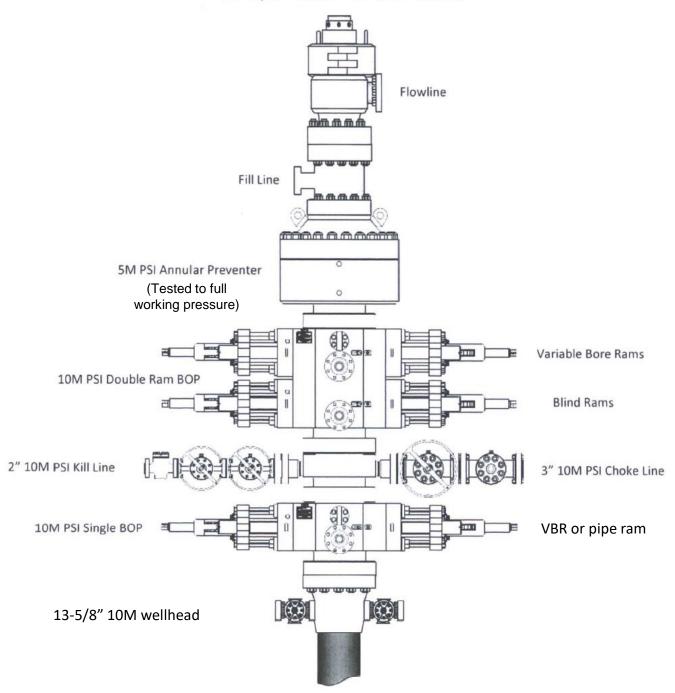
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Rojo_20H_wall_plot_20200302085740.pdf

Rojo_20H_directional_plan_20200302085740.pdf

Rojo_7811_34_27_FED_COM_20H_Gas_Capture_Plan_20200302112248.pdf


Other proposed operations facets description:

Other proposed operations facets attachment:

Other Variance attachment:

BOP_Break_Testing_Variance_20200106151949.pdf
Casing_Head_Running_Procedure_20190723163249.pdf
BTA_MB_10_34___7_58___5_12_20200602115258.pdf

13-5/8" 10M PSI BOP Stack

<u>Drilling component and preventer compatibility table</u> <u>for 10M approval</u>

The following table outlines the drilling and production liner components for Wolfcamp targets requiring 10M BOPE approval. Variance is requested to utilize a 5M annular preventer in 6-1/8" hole as all components can be covered using 10M rated VBR's (variable bore rams). 5M annular on the 10M system will be tested to 100% of rated working pressure.

6-1/8" hole section – 10M BOPE requirement (13-5/8" BOP)											
Component	OD	Preventer	RWP								
Drill pipe	4"	3.5"-5.5" VBR	10M								
HWDP	4"	3.5"-5.5" VBR	10M								
Jars	5"	3.5"-5.5" VBR	10M								
DC's and NMDC's	4-3/4"	3.5"-5.5" VBR	10M								
Mud motor	5"	3.5"-5.5" VBR	10M								
Casing	4-1/2"	3.5"-5.5" VBR	10M								
Open hole	NA	Blind rams	10M								

12-1/4" & 8	-3/4" hole secti	ons – 5M BOPE requiremen	t (13-5/8" BOP)
Component	OD	Preventer	RWP
Drill pipe	5"	3.5"-5.5" VBR or 5" pipe rams	10M
HWDP	5"	3.5"-5.5" VBR or 5" pipe rams	10M
Jars	6-1/4"	Annular	5M
DC's and NMDC's	7"-8"	Annular	5M
Mud motor	7"-8"	Annular	5M
Casing	9-5/8" & 7"	Annular	5M
Open hole	NA	Blind rams	10M

Drilling

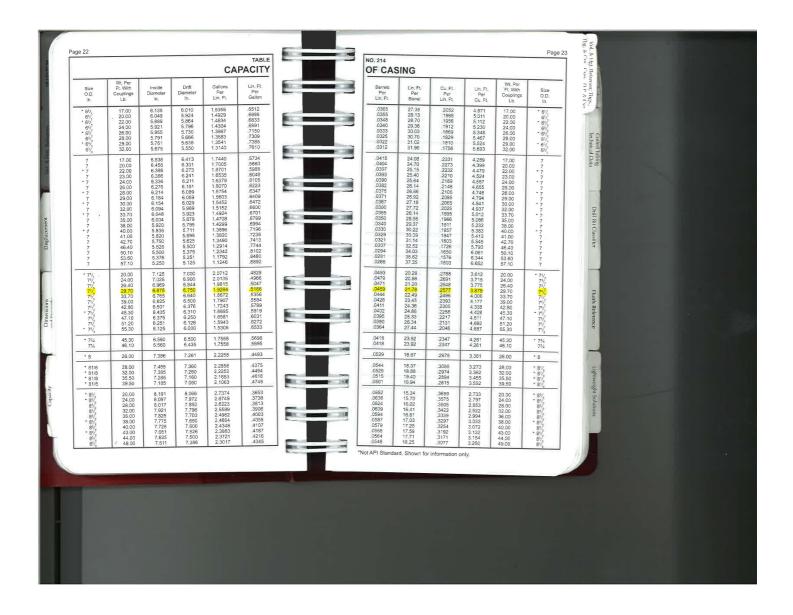
- 1. Sound alarm (alert crew).
- 2. Space out drill string.
- 3. Shut down pumps (stop pumps and rotary).
- 4. Shut-in Well with annular with HCR and choke in closed position.
- 5. Confirm shut-in.
- 6. Notify tool pusher/company representative.
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Time of shut in
- c. Pit gain
- 8. Regroup and identify forward plan. If pressure has increased to 2500 psi, confirm spacing and close the upper variable bore rams.
- 9. Prepare for well kill operation.

Tripping

- 1. Sound alarm (alert rig crew)
- 2. Stab full opening safety valve and close valve
- 3. Sapce out drill string
- 4. Shut in the well with the annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following
- a. Time of shut in
- b. SIDPP and SICP
- c. Pit gain
- 8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.
- 9. Prepare for well kill operation.

While Running Casing

- 1. Sound alarm (alert rig crew)
- 2. Stab crossover and full opening safety valve and close valve
- Space out casing string
- 4. Shut in well with annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Pit gain
- c. Time
- 8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.
- 9. Prepare for well kill operation.


No Pipe In Hole (Open Hole)

1. Sound alarm (alert rig crew)

Well control plan for 10M BOPE with 5M annular

- Shut in blind rams with HCR and choke in closed position 2.
- 3. Confirm shut in
- 4. Notify tool pusher/company representative
- Read and record the following: 5.
- **SICP** a.
- Pit gain b.
- Time C.
- Prepare for well kill operation 6.

- Pulling BHA thru Stack
 1. Prior to pulling last joint of drill pipe thru the stack
 - Perform flow check, if flowing: a.
 - Sound Alarm (alert crew) a.i.
 - Stab full opening safety valve and close valve a.ii.
 - Space out drill string a.iii.
 - Shut in using upper most VBR, choke and HCR in closed positon a.iv.
 - a.v. Confirm shut in
 - Notify tool pusher/company representative. a.vi.
 - Read and record the following: a.vii.
 - a.vii.1. SIDPP and SICP
 - a.vii.2. Pit gain
 - a.vii.3. Time
 - Prepare for well kill operation a.viii.
 - With BHA in the stack: 2.
 - If possible pull BHA clear of stack a.
 - a.i. Follow 'open hole' procedure above
 - If unable to pull BHA clear of stack b.
 - Stab crossover with full opening safety valve, close valve. b.i.
 - Space out b.ii.
 - Shut in using upper most VBR. HCR and choke in closed position. b.iii.
 - Confirm shut in b.iv.
 - b.v. Notify tool pusher/company rep Read and record the following: b.vi.
 - b.vi.1. SIDPP and SICP
 - b.vi.2. Pit gain
 - b.vi.3. Time
 - Prepare for well kill operation b.vii.

Col'pse	e Line	Extrem	Cplg.	Thread 8		Wt		
Resis- tance PSI	O.D. of Box In	Drift Dia. In.	O.D. of Cpig. In.	Drift Dia. In	Inside Dia In.	Per FL With Cplg Lb	Grade	Size O.D. In.
17,430 19,140 20,760 22,380 23,920 25,400 8,580 7,460 11,080 14,520 17,390 12,080 16,077 8,581 12,080 13,46 13,48 14,48 16,07 16,07 16,07 16,07 16,07 16,07 16,07 17,50		4,653 4,653 4,545 4,545 4,423	6 050 6 050 6 050 6 050 	4 251 4 125 4 001 3 875 3 625 4 767 4 767 4 767 4 767 4 763 4 545 4 423 4 765 4 4653 4 545 4 4653 4 653 4 653 6 65	4.778 4.670 4.778 4.778 4.670	29,70 32,60 35,30 38,00 40,50 43,10 17,00 20,00 20,00 17,00 17,00 20,00 23,00 20,00 23,00 20,00	T-95 T-95 T-95 T-95 T-95 T-95 T-95 T-95	5V ₂

	emai Yiel	d Pressure	PSI**	Body		Joint Str	ength - 100	00 Lbs.*
Plain End or	Roun	d Thread	But-	Yield	Threa	ded & Cplg.		T
Ext.	Short	T	tress	Stgth. 1,000	Roun	d Thread	Bul-	Ext.
Line	onort	Long	Thd.	Lbs	Short	Long	tress Thd.	Jain
16,990	_	-	112	828				
18,810	_		-	909	_			1
20,770	-	-	_	987	_		100	
22,670	-	-	-	1,063	_			
24,540	-	1 5	-	1,136				1
26,450	-	-		1,208	_	-		
10,640	_	10,640	10,640	546	_	445	568	
10,640	_	10,640	10,640	546	_	445	568	62
12,640	_	12,640	12,360	641	1	548	667	65
14,520	-	13,580	12,360	729	-	643	724	72
16,660	-	-			569†	393††	564±	892‡
12,090	_	12,090	12,090	620	-	481	620	0921
12,090		12,090	12,090	620		481	620	
14.360	_	14,360	14.050	729	_	592	728	1 5
16,510	-	15,430	14.050	829	_	694	782	1 10
18,930		15,430	14,050	939		808	782	
3,540	-	13,540	13,540	695	_	534	690	
6,080	_	16,080	15,740	816	_	657	810	
8,490	_	17.290	15,740	928	_	771	869	
7,230	-	17,230	16,860	874	1	701	865	1
-		17.230	16.860	874	_	701	908	
DOT	-	18,520	16,860	994		823	910	
-	-	22,720	-			-	510	722

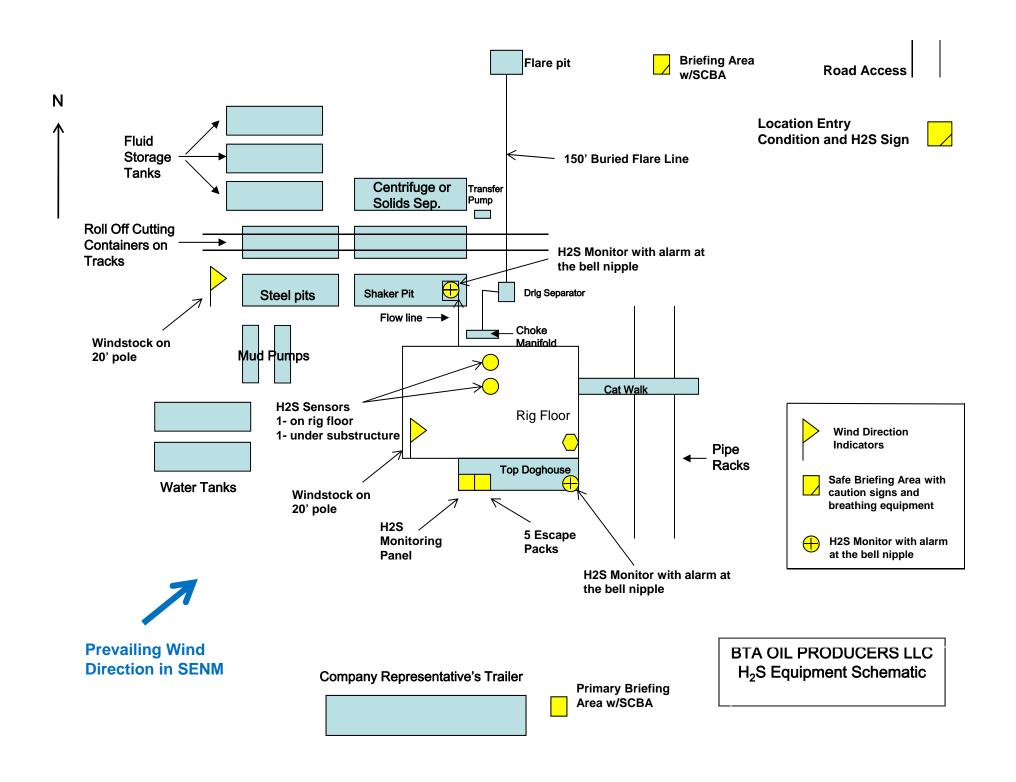
		Wt.		Thread	& Cplg	Extrem	ne Line	**		Int	ternal Yield	i Pressure	PSI**	1		Joint Str	ength - 10	10 l bs **
е		Per Ft.	Inside		20000			Col'pse		Plain	Round	Thread	But-	Body Yield	Thread	ded & Oplg.		1
ĭ	Grade	With	Dia.	Drift	O,D, of	Drift	O.D. of Box	Resis- tance		End or Ext.	-	1111000	tress	Stgth.		Thread	I But-	Ext.
		Cplg	in.	Dia.	Cplg,	Dia In.	In.	PSI		Line	Short	Long	Thd	1,000 Lbs	Short		tress	Line Joint
_	-		4.184	-	_	4.059	5.094	11,240	in the second	10,710		-			-	Long	Thd.	VOILE
	C-75* C-75*	20 30 23 20	4 044			3.919	5,094‡	12,970	Mary Mary Control of the	12,550	-				369†		100	529‡‡
	HCL-80+	15.00	4.408	4.283	_	- 1	-	9,380		8,290	_	8,290	8.290	_	369†	-	-	529‡‡
	HCL-80+	18.00	4.276	4,151	-	-	-	11,880		10,140		10.140	9,910	422	_	311	408	-
	HCL-80+	23.20	4.044	3.919	_	- 1		15.820		13,380	_	10.810	9,910	543	_	396	492	-
	HCN-80+	15.00	4.408	4.283	-	-	-	9,380	19	8,290	-	8.290	8.290	350		540	518	-
	HCN-80+	18.00	4.276	4.151	-	-	_	11,880		10,140	-	10.140	9.910	422	-	311	408	-
	HCN-80+	23.20	4.044	3.919				15.820	Helia and the later of the late	13,380	_	10.810	9,910	543		396	492	-
	1-80	15.00	4.408	4.283	-	-	-	7,250		8,290		8.290	8.290	350	-	540	537	-
	L-80	24.10	4.000	3.875	-	-		14,400		14,000		10,810	9.910	566	_	295 538	379	
	L-80	18.00	4.276	4,151	-	-	=	10,500		10,140	-	10,140	9,910	422		377	510	775
	L-80	21.40	4.126	4,001	-	-	- 1	12,760		12,240	-	10,810	9.910	501		466	457	
	L-80	23.20	4.044	3.919	-		-	13,830		13,380	-	10,810	9.910	543		513	510	
	N-80	15.00	4.408	4 283	5.563	4,151	5,360	7,250		8,290	_	8,290	8.290	350		311	510 396	
	N-80	18.00	4.276	4.151	5,563	4,151	5 360	10,490		10,140	-	10,140	9,910	422		396	477	437
	N-80	20.30	4.184	-	-	4.059	5.250	11,990		11,420		=	-	_	388†	284††	363±	469
	N-80	23.20	4.044	-	-	3.919	5,094‡	13,830 12,760		13,380	-		-		388†	28411	363‡	556‡‡ 556 † ‡
	N-80	21.40	4.126	4,001	275		_	14,400		12,240	-	10,810	9,910	501		490	537	22011
	N-80	24.10	4,000	3.875	-	-	_	7.840	100	14,000	-	10,810	9,910	566	_	558	537	
	C-90	15,00	4.408	4,233	-	-	-	11.530	1.00	9,320	-	9,320	9,320	394	_	311	404	_
	C-90	18,00	4.276	4.151	-	-	-	14,360		11,400		11,400	11,150	475	-	396	484	
	C-90	21,40		4.001	-	-	_	15,560		13,770		12,170	11,150	564		490	537	=
	C-90	23,20	4,044	3,919	-		-	16,200		15,060		12,170	11,150	611		540	537	_
	C-90	24.10	4,000	3.875	5.500	1.151	5.360	8.090		15,750		12,170	11,150	636	- 1	567	537	= 1
	C-95	15.00	4.408	4.283	5,563	4.151	5.360	12,010	100 mm	9,840 12,040	-	9,840	9,840	416	-	326	424	459
	C-95	18.00	4.276	4,151	5,563	4.151	5.250	14,250		13,560		12.040	11,770	501	-	416	512	493
	C-95	20,30		-	-	3.919	5.094t			15.890	-	-	-	_	- 1	100		58411
	C-95	23.20		1.004		2,319	3,0341	15,160		14,530	-	40.040	=	-	-	-	-	58411
	C-95	21.40			T		II	17,100		16,630		12,840	11,770	595	-	515	563	-
	C-95	24,10			7 50 1		_	9.380		9,840		12,840	11,770	672	-	595	563	_
	S-95+	15,00						12,030	1.10	12,040		9,840	9,840	416	-	342	441	-
	S-95+	18,00			_		1.	16,430		15.890			11,770	501		436	532	2
	S-95+	23.20				5	-	8,110		9.840		12.840 9.840	11,770	645	-	594	590	-
	T-95	15.00						12.030		12,040		The second second	9,840	416	- 1	326	424	-
	T-95	18,00						15,160		14.530			11,770	501	-	416	512	=
	T-95	21.40		1 Carbonia		12.	-	16,430	The same of the sa	15,890			11,770	595		515	563	-
	T-95	23.20		100000000000000000000000000000000000000				17,100	100	16.630			11,770	645	- 1	567	563	-
	T-95	24.10				4.151	5.360	8,830		11,400			11,770 11,400	672	-	595	563	-
,	P-110	15.00			NAME OF TAXABLE PARTY.	4.151	5.360	13,450		13,940				481		388	503	547
	P-110	18.00		- VIII - I	5.000	4.059				15,710		0,040	13,620	580	195+	495	606	587

135		104 S Pe	Producers, Ll cos TX 79701	LC		D	RILLING PI	LAN		WELL: TVD: MD:	Rojo 73 12380 20080		27 Fed	Com #2	;0Н
Casing P		From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body	Joint	Dry/	Mud Weight
	8739 Marketon	riom (MD)		FIOM (TVD)		String	**				90007	Tension	Tension	Buoyant	(ppg)
14 3/4	10 3/4	0	1000	0	1000	No	40.5	J-55	STC	3.7	7.3	15.5	10.4	Dry	8.3
9 7/8	7 5/8	0	8015	0	8000	yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8015	11860	8000	11845	yes	29.7	P110	FJ	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11660	0	11645	Yes	20	P110	Buttress	1.3	1.5	2.7	2.9	Dry	14
6 3/4	5	11660	20080	11645	12380	Yes	18	P110	Buttress	1.3	1.4	1.6	1.7	Dry	14
*7 5/8" h	as DV Too	ol @ 4920													

135		104 S Pe	Producers, Ll cos TX 79701	LC		D	RILLING PI	LAN		WELL: TVD: MD:	Rojo 73 12380 20080		27 Fed	Com #2	;0Н
Casing P		From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body	Joint	Dry/	Mud Weight
	8739 Marketon	riom (MD)		FIOM (TVD)		String	**				90007	Tension	Tension	Buoyant	(ppg)
14 3/4	10 3/4	0	1000	0	1000	No	40.5	J-55	STC	3.7	7.3	15.5	10.4	Dry	8.3
9 7/8	7 5/8	0	8015	0	8000	yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8015	11860	8000	11845	yes	29.7	P110	FJ	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11660	0	11645	Yes	20	P110	Buttress	1.3	1.5	2.7	2.9	Dry	14
6 3/4	5	11660	20080	11645	12380	Yes	18	P110	Buttress	1.3	1.4	1.6	1.7	Dry	14
*7 5/8" h	as DV Too	ol @ 4920													

135		104 S Pe	Producers, Ll cos TX 79701	LC		D	RILLING PI	LAN		WELL: TVD: MD:	Rojo 73 12380 20080		27 Fed	Com #2	;0Н
Casing P		From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body	Joint	Dry/	Mud Weight
	8739 Marketon	riom (MD)		FIOM (TVD)		String	**				90007	Tension	Tension	Buoyant	(ppg)
14 3/4	10 3/4	0	1000	0	1000	No	40.5	J-55	STC	3.7	7.3	15.5	10.4	Dry	8.3
9 7/8	7 5/8	0	8015	0	8000	yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8015	11860	8000	11845	yes	29.7	P110	FJ	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11660	0	11645	Yes	20	P110	Buttress	1.3	1.5	2.7	2.9	Dry	14
6 3/4	5	11660	20080	11645	12380	Yes	18	P110	Buttress	1.3	1.4	1.6	1.7	Dry	14
*7 5/8" h	as DV Too	ol @ 4920													

135		104 S Pe	Producers, Ll cos TX 79701	LC		D	RILLING PI	LAN		WELL: TVD: MD:	Rojo 73 12380 20080		27 Fed	Com #2	;0Н
Casing P		From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body	Joint	Dry/	Mud Weight
	8739 Mariana	riom (MD)		FIOM (TVD)		String	**				90007	Tension	Tension	Buoyant	(ppg)
14 3/4	10 3/4	0	1000	0	1000	No	40.5	J-55	STC	3.7	7.3	15.5	10.4	Dry	8.3
9 7/8	7 5/8	0	8015	0	8000	yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8015	11860	8000	11845	yes	29.7	P110	FJ	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11660	0	11645	Yes	20	P110	Buttress	1.3	1.5	2.7	2.9	Dry	14
6 3/4	5	11660	20080	11645	12380	Yes	18	P110	Buttress	1.3	1.4	1.6	1.7	Dry	14
*7 5/8" h	as DV Too	ol @ 4920													


135		104 S Pe	Producers, Ll cos TX 79701	LC		D	RILLING PI	LAN		WELL: TVD: MD:	Rojo 73 12380 20080		27 Fed	Com #2	;0Н
Casing P		From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body	Joint	Dry/	Mud Weight
	8739 Mariana	riom (MD)		FIOM (TVD)		String	**				90007	Tension	Tension	Buoyant	(ppg)
14 3/4	10 3/4	0	1000	0	1000	No	40.5	J-55	STC	3.7	7.3	15.5	10.4	Dry	8.3
9 7/8	7 5/8	0	8015	0	8000	yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8015	11860	8000	11845	yes	29.7	P110	FJ	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11660	0	11645	Yes	20	P110	Buttress	1.3	1.5	2.7	2.9	Dry	14
6 3/4	5	11660	20080	11645	12380	Yes	18	P110	Buttress	1.3	1.4	1.6	1.7	Dry	14
*7 5/8" h	as DV Too	ol @ 4920													

EMERGENCY CALL LIST

	<u>OFFICE</u>	MOBILE
BTA Oil Producers LLC OFFICE	432-682-3753	
BEN GRIMES, Operations	432-682-3753	432-559-4309
NICK EATON, Drilling	432-682-3753	432-260-7841
TRACE WOHLFAHRT, Completions	432-682-3753	

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

BTA OIL PRODUCERS LLC

HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. H₂S SAFETY EQUIPMENT AND SYSTEMS

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

- a. Well Control Equipment:
 - Flare line.
 - Choke manifold with remotely operated choke.
 - Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
 - Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.
- b. Protective equipment for essential personnel:
 - Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:

- 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems:

Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

e. Mud Program:

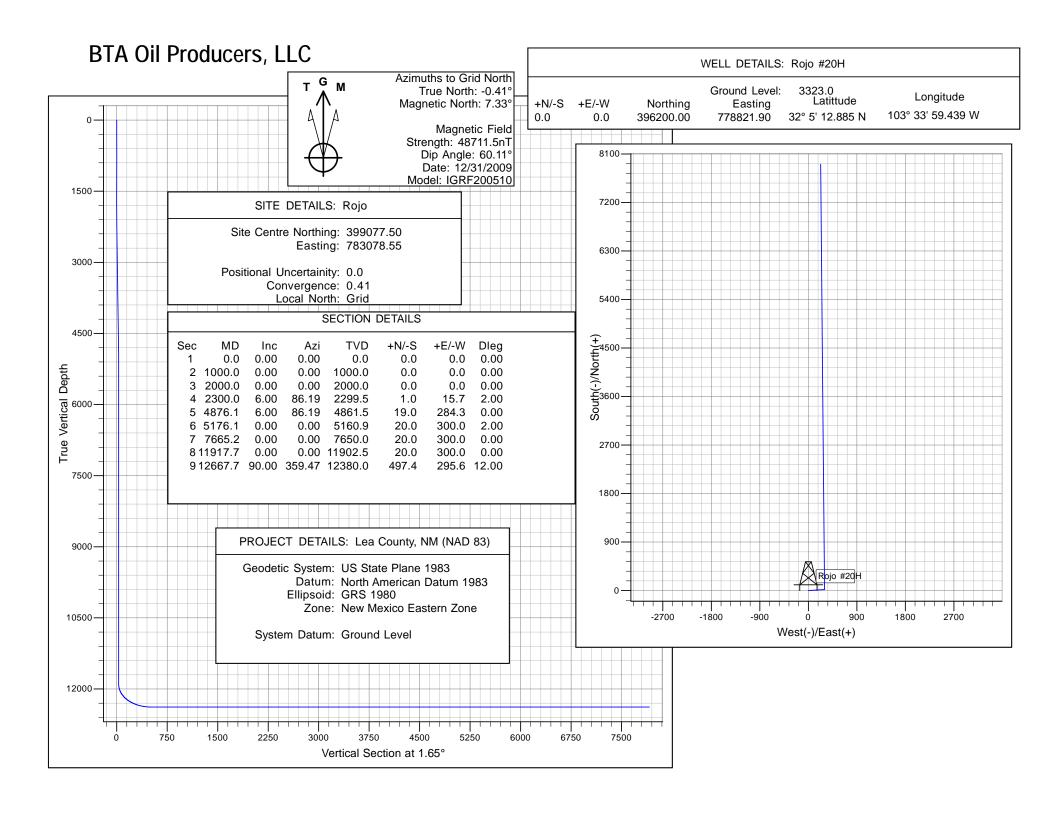
The mud program has been designed to minimize the volume of H2S circulated to the surface.

f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.


WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH BTA OIL PRODUCERS LLC FOREMAN AT MAIN OFFICE

BTA OIL PRODUCERS LLC

1-432-682-3753

BTA Oil Producers, LLC

Lea County, NM (NAD 83) Rojo Rojo #20H

Wellbore #1

Plan: Design #1

Standard Planning Report - Geographic

21 November, 2019

Planning Report - Geographic

Old Database:

Company: BTA Oil Producers, LLC Project: Lea County, NM (NAD 83)

Site: Rojo Well: Rojo #20H Wellbore: Wellbore #1 Design #1 Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Rojo #20H GL @ 3323.0usft GL @ 3323.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83), Lea County, NM

Map System: US State Plane 1983 System Datum:

North American Datum 1983 Geo Datum: Map Zone: New Mexico Eastern Zone

Ground Level

Using geodetic scale factor

Site Rojo

399,077.50 usft Northing: Site Position: Latitude: 32° 5' 41.057 N 103° 33' 9.721 W 783,078.55 usft Мар Easting: From: Longitude:

0.41 Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 " **Grid Convergence:**

Rojo #20H Well

Well Position +N/-S 0.0 usft Northing: 396,200.00 usft Latitude: 32° 5' 12.885 N

+E/-W 0.0 usft Easting: 778,821.90 usft Longitude: 103° 33' 59.439 W 0.0 usft **Position Uncertainty** Wellhead Elevation: 0.0 usft Ground Level: 3,323.0 usft

Wellbore #1 Wellbore Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (°) (°) (nT) IGRF200510 12/31/2009 7.74 60.11 48,711.46587460

Design #1 Design Audit Notes: Version: Phase: **PROTOTYPE** Tie On Depth: 0.0 **Vertical Section:** Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 1.65

Plan Survey Tool Program Date 11/21/2019

Depth From Depth To **Tool Name** (usft) (usft) Survey (Wellbore) Remarks

0.0 20,208.5 Design #1 (Wellbore #1)

Plan Sections Measured Vertical Dogleg Build Turn +N/-S Depth Inclination Azimuth Depth +E/-W Rate Rate Rate TFO (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) **Target** (°) 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 1,000.0 0.00 0.00 1,000.0 0.0 0.0 0.00 0.00 0.00 0.00 2.000.0 0.00 0.00 2.000.0 0.0 0.0 0.00 0.00 0.00 0.00 2,300.0 6.00 86 19 2,299.5 1.0 15.7 2.00 2.00 0.00 86.19 4,876.1 6.00 86.19 4,861.5 19.0 284.3 0.00 0.00 0.00 0.00 5,176.1 0.00 0.00 5,160.9 20.0 300.0 2.00 -2.00 0.00 180.00 7,665.2 0.00 0.00 7,650.0 20.0 300.0 0.00 0.00 0.00 0.00 11,917.7 0.00 0.00 11,902.5 20.0 300.0 0.00 0.00 0.00 0.00 12,667.7 90.00 359.47 12,380.0 497.4 295.6 12.00 12.00 0.00 359.47

Planning Report - Geographic

Database: Old

Company: BTA Oil Producers, LLC

Project: Lea County, NM (NAD 83)
Site: Rojo
Well: Rojo #20H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Rojo #20H GL @ 3323.0usft GL @ 3323.0usft

Grid

Doorgin.		,							
Planned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	396,200.00	778,821.90	32° 5' 12.885 N	103° 33' 59.439 W
100.0	0.00	0.00	100.0	0.0	0.0	396,200.00	778,821.90	32° 5' 12.885 N	103° 33' 59.439 W
200.0	0.00	0.00	200.0	0.0	0.0	396,200.00	778,821.90	32° 5' 12.885 N	103° 33' 59.439 W
300.0	0.00	0.00	300.0	0.0	0.0	396,200.00	778,821.90	32° 5' 12.885 N	103° 33' 59.439 W
400.0	0.00	0.00	400.0	0.0	0.0	396,200.00	778,821.90	32° 5' 12.885 N	103° 33' 59.439 W
500.0	0.00	0.00	500.0	0.0	0.0	396,200.00	778,821.90	32° 5' 12.885 N	103° 33' 59.439 W
600.0	0.00	0.00	600.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
700.0	0.00	0.00	700.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
800.0	0.00	0.00	800.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
900.0	0.00	0.00	900.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33′ 59.439 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	396,200.00	778,821.90	32° 5′ 12.885 N	103° 33' 59.439 W
2,100.0	2.00	86.19	2,100.0	0.1	1.7	396,200.11	778,823.64	32° 5' 12.886 N	103° 33' 59.419 W
2,200.0	4.00	86.19	2,199.8	0.5	7.0	396,200.46	778,828.86	32° 5′ 12.889 N	103° 33' 59.358 W
2,300.0	6.00	86.19	2,299.5	1.0	15.7	396,201.04	778,837.56	32° 5′ 12.895 N	103° 33' 59.257 W
2,400.0	6.00	86.19	2,398.9	1.7	26.1	396,201.74	778,847.99	32° 5' 12.901 N	103° 33' 59.136 W
2,500.0	6.00 6.00	86.19	2,498.4	2.4	36.5 46.9	396,202.43	778,858.41	32° 5′ 12.907 N	103° 33' 59.015 W 103° 33' 58.893 W
2,600.0 2,700.0	6.00	86.19 86.19	2,597.8 2,697.3	3.1 3.8	46.9 57.4	396,203.13 396,203.82	778,868.84 778,879.27	32° 5' 12.913 N 32° 5' 12.919 N	103° 33' 58.772 W
2,800.0	6.00	86.19	2,097.3	4.5	67.8	396,203.82	778,889.70	32° 5′ 12.925 N	103° 33' 58.651 W
2,900.0	6.00	86.19	2,790.7	5.2	78.2	396,205.21	778,900.13	32° 5′ 12.932 N	103° 33' 58.530 W
3,000.0	6.00	86.19	2,995.6	5.9	88.7	396,205.21	778,910.56	32° 5′ 12.938 N	103° 33' 58.408 W
3,100.0	6.00	86.19	3,095.1	6.6	99.1	396,206.61	778,920.99	32° 5′ 12.944 N	103° 33' 58.287 W
3,200.0	6.00	86.19	3,194.5	7.3	109.5	396,207.30	778,931.42	32° 5' 12.950 N	103° 33' 58.166 W
3,300.0	6.00	86.19	3,294.0	8.0	120.0	396,208.00	778,941.85	32° 5' 12.956 N	103° 33' 58.045 W
3,400.0	6.00	86.19	3,393.4	8.7	130.4	396,208.69	778,952.28	32° 5' 12.962 N	103° 33' 57.923 W
3,500.0	6.00	86.19	3,492.9	9.4	140.8	396,209.39	778,962.71	32° 5' 12.968 N	103° 33' 57.802 W
3,600.0	6.00	86.19	3,592.3	10.1	151.2	396,210.08	778,973.14	32° 5′ 12.975 N	103° 33' 57.681 W
3,700.0	6.00	86.19	3,691.8	10.8	161.7	396,210.78	778,983.57	32° 5′ 12.981 N	103° 33' 57.559 W
3,800.0	6.00	86.19	3,791.2	11.5	172.1	396,211.47	778,994.00	32° 5′ 12.987 N	103° 33' 57.438 W
3,900.0	6.00	86.19	3,890.7	12.2	182.5	396,212.17	779,004.43	32° 5′ 12.993 N	103° 33' 57.317 W
4,000.0	6.00	86.19	3,990.1	12.9	193.0	396,212.86	779,014.86	32° 5′ 12.999 N	103° 33' 57.196 W
4,100.0	6.00	86.19	4,089.6	13.6	203.4	396,213.56	779,025.29	32° 5′ 13.005 N	103° 33' 57.074 W
4,200.0	6.00	86.19	4,189.0	14.3	213.8	396,214.25	779,035.71	32° 5′ 13.011 N	103° 33' 56.953 W
4,300.0	6.00	86.19	4,288.5	15.0	224.3	396,214.95	779,046.14	32° 5′ 13.018 N	103° 33' 56.832 W
4,400.0	6.00	86.19	4,387.9	15.6	234.7	396,215.64	779,056.57	32° 5′ 13.024 N	103° 33' 56.710 W
4,500.0	6.00	86.19	4,487.4	16.3	245.1	396,216.34	779,067.00	32° 5′ 13.030 N	103° 33' 56.589 W
4,600.0	6.00	86.19	4,586.9	17.0	255.5	396,217.03	779,077.43	32° 5′ 13.036 N	103° 33' 56.468 W
4,700.0	6.00	86.19	4,686.3	17.7	266.0	396,217.73	779,087.86	32° 5′ 13.042 N	103° 33' 56.347 W
4,800.0	6.00	86.19	4,785.8	18.4	276.4	396,218.43	779,098.29	32° 5′ 13.048 N	103° 33' 56.225 W
4,876.1	6.00	86.19	4,861.5	19.0	284.3	396,218.95	779,106.23	32° 5′ 13.053 N	103° 33' 56.133 W
4,900.0	5.52	86.19	4,885.2	19.1	286.7	396,219.11	779,108.62	32° 5′ 13.054 N	103° 33' 56.105 W
5,000.0	3.52	86.19	4,984.9	19.6	294.6	396,219.64	779,116.49	32° 5′ 13.059 N	103° 33' 56.014 W
5,100.0	1.52	86.19	5,084.8	19.9	299.0	396,219.93	779,120.88	32° 5' 13.062 N	103° 33' 55.963 W
5,176.1	0.00	0.00	5,160.9	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
5,200.0	0.00	0.00	5,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W

Planning Report - Geographic

Database: Old

Company: BTA Oil Producers, LLC

 Project:
 Lea County, NM (NAD 83)

 Site:
 Rojo

 Well:
 Rojo #20H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Rojo #20H GL @ 3323.0usft GL @ 3323.0usft

Crid

Planned Survey	,								
Flaillieu Sulvey									
Measured Depth (usft)	Inclination	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
F 200 0					300.0	306 330 00	779,121.89	32° 5' 13.062 N	_
5,300.0 5,400.0	0.00	0.00 0.00	5,284.8 5,384.8	20.0 20.0	300.0	396,220.00 396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W 103° 33' 55.951 W
5,500.0	0.00	0.00	5,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
5,600.0		0.00	5,584.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
5,700.0	0.00	0.00	5,684.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
5,800.0	0.00	0.00	5,784.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
5,900.0	0.00	0.00	5,884.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
6,000.0	0.00	0.00	5,984.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,100.0	0.00	0.00	6,084.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,200.0	0.00	0.00	6,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,300.0	0.00	0.00	6,284.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,400.0	0.00	0.00	6,384.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,500.0	0.00	0.00	6,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,600.0	0.00	0.00	6,584.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,700.0	0.00	0.00	6,684.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,800.0	0.00	0.00	6,784.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
6,900.0	0.00	0.00	6,884.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,000.0	0.00	0.00	6,984.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,100.0	0.00	0.00	7,084.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,200.0		0.00	7,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,300.0	0.00	0.00	7,284.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,400.0		0.00	7,384.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,500.0	0.00	0.00	7,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,600.0 7,665.2	0.00	0.00 0.00	7,584.8	20.0 20.0	300.0 300.0	396,220.00	779,121.89 779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W 103° 33' 55.951 W
7,700.0		0.00	7,650.0 7,684.8	20.0	300.0	396,220.00 396,220.00	779,121.89	32° 5' 13.062 N 32° 5' 13.062 N	103° 33' 55.951 W
7,800.0	0.00	0.00	7,004.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
7,900.0	0.00	0.00	7,704.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,000.0	0.00	0.00	7,984.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
8,100.0	0.00	0.00	8,084.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
8,200.0	0.00	0.00	8,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,300.0	0.00	0.00	8,284.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,400.0	0.00	0.00	8,384.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,500.0	0.00	0.00	8,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,600.0	0.00	0.00	8,584.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,700.0	0.00	0.00	8,684.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,800.0	0.00	0.00	8,784.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
8,900.0	0.00	0.00	8,884.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,000.0	0.00	0.00	8,984.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,100.0		0.00	9,084.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,200.0		0.00	9,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,300.0		0.00	9,284.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,400.0		0.00	9,384.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,500.0		0.00	9,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,600.0		0.00	9,584.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
9,700.0 9,800.0		0.00	9,684.8	20.0 20.0	300.0 300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
9,800.0	0.00	0.00	9,784.8 9,884.8	20.0	300.0	396,220.00 396,220.00	779,121.89 779,121.89	32° 5' 13.062 N 32° 5' 13.062 N	103° 33' 55.951 W 103° 33' 55.951 W
10,000.0		0.00	9,004.0 9,984.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,100.0		0.00	10,084.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,200.0		0.00	10,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,300.0		0.00	10,284.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,400.0	0.00	0.00	10,384.8	20.0	300.0	396,220.00	779,121.89	32° 5' 13.062 N	103° 33' 55.951 W
10,500.0		0.00	10,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,600.0	0.00	0.00	10,584.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W

Planning Report - Geographic

Database: Old

Design:

Company: BTA Oil Producers, LLC
Project: Lea County, NM (NAD 83)

Design #1

Site: Rojo
Well: Rojo #20H
Wellbore: Wellbore #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Rojo #20H GL @ 3323.0usft GL @ 3323.0usft

Grid

Boorgin									
Planned Survey	/								
Measured			Vertical			Мар	Map		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
10,700.0	0.00	0.00	10,684.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,800.0	0.00	0.00	10,784.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
10,900.0	0.00	0.00	10,884.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,000.0	0.00	0.00	10,984.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,100.0	0.00	0.00	11,084.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,200.0	0.00	0.00	11,184.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,300.0	0.00	0.00	11,284.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,400.0	0.00	0.00	11,384.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,500.0	0.00	0.00	11,484.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,600.0	0.00	0.00	11,584.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,700.0	0.00	0.00	11,684.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,800.0		0.00	11,784.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,900.0	0.00	0.00	11,884.8	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
11,917.7		0.00	11,902.5	20.0	300.0	396,220.00	779,121.89	32° 5′ 13.062 N	103° 33' 55.951 W
12,000.0	9.87	359.47	11,984.4	27.1	299.9	396,227.07	779,121.82	32° 5′ 13.132 N	103° 33' 55.951 W
12,100.0	21.87	359.47	12,080.4	54.4	299.7	396,254.36	779,121.57	32° 5′ 13.402 N	103° 33' 55.952 W
12,200.0	33.87	359.47	12,168.6	101.0	299.3	396,301.02	779,121.14	32° 5′ 13.864 N	103° 33' 55.953 W
12,300.0		359.47	12,245.2	165.0	298.7	396,365.00	779,120.56	32° 5′ 14.497 N	103° 33' 55.954 W
12,400.0		359.47	12,306.9	243.5	297.9	396,443.52	779,119.83	32° 5′ 15.274 N	103° 33' 55.956 W
12,500.0		359.47	12,350.8	333.1	297.1	396,533.13	779,119.01	32° 5′ 16.161 N	103° 33' 55.958 W
12,600.0		359.47	12,375.2	429.9	296.2	396,629.92	779,118.12	32° 5′ 17.119 N	103° 33' 55.961 W
12,667.7		359.47	12,380.0	497.4	295.6	396,697.43	779,117.50	32° 5′ 17.787 N	103° 33' 55.962 W
12,700.0		359.47	12,380.0	529.7	295.3	396,729.68	779,117.20	32° 5′ 18.106 N	103° 33' 55.963 W
12,800.0		359.47	12,380.0	629.7	294.4	396,829.68	779,116.28	32° 5′ 19.096 N	103° 33' 55.966 W
12,900.0		359.47	12,380.0	729.7	293.5	396,929.67	779,115.36	32° 5′ 20.085 N	103° 33' 55.968 W
13,000.0		359.47	12,380.0	829.7	292.5	397,029.66	779,114.44	32° 5' 21.075 N	103° 33' 55.970 W
13,100.0		359.47	12,380.0	929.7	291.6	397,129.66	779,113.52	32° 5' 22.064 N	103° 33' 55.973 W
13,200.0		359.47	12,380.0	1,029.7	290.7	397,229.65	779,112.60	32° 5' 23.054 N	103° 33' 55.975 W
13,300.0		359.47	12,380.0	1,129.7	289.8	397,329.64	779,111.68	32° 5′ 24.043 N	103° 33' 55.978 W
13,400.0		359.47	12,380.0	1,229.7	288.9	397,429.64	779,110.76	32° 5′ 25.033 N	103° 33' 55.980 W
13,500.0		359.47	12,380.0	1,329.7	287.9	397,529.63	779,109.84	32° 5' 26.022 N	103° 33' 55.983 W
13,600.0		359.47	12,380.0	1,429.7	287.0	397,629.62	779,108.92	32° 5′ 27.012 N	103° 33' 55.985 W
13,700.0		359.47	12,380.0	1,529.7	286.1	397,729.62	779,108.00	32° 5′ 28.001 N	103° 33' 55.987 W
13,800.0		359.47 359.47	12,380.0 12,380.0	1,629.7 1,729.6	285.2 284.3	397,829.61 397,929.60	779,107.08	32° 5' 28.991 N 32° 5' 29.980 N	103° 33' 55.990 W 103° 33' 55.992 W
13,900.0 14,000.0		359.47	12,380.0	1,729.6	283.3	398,029.60	779,106.16 779,105.24	32° 5′ 30.970 N	103° 33' 55.992 W
14,100.0		359.47	12,380.0	1,929.6	282.4	398,129.59	779,103.24	32° 5' 31.960 N	103° 33' 55.997 W
14,100.0		359.47	12,380.0	2,029.6	281.5	398,229.58	779,104.32	32° 5' 32.949 N	103° 33' 55.999 W
14,300.0		359.47	12,380.0	2,029.6	280.6	398,329.57	779,103.40	32° 5′ 33.939 N	103° 33' 56.002 W
14,400.0		359.47	12,380.0	2,129.6	279.7	398,429.57	779,102.46	32° 5' 34.928 N	103° 33' 56.002 W
14,500.0		359.47	12,380.0	2,329.6	278.7	398,529.56	779,100.64	32° 5' 35.918 N	103° 33' 56.007 W
14,600.0		359.47	12,380.0	2,429.6	277.8	398,629.55	779,099.72	32° 5' 36.907 N	103° 33' 56.009 W
14,700.0		359.47	12,380.0	2,529.6	276.9	398,729.55	779,098.80	32° 5' 37.897 N	103° 33' 56.012 W
14,800.0		359.47	12,380.0	2,629.6	276.0	398,829.54	779,097.88	32° 5' 38.886 N	103° 33' 56.014 W
14,900.0		359.47	12,380.0	2,729.6	275.1	398,929.53	779,096.96	32° 5′ 39.876 N	103° 33' 56.016 W
15,000.0		359.47	12,380.0	2,829.6	274.1	399,029.53	779,096.04	32° 5' 40.865 N	103° 33' 56.019 W
15,100.0		359.47	12,380.0	2,929.6	273.2	399,129.52	779,095.12	32° 5' 41.855 N	103° 33' 56.021 W
15,200.0		359.47	12,380.0	3,029.6	272.3	399,229.51	779,094.20	32° 5′ 42.844 N	103° 33' 56.024 W
15,300.0		359.47	12,380.0	3,129.6	271.4	399,329.51	779,093.28	32° 5′ 43.834 N	103° 33' 56.026 W
15,400.0		359.47	12,380.0	3,229.6	270.5	399,429.50	779,092.36	32° 5′ 44.823 N	103° 33' 56.029 W
15,500.0		359.47	12,380.0	3,329.6	269.5	399,529.49	779,091.44	32° 5′ 45.813 N	103° 33' 56.031 W
15,600.0	90.00	359.47	12,380.0	3,429.6	268.6	399,629.49	779,090.52	32° 5′ 46.803 N	103° 33' 56.033 W
15,700.0	90.00	359.47	12,380.0	3,529.6	267.7	399,729.48	779,089.60	32° 5′ 47.792 N	103° 33' 56.036 W
15,800.0	90.00	359.47	12,380.0	3,629.6	266.8	399,829.47	779,088.68	32° 5′ 48.782 N	103° 33' 56.038 W
15,900.0	90.00	359.47	12,380.0	3,729.6	265.9	399,929.47	779,087.76	32° 5′ 49.771 N	103° 33' 56.041 W

Planning Report - Geographic

Database: Old

Company: BTA Oil Producers, LLC
Project: Lea County, NM (NAD 83)

 Site:
 Rojo

 Well:
 Rojo #20H

 Wellbore:
 Wellbore #1

 Design:
 Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Rojo #20H GL @ 3323.0usft GL @ 3323.0usft

Grid

Planned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
16,000.0	90.00	359.47	12,380.0	3,829.6	264.9	400,029.46	779,086.84	32° 5′ 50.761 N	103° 33' 56.043 W
16,100.0	90.00	359.47	12,380.0	3,929.6	264.0	400,129.45	779,085.92	32° 5′ 51.750 N	103° 33' 56.045 W
16,200.0	90.00	359.47	12,380.0	4,029.6	263.1	400,229.44	779,085.00	32° 5′ 52.740 N	103° 33' 56.048 W
16,300.0	90.00	359.47	12,380.0	4,129.5	262.2	400,329.44	779,084.08	32° 5′ 53.729 N	103° 33' 56.050 W
16,400.0	90.00	359.47	12,380.0	4,229.5	261.3	400,429.43	779,083.16	32° 5′ 54.719 N	103° 33' 56.053 W
16,500.0	90.00	359.47	12,380.0	4,329.5	260.3	400,529.42	779,082.24	32° 5′ 55.708 N	103° 33' 56.055 W
16,600.0	90.00	359.47	12,380.0	4,429.5	259.4	400,629.42	779,081.32	32° 5′ 56.698 N	103° 33' 56.058 W
16,700.0	90.00	359.47	12,380.0	4,529.5	258.5	400,729.41	779,080.40	32° 5′ 57.687 N	103° 33' 56.060 W
16,800.0	90.00	359.47	12,380.0	4,629.5	257.6	400,829.40	779,079.48	32° 5′ 58.677 N	103° 33′ 56.062 W
16,900.0	90.00	359.47	12,380.0	4,729.5	256.7	400,929.40	779,078.56	32° 5′ 59.667 N	103° 33' 56.065 W
17,000.0	90.00	359.47	12,380.0	4,829.5	255.7	401,029.39	779,077.64	32° 6′ 0.656 N	103° 33' 56.067 W
17,100.0	90.00	359.47	12,380.0	4,929.5	254.8	401,129.38	779,076.72	32° 6′ 1.646 N	103° 33' 56.070 W
17,200.0	90.00	359.47	12,380.0	5,029.5	253.9	401,229.38	779,075.80	32° 6′ 2.635 N	103° 33' 56.072 W
17,300.0	90.00	359.47	12,380.0	5,129.5	253.0	401,329.37	779,074.88	32° 6′ 3.625 N	103° 33' 56.074 W
17,400.0	90.00	359.47	12,380.0	5,229.5	252.1	401,429.36	779,073.96	32° 6′ 4.614 N	103° 33' 56.077 W
17,500.0	90.00	359.47	12,380.0	5,329.5	251.1	401,529.36	779,073.04	32° 6′ 5.604 N	103° 33' 56.079 W
17,600.0	90.00	359.47	12,380.0	5,429.5	250.2	401,629.35	779,072.12	32° 6′ 6.593 N	103° 33' 56.082 W
17,700.0	90.00	359.47	12,380.0	5,529.5	249.3	401,729.34	779,071.20	32° 6′ 7.583 N	103° 33' 56.084 W
17,800.0	90.00	359.47	12,380.0	5,629.5	248.4	401,829.33	779,070.28	32° 6′ 8.572 N	103° 33' 56.087 W
17,900.0	90.00	359.47	12,380.0	5,729.5	247.5	401,929.33	779,069.36	32° 6′ 9.562 N	103° 33' 56.089 W
18,000.0	90.00	359.47	12,380.0	5,829.5	246.5	402,029.32	779,068.44	32° 6′ 10.551 N	103° 33' 56.091 W
18,100.0	90.00	359.47	12,380.0	5,929.5	245.6	402,129.31	779,067.52	32° 6' 11.541 N	103° 33' 56.094 W
18,200.0	90.00	359.47	12,380.0	6,029.5	244.7	402,229.31	779,066.60	32° 6′ 12.530 N	103° 33' 56.096 W
18,300.0	90.00	359.47	12,380.0	6,129.5	243.8	402,329.30	779,065.68	32° 6′ 13.520 N	103° 33' 56.099 W
18,400.0	90.00	359.47	12,380.0	6,229.5	242.9	402,429.29	779,064.76	32° 6′ 14.510 N	103° 33' 56.101 W
18,500.0	90.00	359.47	12,380.0	6,329.5	241.9	402,529.29	779,063.84	32° 6′ 15.499 N	103° 33' 56.103 W
18,600.0	90.00	359.47	12,380.0	6,429.4	241.0	402,629.28	779,062.92	32° 6′ 16.489 N	103° 33' 56.106 W
18,700.0	90.00	359.47	12,380.0	6,529.4	240.1	402,729.27	779,062.00	32° 6′ 17.478 N	103° 33' 56.108 W
18,800.0	90.00	359.47	12,380.0	6,629.4	239.2	402,829.27	779,061.08	32° 6′ 18.468 N	103° 33' 56.111 W
18,900.0	90.00	359.47	12,380.0	6,729.4	238.3	402,929.26	779,060.16	32° 6′ 19.457 N	103° 33' 56.113 W
19,000.0	90.00	359.47	12,380.0	6,829.4	237.3	403,029.25	779,059.24	32° 6′ 20.447 N	103° 33' 56.116 W
19,100.0	90.00	359.47	12,380.0	6,929.4	236.4	403,129.25	779,058.32	32° 6′ 21.436 N	103° 33' 56.118 W
19,200.0	90.00	359.47	12,380.0	7,029.4	235.5	403,229.24	779,057.40	32° 6′ 22.426 N	103° 33' 56.120 W
19,300.0	90.00	359.47	12,380.0	7,129.4	234.6	403,329.23	779,056.48	32° 6′ 23.415 N	103° 33' 56.123 W
19,400.0	90.00	359.47	12,380.0	7,229.4	233.7	403,429.22	779,055.56	32° 6′ 24.405 N	103° 33' 56.125 W
19,500.0	90.00	359.47	12,380.0	7,329.4	232.7	403,529.22	779,054.63	32° 6′ 25.394 N	103° 33' 56.128 W
19,600.0	90.00	359.47	12,380.0	7,429.4	231.8	403,629.21	779,053.71	32° 6′ 26.384 N	103° 33' 56.130 W
19,700.0	90.00	359.47	12,380.0	7,529.4	230.9	403,729.20	779,052.79	32° 6′ 27.373 N	103° 33' 56.132 W
19,800.0	90.00	359.47	12,380.0	7,629.4	230.0	403,829.20	779,051.87	32° 6′ 28.363 N	103° 33' 56.135 W
19,900.0	90.00	359.47	12,380.0	7,729.4	229.1	403,929.19	779,050.95	32° 6′ 29.352 N	103° 33' 56.137 W
20,000.0	90.00	359.47	12,380.0	7,829.4	228.1	404,029.18	779,050.03	32° 6′ 30.342 N	103° 33' 56.140 W
20,080.1	90.00	359.47	12,380.0	7,909.5	227.4	404,109.30	779,049.30	32° 6′ 31.135 N	103° 33' 56.142 W

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Rojo #20H BHL - plan hits target cer - Point	0.00 nter	0.07	12,380.0	7,909.5	227.4	404,109.30	779,049.30	32° 6′ 31.135 N	103° 33' 56.142 W

Planning Report - Geographic

Database: Old BTA Oil Producers, LLC Company: Project: Lea County, NM (NAD 83)

Site: Rojo #20H Well: Wellbore #1 Wellbore: Design: Design #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference:

GL @ 3323.0usft GL @ 3323.0usft **Survey Calculation Method:**

Minimum Curvature

Well Rojo #20H

BOP Break Testing Request

BTA requests permission to allow BOP Break Testing under the following conditions:

- After a full BOP test is conducted on the first well on the pad.
- When skidding to drill a hole section that does not penetrate into the Wolfcamp.
- Full BOP test will be required prior to drilling any production hole.

TOTAL LENGTH = 78'-3/8"

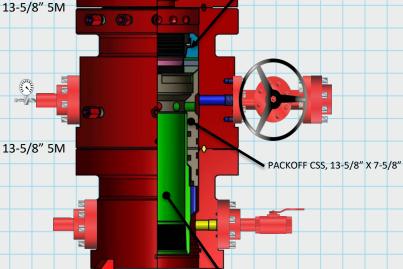
7-1/16" 10M

TUBING SPOOL

SW-TCM

13-5/8" 5M x 7-1/16" 10M 5-1/2" PP SEAL w/ (2) 1-13/16" 10M SSO

SW-MB SPOOL ASSEMBLY


UPPER MBH

13-5/8" 5M x 13-5/8" 5M w/ (2) 2-1/16" 5M SSO

CASING HEAD ASSEMBLY

LOWER MBH

13-5/8" 5M x 10-3/4" SOW w/ (2) 2-1/16" 5M SSO

CASING HANGER, C-22, 13-5/8" X 5-1/2"

CASING HANGER, MDRL, 13-5/8" X 7-5/8"

10-3/4" SOW x 7-5/8" x 5-1/2"

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

APD ID: 10400054733

Operator Name: BTA OIL PRODUCERS LLC

Well Name: ROJO 7811 34-27 FED COM

Well Type: OIL WELL

Submission Date: 03/03/2020

Highlighted data reflects the most recent changes

Show Final Text

Well Work Type: Drill

Well Number: 20H

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

0841_Rojo_20H_topo_and_access_road_20200302085849.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

0841_Rojo_20H_1_Mile_Radius_20200302141141.pdf

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? DEFER

Estimated Production Facilities description: CTB will be sundried at a later date.

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: OTHER

Describe type: PIT

Water source use type: SURFACE CASING

STIMULATION

DUST CONTROL

INTERMEDIATE/PRODUCTION

CASING

Source latitude: Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Water source transport method: TRUCKING

Source land ownership: FEDERAL

Source transportation land ownership: PRIVATE

Water source volume (barrels): 100000 Source volume (acre-feet): 12.88930963

Source volume (gal): 4200000

Water source and transportation map:

Rojo_20H_and_21H_Water_Transportation_Map_20200302091416.pdf

Water source comments: Water Pit is in NWNW Quarter Quarter of Sec 3, T26S, R33E in Lea County, NM

New water well? N

New Water Well Info

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche used for construction of the drilling pad and access road will be obtained from the closest existing caliche pit as approved by the BLM or from prevailing deposits found under the location. If there is not sufficient material available, caliche will be purchased from the nearest caliche pit located in the SWSW Quarter Quarter of Section 3 T26S R33E Lea County, NM.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and cuttings.

Amount of waste: 4164 barrels

Waste disposal frequency: One Time Only

Safe containment description: All drilling fluids will be stored safely and disposed of properly.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to a state approved disposal facility.

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Waste type: SEWAGE

Waste content description: Human waste and grey water.

Amount of waste: 1000 gallons

Waste disposal frequency: One Time Only

Safe containment description: Waste material will be stored safely and disposed of properly.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to a state approved disposal facility.

Waste type: GARBAGE

Waste content description: Trash

Amount of waste: 500 pounds

Waste disposal frequency: One Time Only

Safe containment description: Trash produced during drilling and completion operations will be collected in a trash

container and disposed of properly.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to a state approved disposal facility.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Description of cuttings location

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.) Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Rig Layout 20190930140859.pdf

0841_Rojo_20H_Well_Site_Plan_20200302092115.pdf

Comments: This will be in the exact same location as the previously permitted ROJO 7811 34-27 FED COM 20H and 21H Pad.

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: ROJO 7811 34-27 FED COM

Multiple Well Pad Number: 20H AND 21H

Recontouring attachment:

Drainage/Erosion control construction: During construction proper erosion control methods will be used to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Well pad proposed disturbance

(acres): 3.95

Road proposed disturbance (acres):

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres):

Other proposed disturbance (acres): 0

Well pad interim reclamation (acres): 0 Well pad long term disturbance

(acres): 0 Road interim reclamation (acres): 0 Road long term disturbance (acres): 0

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0

Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 0 Other interim reclamation (acres): 0

Total interim reclamation: 0

Other long term disturbance (acres): 0

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Total proposed disturbance: 3.95 Total long term disturbance: 0

Disturbance Comments: This pad will be on the same, previously constructed pad, as the MESA 8105 JV P #31H.

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations.

Soil treatment: To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

Existing Vegetation at the well pad: The historic climax plant community is a grassland dominated by black grama, dropseeds, and blue stems with sand sage and shinnery oak distributed evenly throughout. Current landscape displays mesquite, shinnery oak, yucca, desert sage, fourwing saltbush, snakeweed, and bunch grasses.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Refer to "Existing Vegetation at the well pad"

Existing Vegetation Community at other disturbances attachment:

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation?

Seed harvest description:

Seed harvest description attachment:

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Seed Management

Seed Table

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Chad Last Name: Smith

Phone: (432)682-3753 Email: csmith@btaoil.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? N

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: No invasive species present. Standard regular maintenance to maintain a clear location and road.

Weed treatment plan attachment:

Monitoring plan description: Identify areas supporting weeds prior to construction; prevent the introduction and spread of weeds from construction equipment during construction; and contain weed seeds and propagules by preventing segregated topsoil from being spread to adjacent areas. No invasive species present. Standard regular maintenance to maintain a clear location and road.

Monitoring plan attachment:

Success standards: To maintain all disturbed areas as per Gold Book standards.

Pit closure description: N/A

Pit closure attachment:

Section 11 - Surface Ownership

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

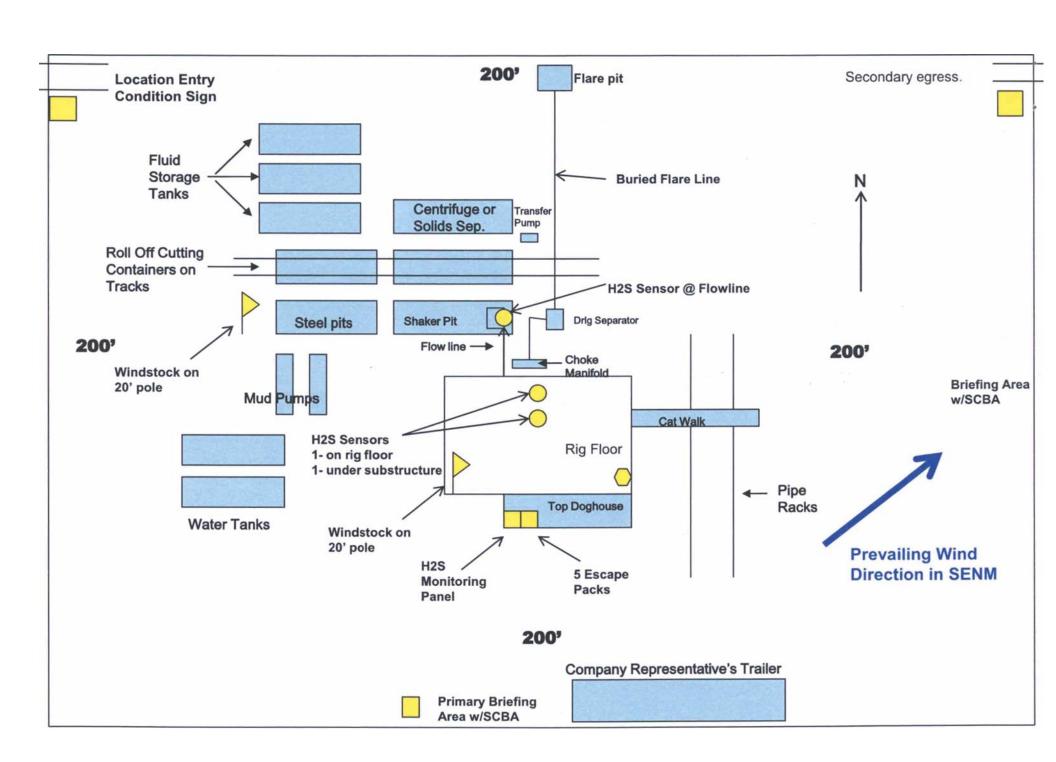
Section 12 - Other Information

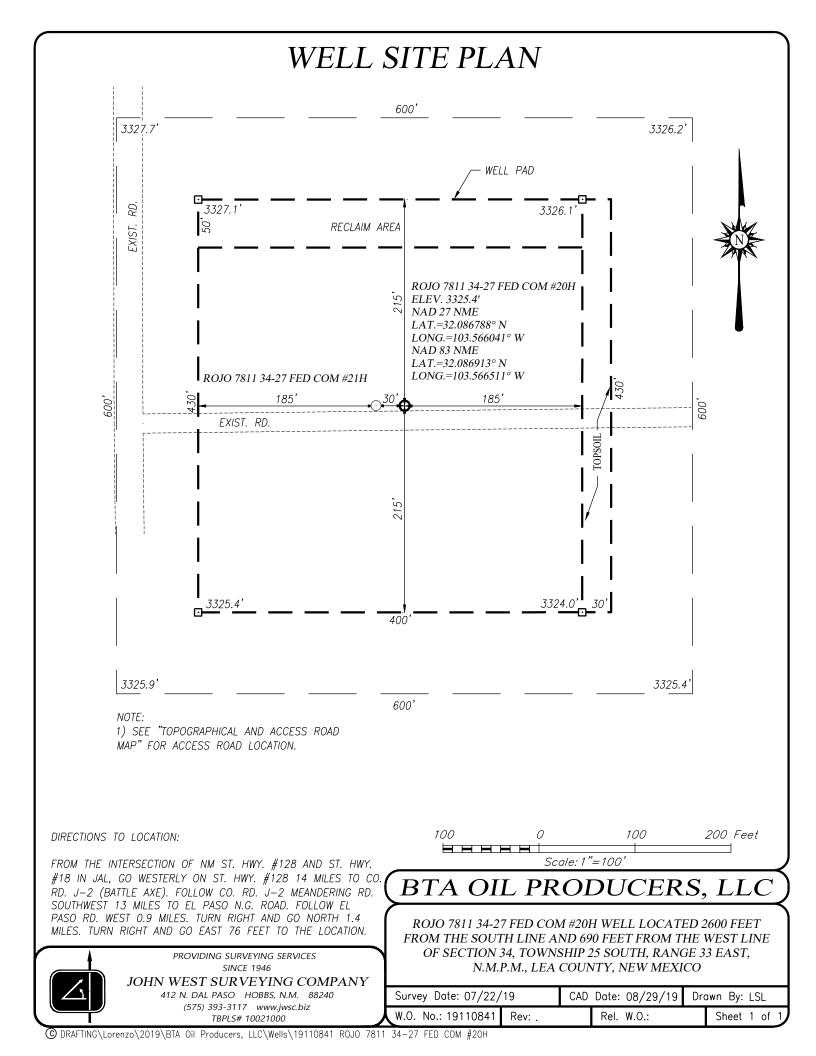
Right of Way needed? N

Use APD as ROW?

ROW Type(s):

ROW Applications


SUPO Additional Information: This pad will be in the same exact location as the previously approved ROJO 7811 34-27


FED COM 20H and 21H

Use a previously conducted onsite? Y

Previous Onsite information: No onsite needed, per BLM NRS McKenna Ryder. This pad will be in the same exact location as the previously approved ROJO 7811 34-27 FED COM 20H and 21H

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

APD ID: 10400054733 **Submission Date:** 03/03/2020

Operator Name: BTA OIL PRODUCERS LLC

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Well Name: ROJO 7811 34-27 FED COM Well Number: 20H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

07/15/2020

APD ID: 10400054733

Operator Name: BTA OIL PRODUCERS LLC

Well Name: ROJO 7811 34-27 FED COM

Well Type: OIL WELL

Submission Date: 03/03/2020

Highlighted data reflects the most recent changes

Show Final Text

Well Number: 20H

Well Work Type: Drill

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001711

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

DISTRICT 1625 N French Dr. Hobbs, NM 88240 Phone (575) 393-6161 Fax (575) 393-0720 DISTRICT II

811 S First St., Artesm, NM 88210 Phone (575) 748-1283 Fax: (575) 748-9720 DISTRICT III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV 1220 S St. Francis Dr., Santa Fe, NM 87505 Phone (505) 476-3460 Fax (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

1220 South St. Francis Dr. Santa Fe, New Mexico 87505 OCD - HOBBS 07/27/2020 RECEIVED

District Office □AMENDED REPORT

Submit one copy to appropriate

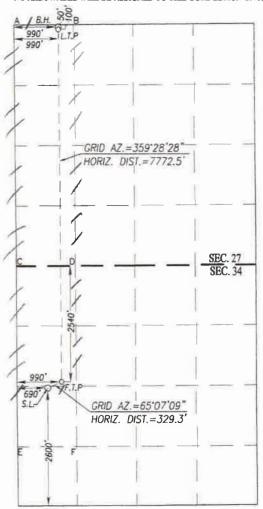
Revised August 1, 2011

Form C-102

30-025-47460

WELL LOCATION AND ACREAGE DEDICATION PLAT

API Number	Pool Code Pool Name		
320524		operty Name 34-27 FED COM	Well Number 20H
ogrid № 260297		Operator Name BTA OIL PRODUCERS, LLC	


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
L	34	25-S	33-E		2600	SOUTH	690	WEST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section 27	Township 25-S	Range 33-E	Lot Idn	Feet from the 50	North/South line NORTH	Feet from the 990	East/West line WEST	County LEA
Dedicated Acres 240	Joint	or Infili	onsolidation C	ode Ord	er No				

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL TANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

NTERESTS HAVE BEEN C	ONSOLIDATED OR A NON-ST
SCALE:	1"=2000'
BOTTOM HOLE LOCATION NAD 27 NME Y= 404051.6 N X= 737863.0 E LAT.=32.108524* N LONG=103.565124* W	BOTTOM HOLE LOCATION NAD 83 NME Y= 404109.3 N X= 779049.3 E LAT.=32.108649" N LONG.=103.565595" W
	LAST TAKE POINT NAD 83 MME Y= 404059.3 N X= 779049.7 E LAT.=32.108511" N LONG.=103.565595" W
NAD A - Y= 404095, B - Y= 404103, C - Y= 398814, D - Y= 398822, E - Y= 394858.	ORDINATES TABLE 27 NME 0 N, X = 736872.7 E 8 N, X = 736921.4 E 6 N, X = 736921.7 E 9 N, X = 736957.7 E 1 N, X = 738279.6 E
CORNER COC NAD A - Y= 404152. B - Y= 404161. C - Y= 398871. D - Y= 398880. E - Y= 394916. F - Y= 394923.	4 '\'X= 778144.4 E
FIRST TAKE POINT NAD 27 NME Y= 396281.0 N X= 737933.9 E LAT.=32.087163' N	FIRST TAKE POINT NAD 83 NME Y= 396338.6 N X= 779120.6 E LAT.=32.087288 N

LAT.=32.087288 N LONG. = 103.565543" W

GEODETIC COORDINATES NAD 27 NME SURFACE LOCATION Y= 396142.5 N X= 737635.2 E LAT.=32.086788" N LONG.=103.566041° W

LONG. = 103.565074° W

GEODETIC COORDINATES NAD 83 NIME SURFACE LOCATION Y= 396200.0 N X≃ 778821.9 E LAT.=32.086913 N LONG. = 103.566511" W

OPERATOR CERTIFICATION

I hereby certify that the information herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unlessed mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

Signature

12/10/2019

Date

Sammy Hajar

Printed Name

SHAJAR@BTAOIL.COM

E-mail Address

SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

JULY 22, 2019

Date of Survey Signature & S 12641 Ronald J. Eidson 3239 JWSC W O 19 11 0841 LSL Rel wo 19.11.0752

District 1 1625 N. French Dr., Hobbs, NM 88240 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit Original to Appropriate District Office

GAS	CA	PTU	JRE	PL	AN	I
------------	----	-----	-----	----	----	---

Date: 3/2/2020		
□ Original	Operator & OGRID No.:	260297
☐ Amended - Reason for Amendment:		

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility - Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
POIO 7911 24 27		SEC 34 ; 25S ; 33E	2600 FSL 690 FWL	2000	Flared	Battery Connected
ROJO 7811 34-27 FED COM 20H	30-025-47	460	0,0 1,12			To ETP System

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to Gas Transporter and will be connected to Gas Transporter low/high pressure gathering system located in LEA County, New Mexico. It will require 0 ' of pipeline to (ETP) connect the facility to low/high pressure gathering system. Operator provides (periodically) to Gas Transporter a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, Operator and Gas Transporter have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at Gas Transporter Processing Plant located in Sec.____, Twn.____, Rng. County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Gas Transporter system at that time. Based on current information, it is Operator's belief the system can take this gas upon completion of the well(s)

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines