District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 1000 Rio Brazos Rd., Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505 District III District IV State of New Mexico Energy, Minerals & Natural Resources Form C-104 Revised August 1, 2011 Oil Conservation Division REQUEST FOR ALLOWABLE AND AUTHORIZATION TO TRANSPORT Submit one copy to appropriate District Office 1220 South St. Francis Dr. Santa Fe, NM 87505 | ¹ Operator na | | | | | | | | | ² OGR | ID Nun | ıber | | | | | |--|--|--|--|--|---|--|---|---|------------------|---------------------------------|---------------|------------------------------|--------------------------|--|--| | Mewbourne (
PO Box 5270 | | pany | | | | | | | 3 Door | on for E | ilina C | 14744
ode/ Eff | | Data | | | Hobbs, NM 8 | | | | | | | | | |)8/06/ 2 0 | | oue/ Em | ecuve | Date | | | ⁴ API Number 30 – 025-45569 | | | ⁵ Pool Name
Scharb; Bone Spring | | | | | | | ⁶ Pool Code
55610 | | | | | | | ⁷ Property Code | | | ⁸ Property Name | | | | | | 9 Wel | | | | ell Number | | | | 324949 | С Т | | ereford 29 |)/20 B | 1PA St | Com | | | | | 1H | | | | | | II. 10 Sur | Section | | ip Ran | TO I | Lot Idn | Feet from the | North/South | Line | Feet fr | om the | E oct/ | West lin | | Country | | | P | 29 | 198 | 35H | - | or rait | 205 | South | Line | 13 | | | vvest iin
East | ie | County
Lea | | | 11 Rot | tom H | ole Loca | tion | - 1 | | | | | <u> </u> | | | | _ | | | | | Section | | | ge I | Lot Idn | Feet from the | North/South | h line | Feet fr | om the | East/ | West lin | ie | County | | | A | 20 | 19S | 351 | | | 89 | North | | 67 | 8 | | East | | Lea | | | 12 Lse Code | 13 Produ | ucing Metho | d 14 G: | s Cont | nection | ¹⁵ C-129 Pern | nit Number | 16 (| C-129 E | fective 1 | Date | 17 C | Z-129 | Expiration Date | | | | | | | Date 08/06/2 | | | | | | | | | • | | | | III. Oil a | | | | 00/00/2 | | | | | | | | | | | | | 18 Transport | | | | | | 19 Transpor | ter Name | | | | | | | ²⁰ O/G/W | | | OGRID | | | | | | and Ad | dress | | | | | | | | | | 024650 | | | | | • | Versado Gas Pr | | C | | | | | | | | | 024650 | | 6 Desta Drive
Ste 3300 | | | | | | | | | | G | | | | | | 1480 | | | | | Midland, T | | | | | | | y E | WESTER | | | | | | | | | Ory | | | | | | | | | | | | | Oryx
4000 N. Big Spring
Suite 400
Midland, TX 79705 | | | | | | | | | | | | O | | | | 14 | iviidiand, i | 1 19/05 | | | | | | 4, 1 | Y | | | | | S YOU ST | | | | | | | | | | | | | | | | | 1946 | | | | | | | | | | | | | | | | | nava
Juliu | | | | | | | | | | | | | | | | | 104.6 | are a | asking | for an exem | A Printer Control of the | and the contract of | | | | | | | | | ²¹ Spud Dat | te | ²² Rea | dy Date | are | | ²³ TD | ²⁴ PBTI | D | 25 | Perforat | ions | | 26 | DHC, MC | | | ²¹ Spud Dat
02/04/20 | te | ²² Rea | ndy Date
106/20 | | 19 | ²³ TD
9880' MD | ²⁴ PBTI
19860' | D | ²⁵ 97 | | ions | 30.0 | | NA | | | ²¹ Spud Dat
02/04/20
²⁷ Ho | ole Size | ²² Rea | dy Date
06/20
²⁸ Ca | sing & | 19
& Tubii | 23 TD
9880' MD
ng Size | ²⁴ PBTI
19860'
²⁹ De | epth S | ²⁵ 97 | Perforat | ions | 30 Sa | | · · | | | ²¹ Spud Dat
02/04/20
²⁷ Ho | te | ²² Rea | dy Date
06/20
²⁸ Ca | sing & | 19 | 23 TD
9880' MD
ng Size | ²⁴ PBTI
19860'
²⁹ De | D | ²⁵ 97 | Perforat | ions | ³⁰ S ₄ | | NA
Cement | | | ²¹ Spud Dat
02/04/20
²⁷ Ho | ole Size | ²² Rea | 1 dy Date
1 06/20
28 Ca | sing & | 19
& Tubii
54.5# J | 23 TD
1880' MD
1ng Size | ²⁴ PBTI
19860'
²⁹ De | epth Se | ²⁵ 97 | Perforat | ions | 30 S ₄ | acks (| NA
Cement | | | ²¹ Spud Dat
02/04/20
²⁷ Ho | ole Size | ²² Rea | 1 dy Date
1 06/20
28 Ca | sing & | 19
& Tubii | 23 TD
1880' MD
1ng Size | ²⁴ PBTI
19860'
²⁹ De | epth S | ²⁵ 97 | Perforat | ions | ³⁰ S _i | acks (| NA
Cement | | | ²¹ Spud Dat
02/04/20
²⁷ Ho
17 | ole Size | ²² Rea | 106/20 28 Ca | sing & 3 3/6" 5/8" 4 | 19
& Tubin
54.5# J
0# HCI | 23 TD
9880' MD
ng Size
255 | ²⁴ PBTI
19860'
²⁹ De
1 | 960' | ²⁵ 97 | Perforat | ions | 30 Sa | 157
105 | NA Cement 5 | | | ²¹ Spud Dat
02/04/20
²⁷ Ho
17 | ole Size | ²² Rea | 106/20 28 Ca | sing & 3 3/6" 5/8" 4 | 19
& Tubii
54.5# J | 23 TD
9880' MD
ng Size
255 | ²⁴ PBTI
19860'
²⁹ De
1 | epth Se | ²⁵ 97 | Perforat | ions | ³⁰ S ₄ | acks (| NA Cement 5 | | | ²¹ Spud Dat
02/04/20
²⁷ Ho
17
12 | ole Size | ²² Rea | 28 Ca | sing & 3 3/6" 5/8" 4 | 19
& Tubin
54.5# J
0# HCI | 23 TD
1880' MD
10 Size
155
10 | ²⁴ PBTI
19860'
²⁹ De
1
3 | 960' | 25 97 et | Perforat | ions | 30 Sa | 157
105
700 | NA Cement 5 0 | | | 21 Spud Dat
02/04/20
27 Ho
17
12
8 | ole Size 1 ½" 2 ¼" 3¼" 1½" | ²² Res
08. | 28 Ca | sing & 3 3/6" 5/8" 4 | 19
& Tubin
54.5# J
0# HCI
HCP1 | 23 TD
1880' MD
10 Size
155
10 | ²⁴ PBTI
19860'
²⁹ De
1
3 | pepth Sc
960'
6630' | 25 97 et | Perforat | ions | ³⁰ S ₄ | 157
105 | NA Cement 5 0 | | | 21 Spud Dat
02/04/20
27 Ho
17
12
8
6
V. Well 1 | ole Size 1 1/2 " 2 1/4 " 3/4 " Test Da | ²² Res
08. | 28 Ca
28 Ca
1
9 | sing & 3 %" 4" 5%" 4" 7" 29# 2" 13. | 19
& Tubin
54.5# J
0# HCI
HCP1
.5# HCI | 23 TD
9880' MD
ng Size
(555
280 | ²⁴ PBTI
19860'
²⁹ De
1
3
9 | epth So
960'
6630'
940' | 25 97 et 80' | Perforat
75' - 19 | ions
822' | | 157
105
700 | NA Cement 5 0 0 | | | 21 Spud Dat
02/04/20
27 Ho
17
12
8 | ole Size 1 1/2" 2 1/4" 3/4" Test Da Oil | 22 Res
08 | 28 Ca | sing & 3 %" 4" 5%" 4" 7" 29# 2" 13. | 19
& Tubin
54.5# J
0# HCI
HCP1
.5# HCI | 23 TD
880' MD
ng Size
(555
L80
10
P110 | ²⁴ PBTI
19860'
²⁹ De
1
3
9
9018' | pepth So
960'
6630'
9940'
' - 1988 | 25 97 et 80' | Perforat
75' - 19 | ions | | 157
105
700 | NA Cement 5 0 0 0 6 Csg. Pressure | | | 21 Spud Dat
02/04/20
27 Ho
17
12
8
6
V. Well 7
31 Date New
08/06/20 | ole Size 1 1/2" 2 1/4" 3/4" Test Da Oil | 22 Res
08. | 28 Ca
28 Ca
1
9
4 3 | sing & 3 %" 4" 5%" 4" 7" 29# 2" 13. | 19
& Tubin
54.5# J
0# HCI
HCP1
.5# HCI | 23 TD
8880' MD
ng Size
255
280
10
P110
Test Date
08/09/20 | ²⁴ PBTI
19860'
²⁹ De
1
3
9
9018' | pepth So
960'
6630'
9940'
' - 1988
Lengthrs | 25 97 et 80' | Perforat
75' - 19 | ions
822' | | 157
105
700
130 | NA Cement 5 0 0 0 6 Csg. Pressure 620 | | | 21 Spud Dat
02/04/20
27 Ho
17
12
8
6
V. Well 7
31 Date New
08/06/20 | ole Size 1 1/2" 2 1/4" 3/4" Test Da Oil | 22 Res
08.
ata
ata
32 Gas D
08. | 28 Ca 28 Ca 29 4 ½ 206/20 | sing & 3 %" 4" 5%" 4" 7" 29# 2" 13. | 19
& Tubin
54.5# J
0# HCI
HCP1
.5# HCI | 23 TD
8880' MD
ng Size
255
280
10
P110
Test Date
08/09/20 | ²⁴ PBTI
19860'
²⁹ De
1
3
9018'
³⁴ Test
24 | epth Se
960'
6630'
940'
' - 1988
Lengthrs | 25 97 et 80' | Perforat
75' - 19 | ions
822' | | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Dat
02/04/20
27 Ho
17
12
8
6
V. Well 7
31 Date New
08/06/20 | ole Size 1 1/2" 2 1/4" 3/4" Test Da Oil | 22 Res
08.
ata
ata
32 Gas D
08. | 28 Ca
28 Ca
1
9
4 3 | sing & 3 %" 4" 5%" 4" 7" 29# 2" 13. | 19
& Tubin
54.5# J
0# HCI
HCP1
.5# HCI | 23 TD
8880' MD
ng Size
255
280
10
P110
Test Date
08/09/20 | ²⁴ PBTI
19860'
²⁹ De
1
3
9018'
³⁴ Test
24 | pepth So
960'
6630'
9940'
' - 1988
Lengthrs | 25 97 et 80' | Perforat
75' - 19 | ions
822' | | 157
105
700
130 | NA Cement 5 0 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Sit 31/64" | ole Size 1½" 1½" 1½" Test Da Oil ize | 22 Res
08.
ata
32 Gas De
08.
33 | 28 Ca 28 Ca 1 9 4 3 elivery Da 606/20 f the Oil C | sing & 3 %" 4 4 5 5 1 4 1 1 2 9 # 1 2 1 1 3 | 19
& Tubin
54.5# J
0# HCI
HCP1
.5# HCI | 23 TD 8880' MD ng Size 255 280 10 P110 Test Date 08/09/20 9 Water 2048 Division have | ²⁴ PBTI
19860'
²⁹ De
1
3
9018'
³⁴ Test
24 | epth Se
960'
6630'
940'
' - 1988
Lengthrs | 25 97 et 80' | Perforat
75' - 19 | og. Pre | | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Sit 31/64" | ole Size 1/2" 2/4" 3/4" Test Da Oil ize ify that the with and | 22 Res
08.
ata
32 Gas Do
08.
33.
the rules of that the i | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 8880' MD ng Size 255 280 10 P110 Test Date 08/09/20 9 Water 2048 Division have | ²⁴ PBTI
19860'
²⁹ De
1
3
9018'
³⁴ Test
24 | epth Se
960'
6630'
940'
' - 1988
Lengthrs | 25 97 et 80' | Perforat
75' - 19 | og. Pre | ssure | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Dat
02/04/20 27 Ho 17 12 8 6 V. Well T 31 Date New
08/06/20 37 Choke Sit
31/64" 12 I hereby certitionen complied complete to the | ole Size 1/2" 2/4" 3/4" Test Da Oil ize ify that the with and | 22 Res
08.
ata
32 Gas Do
08.
33.
the rules of that the i | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19880' MD 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | ²⁴ PBTI
19860'
²⁹ De
1
3
9
9018'
³⁴ Test
24
⁴⁰ (| pepth Se
960'
6630'
940'
- 1988
Lengthrs
Gas
20 | 25 j 97 et | Perforat
75' - 19 | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Sit 31/64" | ole Size 1/2" 2/4" 3/4" Test Da Oil ize ify that the with and | ata 32 Gas D 08 34 he rules of that the imy knowless | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19880' MD 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | ²⁴ PBTI
19860'
²⁹ De
1
3
9018'
³⁴ Test
24 | pepth Se
960'
6630'
940'
- 1988
Lengthrs
Gas
20 | 25 j 97 et | Perforat
75' - 19 | og. Pre
NA | ssure | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Si 31/64" 2 I hereby certification of the Signature: | ole Size 1½" ½" ½" Ye'' Test Da Oil ize ify that the with and a best of the state | ata 32 Gas D 08 34 he rules of that the imy knowless | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 155 160 10 10 10 10 10 10 10 10 10 10 10 10 10 | ²⁴ PBTI
19860'
²⁹ De
1
3
9
9018'
³⁴ Test
24
⁴⁰ (| pepth Se
960'
6630'
940'
- 1988
Lengthrs
Gas
20 | 25 97 et OIL C | Perforat
75' - 19
35 Th | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Signature: 21 I hereby certipeen complied complete to the Signature: 22 Printed name: Packie Lathan | ole Size 1½" ½" ½" Ye'' Test Da Oil ize ify that the with and a best of the state | ata 32 Gas D 08 34 he rules of that the imy knowless | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19 Size 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | 24 PBTI
19860'
29 De
1
3
9 9018'
34 Test
24
40 (
3.3 | epth So
960'
6630'
940'
' - 1988
Lengthrs
Gas
20 | 25 97 et OIL C | Perforat
75' - 19 | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Si 31/64" 21 Hereby certipeen complied complete to the Signature: Printed name: Jackie Lathan Fitle: | ole Size 1½" ½" ½" Ye'' Test Da Oil ize ify that the with and a best of the state | ata 32 Gas D 08 34 he rules of that the imy knowless | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19 Size 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | 24 PBTI
19860'
29 De
1
3
9018'
34 Test
24
40 (3) | epth So
960'
6630'
940'
' - 1988
Lengthrs
Gas
20 | 25 97 et OIL C | Perforat
75' - 19
35 Th | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Sit 31/64" 22 I hereby certipeen complied complete to the Signature: Printed name: Jackie Lathan Fitle: Regulatory E-mail Address | ole Size 1/2" 2 1/4" 1/8" Test Da Oil ize iffy that the with and the best of the second secon | 22 Res 08 08 32 Gas D 08 34 he rules of that the impy knowled | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19 Size 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | 24 PBTI
19860'
29 De
1
3
9 9018'
34 Test
24
40 (
3.3 | epth So
960'
6630'
940'
' - 1988
Lengthrs
Gas
20 | 25 97 et OIL C | Perforat
75' - 19 | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Signature: 21 I hereby certipeen complied complete to the Signature: 22 Inches Signature: 23 Inches Signature: 24 Inches Signature: 25 Inches Signature: 26 Inches Signature: 27 Inches Signature: 28 Inches Signature: 29 Inches Signature: 20 Inches Signature: 20 Inches Signature: 20 Inches Signature: 21 Inches Signature: 22 Inches Signature: 23 Inches Signature: 24 Inches Signature: 25 Inches Signature: 26 Inches Signature: 27 Inches Signature: 28 Inches Signature: 29 Inches Signature: 20 Inches Signature: 21 Inches Signature: 22 Inches Signature: 23 Inches Signature: 24 Inches Signature: 25 Inches Signature: 26 Inches Signature: 27 Inches Signature: 28 Inches Signature: 29 Inches Signature: 20 21 Inches Signature: 22 Inches Signature: 23 Inches Signature: 24 Inches Signature: 25 Inches Signature: 26 Inches Signature: 26 Inches Signature: 27 Inches Signature: 28 Inches Signature: 28 Inches Signature: 29 Inches Signature: 20 Inches Signature: 21 Inches Signature: 21 Inches Signature: 21 Inches Signature: 28 Inches Signature: 29 Inches Signature: 20 Inches Signature: 21 Inches Signature: 21 Inches Signature: 21 Inches Signature: 22 Inches Signature: 23 Inches Signature: 24 Inches Signature: 25 Inches Signature: 26 Inches Signature: 27 Inches Signature: 28 Inches Signature: 28 Inches Signature: 28 Inches | ole Size 1/2" 2 1/4" 1/8" Test Da Oil ize ify that the with and the best of bes | 22 Res 08 08 32 Gas D 08 34 he rules of that the impy knowled | 28 Ca 28 Ca 29 4 ½ elivery Da 06/20 f the Oil Conformation edge and l | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19 Size 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | 24 PBTI
19860'
29 De
1
3
9 9018'
34 Test
24
40 (
3.3 | epth So
960'
6630'
940'
' - 1988
Lengthrs
Gas
20 | 25 97 et OIL C | Perforat
75' - 19 | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | | | 21 Spud Date 02/04/20 27 Ho 17 12 8 6 V. Well 7 31 Date New 08/06/20 37 Choke Sit 31/64" 2 I hereby certificen complied complete to the Signature: 2 Printed name: ackie Lathan Sitle: Regulatory E-mail Address | ole Size 1/2" 2 1/4" 1/8" Test Da Oil ize ify that the with and the best of bes | 22 Res 08 08 32 Gas D 08 34 he rules of that the impy knowled | 28 Ca 28 Ca 1 9 4 1 206/20 Calculate the Oil Conformation | \$\sing \cdot 3 \%" 4 \\ 5\%" 4 \\ 5\%" 4 \\ 7\" 29 \\ 7\" 20 \\ 7\" 13. | 19 & Tubin 54.5# J O# HCI # HCP1 .5# HCI 33 .00 vation Em above | 23 TD 1880' MD 19 Size 155 280 10 P110 Test Date 18/09/20 9 Water 2048 Division have 1 is true and | 24 PBTI
19860'
29 De
1
3
9 9018'
34 Test
24
40 (
3.3 | epth So
960'
6630'
940'
' - 1988
Lengthrs
Gas
20 | 25 97 et OIL C | Perforat
75' - 19 | og. Pre
NA | ssure
N DIVIS | 157
105
700
130 | NA Cement 5 0 0 6 Csg. Pressure 620 | |