- Form 3166. 授 〇〇BBS 〇〇〇〇 (August 2007)	OCD	HOBBS		OMB N	APPROVED o. 1004-0137 July 31, 2010	
UNITED STAT MAR 2 3 2012 DEPARTMENT OF THI				5. Lease Serial No.		
BUREAU OF LAND MA				NMLC068281		
RECEIVED FOR PERMIT TO	o drill oi	R REENTER		6. If Indian, Allotee	e or Tribe Name	
la. Type of work: XDRILL REEN	NTER		i	7. If Unit or CA Agree	<39	
lb. Type of Well: X Oil Well Gas Well Other		ingle Zone 🔲 Multi	ple Zone	8. Lease Name and		35.
2. Name of Operator				Buck Federal 2 9. API Well No.	<u>y</u>	#3H
ConocoPhillips Company	< 2	2178177		30-025	- 4050	23
3a. Address 3300 N "A" St, Bldg 6 Midland, TX 79705		5. (include area code) 88-6913		10. Field and Pool or WC-025 G-2 Red Hills; Bon	Exploratory 25 5263208 ae Springs	P; AS UPPER
4. Location of Well (Report location clearly and in accordance with	any State requiren	nents.*)		11. Sec., T. R. M. or E Sec 20, T 26S,		rea (97838)
At surface UL C, Sec 20, T 26S, R 32E, 224 F	NL 2416 FW	ЛL		Sec 20, 1 203,	K JZE	-
At proposed prod. zone UL N, Sec 20, T 26S, R 3.	2E, 330 FSL	2416 FWL	- <u>.</u>			
14. Distance in miles and direction from nearest town or post office*				12. County or Parish	13. State	9
30 miles south west of Jal, NM 15. Distance from proposed* 2201 ESL	IC No of	acres in lease	17 Specie	Lea g Unit dedicated to this	NM NM	
15. Distance from proposed 330' FSL location to nearest 330' FSL property or lease line, ft. (Also to nearest drig. unit line, if any)	640.0	acres in lease	40	g Onn dedicated to this	weii	
18 Distance from proposed location* to nearest well, drilling, completed 650' from	19. Propose	d Depth	20. BLM/	BIA Bond No. on file		
applied for, on this lease, ft. Russsell	13720 N	AD 9284 TVD	ES008			
21. Elevations (Show whether DF, KDB, RT, GL, etc.)		mate date work will sta 9/2012	rI™	23. Estimated duratio 44 days	n	
<u>3183 Gr</u>	24. Atta			44 uays		
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office). 	em Lands, the	Item 20 above). 5. Operator certific	ation	ns unless covered by an prmation and/or plans as	-	
25. Signature \checkmark \checkmark	Name	(Printed/Typed)			Date	
	Bri	an D Maiorino		•	01/25/2011	. <u></u>
Title						
Regulatory Specialist Approved by (Signature) /s/ James A. Amos	Name	(Printed/Typed)			Date MAR 2	2012
Title FIELD MANAGER	Office		·			<u> </u>
	11.1			RLSBAD FIELD O		·
Application approval does not warrant or certify that the applicant h conduct operations thereon. Conditions of approval, if any, are attached.	olds legal or equi	table little to those righ	ts in the sub	APPROVAL		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations	a crime for any p as to any matter v	erson knowingly and v vithin its jurisdiction.	villfully to n	ake to any department o	or agency of the Un	ited
(Continued on page 2)			A -	*(Inst	ructions on pag	ge 2)
Carlsbad Controlled Water Basin	K.	v 7 (26 2	DI	Approval Subje & Special	ect to General f I Stipulations A	Requirements ttached
	ź ·		SEI	E ATTACHI	ED FOR	
5. 1			CO	NDITIONS	OF APPF	ROVAL

.

MAR 2 7 2012

.

OPERATORS NAME:

•

.

. •

.

LEASE NAME AND WELL NO.: SURFACE LOCATION: BHL: FIELD NAME: POOL NAME: COUNTY: **ConocoPhillips Company**

Buck Federal 20 #3H	 	
224 FNL & 2416 FWL		
330 FSL & 2416 FWL		
Red Hills		
Bone Spring	 	
Lea County, New Mexico	 	

The following information is to supplement the Application for Permit to Drill.

DRILLING PLAN

1. Name and estimated tops of all geologic groups, formations, members, or zones.

Quaternary	Surface	Water
Rustler	748	Salt
Castile	2498	Salt
Delaware Top	4292	Oil/gas/water
Ramsey	4373	Oil/gas/water
Ford Sand	4443	Oil/gas/water
Olds	4448	Oil/gas/water
Cherry Canyon lower top	6545	Oil/gas/water
Bone Spring	8226	Oil/gas/water
Bone Spring 1 st carbonate	8451	Oil/gas/water
top		
Bone Spring 1 st carbonate	8528	Oil/gas/water
base		
KOP .	8550	Oil/gas/water
Avalon A shale Top	8726	Oil/gas/water
Avalon A shale base	8937	Oil/gas/water
Avalon B zone top	8937	Oil/gas/water
Avalon B zone base	9087	Oil/gas/water
Avalon C shale top	9087	Oil/gas/water
Drain Hole	9284	Oil/gas/water
Avalon C Shale Base	9349	Oil/gas/water

2. Estimated depths and thickness of formations, members or zones potentially containing usable water, oil, gas, or prospectively valuable deposits of other minerals that the operator expects to encounter, and the operator's plans for protecting such resources.

۰.

Quanternary748 (water)Rustler2498 (Salt)Castile4292 (Salt)All of the water bearing and salt formations identified above will be protected by theintermediate setting of the 9-5/8" casing and circulating of cement to surface

Bone Spring8451-9349 (gas & gas/oil)The geologic tops identified above from the Bone Spring/Avalon are part of the target
formation.

A 5000# system will be installed, used, maintained, and tested accordingly. After nippling up, and every 30 days thereafter, preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be recorded on the daily drilling reports. Ram Type preventors will be tested to rated working pressure. Annular type preventer(s) shall be tested to 50% of the approved BOP stack working pressure. Pressure shall be maintained at least 10 minutes or until provisions of test are met, whichever is longer. ConocoPhillips Company request a variance to the testing as follows: The 13 3/8 surface casing will be set at a depth of 740° and a Wood Group Pressure Control SH2 type wellhead will be installed on the 13 3/8" casing string. The SH2 type wellhead is a "multi-bowl" type wellhead system that allows the landing of multiple casing strings without having to remove the BOP to install additional wellhead components. This specific wellhead design consists of a 13 3/8" SOW x 13 5/8" 3M psi lower flange assembly with a 13 5/8" x 5M psi upper flange assembly. For the initial installation on the 13 3/8" surface casing, the maximum pressure application to the wellhead system is limited by the 3M psi flange rating. Once installed, the 3M psi wellhead flange will be isolated and all subsequent BOPe pressure testing can be performed to 5000 psi, consistent with the requirements of a 5M system as set forth in Onshore Order No. 2 and the APD Conditions of Approval. The SH2 wellhead schematic and proposed BOPe configuration is attached for reference. COP also request approval for use of one flex hose on the drilling rig. See Attached BOPe Schematic and Testing Information and hose specifications.

4. The proposed casing program including size, grade, weights, type of thread and coupling, and the setting depth of each string and its condition. For exploratory wells, or for wells as otherwise specified by the authorized officer, the operator shall include the minimum design factors for tensions, burst, and collapse that are incorporated into the casing design. In cases where tapered casing strings are utilized, the operator shall also include and/or setting depths of each portion.

NEW CASING:

iel COA Surface: 17 1/2" hole, 13 3/8" 54.5# J-55 STC csg, set @ \$50". Drill out with 12 ¼" bit and perform shoe test to 11.0 ppg MWE. Burst: 2.67/Collapse: 4.92/Tension: 3.43

Inter 1: 12 1/4" hole, 9 5/8" 40# L-80 BTC csg, set @ 4500" Burst: 2.88/Collapse: 2.62/Tension: 6.31

Production Lateral: 8-3/4" hole, 5 ½" 17# P-110 BTC csg set @ 13,720' MD 9284 TVD. Burst 1.93/Collapse 5.32/Tension 3.79

						-						
Casing	Settig	OD" '	Wt	Grade	Conn	MIY	Collapse	Jt Str	MASP	Burst	Collapse	Axial
Sring [*]	Depth TVD		lb/ft			(psi)	(psi)	(Klbs)		DF	D F	DF
Surface	850 1135	13- 3/8	54.5	J-55	STC	2730	1130	514	1024	2.67	4.92	2.57
Intermdiate	4400 4325	9-5/8	40.0	L-80	BTC	5750	3090	947	1995	2.88	2.62	4.74
Production	9235	5-1/2	17.0	P-110	BTC	10640	7840	568	-	2.17	5.32	2.84

The Plan is to set casing and drill in a southern direction to a proposed bottom hole location of 330 FSL 2416 FEL Unit letter "N" Section 20, 26S, 32E

5. The amount and type(s) of cement, including anticipated additives to be used in setting each casing string, shall be described. If stage cementing techniques are to be employed, the setting depth of the stage collars and amount and type of cement, including additives, and preflush amounts to be used in each stage, shall be given. The expected linear fill-up of each cemented string, or each stage when utilizing stage-cementing techniques, shall also be given.

- a. 13-3/8" Csg: lead w/230 sx Class C cement + HalCem-C (Yeild: 1.33 cft) Tail w/870 sx Class C cement + 1 lbm/sk EconoChem-HRLTRRC (Yield 1.85 cft/sk) Circulate to surface. Based on 17-1/2" OH, with 200% excess
- b. 9-5/8" Csg: lead w/1200 sx 50/50 Class C Poz + 2.5 gal/bbl WG-19 + 1 lbm/sk EconoCem-C (Yield: 2.48 cft/sk) Tail w/270 sx 'H' + HalCem C (Yield 1.33 cft/sk) Circulate to surface. Based on 12.25" hole with 150% excess
- c. 5-1/2" Csg lead w/1180 sx HLH+ 0.3% Halad-9 + 5lbs/sk silicalite + 0.3% HR- 800 (Yield: 2.00 cft/sk) Tail w/805 sx 'H' + 0.4% Halad-9 + 0.1% WG-17 + 3.0% KCL + 0.3% HR-800 (Yield 1.2 cft/sk) circulate cement 500' into 9-5/8" casing. Based on 8-3/4" Hole w/150% excess

6. The anticipated type and characteristics of the proposed circulating medium or mediums proposed for the drilling of each wellbore section, the quantities and types of mud and weighting material to be maintained, and the monitoring equipment to be used on the circulating system.

Mud Program:

See

Set 0-850, 1155 Aquagel/Spudmud 8.9# Vis 32-36 WL: NC 850-4500, Brine 10.1# Vis 28-30 WL: 5-8 4500-13,720, Cut Brine 9.2-9.3# Vis 30-40 WL: <=5

Gas detection equipment and pit level flow monitoring equipment will be on location. ConocoPhillips Company will maintain sufficient mud and weighted material on location at all times.

7. The anticipated testing, logging, and coring procedures to be used, including drill stem testing procedures, equipment, and safety measures.

- a. DST Program: None
- b. Mud Logging: Two-Man 2800'-TD' Vertical and Horizontal Lateral Logs to be run: GR-MWD 13720'-8550' See Corf

8. List the expected bottom-hole pressure and any anticipated abnormal pressures, temperatures or potential hazards that are expected to be encountered, such as lost circulation zones and hydrogen sulfide. The operator's plans for mitigating such hazards shall be discussed. Should the potential to encounter hydrogen sulfide exist, the mitigation procedures shall comply with the provisions of the BLM.

The expected pressure gradient is 0.433 psi/ft or 9.0-9.1 ppg equivalent

The average anticipated bottom hole pressure ranges on average 4360 psi.

COA — No hydrogen sulfide is expected to be encountered during drilling operations; however, the potential does exist for H2S. Please see attached H2S contingency plan to be used in the event of occurrence.

Any other facets of the proposed operation which the operator wishes to be considered in reviewing the application.

Anticipated Spud date of June 9, 2012. Construction of well pad and road will begin as soon as all agency approvals are obtained.

9. Address the proposed directional design, plan view, and vertical section in true vertical and measured depth for directional, horizontal, or coil tubing operations.

The proposed directional/horizontal documents are attached.

PROSPECT/FIELD	Bonespring/Red Hills					COUNTY/STATE		Lea County, NM	
OWNERS	BURLINGTON RESOURCES				LEASE				
VELL NO.	Buck Federal 20 #3H			FNL	FSL	FEL	FWL		
OCATION			Surface Location	224		2416			
			Bottom Hole Location		330	2416			
ST. T.D.	Leg #1. 13,720' MD					GROUND ELEV.		3,160' (est)	
							RK		
ROGNOSIS:	Based o	on 3,160' KB(est)			LOGS:	Түр	e	Interval	
larker	S.S. Depth	TVD				Open Hole:			
luaternary		Surface				GR-MWD		13,720' - 8550'	
Rustler	2,412	748							
Castile	685	2498							
elaware Top	-1,230	4,292			DEVIATIO				
amsey	1190	4373			1	Surf	3° max, svy	every 500'	
ord Sand	-1260	4443				Int1/2	3° max, svy e	ivery 90'	
Dids	-1265	4448			1	Prod			
Cherry Canyon Lower Top	-3362	6545					•		
Bone Spring	-5,077	8,226					•		
one Spring 1st Carbonate Top	-5,311	8,451							
one Spring 1st Carbonate Base	-5,368	8,528			DST'S:				
OP (est)	-5,402	8,550			1				
valon A Shale Top	-5,573	8,726							
valon A Shale Base	-5,803	8,937			I				
valon B Zone Top	-5,803	8,937							
valon B Zone Base	-5,927	9,087			CORES:				
valon C Shale Top	-5,927	9,087		•		No core			
valon C Shale Top valon C Shale Base (Should not penet	rate6,194	9,349							
					SAMPLES				
						Mudlogging	Slart	End	
						Two-Man.	2,800	TD Vertical ar	d Honzontal sectio
					BOP:				
					BOP:		COP Categor	y 3 Well Control Requirem	nents
					BOP:	Nabors Rig M-09 B	COP Categor	ry 3 Well Control Requirem 13-5/8"-5Mpsi Annular	
					BOP:	Nabors Rig M-09 B (With Rolating Head	OPE	ry 3 Well Control Requiren 13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra	(Hydril GK)
					BOP:		OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0	(Hydril GK) m (Cameron U) Choke & Kill Lines
						(With Rotating Head	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0 13-5/8"-5M psi Pipe Ra	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U)
							OPE	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U)
	(See inclination prediction)				ι	(With Rotating Head	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0 13-5/8"-5M psi Pipe Ra	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U)
	(See inclination prediction)	0 65 ps/ft			Surface Fo	(With Rotating Head	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / (13-5/8"-5Mpsi Cross / (13-5/8"-5Mpsi Spacer (13-5/8"-5Mpsi Spacer ((Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
fax. Anticipated BHP:	Interval	0 65 ps⊮ft	Туре		Surface Fo	(With Rotating Head とうとも めい ormation: <u>Vis</u>	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0 13-5/8"-5Mpsi Spacer S WL	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U)
fax. Anticipated BHP: //UD:		0 65 ps/ft	<u>Түре</u> Aquagel - Spud Mud		Surface Fo Max MW 8 9	(With Rotating Head	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / (13-5/8"-5Mpsi Cross / (13-5/8"-5Mpsi Spacer (13-5/8"-5Mpsi Spacer ((Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
fax. Anticipated BHP: NUD: Surface	Interval	0 65 ps#t			Surface Fo	(With Rotating Head とうとも めい ormation: <u>Vis</u>	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0 13-5/8"-5Mpsi Spacer S WL	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
fax. Anticipated BHP: NUD: Surface	<u>Interval</u> 0'-850' 850'-4500'	0 65 ps/ft	Aquagel - Spud Mud Brine		Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> 32-36 28-30	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 13-5/8"-5M psi Pipe Ra 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
Max. Anticipated BHP: MUD: Surface ntermediate 1		0 65 ps#t	Aquagel - Spud Mud		Surface Fo Max MW 8 9	(With Rotating Head US.e. OLS ormation: <u>Vis</u> 32-36	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 0 13-5/8"-5Mpsi Spacer S 13-5/8"-5Mpsi Spacer S <u>WL</u> NC	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
tax. Anticipated BHP: IUD: iurface itermediate 1	<u>Interval</u> 0'-850' 850'-4500'		Aquagel - Spud Mud Brine		Surface Fo Max MW 8 9 10.1	(With Rolating Head L.S. e.J. CLS prmation: <u>Vis</u> 32-36 28-30 30-40	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross / 13-5/8"-5M psi Pipe Ra 13-5/8"-5M psi Pipe Ra 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8 <=5	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
tax, Anticipated BHP: IUD: uurface: htermediate 1 roduction	Interval 0-550 850'-4500' 4500'-13720' <u>Size</u>	Wt ppf	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u>	Depth	Surface Fo Max MW 8 9 10.1	(With Rotating Head L.S. e.J. CLS ormation: <u>Vis</u> 32-36 28-30 30-40 <u>Cement</u>	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5M psi Pipe Ra 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8 <=5 <u>WOC</u>	(Hydril GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool
tax. Anticipated BHP: IUD: iurface: itermediate 1 iroduction :ASING: iurface:	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8'	<u>Wt ppf</u> 54 5	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u> 17-1/2	850'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS prmation: <u>Vis</u> 32-36 28-30 30-40 <u>Cement</u> To Surface	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross (/ 13-5/8"-5Mpsi Cross (/ 13-5/8"-5Mpsi Spacer S 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8 <=5 <u>WOC</u> 18hrs	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool <u>Remarks</u>
fax, Anticipated BHP: NUD: vurface: termeduate 1 Production CASING: vurface: vurface:	Interval 0-550 850'-4500' 4500'-13720' <u>Size</u>	Wt ppf	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u>	Depth 850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head L.S. e.J. CLS ormation: <u>Vis</u> 32-36 28-30 30-40 <u>Cement</u>	OPE)	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5M psi Pipe Ra 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8 <=5 <u>WOC</u>	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool <u>Remarks</u>
fax, Anticipated BHP: NUD: surface ttermediate 1 Production SASING: surface: ttermediate 1	Interval 0°.950° 850°.4506° 4500°.13720° <u>Size</u> 13-3/8° 9-5/8°	<u>Wt ppf</u> 54 5 40	Aquage! - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4"	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	3M	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> 18hrs 18hrs	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool <u>Remarks</u> <u>Remarks</u>
tax, Anticipated BHP: IUD: urdace termediate 1 iroduction ASING: urface: termediate 1	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8'	<u>Wt ppf</u> 54 5	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u> 17-1/2	850'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS prmation: <u>Vis</u> 32-36 28-30 30-40 <u>Cement</u> To Surface	3M	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross (/ 13-5/8"-5Mpsi Cross (/ 13-5/8"-5Mpsi Spacer S 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8 <=5 <u>WOC</u> 18hrs	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool <u>Remarks</u>
Max. Anticipated BHP: AUD: Surface Intermediate 1 Production CASING: Surface: Intermediate 1 Production Lat #1.	Interval 0°.950° 850°.4506° 4500°.13720° <u>Size</u> 13-3/8° 9-5/8°	<u>Wt ppf</u> 54 5 40	Aquage! - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4"	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	3M	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> 18hrs 18hrs	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool <u>Remarks</u> <u>Remarks</u>
fax. Anticipated BHP: IND: surface: termediate 1 Production CASING: surface: termediate 1 Production Lat #1.	Interval 0°.950° 850°.4506° 4500°.13720° <u>Size</u> 13-3/8° 9-5/8°	<u>Wt ppf</u> 54 5 40 17	Aquagel - Spud Mud Brne Cut Brine <u>Hole</u> 17-1/2 12-1/4" . B-3/4"	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	90FE 3M 18	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> 18hrs 18hrs	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool Remarks Remarks
Dip Rate MUD: MUD: Surface: Intermediate 1 Production CASING: Surface: Intermediate 1 Production Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13.3/8' 9-5/8" 5-1/2"	<u>Wt ppf</u> 54 5 40 17 <u>MD</u>	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u>	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	оре ЗМ 10 10 12	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5M psi Pipe Ra 13-5/8"-5M psi Pipe Ra 13-5/8"-5Mpsi Spacer S <u>WL</u> NC 5-8 <=5 <u>WQC</u> 18hrs 18hrs 18hrs	(Hydni GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool <u>Remarks</u> <u>Remarks</u> Long String
Max. Anticipated BHP: AUD: Surface Intermediate 1 Production CASING: Surface: Intermediate 1 Production Lat #1.	Interval 0-550 850'4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface:	<u>Wt ppf</u> 54 5 40 17 <u>MD</u> NA	Aquagel - Spud Mud Brine Cut Brine 17-1/2 12-1/4 . B-3/4" <u>TVD</u> N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	09FE 3M	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> 18hrs 18hrs Directional Company	(Hydni GK) m (Cameron U) Thoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
tax. Anticipated BHP: IUD: urdace: termediate 1 iroduction :ASING: urface: termediate 1 iroduction Lat #1.	Interval 0-950 850'-4500' 4500'-13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface Vertical KOP -	<u>Wt ppf</u> 54 5 40 17 <u>MD</u> N/A 8,550'	Aquagel - Spud Mud Brne Cut Brine 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500'	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 180 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Gameron U) Shoke & Kill Lines m (Carneron U) Spool Remarks Remarks Long String
lax. Anticipated BHP: IUD: urface: Itermediate 1 roduction ASING: urface: Itermediate 1 roduction Lat #1.	Interval 0:950' 850'-4500' 4500'.13720' Size 13:3/8' 9-5/8" 5-1/2" Surface: Vertical KOP ' End Build/7"Casing (90" curve)	<u>Wt ppf</u> 54 5 40 17 NA 8,550' 9,695'	Aquagel - Spud Mud Brine Cut Brine <u>Hole</u> 17-1/2 12-1/4" . B-3/4" <u>TVD</u> N/A 8,500' 9,277'	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 180 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> 18hrs 18hrs Directional Company	(Hydni GK) m (Gameron U) Shoke & Kill Lines m (Carneron U) Spool Remarks Remarks Long String
tax. Anticipated BHP: IUD: urdace: termediate 1 iroduction :ASING: urface: termediate 1 iroduction Lat #1.	Interval 0-550 850'4500' 4500'13720' Size 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (60" curve) Tangent	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brine Cut Brine 17-1/2 12-1/4" . B-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	OPE 3 M 180 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
lax. Anticipated BHP: IUD: urface: Itermediate 1 roduction ASING: urface: Itermediate 1 roduction Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
lax. Anticipated BHP: IUD: urface: Itermediate 1 roduction ASING: urface: Itermediate 1 roduction Lat #1.	Interval 0-550 850'4500' 4500'13720' Size 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (60" curve) Tangent	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brine Cut Brine 17-1/2 12-1/4" . B-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	OPE 3 M 180 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
Max. Anticipated BHP: AUD: Surface Intermediate 1 Production CASING: Surface: Intermediate 1 Production Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Choke & Kill Lines m (Cameron U) Spool <u>Remarks</u> <u>Remarks</u> Long String
fax. Anticipated BHP: IND: surface: termediate 1 Production CASING: surface: termediate 1 Production Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
fax. Anticipated BHP: IND: surface: termediate 1 Production CASING: surface: termediate 1 Production Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
tax. Anticipated BHP: IUD: urdace: termediate 1 iroduction :ASING: urface: termediate 1 iroduction Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: <u>Vis</u> <u>32-36</u> 28-30 <u>30-40</u> <u>Cement</u> To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
lax. Anticipated BHP: UD: urface: Itermediate 1 roduction ASING: urface: Itermediate 1 roduction Lat #1.	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
ax. Anticipated BHP: UD: urface termediate 1 roduction ASING: urface: termediate 1 roduction Lat #1. IRECTIONAL PLAN	Interval 0.950 850'-4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface: Vertical KOP - End Build/ 7"Casing (90" curve) Tangent Tum	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A	Aquagel - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . 8-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Cameron U) Shoke & Kill Lines m (Cameron U) Spool Remarks Remarks Long String
ax. Anticipated BHP: UD: ufface: termediate 1 roduction ASING: ufface: termediate 1 roduction Lat #1. RECTIONAL PLAN	Interval 0-550 850'4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface Vertical KOP · End Build/ 7"Casing Overve) Tangent Tum TD	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A 13,720'	Aquagei - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . B-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A 9,284'	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Gameron U) Shoke & Kill Lines m (Carneron U) Spool Remarks Remarks Long String
ax. Anticipated BHP: UD: urface' termediate 1 roduction ASING: urface; termediate 1 roduction Lat #1. RECTIONAL PLAN	Interval 0-550 850'4500' 4500'13720' <u>Size</u> 13-3/8" 9-5/8" 5-1/2" Surface Vertical KOP · End Build/ 7"Casing Overve) Tangent Tum TD	Wt ppf 54 5 40 17 MD N/A 8,550' 9,695' N/A 13,720'	Aquagei - Spud Mud Brme Cut Brine <u>Hole</u> 17-1/2 12-1/4" . B-3/4" <u>TVD</u> N/A 8,500' 9,277' N/A N/A 9,284'	850' 4:500'	Surface Fo Max MW 8 9 10.1	(With Rotating Head LS.e.d. GLS primation: 32-36 28-30 30-40 Cement To Surface To Surface	0000 3 M 100 1800 1800 1800 1800 1800	13-5/8"-5Mpsi Annular 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Blind Ra 13-5/8"-5Mpsi Cross // 13-5/8"-5Mpsi Spacer 3 <u>WL</u> NC 5-8 <=5 <u>WOC</u> <u>18hrs</u> <u>18hrs</u> 18hrs 18hrs Directional Company Vertical Build Rate.	(Hydni GK) m (Gameron U) Shoke & Kill Lines m (Carneron U) Spool Remarks Remarks Long String

.

.

.

•

۱

.

10000 1/201

.

Geologist

Luis Serrano Drilling Englneer

ngineer

Bonespring/Red Hills BURLINGTON RESOURCES Buck Federal 20 #3H

~

<u>Surface Casing:</u> Surface Casing Depth (Ft) Surface Casing O.D. (In.) Surface Casing ID (In) Hole O.D. (In) Excess (%)	ر 13. 12. 2(
Volume Tail (Sx)	
Yield Tail (Cu. Ft./Sx)	
Yield Lead (Cu. Ft./Sx)	
Shoe Joint (Ft)	
Shoe Volume (Cu. Ft)	:
Tail feet of cement	:
Calculated Total Volume (Cu. Ft.)	1
Calc. Tail Volume (Cu. Ft.)	
Calc. Lead Volume (Cu. Ft.)	1.
Calc. Lead Volume (Sx)	
-	

0

-

.

050	Intermediate1 Casing (Lead):		Intermediate1 Casing (Tail):	0.5(0)		
_850 13.375	Intermediate Casing O.D. (In.) Intermediate Casing ID (In)	9.625	Intermediate Casing O.D. (In.)	9-5/8"		
12.715	Hole O.D. (In)	8.835	Production Casing ID (In)	8.835 12.25		
17.5	Excess (%)	12.25 150%	Hole O.D. (In)	12.25		
200%	cap 12-1/4 - 9-5/8"	0.0558	Excess (%) cap 12-1/4 - 9-5/8"	0.0558		
	Calculated fill		•			
230	Calculated III	3,800'	Calculated fill:	700'		
1.85			Yield Tail (Cu. Ft./Sx)	1 33		
1.33	Yield Lead (Cu. Ft./Sx)	2.48	Shoe Joint (Ft)	40		
40			Shoe Volume (Cu. Ft)	17.0		
35.3	Calculated Total Lead (Cu. Ft.)	2,975		0.40		
300			Calc. Tail Volume (Cu. Ft.)	346		
1,598	Calc. Lead Volume (Sx)	1200		,,		5480
417			Required Tail Volume (Sx)	270		
1,146						
870	•				-	
	Production Casing (Lead):		Production Casing (Tail):			
	Intermediate Casing O.D. (In.)	5.500	Intermediate Casing O.D. (In.)	5.500		
	Intermediate Casing ID (In)	4.892	Intermediate Casing ID (In)	4.982		
	Hole O.D. (In)	8 75	Hole O.D. (In)	8.75		
	Excess (%)	150%	Excess (%)	150%		
	cap 5-1/2" - 8-3/4" bls/ft	0.0450	cap 5-1/2" - 8-3/4" bls/ft	0.0450		
	cap 5-1/2 - 9-5/8" bls/ft	0.0408	cap 7 - 9-5/8" bls/ft			•
	Calculated fill: (500' into 9-5/8")	6,200'	Calculated fill:	2,550'	8,720'	
	Yield Lead (Cu. Ft./Sx)	2.0	Yield Lead (Cu. Ft./Sx)	1.2		
	Calculated Total Lead (Cu. Ft.)	2,349	Calculated Total Tail (Cu. Ft.)	966		
	Calc. Lead Volume (Sx)	1180				
			Required Tail Volume (Sx)	805		

7850

- 2D
- Cuttings Bins for Zero Discharge
- 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
- Annular BOP (13-5/8", 5M) 3
- Double Ram BOP (13-5/8", 5M with Blind Rams in Upper Set and Pipe Rams in Lower Set) 4
- Kill Line (2" chicksan, 5000 psi WP) 5
- Kill Line Valve, Inner (2", 5000 psi WP) 6
- 7 Kill Line Check Valve (2", 5000 psi WP
- 8 Choke Line (4" Flexible Steel Line, 5000 psi WP)
- 9 Choke Line Valve, Inner (4", 5000 psi WP)
- 10 Choke Line Valve, Outer, (Hydraulically operated, 4", 5000 psi WP
- 11 Spacer Spool (13-5/8" 5M)
- 12 Spacer Spool (13-5/8" 5M)
- Casing Head (13-5/8" 5M) 13
- 14 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
- 15 Surface Casing

Drawn by: Steven O. Moore, Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company, 22-Dec-2011

Stage 2 — . Install Split Speed Head With Riser Assembly

- 1. Drill and condition hole for surface casing.
- 2. Cut the conductor pipe off at the correct height above the cellar floor and goind stub level.

Note: The SH2 Riser Assembly is pre-assembled and tested prior to being shipped to location. The assembly is made up of a full length landing joint with flange, upper and lower SH2 housings, and a 10' long pup joint.

- Examine the 13-5/8" 5M ≈ 13-3/8" SOW SH2 Speed Head/Riser Assembly (Items A1 & B1). Verify the following:
 - 10 pupjoint is properly welded in place and casing threads are clean and in good condition
 - all outlet equipment has been removed including all study and nuts, and valves
 - VR plugs are in place and tight
 - base plate is intact and properly welded to the casing head
 - isolation bushing is in place and properly retained with landing flange
 - landing flange with landing joint are in place and connection is properly made up

Note: Lockscrews are removed to clear 27-1/2" rotary.

- 4. Run the surface casing to the required depth and then set the last joint of casing run in the floor slips.
- Pick up the SH2 Riser Assembly and make up the assembly in the casing string, tightening the thread connection to the thread manufacturers optimum make up torque.
- Pick up the casing string and remove the floor slips and rotary bushings.
- Slowly and carefully lower the assembly through the rotary table until the baseplate contacts the conductor pipe stub. Slack off all weight.
- Remove the duct tape from the O.D. of both the upper and lower flanges of the assembly and lightly grease all threaded lockscrew holes.

 Locate the (six) 1-1/4" and the (twelve) 1-1/2" lockscrew assemblies.

RP-1904

Page 6

- Install the 1-1/4" integral lockscrew assemblies in the upper flange and the 1-1/4" assemblies in the lower flange as indicated. (Ref. Dwg. RP111709)
- Rigup the comenthead and coment the surface casing string as per program, taking returns through the circulation ports in the baseplate.

Wood Group

Pressure Control

- 13. After the coment job is completed, bleed off and remove the coment head.
- 14. Remove the landing flange with landing joint and set aside.

ConocoPhillips

13-3/8" x9-5/8" x5-1/2" x2-7/8" 10/3ML

SH2/SH2-RWeilhead System

- Item Description
 - 1 Manual Adjustable Choke, 3-1/16, 10M
 - 2 Manual Adjustable Choke, 3-1/16, 10M
 - 3 Gate Valve, 2-1/16 10M
 - 4 Gate Valve, 3-1/16 10M
 - 5 Gate Valve, 3-1/16 10M
 - 6 Gate Valve, 3-1/16 10M
 - 7 Gate Valve, 4-1/16" 10M
 - 8 Gate Valve, 3-1/16 10M
 - 9 Gate Valve, 3-1/16 10M
 - 10 Gate Valve, 4-1/16" 10M

 - 11 Gate Valve, 3-1/16 5M
 - Gate Valve, 3-1/16 10M
 Gate Valve, 3-1/16 10M

 - 14 Pressure Gauge
 - 15 2" hammer union tie-in point for BOP Tester

INS# 7/2012

Drawn by: Steven O. Moore Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company 01-Feb-2012

COPPER STATE RUBBER VISUAL INSPECTION / HYDROSTATIC TEST REPORT CHOKE & KILL HOSE 10,000 P.S.I. W/P X 15,000 P.S.I. T/P SPEC: 090-1915 HS H2S SUITABLE

SHOP ORDER NO.: 165	528	SIZE:	3"	
SERIAL NO.: 22269	1 9 - 1 - 20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	LENGTH 2	5FT	IN.
CONNECTIONS:	4-1/	16" 10,000 PSI API FL	ANGE	
	VISUAL INSP	ECTION	· .	
(A) END CAPS / SLEEVE REC (B) EXTERIOR / COVER / BRA (C) INTERIOR TUBE:		<u>ОК</u> ОК ОК	,	
:	HYDROSTAT	IC TEST		· ·
			• •	· . ·
5 MIN. @ 10,000 PSI 2 MIN. @ 0 PSI	25'	3 ⁿ	OAL	. ;
3 MIN. @ 15,000 PSI				· · ·
WITNESSED BY:	M W M P		·.	

August 09 2011

TemarisHydril

Size: 4.500 in. Grade: API T95

Wall: 0.430 in. Weight: 18.900 lbs/ft Connection: Blue™

PIPE BODY DATA

·		GEOM	ETRY		•
Nominal OD	4.500 in.	Nominal Weight	18.90 lbs/ft	Standard Drift · Diameter	. 3.515 in.
· . Nominal ID .	3.640 in.	Wall Thickness	0.430 in.	Special Drift Diameter	N/A
Plain End Weight	18.71 lbs/ft			•	
		PERFOR	MANCE		•
Body Yield . Strength	522 x 1000 lbs	Internal Yield	15890 psi	Collapse -	16410 psi

BLUE™ CONNECTION DATA

GEOMETRY

Regular OD	5.1 89 in.	Special Clearance OD	5.051 in.	Connection ID	3.740 in.
Critical Section Area	5.768 sq. in.	Critical Section Area (Special Clearance)	4.659 sq. in.	Make-Up Loss	4.012 in.
Threads per in.	5.00	Coupling Length	9.213 in.		
		· PERFORM	NCE	-	
Regular OD Tension Efficiency	100 %	Joint Yield Strength	522 x 1000 Ibs	Internal Yield	15890 psi
Compression Efficiency	100 %	Compression Rating	522 x 1000 lbs	Collapse	16410 psi
Special Clearance Tension Efficiency	85.0 %	Bending	97 °/ 100 ft		
· · · · · · · · · · · · · · · · · · ·		Make-up to	RQUES		
Minimum	8630 ft-lbs	Target	9590 ft-lbs	Maximum	10550 ft-lbs
Yield Torque	15750 ft-lbs	-			
		BLANKING DIM	ENSIONS	·	
		Blanking Dime	ensions		

				· .			
				TIONS	<u></u>		
1 L					. لار منطقة المتحديدة المحديدة الم		
HOSE MANUFACTURER	HOSE MANUFACTURED DATE	HOSE SERIAL #	HOSE OD	HOSE ID	WORKING PSI	TEST PSI	
COPPER STATE RUBBER		22269	6.25	3	10K	15K	
FLANGE	FLANGE MANUFACTERED DATE	RING TYPE	-				
4 1/16 10M	11/8/2006	BX153					

~~

AREA= 157,500 F (3.6 Acres)