EOG Resources, Inc.

Legal's:

Pitchblende 19 Fed Com No. 1H

Lea Co. New Mexico

1980' FNL & 440' FWL Surface Location

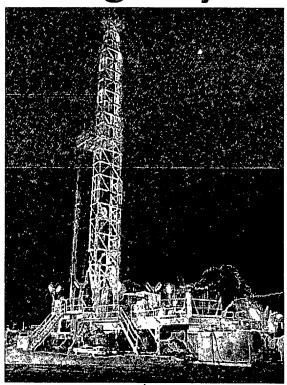
Section 19

T-25-S, R-35-E

Lat: N 32.1176156

Long: W 103.4132467

1980' FSL & 660' FWL Bottom Hole Location


Section 30

T-25-S, R-35-E

Lat: N 32.0994544

Long: W 103.4125497

H₂S "Contingency Plan"

Safety Solutions, LLC 3222 Commercial Dr.

(432) 686-8555 Midland, TX 79701

Table of Contents

I. H₂S Contingency Plan

- a. Scope
- b. Objective
- c. Discussion of Plan

II. Emergency Procedures

- a. Emergency Procedures
- b. Emergency Reaction Steps
- c. Simulated Blowout Control Drills

III. Ignition Procedures

- a. Responsibility
- b. Instructions

IV. Training Requirements

V. Emergency Equipment

VI. Check Lists

- a. Status Check List
- b. Procedural Check List

VII. Briefing Procedures

VIII. Evacuation Plan

- a. General Plan
- b. Emergency Phone Lists

IX. Maps and Plats

- a. Location Plat
- b. Map to Location
- c. Radius of Exposure

X. General Information

- a. Drilling/Re-entry Permits
- b. H-9 Permit
- c. H₂S Permissible Limits
- d. Toxicity Table
- e. Physical Properties
- f. Respirator Use
- g. Emergency Rescue

H₂S CONTINGENCY PLAN SECTION

Scope:

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H₂S).

Objective:

Prevent any and all accidents, and prevent the uncontrolled release of H₂S into the atmosphere.

Provide proper evacuation procedures to cope with emergencies.

Provide immediate and adequate medical attention should an injury occur.

Discussion of Plan:

Suspected Problem Zones:

Implementation: This plan, with all details, is to be fully implemented 1000' before drilling into the first sour zone.

Emergency Response Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency.

Emergency Equipment and Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well.

Training Provisions: This section outlines the training provisions that must be adhered to 1000' before drilling into the first sour zone.

Emergency call list: Included are the telephone numbers of all persons that would need to be contacted, should an H₂S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public Safety Personnel will be made aware of the drilling of this well.

Check Lists: Status check lists and procedural check lists have been included to ensure adherence to the plan.

General Information: A general information section has been included to supply support information.

EMERGENCY PROCEDURES SECTION

- I. In the event of any evidence of H₂S level above 10ppm, take the following steps immediately:
 - a. Secure breathing apparatus.
 - b. Order non-essential personnel out of the danger zone.
 - c. Take steps to determine if the H₂S level can be corrected or suppressed, and if so, proceed with normal operations.
- II. If uncontrollable conditions occur, proceed with the following:
 - a. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify necessary public safety personnel and the New Mexico Oil Conservation Division of the situation.
 - b. Remove all personnel to the Safe Briefing Area.
 - c. Notify public safety personnel for help with maintaining roadblocks and implementing evacuation.
 - d. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.

III. Responsibility:

- a. The Company Approved Supervisor shall be responsible for the total implementation of the plan.
- b. The Company Approved Supervisor shall be in complete command during any emergency.
- c. The Company Approved Supervisor shall designate a back up Supervisor in the event that he/she is not available.

EMERGENCY PROCEDURE IMPLEMENTATION

1. Drilling or Tripping

a. All Personnel

- i. When alarm sounds, don escape unit and report to upwind Safe Briefing Area.
- ii. Check status of other personnel (buddy system).
- iii. Secure breathing apparatus.
- iv. Wait for orders from supervisor.

b. Drilling Foreman

- i. Report to the upwind Safe Briefing Area.
- ii. Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system).
- iii. Determine the concentration of H₂S.
- iv. Assess the situation and take appropriate control measures.

c. Tool Pusher

- i. Report to the upwind Safe Briefing Area.
- ii. Don Breathing Apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system).
- iii. Determine the concentration of H₂S.
- iv. Assess the situation and take appropriate control measures.

d. Driller

- i. Check the status of other personnel (in a rescue attempt, always use the buddy system).
- ii. Assign the least essential person to notify the Drilling Foreman and Tool Pusher, in the event of their absence.
- iii. Assume the responsibility of the Drilling Foreman and the Tool Pusher until they arrive, in the event of their absence.

e. Derrick Man and Floor Hands

i. Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor.

f. Mud Engineer

- i. Report to the upwind Safe Briefing Area.
- ii. When instructed, begin check of mud for pH level and H₂S level.

g. Safety Personnel

- i. Don Breathing Apparatus.
- ii. Check status of personnel.
- iii. Wait for instructions from Drilling Foreman or Tool Pusher.

II. Taking a Kick

- a. All Personnel report to the upwind Safe Briefing Area.
- **b.** Follow standard BOP procedures.

III. Open Hole Logging

- a. All unnecessary personnel should leave the rig floor.
- **b.** Drilling Foreman and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations.

IV. Running Casing or Plugging

- a. Follow "Drilling or Tripping" procedures.
- **b.** Assure that all personnel have access to protective equipment.

SIMULATED BLOWOUT CONTROL DRILLS

All drills will be initiated by activating alarm devices (air horn). One long blast, on the air horn, for ACTUAL and SIMULATED Blowout Control Drills. This operation will be performed by the Drilling Foreman or Tool Pusher at least one time per week for each of the following conditions, with each crew:

Drill #1

Bottom Drilling

Drill #2

Tripping Drill Pipe

In each of these drills, the initial reaction time to shutting in the well shall be timed as well as the total time for the crew to complete its entire pit drill assignment. The times must be recorded on the IADC Driller's Log as "Blowout Control Drill".

Drill No .:

Reaction Time to Shut-In:

minutes,

seconds.

Total Time to Complete Assignment:

minutes,

seconds.

I. Drill Overviews

- a. Drill No. 1 Bottom Drilling
 - i. Sound the alarm immediately.
 - ii. Stop the rotary and hoist Kelly joint above the rotary table.
 - iii. Stop the circulatory pump.
 - iv. Close the drill pipe rams.
 - v. Record casing and drill pipe shut-in pressures and pit volume increases.
- b. Drill No. 2 Tripping Drill Pipe
 - i. Sound the alarm immediately.
 - ii. Position the upper tool joint just above the rotary table and set the slips.
 - iii. Install a full opening valve or inside blowout preventer tool in order to close the drill pipe.
 - iv. Close the drill pipe rams.
 - v. Record the shut-in annular pressure.

II. Crew Assignments

a. Drill No. 1 - Bottom Drilling

i. Driller

- 1. Stop the rotary and hoist Kelly joint above the rotary table.
- 2. Stop the circulatory pump.
- 3. Check Flow.
- 4. If flowing, sound the alarm immediately
- 5. Record the shit-in drill pipe pressure
- 6. Determine the mud weight increase needed or other courses of action.

ii. Derrickman

- 1. Open choke line valve at BOP.
- 2. Signal Floor Man #1 at accumulator that choke line is open.
- 3. Close choke and upstream valve after pipe tam have been closed.
- 4. Read the shut-in annular pressure and report readings to Driller.

iii. Floor Man #1

- 1. Close the pipe rams after receiving the signal from the Derrickman.
- 2. Report to Driller for further instructions.

iv. Floor Man #2

- 1. Notify the Tool Pusher and Operator representative of the H₂S alarms.
- 2. Check for open fires and, if safe to do so, extinguish them.
- 3. Stop all welding operations.
- 4. Turn-off all non-explosions proof lights and instruments.
- 5. Report to Driller for further instructions.

v. Tool Pusher

- 1. Report to the rig floor.
- 2. Have a meeting with all crews.

- 3. Compile and summarize all information.
- 4. Calculate the proper kill weight.
- 5. Ensure that proper well procedures are put into action.

vi. Operator Representative

- 1. Notify the Drilling Superintendent.
- 2. Determine if an emergency exists and if so, activate the contingency plan.

b. Drill No. 2 - Tripping Pipe

i. Driller

- 1. Sound the alarm immediately when mud volume increase has been detected.
- 2. Position the upper tool joint just above the rotary table and set slips.
- 3. Install a full opening valve or inside blowout preventer tool to close the drill pipe.
- 4. Check flow.
- 5. Record all data reported by the crew.
- 6. Determine the course of action.

ii. Derrickman

- 1. Come down out of derrick.
- 2. Notify Tool Pusher and Operator Representative.
- 3. Check for open fires and, if safe to do so, extinguish them.
- 4. Stop all welding operations.
- 5. Report to Driller for further instructions.

iii. Floor Man #1

- 1. Pick up full opening valve or inside blowout preventer tool and stab into tool joint above rotary table (with Floor Man #2).
- 2. Tighten valve with back-up tongs.

- 3. Close pipe rams after signal from Floor Man #2.
- 4. Read accumulator pressure and check for possible high pressure fluid leaks in valves or piping.
- 5. Report to Driller for further instructions.

iv. Floor Man #2

4 9

- 1. Pick-up full opening valve or inside blowout preventer tool and stab into tool joint above rotary table (with Floor Man #1).
- 2. Position back-up tongs on drill pipe.
- 3. Open choke line valve at BOP.
- 4. Signal Floor Man #1 at accumulator that choke line is open.
- 5. Close choke and upstream valve after pipe rams have been closed.
- 6. Check for leaks on BOP stack and choke manifold.
- 7. Read annular pressure.
- 8. Report readings to the Driller.

v. Tool Pusher

- 1. Report to the rig floor.
- 2. Have a meeting with all of the crews.
- 3. Compile and summarize all information.
- 4. See that proper well kill procedures are put into action.

vi. Operator Representative

- 1. Notify Drilling Superintendent
- 2. Determine if an emergency exists, and if so, activate the contingency plan.

IGNITION PROCEDURES

Responsibility:

The decision to ignite the well is the responsibility of the DRILLING FOREMAN in concurrence with the STATE POLICE. In the event the Drilling Foreman is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- 1. Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Foreman is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet.
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Foreman.

Note: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide, which is also highly toxic. Do not assume the area is safe after the well is ignited.

TRAINING PROGRAM

When working in an area where Hydrogen Sulfide (H_2S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel, at the well site, have had adequate training in the following:

- 1. Hazards and characteristics of Hydrogen Sulfide.
- 2. Physicals effects of Hydrogen Sulfide on the human body.
- 3. Toxicity of Hydrogen Sulfide and Sulfur Dioxide.
- 4. H₂S detection, Emergency alarm and sensor location.
- 5. Emergency rescue.
- 6. Resuscitators.
- 7. First aid and artificial resuscitation.
- 8. The effects of Hydrogen Sulfide on metals.
- 9. Location safety.

Service company personnel and visiting personnel must be notified if the zone contains H₂S, and each service company must provide adequate training and equipment for their employees before they arrive at the well site.

EMERGENCY EQUIPMENT REQUIREMENTS

Lease Entrance Sign:

Should be located at the lease entrance with the following information:

CAUTION – POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

Respiratory Equipment:

- Fresh air breathing equipment should be placed at the safe briefing areas and should include the following:
- Two SCBA's at each briefing area.
- Enough air line units to operate safely, anytime the H₂S concentration reaches the IDLH level (100 ppm).
- Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrickman and the other operation areas.

Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they may be seen from any point on location.
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times. (Corners of location).

Hydrogen Sulfide Detector and Alarms:

- 1 Four channel H₂S monitor with alarms.
- Four (4) sensors located as follows: #1 Rig Floor, #2 Bell Nipple, #3 Shale Shaker, #4 Mud Pits.
- Gastec or Draeger pump with tubes.
- Sensor test gas.

Well Condition Sign and Flags:

The Well Condition Sign w/flags should be placed a minimum of 150' before you enter the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN – Normal Operating Conditions YELLOW – Potential Danger RED – Danger, H₂S Gas Present

Auxiliary Rescue Equipment:

- Stretcher
- 2 100' Rescue lines.
- First Aid Kit properly stocked.

Mud Inspection Equipment:

Garret Gas Train or Hach Tester for inspection of Hydrogen Sulfide in the drilling mud system.

Fire Extinguishers:

Adequate fire extinguishers shall be located at strategic locations.

Blowout Preventer:

- The well shall have hydraulic BOP equipment for the anticipated BHP.
- The BOP should be tested upon installation.
- BOP, Choke Line and Kill Line will be tested as specified by Operator.

Confined Space Monitor:

There should be a portable multi-gas monitor with at least 3 sensors (O_2 , LEL H_2S). This instrument should be used to test the atmosphere of any confined space before entering. It should also be used for atmospheric testing for LEL gas before beginning any type of Hot Work. Proper calibration documentation will need to be provided.

Communication Equipment:

- Proper communication equipment such as cell phones or 2-way radios should be available at the rig.
- Radio communication shall be available for communication between the company man's trailer, rig floor and the tool pusher's trailer.

Communication equipment shall be available on the vehicles.

Special Control Equipment:

- Hydraulic BOP equipment with remote control on the ground.
- Rotating head at the surface casing point.

Evacuation Plan:

- Evacuation routes should be established prior to spudding the well.
- Should be discussed with all rig personnel.

Designated Areas:

Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- Designated smoking area.

Safe Briefing Areas:

- Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area.
- Personal protective equipment should be stored at both briefing areas or if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

Note:

- Additional equipment will be available at the Safety Solutions, LLC office.
- Additional personal H₂S monitors are available for all employees on location.
- Automatic Flare Igniters are recommended for installation on the rig.

CHECK LISTS

Status Check List

Note: Date each item as they are implemented.

1.	Sign at location entrance.	
2.	Two (2) wind socks (in required locations).	
3.	Wind Streamers (if required).	
4.	SCBA's on location for all rig personnel and mud loggers.	
5.	Air packs, inspected and ready for use.	
6.	Spare bottles for each air pack (if required).	
7.	Cascade system for refilling air bottles.	
8.	Cascade system and hose line hook up.	
9.	Choke manifold hooked-up and tested. (before drilling out surface casing.)	
10.	Remote Hydraulic BOP control (hooked-up and tested before drilling out surface casing).	
11.	BOP tested (before drilling out surface casing).	
12.	Mud engineer on location with equipment to test mud for H ₂ S.	
13.	Safe Briefing Areas set-up	
14.	Well Condition sign and flags on location and ready.	
15.	Hydrogen Sulfide detection system hooked -up & tested.	
16.	Hydrogen Sulfide alarm system hooked-up & tested.	
17.	Stretcher on location at Safe Briefing Area.	
18.	2 – 100' Life Lines on location.	
19.	1 – 20# Fire Extinguisher in safety trailer.	
20.	Confined Space Monitor on location and tested.	
21.	All rig crews and supervisor trained (as required).	

22. Access restricted for unauthorized personnel.	
23. Drills on H ₂ S and well control procedures.	
24. All outside service contractors advised of potential H ₂ S on the well.	
25. NO SMOKNG sign posted.	
26. H₂S Detector Pump w/tubes on location.	
27. 25mm Flare Gun on location w/flares.	
28. Automatic Flare Igniter installed on rig.	

Procedural Check List

Perform the following on each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to insure that they have not been tampered with.
- 3. Check pressure on the supply air bottles to make sure they are capable of recharging.
- 4. Make sure all of the Hydrogen Sulfide detection systems are operative.

Perform the following each week:

- Check each piece of breathing equipment to make sure that they are fully charged and operational. This requires that the air cylinder be opened and the mask assembly be put on and tested to make sure that the regulators and masks are properly working. Negative and Positive pressure should be conducted on all masks.
- 2. BOP skills.
- 3. Check supply pressure on BOP accumulator stand-by source.
- 4. Check all breathing air mask assemblies to see that straps are loosened and turned back, ready for use.
- 5. Check pressure on cascade air cylinders to make sure they are fully charged and ready to use for refill purposes if necessary.
- 6. Check all cascade system regulators to make sure they work properly.
- 7. Perform breathing drills with on-site personnel.
- 8. Check the following supplies for availability:
 - Stretcher
 - Safety Belts and Ropes
 - Spare air Bottles
 - Spare Oxygen Bottles (if resuscitator required)
 - Gas Detector Pump and Tubes
 - Emergency telephone lists
- 9. Test the Confined Space Monitor to verify the batteries are good

BRIEFING PROCEDURES

The following scheduled briefings will be held to ensure the effective drilling and operation of this project:

Pre-Spud Meeting

Date: Prior to spudding the well.

Attendance: Drilling Supervisor

Drilling Engineer
Drilling Foreman
Rig Tool Pushers
Rig Drillers
Mud Engineer
All Safety Personnel

Key Service Company Personnel

Purpose: Review and discuss the well program, step-by-step, to insure complete understanding of

assignments and responsibilities.

EVACUATION PLAN

General Plan

The direct lines of action prepared by SAFETY SOLUTIONS, LLC to protect the public from hazardous gas situations are as follows:

- 1. When the company approved supervisor (Drilling Foreman, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the area map.
- 2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.
 - 5. After the discharge of gas has been controlled, "Company" safety personnel will determine when the area is safe for re-entry.

See Emergency Action Plan

Emergency Assistance Telephone List

PUBLIC SAFETY:	911	<u>. or</u>
Lea County Sheriff's Department	(575) 396-3611	
Rod Coffman		
Fire Department:		
Carlsbad	(575) 885-3125	
Artesia	(575) 746-5050	
Hospitals:		
Carlsbad	(575) 887-4121	
Artesia	(575) 748-3333	
Hobbs	(575) 392-1979	
Dept. of Public Safety/Carlsbad	(575) 748-9718	
Highway Department	(575) 885-3281	
New Mexico Oil Conservation	(575) 476-3440	
U.S. Dept. of Labor	(575) 887-1174	
·		
EOG Resources, Inc.		
EOG / Midland	Office (432) 686-3600	
Company Drilling Consultants:	, ,	
Danny Kiser Will Henderson	Cell (432) 894-3417	
Larry King		
Drilling Engineer		
Steve Munsell	Office (432) 686-3609	
	Cell (432) 894-1256	
Operations Manager		
Travis Lain	Office (432) 686-3740	
	Cell (432) 254-3521	
Drilling Superintendent		
Barney Thompson	Office (432) 686-3678	
	Cell (432) 254-9056	
Field Drilling Superintendent		
Ron Welch	Cell (432) 386-0592	
Cactus Drilling		
Cactus Drilling	Office (580) 799-2752	
Cactus 123 Drilling Rig	Rig (432) 894-3417	
Tool Pusher:		
Terry Johnson	Cell (575) 370-5620	
Safety Consultants		
Safety Solutions, LLC	Office (432) 686-8555	
Cliff Strasner	Cell (432) 894-9789	
Craig Strasner	Cell (432) 894-0341	

MAPS AND PLATS (Maps & Plats Attached)

Affected Notification List

(within a 65' radius of exposure @100ppm)

The geologic zones that will be encountered during drilling are known to contain hazardous quantities of H_2S . The accompanying map illustrates the affected areas of the community. The residents within this radius will be notified via a hand delivered written notice describing the activities, potential hazards, conditions of evacuation, evacuation drill siren alarms and other precautionary measures.

Evacuee Description:

Residents: THERE ARE NO RESIDENTS WITHIN 3000' ROE.

Notification Process:

A continuous siren audible to all residence will be activated, signaling evacuation of previously notified and informed residents.

Evacuation Plan:

All evacuees will migrate lateral to the wind direction.

The Oil Company will identify all home bound or highly susceptible individuals and make special evacuation preparations, interfacing with the local and emergency medical service as necessary.

GENERAL INFORMATION

Toxic Effects of H₂S Poisoning

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM, which is .001% by volume. Hydrogen Sulfide is heavier than air (specific gravity -1.192) and is colorless and transparent. Hydrogen Sulfide is almost as toxic as Hydrogen Cyanide and is 5-6 times more toxic than Carbon Monoxide. Occupational exposure limits for Hydrogen Sulfide and other gases are compared below in Table 1. Toxicity table for H_2S and physical effects are shown in Table 2.

Table 1
Permissible Exposure Limits of Various Gases

Common Name	Symbol	Sp. Gravity	TLV	STEL	IDLH
Hydrogen Cyanide	HCN	.94	4.7 ppm	С	
Hydrogen Sulfide	H ₂ S	1.192	10 ppm	15 ppm	100 ppm
Sulfide Dioxide	SO ₂	2.21	2 ppm	5 ppm	
Chlorine	CL	2.45	.5 ppm	1 ppm	
Carbon Monoxide	СО	.97	25 ppm	200 ppm	
Carbon Dioxide	CO ₂	1.52	5000 ppm	30,000 ppm	
Methane	CH ₄	.55	4.7% LEL	14% UEL	

Definitions

- A. TLV Threshold Limit Value is the concentration employees may be exposed based on a TWA (time weighted average) for eight (8) hours in one day for 40 hours in one (1) week. This is set by ACGIH (American Conference of Governmental Hygienists) and regulated by OSHA.
- B. STEL Short Term Exposure Limit is the 15 minute average concentration an employee may be exposed to providing that the highest exposure never exceeds the OEL (Occupational Exposure Limit). The OEL for H₂S is 19 PPM.
- C. IDLH Immediately Dangerous to Life and Health is the concentration that has been determined by the ACGIH to cause serious health problems or death if exposed to this level. The IDLH for H₂S is 100 PPM.
- D. TWA Time Weighted Average is the average concentration of any chemical or gas for an eight (8) hour period. This is the concentration that any employee may be exposed based on an TWA.

TABLE 2

		Toxicity Table of H ₂ S
Percent %	PPM	Physical Effects
.0001	1	Can smell less than 1 ppm.
.001	10	TLV for 8 hours of exposure.
.0015	15	STEL for 15 minutes of exposure.
.01	100	Immediately Dangerous to Life & Health.
		Kills sense of smell in 3 to 5 minutes.
.02	200	Kills sense of smell quickly, may burn eyes and throat.
.05	500	Dizziness, cessation of breathing begins in a few minutes.
		,
.07	700	Unconscious quickly, death will result if not rescued promptly.
.10	1000	Death will result unless rescued promptly. Artificial resuscitation may be necessary.
.10	1000	Death will result unless rescued promptly. Artificial resuscita may be necessary.

PHYSICAL PROPERTIES OF H₂S

The properties of all gases are usually described in the context of seven major categories:

COLOR

ODOR

VAPOR DENSITY

EXPLOSIVE LIMITS

FLAMMABILITY

SOLUBILITY (IN WATER)

BOILING POINT

Hydrogen Sulfide is no exception. Information from these categories should be considered in order to provide a fairly complete picture of the properties of the gas.

COLOR – TRANSPARENT

Hydrogen Sulfide is colorless so it is invisible. This fact simply means that you can't rely on your eyes to detect its presence. In fact that makes this gas extremely dangerous to be around.

ODOR - ROTTEN EGGS

Hydrogen Sulfide has a distinctive offensive smell, similar to "rotten eggs". For this reason it earned its common name "sour gas". However, H_2S , even in low concentrations, is so toxic that it attacks and quickly impairs a victim's sense of smell, so it could be fatal to rely on your nose as a detection device.

VAPOR DENSITY - SPECIFIC GRAVITY OF 1.192

Hydrogen Sulfide is heavier than air so it tends to settle in low-lying areas like pits, cellars or tanks. If you find yourself in a location where H_2S is known to exist, protect yourself. Whenever possible, work in an area upwind and keep to higher ground.

EXPLOSIVE LIMITS – 4.3% TO 46%

Mixed with the right proportion of air or oxygen, H₂S will ignite and burn or explode, producing another alarming element of danger besides poisoning.

FLAMMABILITY

Hydrogen Sulfide will burn readily with a distinctive clear blue flame, producing Sulfur Dioxide (SO₂), another hazardous gas that irritates the eyes and lungs.

SOLUBILITY - 4 TO 1 RATIO WITH WATER

Hydrogen Sulfide can be dissolved in liquids, which means that it can be present in any container or vessel used to carry or hold well fluids including oil, water, emulsion and sludge. The solubility of H_2S is dependent on temperature and pressure, but if conditions are right, simply agitating a fluid containing H_2S may release the gas into the air.

BOILING POINT – (-76 degrees Fahrenheit)

Liquefied Hydrogen Sulfide boils at a very low temperature, so it is usually found as a gas.

RESPIRATOR USE

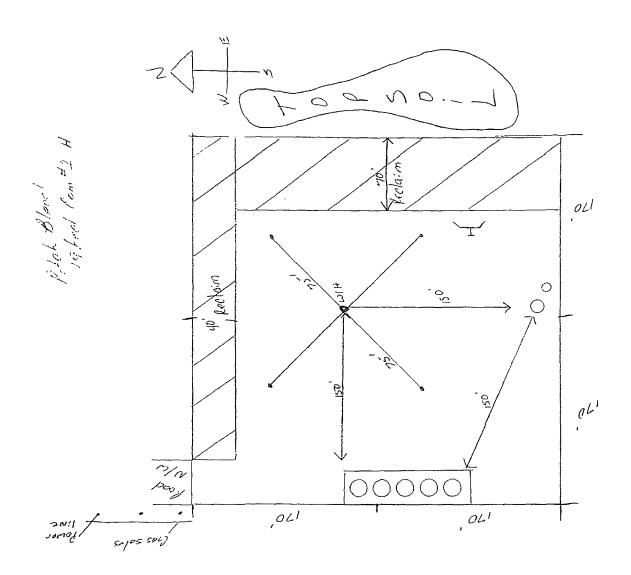
The Occupational Safety and Health Administration (OSHA) regulate the use of respiratory protection to protect the health of employees. OSHA's requirements are written in the Code of Federal Regulations, Title 29, Part 1910, Section 134, Respiratory Protection. This regulation requires that all employees who might be required to wear respirators, shall complete a OSHA mandated medical evaluation questionnaire. The employee then should be fit tested prior to wearing any respirator while being exposed to hazardous gases.

Written procedures shall be prepared covering safe use of respirators in dangerous atmospheric situations, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available respirators.

Respirators shall be inspected prior to and after each use to make sure that the respirator has been properly cleaned, disinfected and that the respirator works properly. The unit should be fully charged prior to being used.

Anyone who may use respirators shall be properly trained in how to properly seal the face piece. They shall wear respirators in normal air and then in a test atmosphere. (Note: Such items as facial hair (beard or sideburns) and eyeglass temple pieces will not allow a proper seal.) Anyone that may be expected to wear respirators should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses. Contact lenses should not be allowed.

Respirators shall be worn during the following conditions:


- A. Any employee who works near the top or on the top of any tank unless tests reveal less than 20 ppm of H₂S.
- B. When breaking out any line where H₂S can reasonably be expected.
- C. When sampling air in areas where H₂S may be present.
- D. When working in areas where the concentration of H_2S exceeds the Threshold Limit Value for H_2S (10 ppm).
- E. At any time where there is a doubt as to the H_2S level in the area to be entered.

EMERGENCY RESCUE PROCEDURES

DO NOT PANIC!!!

Remain Calm - Think

- 1. Before attempting any rescue you must first get out of the hazardous area yourself. Go to a safe briefing area.
- 2. Sound alarm and activate the 911 system.
- 3. Put on breathing apparatus. At least two persons should do this, when available use the buddy system.
- 4. Rescue the victim and return them to a safe briefing area.
- 5. Perform an initial assessment and begin proper First Aid/CPR procedures.
- 6. Keep victim lying down with a blanket or coat, etc.., under the shoulders to keep airway open. Conserve body heat and do not leave unattended.
- 7. If the eyes are affected by H₂S, wash them thoroughly with potable water. For slight irritation, cold compresses are helpful.
- 8. In case a person has only minor exposure and does not lose consciousness totally, it's best if he doesn't return to work until the following day.
- 9. Any personnel overcome by H_2S should always be examined by medical personnel. They should always be transported to a hospital or doctor.

11,06:[]

SURFACE USE PLAN OF OPERATION

SHL: 1980' FNL & 440' FWL, Unit E, Section 19, T25S-R35E, N.M.P.M., Lea, NM BHL: 1980' FSL & 660' FWL, Unit L, Section 30, T25S-R35E, N.M.P.M., Lea, NM

1. EXISTING ROADS:

- a. The well site and elevation plat for the proposed well are reflected on the well site layout; Form C-102. The well was staked by Terry Asel, RPL 15079.
- b. All roads into the location are depicted on Exhibits 2, 2a and 2b. <u>Directions to Location</u>: Beginning in Jal at the intersection of NM State Highway #18 and NM State Highway #128, go West on NM State Highway #128 for 14.1 miles to CR #2 (Battle Axe Road), turn left and go Southwest for 0.3 miles, turn right and go West for 1.6 miles, turn left and go South for 1.0 miles, turn right and go West for 0.5 miles, turn left and go Southwest/South for 2.1 miles, turn left on caliche lease road and go Southeast for 1.9 miles, go East for 0.8 miles, turn right and go South 0.4 miles, turn left on proposed road and go 583.8 feet to location.

2. NEW OR RECONSTRUCTED ACCESS ROAD:

- a. The well site layout, Exhibit 2a shows the layout. A new access road will be constructed a distance of 583.8 feet of compact caliche as depicted per Exhibit 2b.
- b. The maximum width of the road will be 14'. It will be crowned and made of 6" of rolled and compacted caliche. Water will be deflected, as necessary, to avoid accumulation and prevent soil erosion.
- c. Surface material will be native caliche. This material will be obtained from a BLM approved pit nearest in proximity to the location. The average grade will be approximately 1%.
- d. No cattleguards are required.

3. LOCATION OF EXISTING WELLS:

Exhibit #3 shows all existing wells within a one-mile radius of this well.

4. LOCATION OF EXISTING AND/OR PROPOSED PRODUCTION FACILITIES:

- a. In the event the well is found to be productive, the necessary production equipment will be installed on location as depicted by the Production Facility Layout attached.
- b. As a proposed oil well, operator shall construct an overhead power line as depicted by Exhibit 5 a distance of 12,539.6 feet.
- c. Pipeline will adhere to API standards. Applicant shall lay a 4"surface low pressure poly pipeline a distance of 33,919.1 feet as depicted by Exhibit 6.
- d. Refer to b above.

- e. If the well is productive, rehabilitation plans are as follows:
 - i. The location shall be reduced on the north and east sides of the location as depicted by the Production Facilities Layout. The interim reclamation will be performed when optimal conditions exist during the growing season as per the interim reclamation guidelines of the BLM.
 - ii. The original topsoil from the well site will be returned to the location. The location will be contoured as close as possible to match the original topography.

5. LOCATION AND TYPE OF WATER SUPPLY:

This location will be drilled using a combination of water mud systems (outlined in the drilling program). The water will be obtained from commercial water stations in the area and hauled to location by transport truck using existing and proposed roads shown in Exhibit 2, 2a and 2b. On occasion, water will be obtained from existing water wells. In these cases where a poly pipeline is used to transport water for drilling purposes, proper authorizations will be secured. If poly pipeline is used to transport fresh water to the location, proper authorization will be secured by the contractor.

6. CONSTRUCTION MATERIALS

Obtaining Mineral Material – Caliche utilized for the drilling pad and proposed access road will be obtained either from an existing approved pit, or by benching into a hill which will allow the pad to level with existing caliche from cut, or extracted by "flipping" the location. A caliche permit shall be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" the location is as follows:

- 1. An adequate amount of topsoil for final reclamation will be stripped from the well location surface and stockpiled along the edge of the location as shown in the well site layout.
- 2. An area will be used within the proposed well site to excavate caliche.
- 3. The subsoil will then be removed and stockpiled within the footages of the well location.
- 4. Once caliche/mineral material is found, the material will be excavated and stockpiled within the footages of the well location.
- 5. The subsoil will then be placed back in the excavated hole.
- 6. Caliche/mineral material will then be placed over the entire pad and/or road to be compacted.

In the event that caliche is not found on site, a permit will be acquired if caliche is obtained from a BLM approved caliche pit

7. METHODS OF HANDLING WASTE MATERIALS

- a. Drill cuttings shall be disposed of in a steel cuttings bin (catch tanks) on the drilling pad (behind the steel mud tanks). The bin and cuttings shall be hauled to an approved cuttings dumpsite.
 - At the site, the cuttings shall be removed from the bin & the bin shall be returned to the drilling site for reuse.
- b. All trash, junk, and other waste material shall be contained in trash cages or trash bins to prevent scattering. When a job is completed, all contents shall be removed and disposed of in an approved landfill.
- c. The supplier, including broken sacks, shall pick up salts remaining after completion of well.
- d. If necessary, a porto-john shall be provided for the rig crews. This equipment shall be properly maintained during the drilling and completion operations and shall be removed when all operations are complete.
- e. Remaining drilling fluids shall be hauled off by transports to a state approved disposal site. Water produced during completion shall be put in storage tanks and disposed of in a state approved disposal. Oil and condensate produced shall be put in a storage tank and sold.
- f. Disposal of fluids to be transported by the following companies:
 - i. RGB TRUCKING
 - ii. LOBO TRUCKING
 - iii. I & W TRUCKING
 - iv. CRANE HOT OIL & TRANSPORT
 - v. JWS
 - vi. QUALITY TRUCKING

8. ANCILLARY FACILITIES:

a. No airstrip, campsite, or other facilities will be built.

9. WELL SITE LAYOUT:

- a. Exhibit 4 shows the proposed location of reserve and sump pits, living facilities and well site layout with dimensions of the pad layout.
- b. Mud pits in the active circulating system shall be steel pits and the catch tanks shall be steel tanks set in shallow sumps behind the steel circulating tanks and sumps.
- c. The area where the catch tanks are placed shall be reclaimed and the surface vegetation restored to as or near the same condition that existed prior to operations.

10. PLANS FOR SURFACE RECLAMATION:

- a. After concluding the drilling and/or completion operations, if the well is found non-commercial, the caliche shall be removed from the pad and transported to the original caliche pit or used for other drilling locations and roads. The road shall be reclaimed and the surface vegetation restored to as or near the same condition that existed prior to operations. The catch tank area shall be broken out and leveled after drying to a condition where these are feasible. The original topsoil shall again be returned to the pad and contoured, as close as possible, to the original topography.
- b. After the well is plugged and abandoned, the location and road shall be reclaimed and the surface vegetation restored to as or near the same condition that existed prior to operations.
- c. If the well is deemed commercially productive, the catch tank area shall be restored as described in 4(e)(i). Caliche from areas of the pad site not required for operations shall be reclaimed. The original topsoil shall be returned to the area of the drill pad not necessary to operate the well. These unused areas of the drill pad shall be contoured, as close as possible, to match the original topography.

11. SURFACE OWNERSHIP

The surface is owned by the Bureau of Land Management. The surface is multiple use with the primary uses of the region for the grazing of livestock and the production of oil and gas.

12. OTHER INFORMATION:

- a. The area surrounding the well is mesquite and tar brush. The topsoil is sandy in nature. The vegetation is moderately sparse with native prairie grass, cactus and shinnery oak. No wildlife was observed but it is likely that deer, rabbits, coyotes, birds and rodents transverse the area.
- b. There are not dwellings within 2 miles of location.
- c. Applicant will participate in the MOA.

13. BOND COVERAGE:

a. Bond Coverage is Nationwide; Bond No. NM 2308

COMPANY REPRESENTATIVES:

Representatives responsible for ensuring compliance of the surface use plan are listed below:

Land and Right of Way

Mr. Roger Motley Senior Lease Operations ROW Representative EOG Resources, Inc. P.O. Box 2267 Midland, TX 79702 (432) 686-3642 Office (361) 537-8281 Cell

<u>Drilling</u>	<u>Operations</u>	Regulatory
Mr. Steve Munsell	Mr. Howard Kemp	Mr. Stan Wagner
Drilling Engineer	Production Manager	Regulatory Analyst
EOG Resources, Inc.	EOG Resources, Inc	EOG Resources, Inc.
P.O. Box 2267	P.O. Box 2267	P.O. Box 2267
Midland, TX 79702	Midland, TX 79702	Midland, TX 79702
(432) 686-3609 Office	(432) 686-3704 Office	(432) 686-3689 Office
(432) 894-1256 Cell	(432) 634-1001 Cell	,

OPERATOR CERTIFICATION

I certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal Laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true, and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed this /8 day of November , 2011.

Name: Roger Motley

Position: Sr. Lease Operations ROW Representative

Address: P.O. Box 2267, Midland, TX 79705

Telephone: (432) 686-3642

Email: roger motley@eogresources.com

Signed