2				ATS-1	13-45	le	
RBS OCL							
HODE		OCD Ho	bbs	Боли	ADDROVED		
March 2012)				OMBN	APPROVED 10. 1004-0137		
JUN UNITED STATES	-		•		October 31, 2014	ł 	
HOBES OCD Form 3160-3 (March 2012) JUN 0 5 2013 UNITED STATES RECEIVED DEPARTMENT OF THE I BUREAU OF LAND MAN.	NTERIOR AGEMENT	·		5. Lease Serial No. NM LC 029405B			
APPLICATION FOR PERMIT TO		REENTER		6. If Indian, Allotee N/A	or Tribe Nar	ne	
la. Type of work: 🗹 DRILL 🗌 REENTE	R			7. If Unit or CA Agre N/A	eement, Name	and No.	
Ib. Type of Well: Oil Well Gas Well Other	Si	ngle Zone 🔲 Multip	ble Zone	8. Lease Name and Ruby Federal #36		65	37
2. Name of Operator ConocoPhillips Company	<	21781	17	9. API Well No. 30-025- 41 5	206		
^{3a.} Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone No 432-688-69	(include area code) 913		10. Field and Pool, or 1 Maljamar; Yeso We	· / /	145	<u>,700</u> 7
4. Location of Well (Report location clearly and in accordance with any	v State requirem	ents.*)		11. Sec., T. R. M. or B	ik.and Surve	y or Area	
At surface 1650' FNL and 1650' FWL; UL F, Section 18,	T17S, R32E	E		Section 18, T17S, I	R32E		
At proposed prod. zone 1650' FNL and 1650' FWL; UL F, Se	ection 18, T	17S, R32E					
14. Distance in miles and direction from nearest town or post office* Approximately 3 miles south of Maljamar, New Mexico			<u>_</u>	12. County or Parish Lea County	1	3. State IM	
15. Distance from proposed* 1650' FNL	16. No. of a 1601.9 6	cres in lease	17. Spacir 40	ng Unit dedicated to this w	well		
property or lease line, ft. (Also to nearest drig. unit line, if any)							
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed 6911' MD/	-	20. BLM/ ES 008	BIA Bond No. on file 5			
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	nate date work will star	t*	23. Estimated duration	n		
3964' GL	10/16/201	3		10 days			
	24. Attac	hments					
The following, completed in accordance with the requirements of Onshore	e Oil and Gas	Order No.1, must be at	tached to th	is form:			<u> </u>
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System I 			ne operatio	ns unless covered by an	existing bond	1 on file	(see
SUPO must be filed with the appropriate Forest Service Office).				ormation and/or plans as	may be requ	ired by tl	he
25. Signature Susan B. Maunder) Name Susar	(Printed/Typed) B. Maunder			Date	20-	2013
Title Senior Regulatory Specialist							
Approved by (Signature) /s/George MacDonei	Name	(Printed/Typed)	- 5 77 •		DateJUN	3	2013
Title FIELD MANAGER	Office			CARLSBAD FIELD	OFFICE		
Application approval does not warrant or certify that the applicant holds conduct operations thereon.	legalorequi	able title to those right		-	••		29
Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it g cr	ime for any po	rson knowingly and w		PPROVAL FO			
States any false, fictitious or Heludilent statements or representations and	ary matter w	ithin its jurisdiction.					<u> </u>
(Continued on page 2)				*(Insti	ructions of	n page	2)
Roswell Controlled Water Basin			Appr	oval Subject to Ge & Special Stipula	eneral Rec tions Atta	uireme ched	ents

Ver is t

SEE ATTACHED FOR CONDITIONS OF APPROVAL

Drilling Plan ConocoPhillips Company <u>Maljamar; Yeso, west</u>

Ruby Federal #36

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents						
Quaternary	Surface	Fresh Water						
Rustler	685	Anhydrite						
Salado (top of salt)	869	Salt						
Tansill	1860	Gas, Oil and Water						
Yates	2053	Gas, Oil and Water						
Seven Rivers	2351	Gas, Oil and Water						
Queen	2989	Gas, Oil and Water						
Grayburg	3424	Gas, Oil and Water						
San Andres	3785	Gas, Oil and Water						
Glorieta	5251	Gas, Oil and Water						
Paddock	5332	Gas, Oil and Water						
Blinebry	5686	Gas, Oil and Water						
Tubb	6711	Gas, Oil and Water						
Deepest estimated perforation	6711	Deepest estimated perf. is ~ Top of Tubb						
Total Depth (maximum)	6911	200' below deepest estimated perforation						

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8''</u> surface casing <u>25' - 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

	Turno	Hole Size		Interval D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fac ated per Co Corporate C	nocoPhillips
	Туре	(in)	From	То	(inches)	(lb/ft)	G	Conn	(psi)	(psi)_	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
	Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
	Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
ð	Surf	12-1/4	0	Z40 ' – 755'	8-5/8	24#	J-55	STC	2950	1370	244	1.24	6.26	2.11
	Prod	7-7/8	0	6866' – 6911'	5-1/2	17#	L-80	LTC	7740	6290	338	1.15	2.05	1.69

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Design (Safety) Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	755	24	2950	1370	244000	8.5	8.84	4.11	13.47	15.47
Production Casing	6911	17	7740	6290	338000	10	2.15	1.75	2.88	3.40

Casing Design (Safety) Factors - Additional ConocoPhillips Criteria:

.

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

	ConocoPhillips Corporate Cri	iteria for Minimum Design Factors	
	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

	Depth Wt 😒			Pipe Yiel M			lapse T		*		
Surface Caśing (8-5/8" 24#_J-55 STC) Production Casing (5-1/2",17# L-80 LTC)	755 6911		1370 244000 6290 338000		8.5 ···. 10 ···	1.24	6.26 	2.11			
		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	alian ang pangangan ang pa Ng panganganganganganganganganganganganganga			· · · · · · · · · · · · · · · · · · ·	91.	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	d en		
Burst Design (Safety) Factors - ConocoPhillip	<u>os Criteria</u>		1								
The inaximum internal (burst) load on the Surface Casing o maximum internal (burst) load on the Production Casing occ								1			
(MAWP) is the pressure that would fit ConocoPhillips Corpo					pressure	ndrig en Stor Found					
Surface Casing Test Pressure = Surface Rated Working Pressure =	1000 psi										
Surface Casing Burst Design Factor = Burst	3000 psi Rating / Maximum Pi	ressure during Cas	sing Pressure Test	ان ایر از رو اکترانی دو	i de servicio. General	가 가 한 종 등 등		Y Salata		÷	i i i i i i i i i i i i i i i i i i i
Production Casing MAWP for the Fracture St	inulation = Minimum	Internal Yeild / Pro	duction Casing Burs	t Désign Factor	in ny Ny INSEE					11 - 1 - 1 11 - 1 - 1	a. a
urface Casing Burst Design Factor:	and a second										ta i ta internet.
Designed CSFG (Test Pressure + MWP) ≤	(100	in the second in	. 393)/(x 34.97	755	x 75.5	0.052) 1297	0,5	≤ 34.97		and the state
MPSP (CSFG - GG) = MPSP (PPTD - GG) =	755 x 6911 x	0.052	x 34.97 x 8.55		75.5 691.1	••	2382				
///MPSP (0.375 × BHP) =	0,375 x	6911	x 0.052		8.55	,	1152	1	÷	1. A.	
MPCS (CSFG) ≐ Bust Design Factor ≓	755 x 2950 /	0.052	x 34.97 ≡ 1.24	-	1373	· · · ·					
Production Casing Burst Design Factor:			na na shekarar Na shekarar		an a		M		-		an in the second
MPSP (SRWP) ≓, MPSP (PPTD - GG) =,	<u>3000</u> 6911 x	0.052	x 8.55	1	1911	É	2382			· · ·	
MPSP (0.375 x BHP) ≓	0.375 x	6911	x 0.052		8.55		1152	·			in a china an an a'
. Burst Design Factor (Max. MPSP) ≜ MAWP for the Fracture Stimulation =	7740 / 7740 /	3000	= 2.58 = 6730							· · · ·	
MAYNI IN THE Flactule Diministration] 0.50		4				$\mathcal{F} = \mathcal{F}$	e Gara i j	·
<u>Collapse Design (Safety) Factors - ConocoPl</u>	Julino Critorio					- 19 A		5 - F 			
The maximum collapse load on the Surface Casing occurs	when the pressure	is released after b	umping the plug on t	the surface casir	ng cèment	• • •	an an tha				
job. The maximum collapse load on the production casing o								•			
casing to surface, and therefore the external pressure pro outside of the casing which we estimate to be 8.55 ppg gr		on casing should be	e equal to the pore p	pressure of the h	orizons on the	e	* *		н. На селото с		· ·
Surface Casing Collapse Design Factor = Co	llapse Rating / (Cem			splacement Fluid I	Hydrostatic Pr	ressure)	į.				
Production Casing Collapse Design Factor =	Collapse Rating / Ma	aximum Possible Po	re Pressure								
Surface Casing Collapse Design Factor:	· ·		it i boro			1				<u> </u>	
Collapse Design Factor =	1370 / {	(300	x 0.052							13.6	11 - 334
		219		^ L_	<u>14.8</u>)	+ (455	X U.L	JOZ X	J 	
Collapse Design Factor = Production Casing Collapse Design Factor:	1370 /	219	= 6.26		<u>14.8</u>))	+ (455	x U.	JJZ X	, 	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor =	1370 / 6290 /(-219 (<u>8.55</u>	= 6.26] x 0.052		<u>14.8</u>)) 5911)	+ (455	x U.I	JJZ X	, 	
Collapse Design Factor = Production Casing Collapse Design Factor:	1370 /	-219	= 6.26	× L	<u>14.8</u>) 6911)	+ (,	455	x UI	JOZ X	<u>,.</u>	
Collapse Design Factor = Production Casing Collapse Design Factor = स् Collapse Design Factor = Collapse Design Factor (1370 / 6290 /(6290 /	219 (<u>8.55</u>) 3073	= 6.26] x 0.052	× L	<u>14.8</u>) 6911)	+ (.	455	x Ul	JUZ X	, <u>.</u>	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor =	1370 / 6290 / 6290 / <u>ocoPhillips Crit</u>	219 (<u>8.55</u>) 3073 teria	= 6.26] x 0.052 = 2.05	, x , 1	<u>14.8</u>)	÷ (.	455	x Ul	JUZ X	,	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = <u>Joint Strength Design (Safety Factors - Conr</u> The maximum axial (tension) load occurs it casing were to Maximum Allowable Hookload = Joint Strength Rating / Axia	1370 6290 / (6290 / <u>ocoPhillips Crit</u> get stuck and pulle al Design Factor	219 (<u>8.55</u>) 3073 leria d on to try to get it o	= 6.26] x 0.052 = 2.05		<u>14.8</u>)	+ (.	455	x Ul	192 X	· · ·	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Joint Strength Design (Safety) Factors <u>- Com</u> The maximum axial (tension) load occurs if casing were to	1370 / 6290 / (6290 / get stuck and pulled al Design Factor - Air Wt of the String	219 (<u>8.55</u>) 3073 d on to try to get it o	= 6.26] x 0.052 = 2.05	× _	<u>14.8</u>)	+ (.	455	x Ul	, , , ,	,	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = <u>Joint Strength Design (Safety) Factors - Conc</u> The maximum axial (tension) load occurs if casing were to Maximum Allowable Hookload = Joint Strength Rating / Axie Overpull Margin (Air WI) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load	1370 / 6290 / (6290 / get stuck and pulled al Design Factor - Air Wt of the String	219 (<u>8.55</u>) 3073 d on to try to get it o	= 6.26] x 0.052 = 2.05	, , , , , , , , , , , , , , , , , , ,	<u>14.8</u>)	+ (.	455	x U.		,	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = <u>Joint Strength Design (Safety) Factors - Conc</u> The maximum axial (tension) load occurs if casing were to Maximum Atlowable Hookload = Joint Strength Rating / Axie Overpull Margin (Air VM) = Maximum Atlowable Hook Load Overpull Margin (Bouyant) = Maximum Atlowable Hook Load Surface Casing (Minimum Pipe Yield)	1370 6290 / (6290 / get stuck and pulled al Design Factor - Air Wt of the String d - Air Wt of the String	219 (<u>8.55</u>) 3073 d on to try to get it o	= 6.26] x 0.052 = 2.05		<u>14.8</u>)	∔ (455	x U.		,	
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = <u>Joint Strength Design (Safety) Factors - Com</u> The maximum axial (tension) load occurs if casing were to Maximum Allowable Hookload = Joint Strength Rating / Axis Overpull Margin (Air WI) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Surface Casing (Minimum Pipe Yield) Max Hookload (Air WI) = Max Hookload (Bouyant) + Overpull =	1370 6290 / (6290 / get stuck and puller al Design Factor - Air Wt of the String d - Air Wt of the String 1 Air Ut of the String 1 18120 100,000	219 (<u>8.55</u> 3073 d on to try to get it (g ing + (18120	 = 6.26 x 0.052 = 2.05 unstuck. x 0.870 		1 <u>4.8</u>) 5911) 5769	÷ (455	x U.(· · · ·	
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = <u>Joint Strength Design (Safety) Factors - Conc</u> The maximum Allowable Hookload = Joint Strength Rating / Axia Overpull Margin (Air Wi) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Surface Casing (Minimum Pipe Yield) Max Hookload (Air Wi) = Max Hookload (Air Wi) = Max Hookload (Air Wi) = Concept	1370 6290 / (6290 / 6290 / 9et stuck and pulle al Design Factor Air Wt of the String d - Air Wt of the String 397000 /	219 (<u>8.55</u>) 3073 teria d on to try to get it (g ing + (18120 <u>115769</u>	<pre>= 6.26] x 0.052 = 2.05 unstuck. x 0.870 = -3.43</pre>) =. 11	5769	∔ (455	x U.			
Collapse Design Factor = Production Casing Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = <u>Joint Strength Design (Safety) Factors - Conn</u> The maximum axial (tension) load occurs if casing were to Maximum Allowable Hookload = Joint Strength Rating / Axie Overpull Margin (Air WI) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Surface Casing (Minimum Pipe Yield) Max Hookload (Air WI) = Max Hookload (Bouyant) + Overpull = Tensile Design Factor = Actual Overpull Margin to Satisfy COP min DF = Production Casing (Minimum Pipe Yield)	1370 6290 / (6290 / get stuck and puller al Design Factor - Air Wt of the String d - Air Wt of the String 100,000 -397000	219 (<u>8.55</u> 3073 d on to try to get it (g ing + (18120	 = 6.26 x 0.052 = 2.05 unstuck. x 0.870) =. 11		÷ (455	x U.I	62 x	•	
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Max Hookload (Bouyant) + Overpull = Tensile Design Factor: Actual Overpull Margin to Satisfy COP min DF = Production Casing (Minimum Pipe Yield) Max Hookload (Air Wt) =	1370 6290 / (6290 / get stuck and pulled al Design Factor - Air Wt of the String d - Air Wt of the String 18120 100,000 -397000 / 397000 / 117487	219 (<u>8.55</u> , 3073 d on to try to get it o g ing + (19120 <u>115769</u> <u>1.40</u>	<pre>x 0.052 2.05 x 0.052 2.05 unstuck x 0.870 = -3.43 15769</pre>) = 11 3 = 26	5769 7803	÷ (455	x U.(, , , , , , , , , , , , , , , , , , ,		
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse Design Factor: Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = Collapse Design Factor = dot Strength Design (Safety) Factors - Cong The maximum Allowable Hookload - Joint Strength Rating / Axia Overpull Margin (Air WI) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Overpull Margin (Bouyant) = Maximum Allowable Hook Load Surface Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpull = Tensile Design Factor = Actual Overpull Margin to Satisfy COP min DF = Production Casing (Minimum Pipe Yield) Max Hookload (Bouyant) + Overpul = Tensile Design, Factor = Max Hookload (Air WI) = Max Hookload (Air WI) = Max Hookload (Air WI) = Max Hookload (Bouyant) + Overpul = Tensile Design, Factor =	1370 6290 / (6290 / get stuck and pulled al Design Factor - Air Wt of the String d - Air Wt of the String 18120 100,000 -397000 / 397000 / 117487	219 (<u>8.55</u> , 3073 d on to try to get it o g ing + (18120 <u>115769</u> <u>1.40</u> + (117487 199550	<pre>= 6.26] x 0.052 = 2.05 unstuck. x 0.870 = -3.43</pre>) = 11) = 26) = 19	5769 7803 9550	÷ (455	x U.	62 x		
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse De	1370 6290 / (6290 / get stuck and pulled a besign Factor Air Wt of the String d - Air Wt of the String d - Air Wt of the String 100,000 397000 / 397000 / 117487 100,000	219 (<u>8.55</u> 3073 don to try to get it of g ing + (18120 <u>115769</u> <u>1.40</u> + (117487	x 0.052 2.05 unstuck. x 0.870 3.43 - 15769 x 0.847) = 11) = 26) = 19	5769 7803	÷ (455	x U.			
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse De	1370 6290 / (6290 / 6290 / 900 / 1000 festion Factor al Design Factor al Design Factor al Air Wt of the String d - Air W	219 (<u>8.55</u> , 3073 d on to try to get it o g ing + (18120 <u>115769</u> <u>1.40</u> + (117487 199550	x 0.052 = 2.05 unstuck. x 0.870 = -3.43 - 15765 x 0.847 = 1.91) = 11 3 = 26) = 19 0 = 17	5769 7803 9550 2593	÷ (455	x U.			
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse De	1370 6290 / (6290 / 6290 / 9et stuck and pulled al besign Factor Air Wt of the String d - Air Wt of the String 100,000 397000 / 397000 / 117487 100,000 381000 / 381000 / 18120 100,000	219 (<u>8.55</u> , 3073 d on to try to get it of g ing + (18120 <u>115769</u> <u>1.40</u> + (117487 <u>199550</u> <u>1.40</u> + (18120	<pre>x 0.052 = 2.05 unstuck. x 0.870 = -3.43] - 15765 x 0.847 = 1.91] - 99550 x 0.870</pre>) = 11 3 = 26) = 19 0 = 17	5769 7803 9550	÷ (455	x U.			
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse De	1370 / 6290 / (6290 / get stuck and puller al Design Factor - Air Wt of the String d - Air Wt of the String d - Air Wt of the String 100,000 -397000 / 397000 / 397000 / 397000 / 397000 / 381000 /	219 (8.55 3073 d on to try to get it of g ing + (18120 115769 1.40 + (117487 199550 1.40 + (16120 115769	x 0.052 = 2.05 unstuck. x 0.870 = -3.43) = 11 3 = 26) = 19 0 = 17) = 11	5769 7803 9550 2593 5769	÷ (x U.	R2 X		
Collapse Design Factor = Production Casing Collapse Design Factor = Col	1370 6290 / (6290 / 6290 /	219 (<u>8.55</u> , 3073 d on to try to get it of g ing + (18120 <u>115769</u> <u>1.40</u> + (117487 <u>199550</u> <u>1.40</u> + (18120	<pre>x 0.052 = 2.05 unstuck. x 0.870 = -3.43] - 15765 x 0.847 = 1.91] - 99550 x 0.870</pre>) = 11 3 = 26) = 19 0 = 17) = 11	5769 7803 9550 2593	÷ (455	x U.			
Collapse Design Factor = Production Casing Collapse Design Factor: Collapse De	1370 6290 / (6290 / 6290 / et stuck and puter al Design Factor Air Wt of the String d - Air Wt of the String d - Air Wt of the String 100,000 397000 / 397000 / 397000 / 117487 100,000 381000 / 381000 / 18120 100,000 244000 / 244000 / 117487	219 (<u>8.55</u> , 3073 d on to try to get it of g 115769 <u>140</u> + (117487 <u>199550</u> <u>1.40</u> + (18120 <u>115769</u> <u>1.40</u>	<pre>x 0.870 x 0.870 2 - 3.43 3 - 15765 x 0.847 3 - 99550 x 0.870 x 0.870 x 0.870 x 0.870 x 0.870 x 15765</pre>) = 11 3 = 26) = 19 0 = 17) = 11 3 = 15	5769 7803 9550 2593 5769 8517	÷ (455	x U.			
Collapse Design Factor = Production Casing Collapse Design Factor = Col	1370 6290 / (6290 / 6290 / et stuck and puter al Design Factor Air Wt of the String d - Air Wt of the String d - Air Wt of the String 100,000 397000 / 397000 / 397000 / 117487 100,000 381000 / 381000 / 18120 100,000 244000 / 244000 / 117487	219 (8.55 3073 d on to try to get 1 (g ing + (18120 115769 1.40 + (18120 1.40 + (18120 115769 1.40 + (18120 115769 1.40 + (117487 199550	x 0.052 = 2.05 unstuck. x 0.870 = -3.43) = 11) = 26) = 19) = 17) = 11 0 = 15) = 19	5769 7803 9550 2593 5769	÷ (x U.			

(Date: February 20, 2013) Ruby Federal #36

3. Proposed cementing program:

* i * i

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing & Cementing Program: 8-5/8" 24# J-55 STC

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft I	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx	
Lead	Class C	Surface	410' – 455'	13.6	350	595	4%Bentonite 2%CaCl2 .125%Polyflake 0.2% antifoam Excess =230% based on gauge hole volume	1.70
Tail	Class C	410' – 455'	710' – 755'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program: 5-1/2" 17# L-80 LTC

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	1000	2640	10% Bentonite 8 lbs/sx Salt 0.4% Fluid loss additive 0.125% LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.64
Tail	Class H	5200'	6866' – 6911'	16.4	650	696	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume	1.07

ConocoPhillips respectfully requests an additional option to our cementing program. The intention of this alternative is to accommodate additional isolation of the Grayburg-San Andres formation with cement.

Alternate 5-1/2" Production Casing & Cementing Program – TXI/LW Option for Grayburg-San Andres:

The intention for cementing of the Production Casing is to:

- Place the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

<u> </u>	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	6800' – 7000'	13.2	1300	1820	 0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume 	1.40

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached

BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System

The mud systems that are proposed for use are as follows:

DEPTH	ТҮРЕ	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	pН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂)	10	29	N.C.	10 – 11	1250 - 2500
Conversion to Mud at TD	Brine Based Mud (NaCl ₂)	10	34 45	5 – 10	10 – 11	0 - 1250

Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. H2S Monitoring Alarm installed at the possum belly could be set as low as 5 to 10 ppm and go into high alarm. The gases shall be piped into the flare system. Gas detection equipment and pit level flow monitoring equipment will be on location. A percentage flow paddle installed in the flow line measures relative amount of mud flowing in non-pressurized return line. There are 4 mud probes in the system. One probe is installed in each of the individual tanks to measure the volume of the drilling fluid in individual mud and trip tanks at the well site. The mud probe data is collected by the Pit Volume Totalizer (PVT) system and the information is available real-time via display in the dog house and the company representative's office on location. ConocoPhillips Company will maintain sufficient mud and weighting material on location if hole conditions warrant.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. Also, we propose an option to not mud up leaving only brine in the hole.

6. Logging, Coring, and Testing Program: See COA

- a. No drill stem tests will be done
- b. Mud logging planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	+ H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order #6

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells begin from late 2012 through the 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 27 August 2012

(Date: February 20, 2013) Ruby Federal #36 Page 7 of 9

14 g + 4

Attachment # 1

16 Surface Casing

Submitted by: James Chen, Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company, 25-Sep-2012

Page 8 of 9

Attachment # 2

(Date: February 20, 2013) Ruby Federal #36

Page 9 of 9

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 029405B Well: Ruby Federal #36 Location: Sec. 18, T17S, R32E Date: 02-20-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment #1

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nor	n. (D	Non	n OD	Wei	ght	Min Be	ond Radii	us Max	(WP
in. 3 3-1/2		in. 5.11 5.79	mm 129.79 147.06	16/ft 14.5 20,14	kg/m 21.46 29.60	in. 48 54	mm. 1219. 1371.	2 5000	Mpa 34.4 34.4
			5. o 5. o 5. o 7. o 8. o 7. o 8. o 7. o 8. o 7. o 7. o 7. o 7. o 7. o 7. o 7. o 7	:			÷	·	·
Fittings RC4X5055 RC3X5055 RC4X5575				5 .PI Type 68 .PI Type 68		n mer Un ion Configu	-	Othe LP Threaded C Graylor Custom E	onnecti ck

1,

.

