Form 3160-3 (June 2015)

OCD - HOBBS 11/17/2020 DEPARTMENT OF THE INTERIOR CEIVED UNITED STATES BUREAU OF LAND MANAGEMENT

5.	 Leas	е	Seria	l.	No.

FORM APPROVED OMB No. 1004-0137

Expires: January 31, 2018

APPLICATION FOR PER	MIT TO DRI	LL OR REENTER		6. If Indian, Allotee	or Tribe N	ame
1a. Type of work: DRILL	REEN	NTER		7. If Unit or CA Agre	eement, N	ame and No.
1b. Type of Well: Oil Well Gas	Well Other	•	_	0 1 N 11	V II N	
1c. Type of Completion: Hydraulic Fracturing		e Zone Multiple Zone		8. Lease Name and V	Well No.	
	, <u> </u>	2000		[320	6046]	
2. Name of Operator	[37216	55]		9. API Well No. 30	0-025-	48099
3a. Address	3b	. Phone No. (include area code	2)	10. Field and Pool, o	r Explora	tory [5695]
4. Location of Well (Report location clearly and in	accordance with	any State requirements.*)		11. Sec., T. R. M. or	Blk. and S	Survey or Area
At surface						
At proposed prod. zone						
14. Distance in miles and direction from nearest tow	vn or post office*			12. County or Parish		13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	16	6. No of acres in lease	17. Spacing	Unit dedicated to th	nis well	
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19	9. Proposed Depth	20. BLM/B	IA Bond No. in file		
21. Elevations (Show whether DF, KDB, RT, GL, et	(c.) 22	2. Approximate date work will s	start*	23. Estimated duration	on	
		24. Attachments				
The following, completed in accordance with the re (as applicable)	quirements of Or	nshore Oil and Gas Order No. 1,	, and the Hy	draulic Fracturing ru	ıle per 43	CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the Item 20 above).	e operations	unless covered by an	existing b	ond on file (see
3. A Surface Use Plan (if the location is on National SUPO must be filed with the appropriate Forest S				nation and/or plans as	may be rea	quested by the
25. Signature		Name (Printed/Typed)			Date	
Title	*					
Approved by (Signature)		Name (Printed/Typed)			Date	
Title		Office		,		
Application approval does not warrant or certify tha applicant to conduct operations thereon. Conditions of approval, if any, are attached.	t the applicant ho	olds legal or equitable title to the	ose rights ir	the subject lease wh	nich would	l entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Se	ction 1212, make	e it a crime for any person know	vingly and v	villfully to make to a	ny departi	ment or agency

GCP Rec 11/17/2020

SL

APPROVED WITH CONDITIONS **Approval Date: 11/13/2020**

of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

APD ID: 10400040433

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

Submission Date: 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

BLM Office: CARLSBAD User: Kanicia Schlichting Title: Sr. Regulatory Analyst

Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM131588 Lease Acres: 886.41

Surface access agreement in place? Allotted? Reservation:

Agreement in place? YES Federal or Indian agreement: FEDERAL

Agreement number: NMNM138602

Agreement name:

Keep application confidential? YES

Permitting Agent? NO APD Operator: CENTENNIAL RESOURCE PRODUCTION LLC

Operator letter of designation:

Operator Info

Operator Organization Name: CENTENNIAL RESOURCE PRODUCTION LLC

Operator Address: 1001 17th Street, Suite 1800

Operator PO Box:

Operator City: Denver State: CO

Operator Phone: (720)499-1400 Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

Well Name: CHEDDAR FEDERAL COM Well Number: 301H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: 2ND BONESPRING Pool Name: RED HILLS; BONE

SAND SPRING, NORTH

Zip: 80202

Is the proposed well in an area containing other mineral resources? POTASH

Page 1 of 3

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Is the proposed well in an area containing other mineral resources? POTASH

Is the proposed well in a Helium production area? N Use Existing Well Pad? YES New surface disturbance? Y

Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: Number: 1

Well Class: HORIZONTAL

CHEDDAR DRILL ISLAND

Number of Legs: 1

Well Work Type: Drill
Well Type: OIL WELL
Describe Well Type:
Well sub-Type: INFILL

Describe sub-type:

Reservoir well spacing assigned acres Measurement: 319.68 Acres

Well plat: CHEDDAR_FED_COM_301H___C102_20190329131149.pdf

CHEDDAR_FED_COM_301H___Lease_C102_20190329131150.pdf

Well work start Date: 06/03/2021 Duration: 45 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 23782 Reference Datum:

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	454	FSL	410	FW	22S	32E	5	Aliquot	32.41459	l	LEA	1	' ' - ' '		NMNM	366	0	0	
Leg				L				SWS		103.7040		MEXI	ı		131588	5			
#1								W		53		CO	CO						
KOP	454	FSL	410	FW	22S	32E	5	Aliquot	32.41459	-	LEA	NEW	NEW	F	NMNM	-	911	910	
Leg				L				sws	4	103.7040		MEXI	MEXI		131588	544	1	7	
#1								W		53		CO	CO			2			

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	330	FSL	330	FW	22S	32E	5	Aliquot	32.41425		LEA	1	NEW	F	NMNM	-		968	
Leg				L				SWS	2	103.7043		1	MEXI		131588	601	11	0	
#1-1								W		12		СО	СО			5			
EXIT	100	FNL	330	FW	21S	32E	32	Aliquot	32.44209	-	LEA	NEW	NEW	S	STATE	-	195	968	
Leg				L				NWN	2	103.7043		MEXI	MEXI			601	65	0	
#1								W		43		CO	CO			5			
BHL	100	FNL	330	FW	21S	32E	32	Aliquot	32.44209	-	LEA	NEW	NEW	S	STATE	-	195	968	
Leg				L				NWN	2	103.7043		MEXI				601	65	0	
#1								W		43		co	CO			5			

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

11/16/2020

APD ID: 10400040433 Submission Date: 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
429819	RUSTLER	3665	624	624	SANDSTONE	NONE	N
429821	CAPITAN REEF	-957	4622	4622	OTHER : Carbonate	USEABLE WATER	N
429822	BELL CANYON	-1365	4730	4730	SANDSTONE	NATURAL GAS, OIL	N
429823	CHERRY CANYON	-2162	5527	5527	SANDSTONE	NATURAL GAS, OIL	N
429826	BRUSHY CANYON	-3492	6857	6857	SANDSTONE	NATURAL GAS, OIL	N
429827	BONE SPRING LIME	-5219	8584	8584	OTHER : Carbonate	NATURAL GAS, OIL	N
429829	AVALON SAND	-5371	8736	8736	SHALE	CO2, NATURAL GAS, OIL	N
429824	BONE SPRING 1ST	-6258	9623	9623	SANDSTONE	NATURAL GAS, OIL	Y
429825	BONE SPRING 2ND	-6522	9887	9887	OTHER, SHALE : Carbonate	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 9680

Equipment: The BOP and related equipment will meet or exceed the requirements of a 5M-psi system as set forth in On Shore Order No. 2. See attached BOP Schematic. A. Casinghead: 13 5/8" - 5,000 psi SOW x 13" - 5,000 psi WP Intermediate Spool: 13" – 5,000 psi WP x 11" – 5,000 psi WP Tubinghead: 11" – 5,000 psi WP x 7 1/16" – 15,000 psi WP B. Minimum Specified Pressure Control Equipment • Annular preventer • One Pipe ram, One blind ram • Drilling spool, or blowout preventer with 2 side outlets. Choke side will be a 3-inch minimum diameter, kill line shall be at least 2-inch diameter • 3 inch diameter choke line • 2 – 3 inch choke line valves • 2 inch kill line • 2 chokes with 1 remotely controlled from rig floor (see Figure 2) • 2 − 2 inch kill line valves and a check valve • Upper kelly cock valve with handle available • When the expected pressures approach working pressure of the system, 1 remote kill line tested to stack pressure (which shall run to the outer edge of the substructure and be unobstructed) • Lower kelly cock valve with handle available • Safety valve(s) and subs to fit all drill string connections in use • Inside BOP or float sub available • Pressure gauge on choke manifold • All BOPE connections subjected to well pressure shall be flanged, welded, or clamped • Fill-up line above the uppermost preventer. C. Auxiliary Equipment • Audio and visual mud monitoring equipment shall be placed to detect volume changes indicating loss or gain of circulating fluid volume. (OOS 1, III.C.2) • Gas Buster will be used below intermediate casing setting depth. • Upper and lower kelly cocks with handles, safety valve and subs to fit all drill string connections and a pressure gauge installed on choke manifold.

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Requesting Variance? YES

Variance request: Centennial is requesting to use a flex hose on the choke manifold. Please see section 8 for hose specs attachment. We would also like to request a variance to use a 5M Annular Preventer. Please see attached multi-bowl procedure.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13" surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 50% of its working pressure. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. • A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. • If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. • The BLM office will be provided with a minimum of four (4) hours' notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator will be used. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachment:

HP650_10M_Choke_Manifold_20190329140051.pdf

BOP Diagram Attachment:

CRD__Well_Control_Plan_v2_20181107133139.pdf

HP650_BOP_Schematic_CoFlex_Choke_10K_2019_1_29_20190325122316.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	CONDUCT OR	26	20.0	NEW	API	N	0	120	0	120	3665	3545	120	H-40	94	OTHER - Weld						
2	SURFACE	17.5	13.375	NEW	API	N	0	750	0	750	3665	2915	750	J-55	1	OTHER - BTC	3.05	7.38	DRY	20.8 7	DRY	20.8 7
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	4600	0	4600	3665	-935	4600	J-55	40	LT&C	1.52	1.65	DRY	2.83	DRY	3.42
	PRODUCTI ON	8.75	5.5	NEW	API	N	0	9111	0	9107	3665	-5442	9111	P- 110		OTHER - TMK UP DQX	2.35	2.67	DRY	3.52	DRY	3.52
	PRODUCTI ON	8.5	5.5	NEW	API	N	9111	19565	9107	9680	-5442	-6015	10454	P- 110		OTHER - TMK UP DQX	2.21	2.51	DRY	55.9	DRY	55.9

Operator Name: CENTENNIA	AL RESOURCE PROD	DUCTION LLC
Well Name: CHEDDAR FEDE	ERAL COM	Well Number: 301H
Casing Attachments		
Casing ID: 1	String Type: CONDU	JCTOR
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assumpt	ions and Worksheet((s):
CASING_ASSUMP	TIONS_WORKSHEET	Г_20181031160011.pdf
Casing ID: 2 Inspection Document:	String Type: SURFA	ACE
Spec Document:		
Tapered String Spec:		
Casing Design Assumpt	ions and Worksheet((s):
CASING_ASSUMP	TIONS_WORKSHEET	Г_20181031160036.pdf
Casing ID: 3	String Type: INTERM	MEDIATE
Inspection Document:		
Spec Document:		
Tapered String Spec:		
	_x_20_P110_HC_2018	
Casing Design Assumpt	ions and Worksheet((s):
CASING_ASSUMP	TIONS_WORKSHEET	Γ_20181107142525.pdf

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Casing Attachments

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

TMK_UP_DQX_5_x_18_P110_HC_20181031161259.pdf

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181107142600.pdf

Technical_Data_Sheet_TMK_UP_DQX_5.5_x_20_P110_CY_20191212111404.pdf

Casing ID: 5 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CASING_ASSUMPTIONS_WORKSHEET_20181107142618.pdf

Technical_Data_Sheet_TMK_UP_DQX_5.5_x_20_P110_CY_20191212111456.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0	0	0	0	0	0		0	0

CONDUCTOR	Lead	0	120	121	1.49	12.9	181	Grout	Bentonite 4% BWOC,
									Cellophane 0.25 pps
									CACL2 2% BWOC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1300	1038	1.74	13.5	1806	100	Class C Premium	Premium Gel Bentonite 4%, C-45 Econolite 0.25%, Phenoseal 0.25#/sk, CaCl 1%, Defoamer C-41P 0.75%
SURFACE	Tail		1300	1800	518	1.34	14.8	695	100	Class C Premium	C-45 Econolite 0.10%, CaCl 1.0%
INTERMEDIATE	Lead		0	4100	998	3.44	10.7	3433	150	TXI Lightweight	Salt 1.77/sk, C-45 Econolite 2.25%, STE 6.00%, Citric Acid 0.18%, C-19 0.10%, CSA-1000 0.20%, C- 530P 0.30%, CTB-15 LCM 7#/sk, Gyp Seal 8#/sk
INTERMEDIATE	Tail		4100	4600	141	1.33	14.8	188	20	Class C Premium	C-45 Econolite 0.10%, Citric acid 0.05%, C503P 0.25%
PRODUCTION	Lead		0	9111	892	3.41	10.6	3040	30	TXI Lightweight	Salt 8.98#/sk, STE 6.00%, Citric acid 0.20%, CSA-1000 0.23%, C47B 0.10%, C- 503P 0.30%
PRODUCTION	Tail		9111	1956 5	2414	1.24	14.2	2994	25	50:25:25 Class H: Poz: CPO18	Citric acid 0.03%, CSA- 1000 0.05%, C47B 0.25%, C-503P 0.30%

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a diesel emulsified brine fluid to inhibit salt washout and prevent severe fluid losses. The production hole will employ oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1800	4600	OTHER : Brine	9	10							
0	1956 5	OTHER : Brine/OBM	8.8	10							
0	1956 5	OIL-BASED MUD	8.8	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD (Gamma ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

DS,GR

Coring operation description for the well:

Will not be coring this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5034 Anticipated Surface Pressure: 2904.4

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_Chedder_Fed_Com_301H_20190528105406.pdf

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

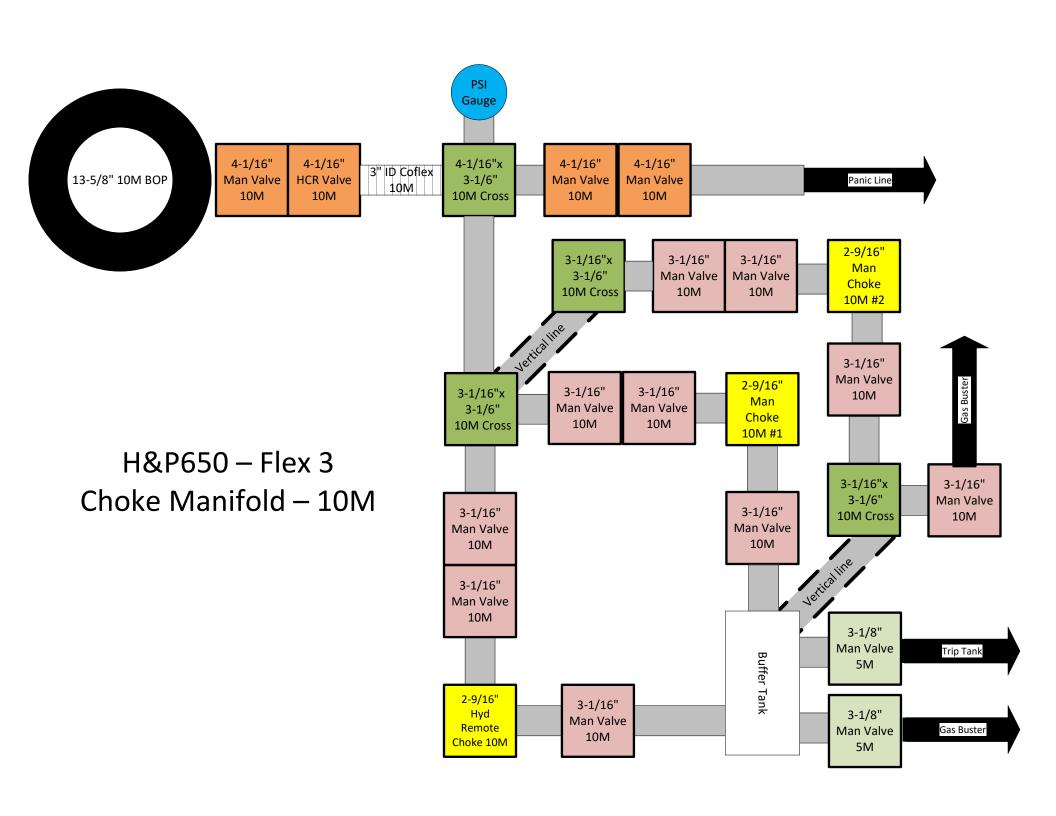
Chedder_FC_301H_Plan_Report_20190329142604.pdf

Other proposed operations facets description:

We are planning to use spudder rig to preset surface casing. Gas Caputre Plan is attached. Geoprog attached.

Other proposed operations facets attachment:

CRD_Batch_Setting_Procedures_20191212112515.pdf


Gas_Capture_Plan_Cheddar_301H_20191213122151.docx

CDEV_Multi_Bowl_Procedure_Cheddar_Fed_Com_301H_20191213122918.pdf

GEOPROG_Cheddar_Federal_Com_301H_PRELIM_20200828124831.pdf

Other Variance attachment:

H_P_650_Flex_Hose_Specs_Continental_Hose_SN_67255_20191212112427.pdf

Centennial Resource Development - Well Control Plan

A. Component and Preventer Compatibility Table

Component	OD (inches)	Preventer	RWP
Drillpipe	4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Heavyweight Drillpipe	4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Drill collars and MWD tools	4 3/4	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Mud Motor	4 ¾	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
Production Casing	5.5 & 5	Upper VBR: 3.5 – 5.5	10M
		Lower VBR: 3.5 – 5.5	
All	0 – 13 5/8	Annular	5M
Open-hole	-	Blind rams	10M

VBR = Variable Bore Rams

RWP = Rated Working Pressure

MWD = Measurement While Drilling (directional tools)

B. Well Control Procedures

I. General Procedures While Drilling:

- 1. Sound alarm (alert crew).
- 2. Space out drill-string.
- 3. Shut down pumps and stop rotary.
- 4. Open HCR
- 5. Shut-in well utilizing upper VBRs.
- 6. Close choke
- 7. Confirm shut-in.
- 8. Notify rig manager and Centennial company representative.
- 9. Call Centennial drilling engineer
- 10. Read and record
 - I. Shut-in drillpipe pressure (SIDPP) and shut-in casing pressure (SCIP).
 - II. Pit gain
 - III. Time
- 11. Regroup, identify forward plan

II. General Procedure While Tripping

- 1. Sound alarm (alert crew).
- 2. Stab full opening safety valve and close
- 3. Space out drillstring.
- 4. Open HCR
- 5. Shut-in well utilizing upper VBRs
- 6. Close choke
- 7. Confirm shut-in.
- 8. Notify rig manager and Centennial company representative.
- 9. Call Centennial drilling engineer
- 10. Read and record:
 - I. SIDPP AND SICP
 - II. Pit gain
 - III. Time
- 11. Regroup and identify forward plan.

III. General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out string.
- 4. Open HCR
- 5. Shut-in well utilizing upper VBRs.
- 6. Close choke
- 7. Confirm shut-in.
- 8. Notify rig manager and Centennial company representative.
- 9. Call Centennial drilling engineer
- 10. Read and record:
 - I. SIDPP AND SICP
 - II. Pit gain
 - III. Time
- 11. Regroup and identify forward plan.

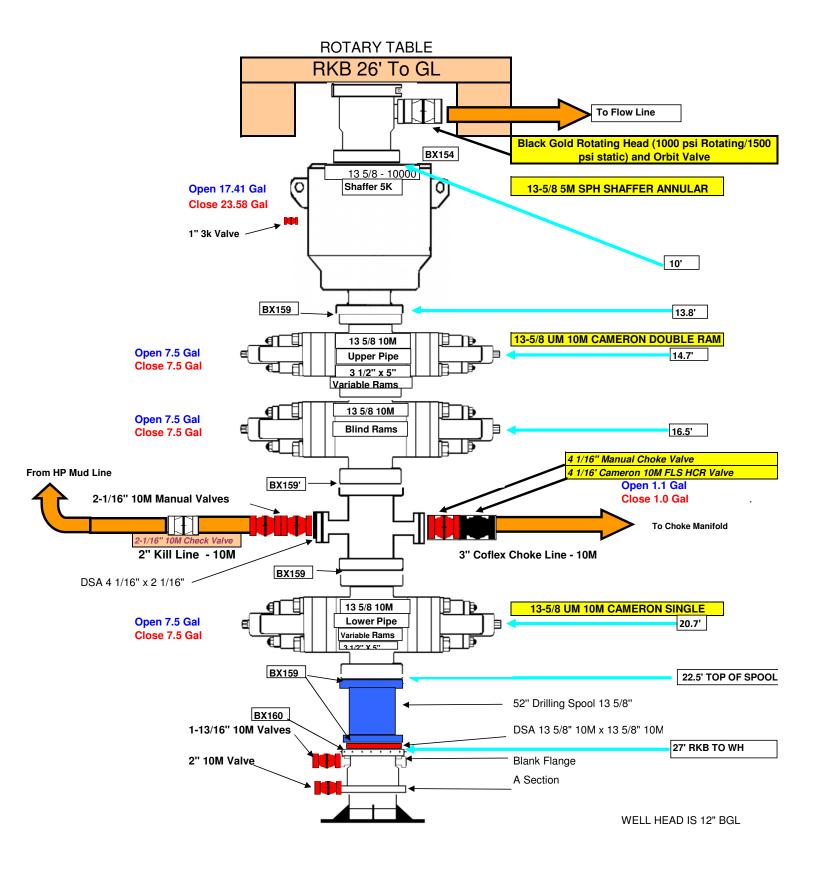
IV. General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Open HCR
- 3. Shut-in with blind rams
- 4. Close choke
- 5. Confirm shut-in
- 6. Notify rig manager and Centennial company representative.
- 7. Call Centennial drilling engineer
- 8. Read and record:
 - I. SIDPP AND SICP
 - II. Pit gain
 - III. Time
- 9. Regroup and identify forward plan.

V. General Procedures While Pulling BHA Thru BOP Stack

- 1. Prior to pulling last joint of drillpipe thru stack:
 - I. Perform flow check, if flowing
 - a. Sound alarm, alert crew
 - b. Stab full opening safety valve and close
 - c. Space out drillstring with tool joint just beneath the upper pipe ram.
 - d. Open HCR
 - e. Shut-in utilizing upper VBRs
 - f. Close choke
 - g. Confirm shut-in
 - h. Notify rig manager and Centennial company representative.
 - i. Call Centennial drilling engineer
 - j. Read and record:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - II. Regroup and identify forward plan

2. With BHA in the BOP stack and compatible ram preventer and pipe combo immediately available:

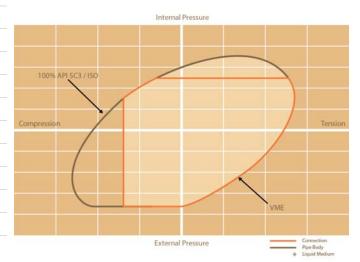

- a. Sound alarm, alert crew
- b. Stab full opening safety valve and close
- c. Space out drillstring with tool joint just beneath the upper pipe ram.
- d. Open HCR
- e. Shut-in utilizing upper VBRs
- f. Close choke
- g. Confirm shut-in
- h. Notify rig manager and Centennial company representative.
- i. Call Centennial drilling engineer
- j. Read and record:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
- II. Regroup and identify forward plan

3. With BHA in the BOP stack and no compatible ram preventer and pipe combo immediately availiable:

- I. Sound alarm, alert crew.
- II. If possible to pick up high enough, pull string clear of the stack and follow Open Hole (III) scenario.
- III. If impossible to pick up high enough to pull the string clear of the stack:
 - a. Stab crossover, make up one joint/stand of drill pipe and full opening safety valve and close.
 - b. Space out drillstring with tool joint just beneath the upper pipe ram.
 - c. Open HCR
 - d. Shut-in utilizing upper VBRs.
 - e. Close choke
 - f. Confirm shut-in
 - g. Notify rig manager and Centennial company representative.
 - h. Call Centennial drilling engineer
 - i. Read and record:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
- IV. Regroup and identify forward plan.

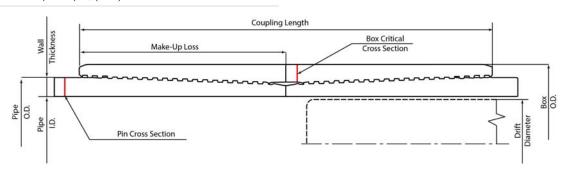
^{**} If annular is used to shut-in well and pressure builds to OR is expected to get to 50% of RWP, confirm space-out and swap to upper VBRs for shut-in.

H&P 650


TECHNICAL DATA SHEET TMK UP DQX 5.5 X 20 P110 HC

TUBULAR PARAMETERS

PIPE BODY PROPERTIES


Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110 HC	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4.653
Coupling Grade	P110 HC	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tension, (klbs)	641
		Min. Internal Yield Pressure, (psi)	12 640
CONNECTION PARAMETERS		Collapse Pressure, (psi)	12 780

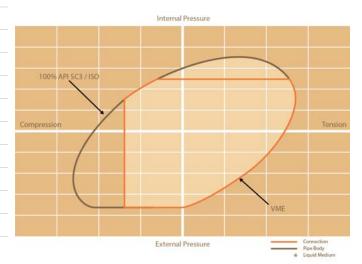
Connection OD (inch)	6.05
Connection ID, (inch)	4.778
Make-Up Loss, (inch)	4.122
Connection Critical Area, (sq inch)	5.828
Yield Strength in Tension, (klbs)	641
Yeld Strength in Compression, (klbs)	641
Tension Efficiency	100%
Compression Efficiency	100%
Min. Internal Yield Pressure, (psi)	12 640
Collapse Pressure, (psi)	12 780
Uniaxial Bending (deg/100ft)	91.7

MAKE-UP TORQUES

<u> </u>	
Yield Torque, (ft-lb)	20 600
Minimum Make-Up Torque, (ft-lb)	11 600
Optimum Make-Up Torque, (ft-lb)	12 900
Maximum Make-Up Torque, (ft-lb)	14 100

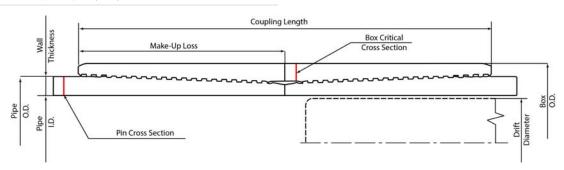
NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk-group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk-ipsco.com).

Print date: 03/02/2018 20:57


TECHNICAL DATA SHEET TMK UP DQX 5 X 18 P110 HC

TUBULAR PARAMETERS

PIPE BODY PROPERTIES


Nominal OD, (inch)	5.000	PE Weight, (lbs/ft)	17.93
Wall Thickness, (inch)	0.362	Nominal Weight, (lbs/ft)	18.00
Pipe Grade	P110 HC	Nominal ID, (inch)	4.276
Coupling	Regular	Drift Diameter, (inch)	4.151
Coupling Grade	P110 HC	Nominal Pipe Body Area, (sq inch)	5.275
Drift	Standard	Yield Strength in Tension, (klbs)	580
		Min. Internal Yield Pressure, (psi)	13 940
CONNECTION PARAMETERS		Collapse Pressure, (psi)	14 820

Connection OD (inch)	5.56
Connection ID, (inch)	4.276
Make-Up Loss, (inch)	4.097
Connection Critical Area, (sq inch)	5.275
Yield Strength in Tension, (klbs)	580
Yeld Strength in Compression, (klbs)	580
Tension Efficiency	100%
Compression Efficiency	100%
Min. Internal Yield Pressure, (psi)	13 940
Collapse Pressure, (psi)	14 820
Uniaxial Bending (deg/100ft)	100.9

MAKE-UP TORQUES

Yield Torque, (ft-lb)	17 500
Minimum Make-Up Torque, (ft-lb)	9 800
Optimum Make-Up Torque, (ft-lb)	10 900
Maximum Make-Up Torque, (ft-lb)	11 900

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk-group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk-ipsco.com).

Print date: 03/02/2018 20:54

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

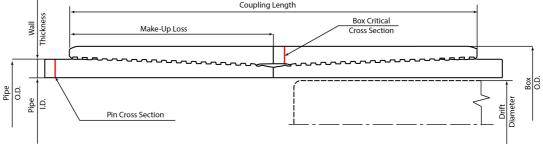
- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff


and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

TECHNICAL DATA SHEET TMK UP DQX 5.5 X 20 P110 CY

TUBULAR PARAMETERS		PIPE BODY PROPERTIES	
Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110 CY	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4.653
Coupling Grade	P110 CY	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tension, (klbs)	641
CONNECTION PARAMETERS		Min. Internal Yield Pressure, (psi) Collapse Pressure, (psi)	12 640 11 110
Connection OD (inch)	6.05	yonapse i ressure, (psi)	11 110
Connection ID, (inch)	4.778	Internal Pressure	
Make-Up Loss, (inch)	4.122		
Connection Critical Area, (sq inch)	5.828		
Yield Strength in Tension, (klbs)	641	100% API 5C3 / ISO	
Yeld Strength in Compression, (klbs)	641		
Tension Efficiency	100%		
Compression Efficiency	100%	Compression	Tension
Min. Internal Yield Pressure, (psi)	12 640		
Collapse Pressure, (psi)	11 110		
Uniaxial Bending (deg/100ft)	92.0		
MAKE-UP TORQUES			VME
Yield Torque, (ft-lb)	20 600	External Pressure	Connection Pipe Body
Minimum Make-Up Torque, (ft-lb)	11 600		* Liquid Medium
Optimum Make-Up Torque, (ft-lb)	12 900		
Maximum Make-Up Torque, (ft-lb)	14 100		
Operating Torque, (ft-lb)	17 500		
	Cou	ipling Length	

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk:group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk:group.com).

Print date: 12/04/2018 19:42

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff

and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

Centralizer Program:

Surface: - 3 welded bow spring centralizers, one on each of the bottom 3 joints, plus one on the shoe

joint (4 minimum)

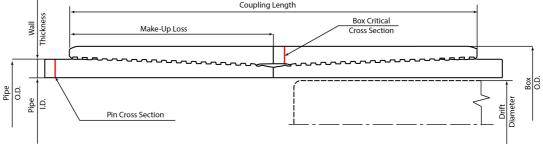
- No Cement baskets will be run

Production: - 1 welded bow spring centralizer on a stop ring 6' above float shoe

- 1 centralizer every other joint to the top of the tail cement

- 1 centralizer every 4 joints to 500' below the top of the lead cement

- The actual number and placement of centralizers will be determined from hole deviation and potential production zones. Centralizers will be run for maximum practical standoff


and through all potential productive zones.

All casing strings below the conductor shall be tested, prior to drilling out the casing shoe, to 0.22 psi/ft of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the internal yield pressure of the casing. If pressure declines more than 10 percent in 30 minutes, corrective action will be taken.

No freshly hard banded pipe will be rotated in the surface casing

TECHNICAL DATA SHEET TMK UP DQX 5.5 X 20 P110 CY

TUBULAR PARAMETERS		PIPE BODY PROPERTIES	
Nominal OD, (inch)	5.500	PE Weight, (lbs/ft)	19.81
Wall Thickness, (inch)	0.361	Nominal Weight, (lbs/ft)	20.00
Pipe Grade	P110 CY	Nominal ID, (inch)	4.778
Coupling	Regular	Drift Diameter, (inch)	4.653
Coupling Grade	P110 CY	Nominal Pipe Body Area, (sq inch)	5.828
Drift	Standard	Yield Strength in Tension, (klbs)	641
CONNECTION PARAMETERS		Min. Internal Yield Pressure, (psi) Collapse Pressure, (psi)	12 640 11 110
Connection OD (inch)	6.05	yonapse i ressure, (psi)	11 110
Connection ID, (inch)	4.778	Internal Pressure	
Make-Up Loss, (inch)	4.122		
Connection Critical Area, (sq inch)	5.828		
Yield Strength in Tension, (klbs)	641	100% API 5C3 / ISO	
Yeld Strength in Compression, (klbs)	641		
Tension Efficiency	100%		
Compression Efficiency	100%	Compression	Tension
Min. Internal Yield Pressure, (psi)	12 640		
Collapse Pressure, (psi)	11 110		
Uniaxial Bending (deg/100ft)	92.0		
MAKE-UP TORQUES			VME
Yield Torque, (ft-lb)	20 600	External Pressure	Connection Pipe Body
Minimum Make-Up Torque, (ft-lb)	11 600		* Liquid Medium
Optimum Make-Up Torque, (ft-lb)	12 900		
Maximum Make-Up Torque, (ft-lb)	14 100		
Operating Torque, (ft-lb)	17 500		
	Cou	upling Length	

NOTE: The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. This information supersede all prior versions for this connection. Information that is printed or downloaded is no longer controlled by TMK and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest technical information, please contact PAO "TMK" Technical Sales in Russia (Tel: +7 (495) 775-76-00, Email: techsales@tmk:group.com) and TMK IPSCO in North America (Tel: +1 (281)949-1044, Email: techsales@tmk:group.com).

Print date: 12/04/2018 19:42

HYDROGEN SULFIDE CONTINGENCY PLAN

Chedder Fed Com 301H

Section 5

T 22S R 32E

Lea County, NM

Initial Date: 3/4/18

Revision Date:

Table of Contents

Page 3: Introduction

Page 4: Directions to Location

Page 5: Safe Briefing Areas

Page 6: Drill Site Location Setup

Page 7: Toxicity of Various Gases

Page 10: H2S Required Equipment

Page 11: Determination of Radius of Exposure

Page 12: Emergency Contact List

INTRODUCTION

This plan specifies precautionary measures, safety equipment, emergency procedures, responsibilities, duties, and the compliance status pertaining to the production operations of Hydrogen Sulfide producing wells on:

Centennial Resource Development, Inc.

This plan will be in full effect prior to and continuing with all drilling operations for all wells producing potential Hydrogen Sulfide on the

Chedder Fed Com 301H

This plan was developed in response to the potential hazards involved when producing formations that may contain Hydrogen Sulfide (H₂S) It has been written in compliance with current New Mexico Oil Conservation Division Rule 118 and Bureau of Land Management 43 CFR 3160 Onshore Order No. 6.

All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a

This plan shall require the full cooperation and efforts of all individuals participating in the production of potential H₂S wells.

Each individual is required to know their assigned responsibilities and duties in regard to normal production operations and emergency procedures.

Each person should thoroughly understand and be able to use all safety related equipment on the production facility.

Each person should become familiar with the location of all safety equipment and become involved in ensuring that all equipment is properly stored, easily accessible, and routinely maintained.

An ongoing training program will remain in effect with regular training, equipment inspections, and annual certifications for all personnel.

Centennial Resource Development, Inc. shall make every reasonable effort to provide all possible safeguards to protect all personnel, both on this location and in the immediate vicinity, from the harmful effects of H₂S exposure, if a release to the atmosphere should occur.

DIRECTIONS TO LOCATION

Chedder Fed Com 301H

Section 5

T 22S R 32E

Lea County, NM

PROCEED IN A NORTHEASTLY, THEN EASTERLY DIRECTION FROM CARLSBAD, NEW MEXICO ALONG U.S. HIGHWAY 62 APPROXIMATELY 31.1 MILES TO THE JUNCTION OF THIS ROAD AND CAMPBELL ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN A SOUTHERLY, THEN SOUTHEASTERLY, THEN SOUTHERLY DIRECTION APPROXIMATELY 9.0 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE EAST; TURN LEFT AND PROCEED IN AN EASTERLY, THEN NORTHERLY, THEN EASTERLY DIRECTION APPROXIMATELY 1.6 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN A SOUTHERLY DIRECTION APPROXIMATELY 1.3 MILES TO THE BEGINNING OF THE PROPOSED ACCESS ROAD TO THE SOUTHWEST; FOLLOW ROAD FLAGS IN AN SOUTHWESTERLY, THEN SOUTHERLY, THEN EASTERLY DIRECTION APPROXIMATELY 1,101' TO THE PROPOSED LOCATION.

TOTAL DISTANCE FROM CARLSBAD, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 43.2 MILES.TOTAL DISTANCE FROM JAL, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 29.0 MILES.

SAFE BRIEFING AREAS

Two areas will be designated as "SAFE BRIEFING AREAS".

The Primary Safe Briefing Area

If the Primary Safe Briefing Area cannot be used due to wind conditions; the designated secondary safe briefing area will be used.

These two areas are so designated for accessibility reasons related to self-contained safe breathing air device locations, evacuation muster point utility, and for ease of overall communication, organizational support, as well as the all-important prevailing wind directions. Drawings of the facility denoting these locations are included on Page 15.

If H₂S is detected in concentrations equal to or in excess of 15 PPM, all personnel not assigned emergency duties are to assemble in the appropriate "SAFE BRIEFING AREA" for instructions.

Wind Direction Indicators: A windsock, shall be positioned, allowing the wind direction to be observed from anywhere on the charted facility location.

Warning-DANGER SIGNS for Approaching Traffic: All signs shall also be illuminated under conditions of poor visibility.

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

An amber strobe light system will be activated for H₂S concentrations of 10 PPM or greater and an audible alarm will sound when H₂S exceeds 15 ppm, and. This condition will exist until the all clear is given.

DRILL SITE LOCATION:

- 1. The drilling rig should be situated on location such that the prevailing winds blow across the rig toward the reserve pit or at right angles to a line from the rig to the reserve pit.
- 2. The entrance to the location should be designated so that it can be barricaded if Hydrogen Sulfide emergency conditions arise. An auxiliary exit (or entrance) should be available in case of a catastrophe; a shift in wind direction would not preclude escape from the location. Appropriate warning signs and flags should be placed at all location entrances.
- 3. Once H2S safety procedures are established on location, no beards or facial hair, which will interfere with face seal or mask, will be allowed on location.
- 4. A minimum of two BRIEFING AREAS will be established, no less than 250 feet from the wellhead and in such location that at least one area will be up-wind from the well at all times. Upon recognition of an emergency situation, all personnel should assemble at the designated briefing areas for instructions.
- 5. A safety equipment trailer will be station at one of the briefing areas.
- 6. Windsocks will be installed and wind streamers (6 to 8 feet above ground level) placed at the location entrance. Windsocks shall be illuminated for nighttime operations. Personnel should develop wind direction consciousness.
- 7. The mud-logging trailer will be located so as to minimize the danger from the gas that breaks out of the drilling fluid.
- 8. Shale shaker mud tanks will be located so as to minimize the danger from gas that breaks out of the drilling fluid.
- 9. Electric power plant(s) will be located as far from the well bore as practical so that it may be used under conditions where it otherwise would have to be shut down.
- 10. When approaching depth where Hydrogen Sulfide may be encountered, appropriate warning signs will be posted on all access roads to the location and at the foot of all stairways to the derrick floor.
- 11. Appropriate smoking areas will be designated, and smoking will be prohibited elsewhere.

The table below lists various poisonous gases and the concentrations at which they become dangerous.

TOXICITY OF VARIOUS GASES

(7	TOXICITY OF GASES (Taken from API RP-49 September 1974 – Re-issued August 1978)				
Common Name	Chemical Formula	Gravity (Air = 1)	Threshold 1 Limit	Hazardous 2 Limit	Lethal 3 Limit
Hydrogen Sulfide	H_2S	1.18	10 ppm	250 ppm/1hr	600 ppm
Sulfur Dioxide	SO_2	2.21	20 ppm		1000 ppm
Carbon Monoxide	СО	0.97	50 ppm	400 ppm/1hr	1000 ppm
Carbon Dioxide	CO_2	1.52	5000 ppm	5%	10%
Methane	CH ₄	0.55	90000 ppm		Above 5% in ir

1. Threshold concentration at which it is believed that all workers may repeatedly be exposed day after day, without adverse effect	2. Hazardous concentration that may cause death	3. Lethal concentration that will cause death with short-term exposure
---	---	--

Properties of Gases

The produced gas will probably be a mixture of Carbon Dioxide, Hydrogen Sulfide, and Methane.

Carbon Dioxide

Carbon Dioxide (CO₂) is usually considered inert and is commonly used to extinguish fires.

It is heavier than air (1.52 times) and it will concentrate in low areas of still air.

Humans cannot breathe air containing more than 10% CO₂ without losing consciousness. Air containing 5% CO₂ will cause disorientation in a few minutes.

Continued exposures to CO₂ after being affected will cause convulsions, coma, and respiratory failure.

The threshold limit of CO₂ is 5000 ppm.

Short-term exposure to 50,000 PPM (5%) is reasonable. This gas is colorless and odorless and can be tolerated in relatively high concentrations.

Hydrogen Sulfide

Hydrogen Sulfide (H₂S) itself is a colorless, transparent gas and is flammable. It is heavier than air and, hence, may accumulate in low places.

Although the slightest presence of H₂S in the air is normally detectable by its characteristic "rotten egg" odor, it is dangerous to rely on the odor as a means of detecting excessive concentrations because the sense of smell is rapidly lost, allowing lethal concentrations to be accumulated without warning. The following table indicates the poisonous nature of Hydrogen Sulfide.

	HYDROGEN SULFIDE TOXICITY				
	Concent	ration	Effects		
$%H_{2}S$	PPM	GR/100 SCF 1			
0.001	10	0.65	Safe for 8 hours without respirator. Obvious and unpleasant odor.		
0.002	20	1.30	Burning in eyes and irritation of respiratory tract after on hour.		
0.01	100	6.48	Kills smell in 3 to 15 minutes; may sting eyes and throat.		
0.02	200	12.96	Kills smell shortly; stings eyes and throat.		
0.05	500	32.96	Dizziness; breathing ceases in a few minutes; need prompt artificial respiration.		
0.07	700	45.92	Unconscious quickly; death will result if not rescued promptly		
0.10	1000	64.80	DEATH!		
Note: 1	grain per 10	00 cubic feet			

Sulfur Dioxide

Sulfur Dioxide is a colorless, transparent gas and is non-flammable.

Sulfur Dioxide (SO₂) is produced during the burning of H₂S. Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas.

	SULFUR DIOXIDE TOXICITY		
Concentration		Effects	
%SO ₂ PPM			
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this	
		range.	
0.0012	12	Throat irritation, coughing, and constriction of the chest	
		tearing and smarting of eyes.	
0.15	150	So irritating that it can only be endured for a few	
		minutes.	
0.05	500	Causes a sense of suffocation, even with first breath.	

H2S REQUIRED EQUIPMENT LIST

RESPIRATORY SAFETY SYSTEMS

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

DETECTION AND ALARM SYSTEM

- 4 channel H2S monitor
- 4 wireless H2S monitors
- H2S alarm system (Audible/Red strobe)
- Personal gas monitor for each person on location
- Gas sample tubes

WELL CONTROL EQUIPMENT

- Flare line with remote ignitor and backup flare gun, placed 150' from wellhead
- Choke manifold with remotely operated choke
- Mud gas separator

VISUAL WARNING SYSTEMS

- One color code condition sign will be placed at each entrance reflecting possible conditions at the site
- A colored condition flag will be on display, reflecting current condition at the site at the time
- At least 4 wind socks placed on location, visible at all angles and locations

MUD PROGRAM

- Mud will contain sufficient weight and additives to control and minimize H2S

METALLURGY

- All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H2S volume and pressure

COMMUNICATION

- Cell phones, intercoms, and satellite phones will be available on location

ADDITIONAL SAFETY RELATED ITEMS

- Stretcher
- 2 OSHA full body harness
- 20# class ABC fire extinguisher

DETERMINATION OF RADIUS OF EXPOSURE

Potentially hazardous volume means a volume of gas of such H2S concentration and flow rate that it may result in radius of exposure-calculated ambient concentrations of 100 ppm H2S at any occupied residence, school, church, park, school bus stop, place of business or other area where the public could reasonably be expected to frequent, or 500 ppm H2S at any Federal, State, County or municipal road or highway.

Currently there are no residence located within the ROE

Radius of exposure means the calculation resulting from using the Pasquill -Gifford derived equation, or by such other method(s) that may be approved by the authorized officer. Advanced Fire and Safety has provided the Pasquill-Gifford formula in excel format for simple calculations.

NEW MEXICO OIL & GAS CONSERVATION DIVISION 118

Chedder Fed Com 301H

H2S Concentration- 250 PPM

Maximum Escape Volume- 5000 MCF/Day

100 PPM Radius of Exposure - 116

(Formula= $1.589 \times (250/1000000) \times (5000 \times 1000) \times .6258$

500 PPM Radius of Exposure (Block 16)- 53

Formula= .4546 x (250/1000000) x (5000 x 1000) x .6258

EMERGENCY CONTACT LIST

911 is available in the area			
NAME	POSITION	COMPANY	NUMBER
	Centennial Contacts	S	
Jeremy Ray	Drilling Engineer	CDEV	303-263-7872
Ricky Mills/John Helm	Superintendent	CDEV	432-305-1068
Mike Ponder/Wayne Miller	Field Superintendent	CDEV	432-287-3003
Brett Thompson	Drilling Manager	CDEV	720-656-7027
Reggie Phillips	HSE Manager	CDEV	432-638-3380
H&P 650 Drilling Office	Drilling Supervisor	CDEV	432-538-3343
	Local Emergency Resp	onse	
Fire Department			575-395-2511
Jal Community Hospital			505-395-2511
State Police			505-827-9000
Lea County Sheriff			575-396-3611
	Safety Contractor		
Advanced Safety	Office	Advanced Safety	833-296-3913
Joe Gadway	Permian Supervisor	Advanced Safety	318-446-3716
Clint Hudson	Operations Manager	Advanced Safety	337-552-8330
	Well Control Compa	ny	
Wild Well Control			866-404-9564
	Contractors		
Tommy E Lee	Pump Trucks		432-813-7140
Paul Smith	Drilling Fluids	Momentum	307-258-6254
Compass Coordinators	Cement	Compass	432-561-5970

Project: CHEDDER FEDERAL Site: CHEDDAR

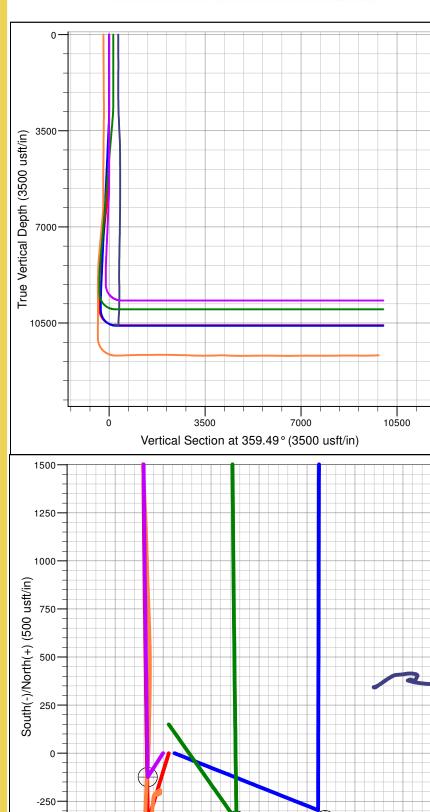
Wells: CHEDDAR FED COM 301H, 401H, 502H

Design: APD PLAN RKB: 3664.7

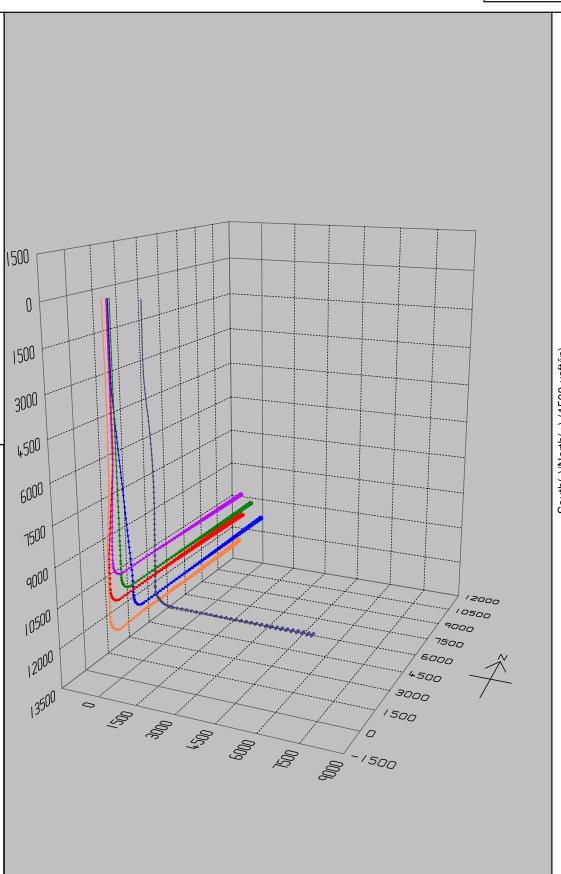

Geodetic System: Universal Transverse Mercator (US Survey Feet)

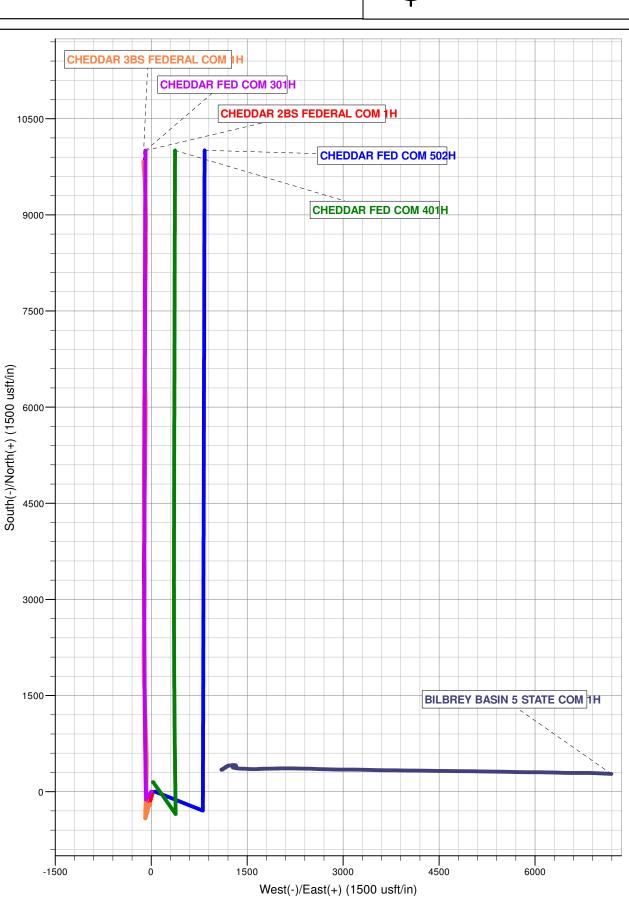
Datum: North American Datum 1983

Ellipsoid: GRS 1980


Zone: Zone 13N (108 W to 102 W)

System Datum: Mean Sea Level




Magnetic Field Strength: 48891.4snT Dip Angle: 60.40° Date: 11/6/2018 Model: IGRF200510

Azimuths to True North Magnetic North: 7.82°

West(-)/East(+) (500 usft/in)

NEW MEXICO

LEA CHEDDAR CHEDDAR FED COM 301H

CHEDDAR FED COM 301H

Plan: PWP0

Survey Report - Geographic

04 March, 2019

Survey Report - Geographic

NEW MEXICO Company:

Project: LEA

CHEDDAR Site:

Well: CHEDDAR FED COM 301H

Wellbore: CHEDDAR FED COM 301H

PWP0 Design:

Local Co-ordinate Reference:

TVD Reference: RKB=3664.7+25 @ 3689.7usft RKB=3664.7+25 @ 3689.7usft **MD Reference:**

North Reference:

Minimum Curvature **Survey Calculation Method:**

Database:

Centennial EDM SQL Server

Well CHEDDAR FED COM 301H

LEA **Project**

Position Uncertainty:

Map System: Geo Datum:

From:

Universal Transverse Mercator (US Survey Fee System Datum:

North American Datum 1983

0.0 usft

Map Zone: Zone 13N (108 W to 102 W) Mean Sea Level

Site **CHEDDAR**

Northing: Site Position:

Easting:

Slot Radius:

0.00 usft 97,504,799.39 usft

13-3/16 "

Latitude: 0° 0' 0.000 N

Longitude: 152° 28' 52.124 W Grid Convergence: 0.00°

Well CHEDDAR FED COM 301H

Мар

Well Position 32° 24' 52.537 N +N/-S 0.0 usftNorthing: 11,768,777.60 usft Latitude:

> +E/-W 0.0 usft

Easting: 2,040,217.58 usft Longitude: 103° 42' 14.591 W

0.0 usft Wellhead Elevation: usft Ground Level: 3.664.7 usfl **Position Uncertainty**

CHEDDAR FED COM 301H Wellbore

Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle (°)	Field Strength (nT)
	IGRF200510	12/31/2009	7.82	60.40	48,891.41192276

PWP0 Design

Audit Notes:

PROTOTYPE Version: Phase: Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 359.49

Date 3/4/2019 **Survey Tool Program**

> From To

(usft) Survey (Wellbore) **Tool Name** Description

19,564.5 PWP0 (CHEDDAR FED COM 301H) 0.0 MWD+IFR1+MS OWSG MWD + IFR1 + Multi-Station Correction

Planned Survey Measured Vertical Мар Мар Depth Inclination Azimuth Depth Northing Easting +N/-S +E/-W (usft) (usft) (usft) (usft) (usft) (usft) Latitude (°) (°) Longitude 0.0 0.00 0.00 0.0 0.0 32° 24' 52.537 N 103° 42' 14.591 W 0.0 11,768,777.60 2.040.217.58 0.00 103° 42' 14.591 W 100.0 0.00 100.0 0.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 200.0 0.00 0.00 200.0 0.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 103° 42' 14.591 W 300.0 0.000.00 300.0 0.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 103° 42' 14.591 W 400.0 0.00 0.00 400.0 0.0 0.0 11,768,777.60 2.040.217.58 32° 24' 52.537 N 103° 42' 14.591 W 500.0 0.00 0.00 500.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 103° 42' 14.591 W 0.0 600.0 0.00 0.00 600.0 0.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 103° 42' 14.591 W 700.0 0.00 0.00 700.0 0.0 0.0 11,768,777.60 2.040.217.58 32° 24' 52.537 N 103° 42' 14.591 W 800.0 0.00 0.00 0.008 0.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 103° 42' 14.591 W 900.0 32° 24' 52.537 N 103° 42' 14.591 W 900.0 0.00 0.00 0.0 0.0 11,768,777.60 2,040,217.58 1,000.0 0.00 0.00 1,000.0 0.0 0.0 11,768,777.60 2,040,217.58 32° 24' 52.537 N 103° 42' 14.591 W 0.00 0.00 1,100.0 11,768,777.60 32° 24' 52.537 N 103° 42' 14.591 W 1,100.0 0.0 0.0 2,040,217.58

Survey Report - Geographic

Company: **NEW MEXICO**

Project: LEA CHEDDAR Site:

Well: CHEDDAR FED COM 301H Wellbore: CHEDDAR FED COM 301H

PWP0 Design:

Local Co-ordinate Reference:

Well CHEDDAR FED COM 301H TVD Reference: RKB=3664.7+25 @ 3689.7usft MD Reference: RKB=3664.7+25 @ 3689.7usft

North Reference:

Survey Calculation Method: Minimum Curvature

Database:

Planned Sur	vey								
Measured	,		Vertical			Мар	Мар		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
1,200.0		0.00	1,200.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,300.0		0.00	1,300.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,400.0		0.00	1,400.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,500.0		0.00	1,500.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,600.0		0.00	1,600.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,000.0		0.00	2,000.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,100.0	0.00	0.00	2,100.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,200.0		0.00	2,200.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,300.0		0.00	2,300.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,400.0		0.00	2,400.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,500.0		0.00	2,500.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,600.0		0.00	2,600.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,700.0		0.00	2,700.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,800.0		0.00	2,800.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
2,900.0		0.00	2,900.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,000.0		0.00	3,000.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,100.0		0.00	3,100.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,200.0			3,200.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,300.0 3,400.0		0.00 0.00	3,300.0 3,400.0	0.0 0.0	0.0 0.0	11,768,777.60 11,768,777.60	2,040,217.58	32° 24' 52.537 N 32° 24' 52.537 N	103° 42' 14.591 W 103° 42' 14.591 W
3,500.0		0.00	3,500.0	0.0	0.0	11,768,777.60	2,040,217.58 2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,600.0		0.00	3,600.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,700.0		0.00	3,700.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,800.0		0.00	3,800.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
3,900.0		0.00	3,900.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,000.0		0.00	4,000.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,100.0		0.00	4,100.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,200.0		0.00	4,200.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,300.0		0.00	4,300.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,400.0		0.00	4,400.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,500.0	0.00	0.00	4,500.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,600.0	0.00	0.00	4,600.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,700.0	0.00	0.00	4,700.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
4,800.0	0.00	0.00	4,800.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24′ 52.537 N	103° 42' 14.591 W
4,900.0		0.00	4,900.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,000.0		0.00	5,000.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,100.0		0.00	5,100.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,200.0		0.00	5,200.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,300.0			5,300.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,400.0		0.00	5,400.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,500.0			5,500.0	0.0	0.0	11,768,777.60	2,040,217.58	32° 24' 52.537 N	103° 42' 14.591 W
5,600.0			5,600.0	-0.7	-0.5	11,768,776.86	2,040,217.11	32° 24' 52.530 N	103° 42' 14.596 W
5,700.0		212.66	5,700.0	-2.9	-1.9	11,768,774.64	2,040,215.73	32° 24' 52.508 N	103° 42' 14.613 W
5,800.0		212.66	5,799.9	-6.6	-4.2	11,768,770.94	2,040,213.42	32° 24' 52.471 N	103° 42' 14.640 W
5,900.0			5,899.7	-11.0	-7.1	11,768,766.50	2,040,210.65	32° 24' 52.428 N	103° 42′ 14.673 W
6,000.0			5,999.6	-15.4	-9.9	11,768,762.06	2,040,207.88	32° 24' 52.384 N	103° 42′ 14.706 W
6,100.0		212.66	6,099.5	-19.8	-12.7	11,768,757.62	2,040,205.11	32° 24' 52.341 N	103° 42' 14.739 W
6,200.0 6,300.0		212.66	6,199.3	-24.2 28.6	-15.5	11,768,753.18	2,040,202.34	32° 24' 52.297 N	103° 42′ 14.772 W
6,400.0			6,299.2	-28.6 -33.0	-18.4 -21.2	11,768,748.74	2,040,199.57	32° 24' 52.253 N	103° 42' 14.805 W 103° 42' 14.838 W
6,500.0		212.66 212.66	6,399.0 6,498.9	-33.0 -37.5	-21.2 -24.0	11,768,744.30 11,768,739.86	2,040,196.79 2,040,194.02	32° 24' 52.210 N 32° 24' 52.166 N	103 42 14.836 W
6,600.0			6,598.8	-37.3 -41.9	-24.0 -26.8	11,768,735.42	2,040,194.02	32° 24' 52.100 N	103° 42' 14.904 W
0,000.0	3.00	212.00	0,080.0	-41.9	-20.0	11,700,730.42	۷,U 1 U, ۱۵۱.۷3	JZ Z4 JZ.1ZJ N	103 42 14.904 11

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 301H
Wellbore: CHEDDAR FED COM 301H

Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Database:

Well CHEDDAR FED COM 301H RKB=3664.7+25 @ 3689.7usft

RKB=3664.7+25 @ 3689.7usft

True

Minimum Curvature

Planned Surv	/ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
6,700.0		212.66	6,698.6	-46.3	-29.7	11,768,730.98	2,040,188.48	32° 24′ 52.079 N	103° 42' 14.937 W
6,800.0		212.66	6,798.5	-50.7	-32.5	11,768,726.54	2,040,185.71	32° 24' 52.035 N	103° 42' 14.970 W
6,900.0		212.66	6,898.4	-55.1	-35.3	11,768,722.10	2,040,182.94	32° 24' 51.992 N	103° 42' 15.003 W
7,000.0		212.66	6,998.2	-59.5	-38.1	11,768,717.66	2,040,180.17	32° 24' 51.948 N	103° 42' 15.036 W
7,100.0		212.66	7,098.1	-63.9	-41.0	11,768,713.22	2,040,177.40	32° 24' 51.904 N	103° 42' 15.069 W
7,200.0		212.66	7,197.9	-68.3	-43.8	11,768,708.78	2,040,174.63	32° 24' 51.861 N	103° 42' 15.102 W
7,300.0		212.66	7,297.8	-72.7	-46.6	11,768,704.34	2,040,171.86	32° 24' 51.817 N	103° 42' 15.134 W
7,400.0		212.66	7,397.7	-77.1	-49.4	11,768,699.90	2,040,169.09	32° 24' 51.774 N	103° 42' 15.167 W
7,500.0		212.66	7,497.5	-81.5	-52.3	11,768,695.46	2,040,166.32	32° 24' 51.730 N	103° 42' 15.200 W
7,600.0		212.66	7,597.4	-85.9	-55.1	11,768,691.02	2,040,163.55	32° 24' 51.686 N	103° 42' 15.233 W
7,700.0		212.66	7,697.3	-90.3	-57.9	11,768,686.58	2,040,160.78	32° 24' 51.643 N	103° 42' 15.266 W
7,800.0		212.66	7,797.1	-94.7	-60.7	11,768,682.14	2,040,158.00	32° 24' 51.599 N	103° 42' 15.299 W
7,900.0		212.66	7,897.0	-99.1	-63.5	11,768,677.70	2,040,155.23	32° 24' 51.556 N	103° 42' 15.332 W
8,000.0		212.66	7,996.8	-103.5	-66.4	11,768,673.26	2,040,152.46	32° 24' 51.512 N	103° 42' 15.365 W
8,100.0		212.66	8,096.7	-108.0	-69.2	11,768,668.82	2,040,149.69	32° 24' 51.468 N	103° 42' 15.398 W
8,200.0		212.66 212.66	8,196.6	-112.4	-72.0 -74.8	11,768,664.38	2,040,146.92	32° 24' 51.425 N	103° 42' 15.431 W
8,300.0			8,296.4	-116.8		11,768,659.94	2,040,144.15	32° 24′ 51.381 N	103° 42' 15.464 W
8,320.0 8,400.0		212.66 212.66	8,316.4 8,396.3	-117.6 -120.7	-75.4 -77.4	11,768,659.05 11,768,655.97	2,040,143.60 2,040,141.68	32° 24' 51.372 N 32° 24' 51.342 N	103° 42' 15.471 W 103° 42' 15.493 W
8,500.0		212.66	8,496.3	-120.7	-77.4 -79.0	11,768,653.46	2,040,141.00	32° 24' 51.342 N	103° 42' 15.512 W
8,600.0		212.66	8,596.3	-123.2 -124.2	-79.0 -79.6	11,768,652.42	2,040,139.46	32° 24' 51.316 N	103° 42' 15.512 W
8,620.0		0.00	8,616.3	-124.2	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
8,700.0		0.00	8,696.3	-124.3	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
8,800.0		0.00	8,796.3	-124.3	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
8,900.0		0.00	8,896.3	-124.3	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
9,000.0		0.00	8,996.3	-124.3	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
9,100.0		0.00	9,096.3	-124.3	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
9,110.5		0.00	9,106.8	-124.3	-79.6	11,768,652.39	2,040,139.44	32° 24' 51.307 N	103° 42' 15.520 W
9,200.0		359.13	9,195.9	-117.3	-79.8	11,768,659.36	2,040,139.25	32° 24' 51.376 N	103° 42' 15.521 W
9,300.0		359.13	9,292.8	-93.2	-80.1	11,768,683.42	2,040,138.59	32° 24' 51.614 N	103° 42' 15.526 W
9,400.0		359.13	9,384.1	-52.7	-80.7	11,768,723.93	2,040,137.49	32° 24' 52.015 N	103° 42' 15.533 W
9,500.0		359.13	9,467.0	3.0	-81.6	11,768,779.66	2,040,135.96	32° 24' 52.567 N	103° 42' 15.543 W
9,600.0		359.13	9,538.9	72.3	-82.6	11,768,848.92	2,040,134.07	32° 24' 53.253 N	103° 42' 15.555 W
9,700.0	58.92	359.13	9,597.7	153.0	-83.9	11,768,929.61	2,040,131.87	32° 24' 54.051 N	103° 42' 15.569 W
9,800.0	68.92	359.13	9,641.6	242.7	-85.2	11,769,019.29	2,040,129.42	32° 24' 54.939 N	103° 42' 15.585 W
9,900.0	78.91	359.13	9,669.3	338.7	-86.7	11,769,115.21	2,040,126.80	32° 24' 55.889 N	103° 42' 15.602 W
10,000.0	88.91	359.13	9,679.9	438.0	-88.2	11,769,214.49	2,040,124.09	32° 24' 56.872 N	103° 42' 15.620 W
10,010.9	90.00	359.13	9,680.0	448.9	-88.4	11,769,225.41	2,040,123.79	32° 24' 56.980 N	103° 42' 15.622 W
10,100.0		359.16	9,680.0	538.0	-89.7	11,769,314.45	2,040,121.38	32° 24' 57.861 N	103° 42' 15.637 W
10,200.0		359.20	9,680.0	638.0	-91.1	11,769,414.41	2,040,118.73	32° 24' 58.851 N	103° 42' 15.654 W
10,300.0		359.23	9,680.0	738.0	-92.5	11,769,514.38	2,040,116.15	32° 24' 59.840 N	103° 42' 15.670 W
10,400.0		359.27	9,680.0	837.9	-93.8	11,769,614.35	2,040,113.63	32° 25' 0.830 N	103° 42' 15.685 W
10,500.0		359.30	9,680.0	937.9	-95.0	11,769,714.32	2,040,111.17	32° 25′ 1.820 N	103° 42' 15.700 W
10,600.0		359.34	9,680.0	1,037.9	-96.2	11,769,814.29	2,040,108.78	32° 25′ 2.809 N	103° 42' 15.713 W
10,700.0		359.38	9,680.0	1,137.9	-97.3	11,769,914.26	2,040,106.44	32° 25′ 3.799 N	103° 42' 15.727 W
10,800.0		359.41	9,680.0	1,237.9	-98.4	11,770,014.24	2,040,104.17	32° 25′ 4.788 N	103° 42' 15.739 W
10,900.0		359.45	9,680.0	1,337.9	-99.4	11,770,114.21	2,040,101.96	32° 25' 5.778 N	103° 42' 15.751 W
11,000.0		359.48	9,680.0	1,437.9	-100.3	11,770,214.19	2,040,099.81	32° 25' 6.768 N	103° 42' 15.761 W
11,100.0		359.52	9,680.0	1,537.9	-101.2	11,770,314.17	2,040,097.73	32° 25' 7.757 N	103° 42' 15.772 W
11,200.0		359.55	9,680.0	1,637.9	-102.0	11,770,414.15	2,040,095.70	32° 25' 8.747 N	103° 42' 15.781 W
11,300.0		359.59	9,680.0	1,737.9	-102.8	11,770,514.13	2,040,093.74	32° 25' 9.737 N	103° 42' 15.790 W
11,400.0		359.62	9,680.0	1,837.9	-103.5	11,770,614.11	2,040,091.84	32° 25' 10.726 N	103° 42' 15.798 W
11,500.0		359.66	9,680.0	1,937.9	-104.1	11,770,714.09	2,040,090.00	32° 25' 11.716 N	103° 42' 15.805 W
11,600.0		359.70	9,680.0	2,037.9	-104.6	11,770,814.08	2,040,088.23	32° 25′ 12.706 N	103° 42' 15.812 W
11,700.0	90.00	359.73	9,680.0	2,137.9	-105.1	11,770,914.06	2,040,086.52	32° 25′ 13.696 N	103° 42' 15.818 W

Survey Report - Geographic

Company: **NEW MEXICO**

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 301H Wellbore: CHEDDAR FED COM 301H

PWP0 Design:

Local Co-ordinate Reference:

Well CHEDDAR FED COM 301H RKB=3664.7+25 @ 3689.7usft TVD Reference: RKB=3664.7+25 @ 3689.7usft MD Reference:

North Reference:

Survey Calculation Method: Database:

Minimum Curvature

Planned Surv	<i>r</i> ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
11,800.0	90.00	359.77	9,680.0	2,237.9	-105.6	11,771,014.05	2,040,084.86	32° 25' 14.685 N	103° 42' 15.823 W
11,900.0	90.00	359.80	9,680.0	2,337.9	-106.0	11,771,114.04	2,040,083.27	32° 25′ 15.675 N	103° 42' 15.827 W
12,000.0		359.84	9,680.0	2,437.9	-106.3	11,771,214.02	2,040,081.75	32° 25′ 16.665 N	103° 42' 15.831 W
12,100.0		359.87	9,680.0	2,537.9	-106.5	11,771,314.01	2,040,080.28	32° 25' 17.654 N	103° 42' 15.834 W
12,200.0		359.91	9,680.0	2,637.9	-106.7	11,771,414.00	2,040,078.88	32° 25' 18.644 N	103° 42' 15.836 W
12,300.0		359.94	9,680.0	2,737.9	-106.8	11,771,513.99	2,040,077.54	32° 25′ 19.634 N	103° 42' 15.837 W
12,400.0		359.98	9,680.0	2,837.9	-106.9	11,771,613.99	2,040,076.26	32° 25' 20.623 N	103° 42' 15.838 W
12,500.0		0.02	9,680.0	2,937.9	-106.9	11,771,713.98	2,040,075.04	32° 25' 21.613 N	103° 42' 15.838 W
12,600.0		0.05	9,680.0	3,037.9	-106.9	11,771,813.97	2,040,073.89	32° 25' 22.603 N	103° 42' 15.838 W
12,700.0		0.09	9,680.0	3,137.9	-106.7	11,771,913.97	2,040,072.79	32° 25' 23.592 N	103° 42' 15.836 W
12,800.0		0.12	9,680.0	3,237.9	-106.6	11,772,013.96	2,040,071.76	32° 25' 24.582 N	103° 42' 15.834 W
12,866.0		0.15	9,680.0	3,303.9	-106.4	11,772,079.98	2,040,071.12	32° 25' 25.236 N	103° 42' 15.832 W
12,900.0		0.15	9,680.0	3,337.9	-106.3	11,772,113.96	2,040,070.79	32° 25' 25.572 N	103° 42' 15.831 W
13,000.0		0.15	9,680.0	3,437.9	-106.1	11,772,213.95	2,040,069.83	32° 25' 26.562 N	103° 42' 15.828 W
13,100.0		0.15	9,680.0	3,537.9	-105.8	11,772,313.95	2,040,068.87	32° 25' 27.551 N	103° 42' 15.825 W
13,200.0		0.15	9,680.0	3,637.9	-105.6	11,772,413.94	2,040,067.92	32° 25' 28.541 N 32° 25' 29.531 N	103° 42' 15.822 W
13,300.0 13,400.0		0.15 0.15	9,680.0 9,680.0	3,737.9 3,837.9	-105.3 -105.0	11,772,513.94 11,772,613.93	2,040,066.96 2,040,066.00	32° 25' 30.520 N	103° 42' 15.819 W 103° 42' 15.816 W
13,500.0		0.15	9,680.0	3,937.9	-103.0	11,772,713.93	2,040,065.04	32° 25' 31.510 N	103° 42' 15.813 W
13,600.0		0.15	9,680.0	4,037.9	-104.5	11,772,713.93	2,040,063.04	32° 25' 32.500 N	103° 42' 15.811 W
13,700.0		0.15	9,680.0	4,037.9	-104.3	11,772,913.92	2,040,063.12	32° 25' 33.489 N	103° 42' 15.808 W
13,800.0		0.15	9,680.0	4,137.9	-104.3	11,773,013.92	2,040,062.16	32° 25' 34.479 N	103° 42' 15.805 W
13,900.0		0.15	9,680.0	4,337.9	-104.0	11,773,113.91	2,040,061.21	32° 25' 35.469 N	103° 42' 15.802 W
14,000.0		0.15	9,680.0	4,437.9	-103.5	11,773,213.91	2,040,060.25	32° 25' 36.459 N	103° 42' 15.799 W
14,100.0		0.15	9,680.0	4,537.9	-103.3	11,773,313.90	2,040,059.29	32° 25' 37.448 N	103° 42' 15.796 W
14,200.0		0.15	9,680.0	4,637.9	-103.0	11,773,413.90	2,040,058.33	32° 25' 38.438 N	103° 42' 15.793 W
14,300.0		0.15	9,680.0	4,737.9	-102.8	11,773,513.89	2,040,057.37	32° 25' 39.428 N	103° 42' 15.790 W
14,400.0		0.15	9,680.0	4,837.9	-102.5	11,773,613.89	2,040,056.41	32° 25' 40.417 N	103° 42' 15.787 W
14,500.0		0.15	9,680.0	4,937.9	-102.2	11,773,713.88	2,040,055.45	32° 25' 41.407 N	103° 42' 15.784 W
14,600.0		0.15	9,680.0	5,037.9	-102.0	11,773,813.88	2,040,054.50	32° 25' 42.397 N	103° 42' 15.781 W
14,700.0		0.15	9,680.0	5,137.9	-101.7	11,773,913.87	2,040,053.54	32° 25' 43.386 N	103° 42' 15.778 W
14,800.0	90.00	0.15	9,680.0	5,237.9	-101.5	11,774,013.87	2,040,052.58	32° 25' 44.376 N	103° 42' 15.775 W
14,900.0		0.15	9,680.0	5,337.9	-101.2	11,774,113.86	2,040,051.62	32° 25' 45.366 N	103° 42' 15.772 W
15,000.0	90.00	0.15	9,680.0	5,437.9	-101.0	11,774,213.86	2,040,050.66	32° 25′ 46.356 N	103° 42' 15.769 W
15,100.0	90.00	0.15	9,680.0	5,537.9	-100.7	11,774,313.86	2,040,049.70	32° 25′ 47.345 N	103° 42' 15.766 W
15,200.0	90.00	0.15	9,680.0	5,637.9	-100.5	11,774,413.85	2,040,048.74	32° 25′ 48.335 N	103° 42' 15.763 W
15,300.0	90.00	0.15	9,680.0	5,737.9	-100.2	11,774,513.85	2,040,047.79	32° 25′ 49.325 N	103° 42' 15.760 W
15,400.0	90.00	0.15	9,680.0	5,837.9	-100.0	11,774,613.84	2,040,046.83	32° 25′ 50.314 N	103° 42' 15.757 W
15,500.0		0.15	9,680.0	5,937.9	-99.7	11,774,713.84	2,040,045.87	32° 25′ 51.304 N	103° 42' 15.754 W
15,600.0		0.15	9,680.0	6,037.9	-99.5		2,040,044.91	32° 25′ 52.294 N	103° 42' 15.751 W
15,700.0		0.15	9,680.0	6,137.9	-99.2	11,774,913.83	2,040,043.95	32° 25′ 53.283 N	103° 42' 15.748 W
15,800.0		0.15	9,680.0	6,237.9	-98.9	11,775,013.82	2,040,042.99	32° 25′ 54.273 N	103° 42' 15.745 W
15,900.0		0.15	9,680.0	6,337.9	-98.7	11,775,113.82	2,040,042.03	32° 25′ 55.263 N	103° 42' 15.742 W
16,000.0		0.15	9,680.0	6,437.9	-98.4	11,775,213.81	2,040,041.08	32° 25′ 56.252 N	103° 42' 15.739 W
16,100.0		0.15	9,680.0	6,537.9	-98.2	11,775,313.81	2,040,040.12	32° 25' 57.242 N	103° 42' 15.736 W
16,200.0		0.15	9,680.0	6,637.9	-97.9	11,775,413.80	2,040,039.16	32° 25' 58.232 N	103° 42' 15.733 W
16,300.0		0.15	9,680.0	6,737.9	-97.7	11,775,513.80	2,040,038.20	32° 25' 59.222 N	103° 42' 15.730 W
16,400.0		0.15	9,680.0	6,837.9	-97.4	11,775,613.80	2,040,037.24	32° 26' 0.211 N	103° 42' 15.727 W
16,500.0		0.15	9,680.0	6,937.9	-97.2	11,775,713.79	2,040,036.28	32° 26' 1.201 N	103° 42' 15.725 W
16,600.0		0.15	9,680.0	7,037.9	-96.9	11,775,813.79	2,040,035.32	32° 26' 2.191 N	103° 42' 15.722 W
16,700.0		0.15	9,680.0	7,137.9	-96.7	11,775,913.78	2,040,034.37	32° 26' 3.180 N	103° 42' 15.719 W
16,800.0		0.15	9,680.0	7,237.9	-96.4	11,776,013.78	2,040,033.41	32° 26' 4.170 N	103° 42' 15.716 W
16,900.0		0.15	9,680.0	7,337.9	-96.2	11,776,113.77	2,040,032.45	32° 26' 5.160 N	103° 42' 15.713 W
17,000.0		0.15	9,680.0	7,437.9	-95.9	11,776,213.77	2,040,031.49	32° 26′ 6.149 N	103° 42' 15.710 W
17,100.0	90.00	0.15	9,680.0	7,537.9	-95.6	11,776,313.76	2,040,030.53	32° 26' 7.139 N	103° 42' 15.707 W

Survey Report - Geographic

Company: NEW MEXICO

Project: LEA Site: CHEDDAR

Well: CHEDDAR FED COM 301H
Wellbore: CHEDDAR FED COM 301H

Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Database:

Well CHEDDAR FED COM 301H

RKB=3664.7+25 @ 3689.7usft RKB=3664.7+25 @ 3689.7usft

True

Minimum Curvature

Planned Surve	ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
17,200.0	90.00	0.15	9,680.0	7,637.9	-95.4	11,776,413.76	2,040,029.57	32° 26' 8.129 N	103° 42' 15.704 W
17,300.0	90.00	0.15	9,680.0	7,737.9	-95.1	11,776,513.75	2,040,028.61	32° 26′ 9.119 N	103° 42' 15.701 W
17,400.0	90.00	0.15	9,680.0	7,837.9	-94.9	11,776,613.75	2,040,027.66	32° 26′ 10.108 N	103° 42' 15.698 W
17,500.0	90.00	0.15	9,680.0	7,937.9	-94.6	11,776,713.75	2,040,026.70	32° 26′ 11.098 N	103° 42' 15.695 W
17,600.0	90.00	0.15	9,680.0	8,037.9	-94.4	11,776,813.74	2,040,025.74	32° 26′ 12.088 N	103° 42' 15.692 W
17,700.0	90.00	0.15	9,680.0	8,137.9	-94.1	11,776,913.74	2,040,024.78	32° 26' 13.077 N	103° 42' 15.689 W
17,800.0	90.00	0.15	9,680.0	8,237.9	-93.9	11,777,013.73	2,040,023.82	32° 26' 14.067 N	103° 42' 15.686 W
17,900.0	90.00	0.15	9,680.0	8,337.9	-93.6	11,777,113.73	2,040,022.86	32° 26' 15.057 N	103° 42' 15.683 W
18,000.0	90.00	0.15	9,680.0	8,437.9	-93.4	11,777,213.72	2,040,021.90	32° 26′ 16.046 N	103° 42' 15.680 W
18,100.0	90.00	0.15	9,680.0	8,537.9	-93.1	11,777,313.72	2,040,020.95	32° 26′ 17.036 N	103° 42' 15.677 W
18,200.0	90.00	0.15	9,680.0	8,637.9	-92.8	11,777,413.71	2,040,019.99	32° 26′ 18.026 N	103° 42' 15.674 W
18,300.0	90.00	0.15	9,680.0	8,737.9	-92.6	11,777,513.71	2,040,019.03	32° 26' 19.015 N	103° 42' 15.671 W
18,400.0	90.00	0.15	9,680.0	8,837.9	-92.3	11,777,613.70	2,040,018.07	32° 26' 20.005 N	103° 42' 15.668 W
18,500.0	90.00	0.15	9,680.0	8,937.9	-92.1	11,777,713.70	2,040,017.11	32° 26' 20.995 N	103° 42' 15.665 W
18,600.0	90.00	0.15	9,680.0	9,037.9	-91.8	11,777,813.69	2,040,016.15	32° 26' 21.985 N	103° 42' 15.662 W
18,700.0	90.00	0.15	9,680.0	9,137.9	-91.6	11,777,913.69	2,040,015.19	32° 26' 22.974 N	103° 42' 15.659 W
18,800.0	90.00	0.15	9,680.0	9,237.9	-91.3	11,778,013.69	2,040,014.24	32° 26' 23.964 N	103° 42' 15.656 W
18,900.0	90.00	0.15	9,680.0	9,337.9	-91.1	11,778,113.68	2,040,013.28	32° 26' 24.954 N	103° 42' 15.653 W
19,000.0	90.00	0.15	9,680.0	9,437.9	-90.8	11,778,213.68	2,040,012.32	32° 26′ 25.943 N	103° 42' 15.650 W
19,100.0	90.00	0.15	9,680.0	9,537.9	-90.6	11,778,313.67	2,040,011.36	32° 26′ 26.933 N	103° 42' 15.647 W
19,200.0	90.00	0.15	9,680.0	9,637.9	-90.3	11,778,413.67	2,040,010.40	32° 26′ 27.923 N	103° 42' 15.644 W
19,300.0	90.00	0.15	9,680.0	9,737.9	-90.1	11,778,513.66	2,040,009.44	32° 26′ 28.912 N	103° 42' 15.641 W
19,400.0	90.00	0.15	9,680.0	9,837.9	-89.8	11,778,613.66	2,040,008.48	32° 26′ 29.902 N	103° 42' 15.638 W
19,500.0	90.00	0.15	9,680.0	9,937.9	-89.5	11,778,713.65	2,040,007.53	32° 26' 30.892 N	103° 42' 15.635 W
19,564.7	90.00	0.15	9,680.0	10,002.5	-89.4	11,778,778.32	2,040,006.91	32° 26' 31.532 N	103° 42' 15.633 W

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP/BHL - CHEDDA - plan hits target - Point		0.00	9,680.0	10,002.5	-89.4	11,778,778.32	2,040,006.91	32° 26' 31.532 N	103° 42' 15.633 W
FTP - CHEDDAR FE - plan misses tar - Circle (radius 5	get center by		9,680.0 t 9565.3ust	-124.1 ft MD (9515.3		11,768,652.53 N, -82.2 E)	2,040,139.22	32° 24′ 51.308 N	103° 42' 15.523 W

Casing Points							
	Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter (")	Hole Diameter (")	
	1,800.0	1,800.0	13 3/8"		13-3/8	17-1/2	
	5,600.0	5,600.0	9 5/8"		9-5/8	12-1/4	
	19,564.7	9,680.0	5 1/2"		5-1/2	8-1/2	

Checked By: Date:	Checked By:		Date:
-------------------	-------------	--	-------

Centennial Resource Development New Mexico Multi-Well Pad Drilling Batch Setting Procedures

> Avalon and Bone Springs Formations

13-3/8" Surface Casing - CRD intends to preset 13-3/8" casing to a depth approved in the APD. 17-1/2" Surface Holes will be batch drilled by a Surface Preset rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing to depth approved in APD.
- 3. Cement 13-3/8" casing with cement to surface and floats holding.
- 4. Cut / Dress 20" Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor (see Illustration 1-1 Below). Weld performed per Cameron weld procedure.
- 5. Test Weld to 70% of 13-3/8" casing collapse or ~ 790psi.
- 6. Install nightcap with Pressure Gauge on wellhead. Nightcap is shown on final wellhead Stack up Illustration #2-2 page 3.
- 7. Skid Rig to adjacent well to drill Surface hole.
- 8. Surface casing test will be performed by the Big Rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

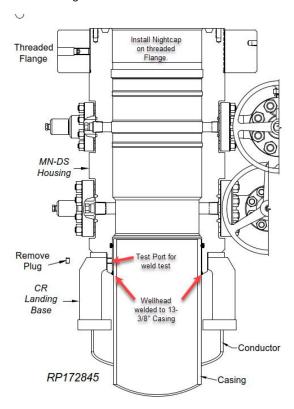
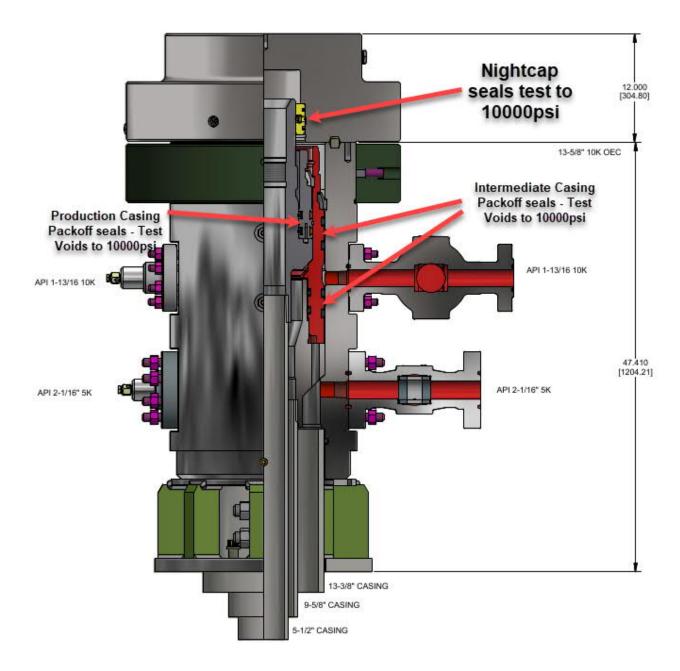


Illustration 1-1

o Intermediate and Production Casing – For all subsequent Intermediate and Production Casing Strings, the Big Rig will remove the nightcap and install and test BOPE. Prior to drill out the 13-3/8" Casing will be tested to 0.22psi/ft or 1500psi whichever is greater. The well will be drilled below 13-3/8" to its intended final TD in the Avalon or Bonesprings formations. Batch drilling will not be executed for casing strings below the 13-3/8". Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings. The


> Wolfcamp Formations

<u>13-3/8" Surface Casing</u> - CRD intends to preset 13-3/8" casing to a depth approved in the APD. Surface Holes will be batch set by a Surface Preset rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 17-1/2" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land 13-3/8" 54.5# J55 BTC casing to depth approved in APD.
- 3. Cement 13-3/8" casing with cement to surface and floats holding.
- 4. Cut / Dress 20" Conductor and 13-3/8" casing as needed, weld on Cameron Multi-bowl system with baseplate supported by 20" conductor (see Illustration 1-1). Weld performed per Cameron weld procedure.
- 5. Test Weld to 70% of 13-3/8" casing collapse or ~ 790psi.
- 6. Install nightcap with Pressure Gauge on wellhead. Nightcap is shown on final wellhead Stack up Illustration #2-2 on page 3.
- 7. Subsequent casing test will be performed by the Big Rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

<u>Intermediate Casing</u> – CRD intends to Batch set all intermediate casing strings to a depth approved in the APD, typically set 100′ above KOP in the 3rd Bonesprings Carbonate. For the last intermediate section drilled on pad, the associated production interval will immediately follow. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

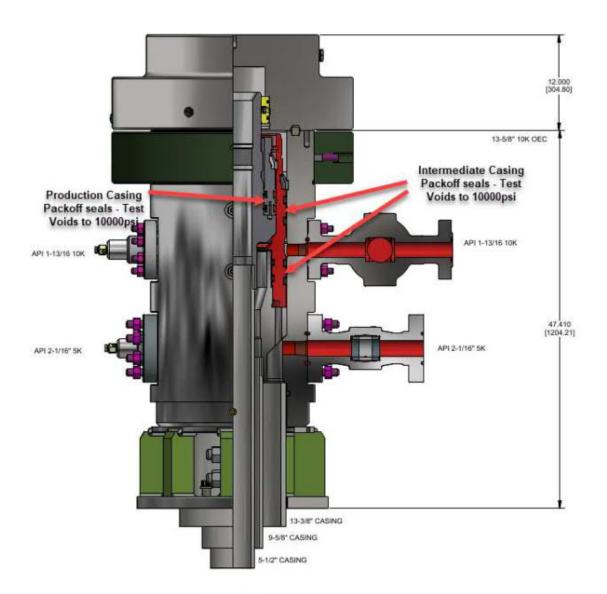
- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 10000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

WITH CAP

Illustration 2-2

<u>Production Casing</u> – CRD intends to Batch set all Production casings, except for the last intermediate hole. In this case the production interval will immediately follow the intermediate section on that well. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Big Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.


- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string to surface with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 10000psi for 15 minutes.
- 9. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 10000psi for 30 minutes per illustration 2-2 page 3.
- 11. Skid rig to adjacent well on pad to drill production hole.

Cheddar Fed Com 301H

Centennial Drilling Plan for 3-Casing String Bone Springs Formation

13-3/8" x 9-5/8" x 5-1/2" Casing Design

- 1. Drill 17-1/2" surface hole to Total Depth with Spudder Rig and perform wellbore cleanup cycles.
- 2. Run and land 13-3/8" casing to Depth.
- 3. Cement 13-3/8" casing cement to surface.
- 4. Cut / Dress Conductor and 13-3/8" casing as needed, weld on Multi-bowl system with baseplate supported by 20" conductor.
- 5. Test Weld to 70% of 13-3/8" casing collapse. Place nightcap with Pressure Gauge on wellhead and test seals to 70% of Casing Collapse.
- 6. Bleed Pressure if necessary and remove nightcap. Nipple up and test BOPE with test plug per Onshore Order 2.
- 7. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 8. Install wear bushing then drill out 13-3/8" shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 9. Drill 12-1/4" Intermediate hole to 9-5/8" casing point. (Base Capitan Reef).
- 10. Remove wear bushing then run and land 9-5/8" Intermediate Casing with mandrel hanger in wellhead.
- 11. Cement 9-5/8 casing cement to surface.
- 12. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 13. Install pack-off and test to 5000 psi for 15 minutes.
 - a. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 14. Install wear bushing then drill out 9-5/8" shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 15. Drill 8-3/4" Vertical hole to KOP Trip out for Curve BHA.
- 16. Drill 8-3/4" Curve, landing in production interval Trip for Lateral BHA.
- 17. Drill 8-1/2" Lateral to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 18. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 19. Cement 5-1/2" Production string to surface.
- 20. Run in with wash tool and wash wellhead area install pack-off and test to 5000psi for 15 minutes.
- 21. Install BPV in 5-1/2" mandrel hanger Nipple down BOPE and install nightcap.
- 22. Test nightcap void to 5000psi for 30 minutes.

WITH CAP

			WELL NAME	Cheddar Federa	I Com 301H	8/28/2020
			AREA	Burratta	API	
CENT	CENIN	IAIL	HZ TARGET	FBSG Sand	WI %	
			LAT LENGTH 10,000		AFE#	
RESOURCI	E DEVELOPM	ENT, LLC	TRRC PERMIT		COUNTY	Lea
	TWNP	RNG	SECTION	FOOTAGE		COMMENT
SHL	22S	32E	5	454' FSL, 410' FW	/L On l	ease. Drill S to N.
FTP/PP	22S	32E	5	330' FSL, 330' FW	/L	
LTP	21S	32E	32	100' FNL, 330' FV	VL	
BHL	21S	32E	32	100' FNL, 330' FV	VL	
			GROUND LEVEL	3,665' RIG K	B 26'	KB ELEV 3,691'
GEOLOGIST	Isabel	Harper	<u>isabel.harper@</u>	@cdevinc.com	(3	303) 589-8841
LOGG	ING			No open hole logg	ing.	
		M	WD GR from drill out	of surface casing to	TD.	

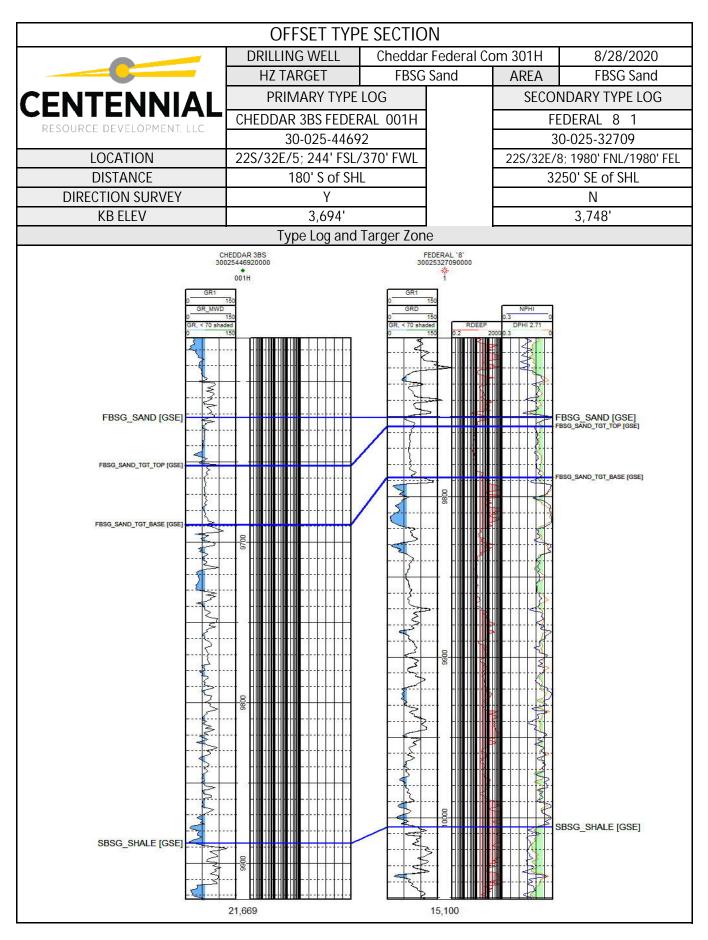
MUDLOGGING

Standard mud logging and mud gas detection.

Mud loggers on from drill out of surface casing to TD.

FORMATION	TVD	SSTVD	THICKNESS	FINAL MD	FINAL TVD	DELTA
Rustler	743'	2,948'	3,900'			
Salado	916'	2,775'	3,811'			
BX BLM (Fletcher Anhydrite)	3,393'	298'	2,131'			
Lamar	4,643'	-952'	84'			
Bell Canyon	4,727'	-1,036'	797'			
Cherry Canyon	5,524'	-1,833'	230'			
Manzanita Lime	5,754'	-2,063'	1,100'			
Brushy Canyon	6,854'	-3,163'	1,727'			
Bone Spring Lime	8,581'	-4,890'	152'			
Avalon	8,733'	-5,042'	887'			
FBSG Sand	9,620'	-5,929'	264'			
SBSG Shale	9,884'	-6,193'	405'			
SBSG Sand	10,289'	-6,598'	454'			
TBSG Carb	10,743'	-7,052'	529'			
TBSG Sand	11,272'	-7,581'				
Target Top at 0'VS	9,650'	-5,959'	37'			
Target Base at 0' VS	9,687'	-5,996'				
HZ TARGET AT 0' VS	9,668'	-5,977'				

TARGET: KBTVD = 9668 at VS, INC = 90.0 deg


Target Window +10/-10'

COMMENT:

			PE WELL				
	DRILLIN			r Federal C	om 301H	8/28/	
	HZ TA	RGET	FBSG	Sand	AREA	Burr	atta
ENTENNIAL	PRIM	1ARY TYPE	LOG		SECONDARY TYPE LOG		
	CHEDDAR	3BS FEDER	RAL 001H		FE	DERAL 8	1
RESOURCE DEVELOPMENT, LLC	30)-025-4469	2		30	0-025-3270	9
LOCATION	22S/32E/	5; 244' FSL/3	370' FWL		22S/32E/8	3; 1980' FNL/	'1980' FI
DISTANCE	1	80' S of SHI			32	.50' SE of SH	I L
DIRECTION SURVEY		Υ				N	
KB ELEV		3,694'				3,748'	
FODMATION!	TVD	CCTVD	DELTA		TVD	CCTVD	DELT
FORMATION	TVD	SSTVD	DELTA		TVD	SSTVD	DELT
Rustler	746'	2,948'			722'	3,026'	
Salado	919'	2,775'			894'	2,854'	
Lamar	4,646'	-952'	7071	ļ	4,701'	-953'	
Bell Canyon	4,730'	-1,036'	797'	ļ	4,768'	-1,020'	8
Cherry Canyon	5,527'	-1,833'	230'		5,604'	-1,856'	2
Manzanita Lime	5,757'	-2,063'	1,100'		5,839'	-2,091'	1,1
Brushy Canyon	6,857'	-3,163'	1,727'		6,944'	-3,196'	1,7
Bone Spring Lime	8,584'	-4,890'	152'		8,645'	-4,897'	1
Avalon	8,736'	-5,042'	887'		8,837'	-5,089'	9
FBSG Sand	9,623'	-5,929'	264'		9,751'	-6,003'	2
SBSG Shale	9,887'	-6,193'	405'		10,006'	-6,258'	3
SBSG Sand	10,292'	-6,598'	454'		10,330'	-6,582'	4
TBSG Carb	10,746'	-7,052'	529'		10,818'	-7,070'	5
TBSG Sand	11,275'	-7,581'			11,409'	-7,661'	4
WFMP					11,832'	-8,084'	
Casing Details							
13 3/8	728'			13 3/8	818'		
9 5/8	4,501'			9 5/8	4,560'		
5 1/2	21,661'			7	12,555'		
December Tem	0.4521	F 0F0!	271		0.7571	/ 0001	
Reservoir Top Reservoir Base	9,652' 9,689'	-5,958' -5,995'	37'		9,756' 9,788'	-6,008' -6,040'	
Reservoir base	9,089	-5,995			9,788	-0,040	
				<u> </u>			

OFFSET TYPE WELLS								
	DRILLING WELL	Cheddar	Federal Co	om 301H	8/28/2020			
	HZ TARGET FBSG S		Sand AREA		Burratta			
CENTENNIAL	PRIMARY TYPE		SECO	NDARY TYPE LOG				
RESOURCE DEVELOPMENT, LLC	CHEDDAR 3BS FEDER		FE	EDERAL 8 1				
RESOURCE DEVELOPMENT, LLC	30-025-4469		30-025-32709					
LOCATION	22S/32E/5; 244' FSL/		22S/32E/8; 1980' FNL/1980' FEL					
DISTANCE	180' S of SH	L		3250' SE of SHL				
DIRECTION SURVEY	Υ			N				
KB ELEV	3,694'			3,748'				
	LOCATION & STI	RUCTURE N	ЛАР	<u>.</u>				

WFMP SS Structure Map

			MUD LO	G DISTRII	BUTION	DETAILS		
				NAME		Federal Co	m 301H	8/28/2020
	C		AR	REA	Burr	ratta	API	
CENT	CNIN	IAI	HZ TA	ARGET	FBSG	Sand	WI %	
			LAT LE	NGTH	100	000	AFE#	
RESOURCE [DEVELOPM	IENT, LLC	TRRC F	PERMIT			COUNTY	Lea
GEOLOGIST	Isabel	Harper	isa	bel.harper@	@cdevinc.co	om	(3	303) 589-8841
			N	/lud Loggin	g Company			
				TB	D			
	TBD			<u>TE</u>	<u>3D</u>			TBD
Co	ntact 2			em	nail			phone
Co	ntact 3			em	nail			phone
		Dail	y distributi	ion data red	quirements	and proto	col	
geodata@cdevir Andrew.welshha	-			•				nc.com,
			Dai	ily email dis	stribution li	ist		
			Final dis	stribution d	lata require	ements		
		1		Final distril				T
	Informa		Reports		Copies	Digita	ıl data	Cuttings
	nial Reso		email		of 5" MD			
Development			final set		copies of email f		inal set	
1001 17th s				5" Horizo	ontal and			N. B. J. J.
SCAL, Inc., 20		,						No Dried Samples to
Road 1257, N								be Collected
MWD Only: C			email		of the 5"			
Developm			final set		cal logs 2	email f	inal set	
Ferreyros, 100	11 17th st	reet, Suite	copies of the 5					
Project Ge	eologist:	Isabel Harp	er		Production: Brandon Morin			
Operations Ge	eologist:	Joe Woods	ke		Sui	face Land:	Bailey Jop	lim
	Drilling	Ronny Hise	1		Mineral Land: Gavin Smith			

ContiTech

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 210/ 2014

Page: 9 / 113

QUAI INSPECTION	LITY CON AND TES			CATE	,	CERT. N	1 °:	504	
PURCHASER:	ContiTech	Oil & IV	farine (Corp.		P.O. N°:		4500409659	
CONTITECH RUBBER order N	·: 538236	HOSE	TYPE:	3"	ID	L	Choke and	Kill Hose	
HOSE SERIAL N°:	67255	NOMI	NAL / AC	TUAL L	ENGTH:		10,67 m	/ 10,77 m	
W.P. 68,9 MPa 10	0000 psi	T.P.	103,4	MPa	1500)() psi	Duration:	60	min.
Pressure test with water at ambient temperature									
		See at	tachm	ent. (*	l page	;)			
10 mm = 10 Min									
→ 10 mm = 20 MPs			Serial N°				··· mlike j	Heat N°	
3" couplings Typ		929		ai N° 925	<u></u>				
4 1/16" 10K API b.w. Fla		52.	51	020			SI 4130	A0579N 035608	
Not Designed F	or Well Te	esting						PI Spec 16 C	
All metal parts are flawless							l emp	erature rate	
WE CERTIFY THAT THE ABOVE INSPECTED AND PRESSURE T							H THE TERMS	OF THE ORDER	
STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced st	the above Purc tandards, codes	chaser Ord	der and t	that these and meet	the relev	quipment v ant accept	were fabricated	inspected and tes	sted in
Date:	Inspector			Qualit	y Contro	ol	-2		
20. March 2014.									1

No: 501, 504, 505

Page: 1/1

	Eline -
	Cantilla Rubby
GN +21-22 90 01:20	cutrol De
BL +1053. bar 01:20 CN +21:15 90 01:10	
BL #1055. bd.r 01.1d	
	86308
GN +21.28 °C 99:48	
BL +1059 bd# 00:46 GN +21:38 9C 00:26	
RD +21.42 96 90.36 BL +1961 bdr 90.36 GN +21.35 9C 90.28	
R0 +21.30 96 00+28 BL +1064 bdr 00:28	
10 20 30 40 <u>50</u> 50 70 80	90 100
19-83-2814- 23150 67252-67255-67254-23-53	90 100
1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	1 6 1 7 1 1 8

CONTITECH RUBBER No:QC-DB- 210/ 2014 Industrial Kft.

15 / 113

Page: ContiTech

Hose Data Sheet

CRI Order No.	538236						
Customer	ContiTech Oil & Marine Corp.						
Customer Order No	4500409659						
Item No.	1						
Hose Type	Flexible Hose						
Standard	API SPEC 16 C						
Inside dia in inches	3						
Length	35 ft						
Type of coupling one end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR						
Type of coupling other end	FLANGE 4.1/16" 10K API SPEC 6A TYPE 6BX FLANGE C/W BX155 R.GR.SOUR						
H2S service NACE MR0175	Yes						
Working Pressure	10 000 psi						
Design Pressure	10 000 psi						
Test Pressure	15 000 psi						
Safety Factor	2,25						
Marking	USUAL PHOENIX						
Cover	NOT FIRE RESISTANT						
Outside protection	St.steel outer wrap						
Internal stripwound tube	No						
Lining	OIL + GAS RESISTANT SOUR						
Safety clamp	No						
Lifting collar	No						
Element C	No						
Safety chain	No						
Safety wire rope	No						
Max.design temperature [°C]	100						
Min.design temperature [°C]	-20						
Min. Bend Radius operating [m]	0,90						
Min. Bend Radius storage [m]	0,90						
Electrical continuity	The Hose is electrically continuous						
Type of packing	WOODEN CRATE ISPM-15						

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

APD ID: 10400040433 **Submission Date:** 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Well Type: OIL WELL Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number: Injection well name:

Assigned injection well API number? Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

APD ID: 10400040433 **Submission Date:** 12/13/2019

Operator Name: CENTENNIAL RESOURCE PRODUCTION LLC

Well Name: CHEDDAR FEDERAL COM Well Number: 301H

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001841

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

<u>1220 S. St. Francis Dr., Santa Fe, NM 87505</u> Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

> 1220 South St. Francis Dr. Santa Fe, NM 87505

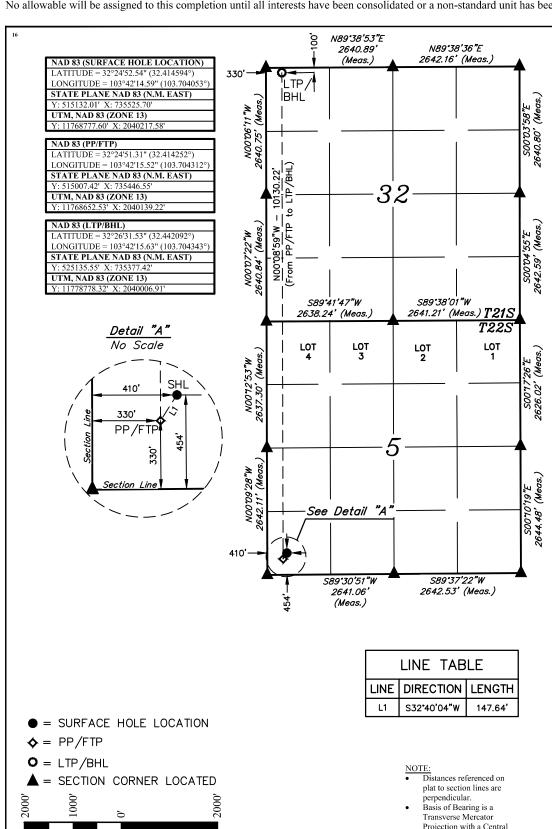
OCD - HOBBS 11/17/2020 RECEIVED

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

■ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30-025-48099	•	² Pool Code 5695	Sprina			
326046 Code	5 Property Name CHEDDAR FED COM 6 Well Number #301H					
⁷ OGRID No. 372165			perator Name DURCE PRODUCTION, LLC	⁹ Elevation 3665.1'		


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
M	5	22S	32Ē		454	SOUTH	410	WEST	LEA

"Bottom Hole Location If Different From Surface

UI	L or lot no. D	Sect 32	,	Township 21S	Range 32E	Lot Idn	Feet from the 100		North/South line NORTH	Feet from the 330	East/West line WEST	County LEA
12 I	Dedicated Acre 319.68	es	¹³ Joint or Infill		¹⁴ Conso	lidation Code	15 Order 1	No.				

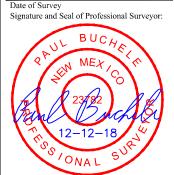
No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

S C A L E REV: 1 12-12-18 J.N. (SHL & PP/FTP CHANGE)

17 OPERATOR CERTIFICATION

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with m worker of such a nineral. to a contract with an owner of such a mineral to a contract with an owner of such a mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

K: C: 3/29/19 Signature


Kanicia Castillo

kanicia.castillo@cdevinc.com

18 SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

September 11, 2018

Certificate Number

Projection with a Central Meridian of W103°53'00" <u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION OCD - HOBBS

1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

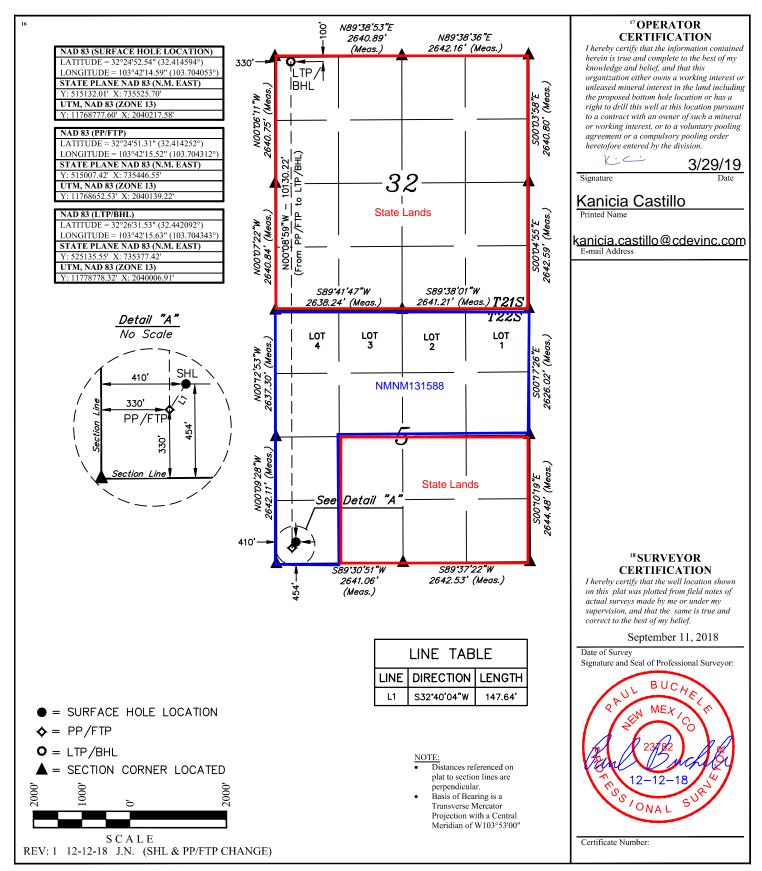
11|17|2020

RECEIVED

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30-025-48099	•	² Pool Code 5695	3 Pool Name Bilbrey Basin: Bone Spring				
326046	5 Property Name CHEDDAR FED COM 6 Well Number #301H						
⁷ OGRID No. 372165			perator Name OURCE PRODUCTION, LLC	⁹ Elevation 3665.1'			


¹⁰ Surface Location

						County
M 5 22S	32E	454	SOUTH	410	WEST	LEA

¹¹ Bottom Hole Location If Different From Surface

UL or lot no. D	Sect 32	2	Township 21S	Range 32E	Lot Idn	Fee	et from the 100	North/South line NORTH	Feet from the 330	East/West line WEST	County LEA
12 Dedicated Acre 319.68	es	13 Joint or Infill 14 C		14 Conso	olidation Code 15 Order N		15 Order No.				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 OCD - HOBBS 11/17/2020 PECEIVED

GAS CAPTURE PLAN

Date: 12/12/2019	
☑ Original☐ Amended - Reason for Amendment:	Operator & OGRID No.: <u>Centennial Resource Production, LLC 372165</u>

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location	Footages	Expected	Flared or	Comments
		(ULSTR)		MCF/D	Vented	
Cheddar Fed Com	Pending	M-5-22S-32E	454 FSL	1500	Neither	New Well
301H	30-025-480	99	& 410	MCFD		
	30 023 400		FWL	Flowrate		
Cheddar Fed Com	Pending	M-5-22S-32E	603 FSL	1500	Neither	New Well
401H			& 440	MCFD		
			FWL	Flowrate		
Cheddar Fed Com	Pending	M-5-22S-32E	453 FSL	1500	Neither	New Well
502H			& 470	MCFD		
			FWL	Flowrate		

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to <u>Lucid Energy Group's Red Hills</u> low/high pressure gathering system located in <u>Lea</u> County, New Mexico. <u>Centennial Resource Production, LLC</u> provides (periodically) to <u>Centennial Resource Production, LLC</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Centennial Resource Production, LLC</u> and Centennial Resource Production, LLC have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>Lucid Red Hills</u> Processing Plant located in Sec.__13___, Twn._24S___, Rng._33E_, <u>Lea</u> County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Centennial Resource Production, LLC</u> system at that time. Based on current information, it is <u>Centennial Resource Production, LLC</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - O Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - O Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines