Form 3160-3 (March 2012) MAY 2 8 2013 RECEIVED DEPARTMENT OF THE BUREAU OF LAND MA APPLICATION FOR PERMIT TO	INTERIOR NAGEMENT	OCD Hobb			M APPROV	FD
(March 2012) RECEIVED UNITED STATE DEPARTMENT OF THE BUREAU OF LAND MA	INTERIOR NAGEMENT			FOR		ED
(March 2012) RECEIVED UNITED STATE DEPARTMENT OF THE BUREAU OF LAND MA	INTERIOR NAGEMENT		-			
BUREAU OF LAND MA	INTERIOR NAGEMENT		e	Evpira	3 No. 1004-01 October 31,	
BUREAU OF LAND MA	NAGEMENT		3.	5. Lease Serial No		
				NM LC 029405B	, 	
				6. If Indian, Allote N/A	e or Tribe	Name
la. Type of work: 🔽 DRILL 📃 REEN	TER	<u></u>		7 If Unit or CA Ag	greement, N	ame and No.
lb. Type of Well: 🖌 Oil Well 🗌 Gas Well 🗍 Other	يا الح	ngle Zone 🗌 Multi	ple Zone	8. Lease Name and Ruby Federal #23	1 Well No. 3 < 3	8653
2. Name of Operator ConocoPhillips Company	<u>L_</u>			9. API Well No.		
Conocorninps Company	۲	(21781"	17	30-025- 4	96	
3a. Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone No 432-688-6). (include area code) 913		10. Field and Pool, o Maljamar; Yeso V	•	34450
4. Location of Well (Report location clearly and in accordance with	any State requiren	nents.*)		11. Sec., T. R. M. or	Blk. and Su	rvey or Area
At surface 1815' FSL and 2170' FWL; UL K, Sec. 18, T	17S, R32E			Sec. 18, T17S, R	32E	
At proposed prod. zone 1815' FSL and 2170' FWL; UL K,	Sec. 18, T17	S, R32E		-		
14. Distance in miles and direction from nearest town or post office* Approximately 3 miles south of Maljamar, New Mexico		·		12. County or Parish Lea County		13. State NM
15. Distance from proposed* 1815' FSL location to nearest	16. No. of a 1601.9	acres in lease		ng Unit dedicated to this	s well	
property or lease line, ft. (Also to nearest drig. unit line, if any)	1001.9		40			
	19. Propose	d Denth	BIA Bond No. on file			
 Distance from proposed location* Approximately 770' to nearest well, drilling, completed, applied for, on this lease, ft. 	6925' MD/	-	5			
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3957' GL	22. Approxi 09/13/201	mate date work will sta 3	23. Estimated durati 10 days	ion		
· · · · · · · · · · · · · · · · · · ·	24. Atta	chments	<u></u> .			
The following, completed in accordance with the requirements of Onsh	ore Oil and Gas	Order No.1, must be a	ttached to th	nis form:		
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover t Item 20 above).	he operatio	ons unless covered by a	n éxisting l	oond on file (se
3. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office).	n Lands, the	 Operator certific Such other site BLM. 		formation and/or plans :	as may be r	equired by the
25. Signature	Name	(Printed/Typed)			Date	
Sugar B. Mounder		n B. Maunder			2-0	32-20
Senior Regulatory Specialist						
Approved by (Signature) /s/George MacDonell	Name	(Printed/Typed / s/G	eorge	MacDonell	Date MA	Y 222
	Office	CARLSBAD F				
Application approval does not warrant or certify that the applicant ho conduct operations thereon. Conditions of approval, if any, are attached.	lds legal or equi	table title to those righ		oject lease which would APPROVAL 1		• •
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a tates any false, fictitious or fraudulent statements or representations a	crime for any post of any matter w	erson knowingly and within its jurisdiction.	villfully to n	nake to any department	or agency	of the United
(Continued on page 2)			Ros	well Controlle	tructions	er Basin
		,		1		
				AL MAY	30/1	2
al Subject to General Requirements SEE	ATTAC	HED FOR		01	•	

Drilling Plan ConocoPhillips Company <u>Maljamar; Yeso, west</u>

Ruby Federal #23

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents
Quaternary	Surface	Fresh Water
Rustler	678	Anhydrite
Salado (top of salt)	849	Salt
Tansill	1851	Gas, Oil and Water
Yates	2066	Gas, Oil and Water
Seven Rivers	2349	Gas, Oil and Water
Queen	2989	Gas, Oil and Water
Grayburg	3409	Gas, Oil and Water
San Andres	3789	Gas, Oil and Water
Glorieta	5252	Gas, Oil and Water
Paddock	5329	Gas, Oil and Water
Blinebry	5674	Gas, Oil and Water
Tubb	6725	Gas, Oil and Water
Deepest estimated perforation	6725	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	6925	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

÷

L

	уре	Hole Size	M	Interval ID RKB (ft)	OD	Wt Gr		Conn	MIY	Col		1	Safety Factors Calculated per ConocoPhillips Corporate Criteria		
	уре	(in)	From	То	(inches)	(lb/ft)	G	Collin	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant	
C	ond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA	
	Alt. ond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA	
s	urf	12-1/4	0	75 07 03'-748 '	8-5/8	24#	J-55	STC	2950	1370	244	1.24	6.31	2.11	
Р	rod	7-7/8	0	6870' – 6915'	5-1/2	17#	L-80	LTC	7740	6290	338	1.15	2.05	1.69	

The casing will be suitable for H_2S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Design (Safety) Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	748	24	2950	1370	244000	8.5	8.92	4.14	13.59	15.62
Production Casing	6915	17	7740	6290	338000	10	2.15	1.75	2.88	3.39

Casing Design (Safety) Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate	Criteria for Minimum Design Factors
--------------------------	-------------------------------------

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Page 2 of 9

Type Depth Wt MIY Col Jt Str Pipe Yiel MW Surface Casing (8-5/8" 24# J-55 STC) 748 24 2950 1370 244000 381000 8	Burst Collapse Tensile 8.5 1.24 6.31 2.11
	10 1.16 2.05 11.69
Burst Design (Safety) Factors - ConocoPhillips Criteria The maximum internal (burst) load on the Surface Casing occurs when the surface casing is tested to 1000 psi (pressured up to 1100 psi) maximum internal (burst) load on the Production Casing occurs when the surface casing is tested to 1000 psi (pressured up to 1100 psi) maximum internal (burst) load on the Production Casing occurs when the surface casing is tested to 1000 psi (pressured up to 1100 psi) maximum internal (burst) load on the Production Casing occurs during the fracture stimulation where the maximum ellowable working press (MAWP) is the pressure thet would fit ConocoPhillips Corporate Criteria for Minimum Design Factors. Surface Casing Test Pressure + 1000 psi Surface Rated Working Pressure + 3000 psi Surface Casing Burst Design Factor + Burst Rating / Maximum Pressure during Casing Pressure Test Production Casing MAWP for the Fracture Stimulation + Minimum Internel Yeld / Production Casing Burst Design Factor. Surface Casing Burst Design Factor: 200 Design Factor: 200	sure
Designed CSFG (Test Pressure + MWP) \$ (1000 + 389)/(748 x MPSP (CSFG - GG) = 748 x 0.052 x 35.21 - 74.8 MPSP (PPTD - GG) = 6915 x 0.052 x 8.55 - 691.5 MPSP (D 375 x BHP) = 0.375 x 691.5 x 0.052 x 8.55 - 691.5 MPSP (CSFG) = 748 x 0.052 x 8.55 - 1691.5 8.55 - 1691.5 MPSP (CSFG) = 748 x 0.052 x 8.55 - 1691.5 1370 Bust Design Factor = 2950 / 2383 = 1.24 1.24 Production Casing Burst Design Factor:	5. = 2383 = 1153)
MPSP.(PPTD: GG) =: 6915 x 0.052 x 8.55 .691.5 MPSP.(0.375 x BHP) =: 0.375 x 6915 x 0.052 x 8.55 MPSP.(0.375 x BHP) =: 0.375 x 6915 x 0.052 x 8.55 MPSP.(Data Marking Provided and Provided	그는 것 같은 그 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것
The maximum collapse load on the Surface Casing occurs when the pressure is released effer bumping the plug on the surface casing centres of the maximum collapse load on the production casing occurs with the well is pumped off on production. We plan to centent the product casing to surface, and therefore the external pressure profile on the production casing should be equal to the pore pressure of the horizon outside of the casing which we estimate to be 8.55 ppg gradient. Surface casing Collapse Design Factor = Collapse Rating / (Cement Column Hydrostatic Pressure – Displacement Fluid Hydrostatic Pressure – Displacement – Displ	clion is on the
Surface Casing Collapse Design Factor: Collapse Design Factor = 1370 / (((300 x 0.052 x 14.8 Collapse Design Factor = 1370 / 217 = 6.31 Production Casing Collapse Design Factor: Collapse Design Factor = .6290 / (8.55 x 0.052 x 6915	
Collapse Design Factor = 6290 / 3074 = 2.05 Joint Strength Design (Safety) Factors - ConocoPhillips Criteria The maximum extal (tension) load occurs if casing were to get stuck and putied on to try to get it unstuck.	
Maximum Allowable Hookload = Joint Strength Rating / Axial Design Factor Overpull Margin (Air VX) = Maximum Allowable Hook Load - Air VX of the String Overpull Margin (Bouyant) = Maximum Allowable Hook Load - Air VX of the String Surface Casing (Minimum Pipe Yield)	
Max Hookload (Air Wt) = 17952 Max Hookload (Bouyant) + Overpull = 100,000 + (17952 x 0.870) = 115622 Tensile Design Factor = 397000 / 115622 = 3.43 Actual Overpull Margin to Satisfy COP min DF = 397000 / 1.40 15622 = 267949 Production Casing (Minimum Pipe Yield) Max Hookload (Air Wt) = 117555	遵循하는 물건물을 가지 않는다. 이는 사람이 가 많은 것으로
Max Hookload (Bouyani) + Overpull = 100,000 + (117555 x 0.847) = 199608 Tensile Design Factor = 381000 / 199608 = 1.91 Actual Overpull Margin to Satisfy COP.min DF = 381000 / 1.40 99808 = 172535 Surface Casing (Minimum Jt Streingth) Max Hookload (Air WI) = 17952 . 0.870) = 115622 Max Hookload (Bouyani) + Overpull = .100,000 + (17952 x 0.870) = 115622	
Tensile Design Factor = 244000 / 115622 = 2.11 Actual Overpull Margin to Satisfy COP min DF = 244000 / 1.40 15622 ::::::::::::::::::::::::::::::::::::	
Tensile Design Factor = 338000 / 199608 = 1.69 Actual Overpull Margin to Satisfy COP min DF = 338000 / 1.40 99608 = 141821	그는 것이 같은 것이 많은 것이 같이 집에 가지 않는 것이 없다.

. a 1

3. Proposed cementing program:

.

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing & Cementing Program: 8-5/8" 24# J-55 STC

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft N		Weight ppg	Sx	Voi Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	403' – 448'	13.6	350	595	4%Bentonite 2%CaCl2 .125%Polyflake 0.2% antifoam Excess =230% based on gauge hole volume	1.70
Tail	Class C	403' – 448'	703' – 748'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program: 5-1/2" 17# L-80 LTC

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		Intervals Ft MD		Sx	Vol Cuft	Additives	Yield ft ³ /sx	
Lead	50:50 Poz/C	Surface	5200'	11.8	1000	2640	10% Bentonite 8 Ibs/sx Salt 0.4% Fluid loss additive 0.125% LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.64	
Tail	Class H	5200'	6870' – 6915'	16.4	650	696	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume	1.07	

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide. (Date: February 22, 2013) Ruby Federal #23 ConocoPhillips respectfully requests an additional option to our cementing program. The intention of this alternative is to accommodate additional isolation of the Grayburg-San Andres formation with cement.

Alternate 5-1/2" Production Casing & Cementing Program – TXI/LW Option for Grayburg-San Andres:

The intention for cementing of the Production Casing is to:

- Place the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Intervals Weight Sx Ft MD ppg		Vol Cuft	Additives	Yield ft ³ /sx		
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	6800' 7000' 6915	13.2	1300	1820	0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume	1.40

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11° 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached

(Date: February 22, 2013) Ruby Federal #23

Page 5 of 9

BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System

.

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂)	10	29	N.C.	10 – 11	1250 - 2500
Conversion to Mud at TD	Brine Based Mud (NaCl ₂)	10	34 – 45	5 – 10	10 – 11	0 - 1250

Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. H2S Monitoring Alarm installed at the possum belly could be set as low as 5 to 10 ppm and go into high alarm. The gases shall be piped into the flare system. Gas detection equipment and pit level flow monitoring equipment will be on location. A percentage flow paddle installed in the flow line measures relative amount of mud flowing in non-pressurized return line. There are 4 mud probes in the system. One probe is installed in each of the individual tanks to measure the volume of the drilling fluid in individual mud and trip tanks at the well site. The mud probe data is collected by the Pit Volume Totalizer (PVT) system and the information is available real-time via display in the dog house and the company representative's office on location. ConocoPhillips Company will maintain sufficient mud and weighting material on location if hole conditions warrant.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. Also, we propose an option to not mud up leaving only brine in the hole.

(Date: April 3, 2013) Ruby Federal #23

6. Logging, Coring, and Testing Program: See COA

٤

- a. No drill stem tests will be done
- b. Mud logging planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional) .
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional) •
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered. ø
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - 0 The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F. 0
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented 0 in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order #6

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells is late 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 27 August 2012

Attachment # 2

Drawn by: Steven O. Moore Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 25-Sept-2012

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 029405B Well: Ruby Federal #23 Location: Sec. 18, T17S, R32E Date: 02-22-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 1

となける

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom, ID			Nom OD		Weight		Min Bend Radius			
in. 3 3-1/2	mm. 76.2 88:9	in 5. 5.		mm 129.79 147.06	1b/ft 14.5 20.14	kg/m 21.46 29.80	in. 48 54	тп. 1219.1 1371.1		Мра 34.4 34.4
			n ð fyr	anton and an anton and an an an anton a	:				·	
Fittings			Flanges			Hammer Unions			Other	
					PI Type 68 PI Type 68			urations	LP Threaded Connect Graylock	
RC4X5575					:				Custom	Ends
		1			•					

Attachment # 2

