March 2012) DEPARTMENT OF THE INTERIOR BURBAU OF LAD MANGEMENT S. Lean Serial Ve. March 20022 Application FOR PERMIT TO DRILL OR REENTER 3. Lean Serial Ve. March 20022 Ib. Type of work: [DBARL] REENTER Ib. Type of work: [DBARCH_CONCORMING TOWN OF THE INTERNO.] 9. ATT WINN OF THE INTERNO.] Ib. Type of work: [DBARCH_CONCORMING TOWN OF THE INTERNO.] 9. ATT WINN OF THE INTERNO.] Ib. Type of work: [DBARCH_CONCORMING TOWN OF THE INTERNO.] 9. ATT WINN OF THE INTERNO.] Ib. Anator Work (March Lows of the ONE INFORMATION OF THE INTERNO.] 10. Attach The Interno.] 9. ATT WINN OF THE INTERNO.] Ib. Anator Work (March Lows of the ONE INFORMATION OF THE INTERNO.] 10. Exposing Unit Mong The The Exposing Unit Mong The	UOBBS OCD						136	-50
March 2012)	r~		- · · · · · · · · · · · · · · · · · · ·				·	
March 2012) PECREVEN UNITED STATES OCD Hobbs BURARTMENT OF THE INTERIOR DIPARTMENT OF THE INTERIOR Status Califordia Status Califordia Status Califordia APPLICATION FOR PERMIT TO DRILL OR REENTER I. Holm CALAgreeners, None and You You Status Califordia Is. Type of work On Well Osa Well Osa Status Califordia Is. Type of work On Well Osa Well Osa Status Califordia Is. Type of work On Well Osa Well Osa Status Califordia Status of Well Is. Type of work On Well Osa Well Osa Status Califordia Status of Well Status of Well Status Califordia Status of Well Status of W	IUN 18 LOIN	AMEN	IDED				'n	
DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT States fails in http://www.states.com//wwwww.states.com//wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	Form 3160-3 (March 2012)	. *			OME	3 No. 1004-013	7	
Derrak Neiseri OF, ILDS MARAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER In. Type of work: DRILL In. Type of work: DRILL ORDER STATUS In Dance: Intel Status of Type Status Intel Status of Type Status DRILL ORDER STATUS Intel Status of Type Status of Type Status DRILL ORDER STATUS Intel Status of Type Status of Ty	RECEIVED UNITED STATES		OCD Hol	obs				-
APPLICATION FOR PERMIT TO DRILL OR REENTER 6.1 failing, Alloles or Tribe Name 1a. Type of work: DRILL REENTER 7.8 flating, Alloles or Tribe Name 1b. Type of work: ORINEL REENTER 7.8 flating, Alloles or Tribe Name 1b. Type of work: ORINEL Other Single Zore Madigle Zare 7.8 flating, Alloles or Tribe Name 1b. Type of work: ORINGE Other Single Zore Madigle Zare 7.8 flating, Alloles or Tribe Name 1b. Type of work: ORINGE Other Single Zore Madigle Zare 9.4 flating, Alloles or Tribe Name 3. Address p. Osci (Stat) Data State Origonality Single Zore New of Madigmez, Yeas Week 4.4 flating, Alloles or Tribe Name 4. Location of Well (Report Newton's clarely or da acconduce util any State registered 12.6 carely or Pariah 13.8 state 4. States from proposed according the Week 12.8 carely or Pariah 13.8 state 5. States from proposed according the Week 12.8 carely third edicated to dis well 6. Obstate from proposed according the Week 12.8 carely third edicated to dis well 6. Obstate from proposed according the Week 12.8 carely the Pariah 13.8 state	DEPARTMENT OF THE		· · · ·					
Ia. Type of varie: [] NA Ib. Type of varie: [] On varie: [] Single Zae: [] Maliple Zae: [] Maliple Zae: Ib. Type of varie: [] On varie: [] Single Zae: [] Maliple Zae: [] Maliple Zae: 2. Num: (I) On varie: [] Single Zae: [] Maliple Zae: [] Maliple Zae: 3. Address: P.O. Bae, 51810 [] Single Zae: [] Maliple Zae: [] Maliple Zae: 3. Address: P.O. Bae, 51810 [] Single Zae: [] Maliple Zae: [] Maliple Zae: 4. Location of Well (Report Jocoton clearly and macandme with any date regenerons?) [] Single Zae: [] Si			REENTER			e or Tribe N	Name	-
Ia. Type of vorite [] NA Ib. Type of vorite [] OB VGLI [] OB VGL				— <u> </u>	7 If Unit or CAAs	reement Na	me and No.	-
1b. Type of Well: On Well Gas Well Other Index of Operator Concoording Society and Societ	la. Type of work: 🖌 DRILL 📃 REENTR	ER	•		-			_
3a. Address P.O. Box 51810 Midland, Texes 79710-1810 3b. Phone No. Include area code 432-688-6913 10. Field and Pool, or Exploratory Midland, Texes 79710-1810 10. Field and Pool, or Exploratory Midland, Texes 79710-1810 41. Location of Well (Right Robots Cearly and in accordure with any Shar regeneratory.) At surface 420 FSL and 9647 FEL; UL, O, Sec. 17, T17S, R32E 11. Sec. 7. R. M. or BiL and Survey or Area Sec. 17, T17S, R32E 4. Distance in miles and direction from searest town or pot office? Approximately 3 miles south of Maigiamar, New Mexico 12. Spring Unit definited to his well 40 9. Distance from property a face of the transformately 200 19. Roposed Depth 7044 MD/70287VD 12. Spring Unit definited to his well 40 9. Distance from property a face of the transformately 200 19. Roposed Depth 7044 MD/70287VD 23. Estimated duation 10 days 1. Elevations (Show whether DF, KUR, RT, CL, etc.) 22. Approximate date work will start 40. Surface from property face of the transformately 200 10. Baddy for the transformately 300 on Bile (sec 18. A 20085 1. Elevations (Show whether DF, KUR, RT, CL, etc.) 22. Approximate date work will start 40. Distruction graphical for in show and the requirements of Orelone OII and Gas Order No 1, must be attrached to this sort 10. days 23. Estimated duation 40. days 1. Elevations (Show whether DF, KUR, RT, CL, etc.) 24. Attachments 40. days 30. days 1. Elevations (Show whether DF, KUR, RT, CL, etc.) 25. Approximate data work	lb. Type of Well: 🗹 Oil Well 🔲 Gas Well 🛄 Other	Sin Sin	ngle Żone 🔲 Multi	ole Zone			874	27
3a. Address P.O. Box \$1810 Midland, Texas 79710-1810 1b. Phone No. (include one call) Majorner, Yose West Majorner, Yose Majorner, Majorner,	2. Name of Operator ConocoPhillips Company		- DINA	175	1.	12	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-
Midland, Texas 79710-1810 42-080-0913 Midjamar, Yeso West 24-24 20 / 1 4. Location of Well (Report location clearly and in accordance with any Star regarement.") Soc. 17, 1175, R32E H. See, T. R. M. or Bit and Starvey or Area A surface 420 FSL and 1400 FEL; UL O, Sec. 17, 1175, R32E 10. Sec. 17, 1173, R32E 11. Sec. 17, 1173, R32E A proposed prod zone 366' FSL and 964' FEL; UL P, Sec. 17, 1175, R32E 12. County or Parish Lea County 13. State Name 5. Distance from proposed togation frame and direction from ansers tow or post office' 15. No. of across in lease 17. Spricing Unit decisated to this well 40 4. Distance from proposed frag Approximately 200' 19. Proposed Depth 7044' MD7028/TD 10. BLMBIA Bord Na on file 7. Spricing Unit decisated to this well 40 40 10. days 12. State 10. days 8. Distance from proposed proposed frag Approximately 200' 10. days 10. days 9. State from proposed p	3a. Address P.O. Rox 51810	3b. Phone No	(include area code)	1//		r Explorator	y .	
At surface 420° FSL and 1340° FEL; UL O, Soc. 17, T17S, R32E Sec. 17, T17S, R32E 4. Depressing in ull-assisted fraction from nearest town or post office* 12 County or Parish 13. State 4. Depressing in ull-assisted fraction from nearest town or post office* 12 County or Parish 13. State 5. Distance from proposed* 420° FSL Linewise 15. State 6. Distance from proposed 420° FSL Linewise 16. No. of acces in lease 17. Spacing Unit dedicated to this well 40 40 40 40 40 40 6. Distance from proposed location* Approximately 200° 19. Proposed Depth 20. BLAMEIA Bond No. on file Estimated duration 6. Distance from proposed location* Approximately 200° 19. Proposed Depth 20. BLAMEIA Bond No. on file Estimated duration 6. Distance from proposed location* Approximately 200° 10. days 20. BLAMEIA Bond No. on file 7. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate dute work will stat* 23. Estimated duration 10 days 8. Dial tocrificed by a registered surveyor. 1 8. Dial tocrifice by a registered surveyor. 1 8. Dial tocrifice by a registered surveyor. 1 9. Date occilification	Midland, Texas 79710-1810	432-688-69	913		Maljamar; Yeso V	Vest	<u> </u>	50
At proposed prod. zone: 366' FSL and 964' FEL; UL P, Sec. 17, T175, R32E 12. County or Parish Laa County 13. State 4. Distance for miles south of Majararr, New Mexico 12. County or Parish Laa County 13. State 0. Distance form proposed* 420 FSL 20. FSL 16. No. of seres in lease 17. Spacing Unit dedicated to this well 40 10. State 10. State 10. State 10. State 0. Distance form proposed* 20. FSL 20. FSL 10. State 0. States form proposed* 400 FSL 10. State 10. States 0. Distance form proposed* 400 FSL 20. FSL 10. States 0. Distance form proposed* 400 FSL 20. States 10. States 0. States form proposed* Approximately 270 19. Proposed Depth 20. BLAMBIA Bood Na. on file 0. States form proposed* 40. Proposed Depth 20. States form proposed 20. States 10. elevations (Show whether DF, KDB, RT, GL, ec.) 22. Approximate date work will start* 22. Estimate for autom 24. Attachments 10. States form proposed 40. States 10. States 10. days 2. A String USA 40. States 10. days 24. Attachments 10. States	4. Location of Well (Report location clearly and in accordance with an	ty State requirem	ents.*)		11. Sec., T. R. M. or	Blk. and Sur	vey or Area	
4. Distance in miles and direction from nearest town or post office 12. County or Parish Lea Courty 13. State MM Approximately 3 miles south of Maljamar, New Mexico 15. No, of acces in lease 17. Spacing Unit dedicated to this well Solution to marrest or proposed 420 FSL Law (16. No, of acces in lease 17. Spacing Unit dedicated to this well Solution to marrest or proposed 20. FSL Law (16. No, on file 18. State On the state, find (11. composed) Approximately 270 19. Proposed Depth 20. BLMBIA Bond No, on file To nearest well, duffing, composed, campos Approximate date work will start 23. Stitnated duration 10 days 4.02:2 GL 24. Attachments 24. Attachments 10 days 24. Attachments he following, completed in accordance with the requirements of Onshore Oil and Gas Order No.1, must be attached to this form: 4. Datting Pine 10 days 3. VLP on such field with the gaptorpriate Forest System Lands, the State the field with the appropriate Forest System Lands, the BLM 4. State the duration and/or plans as may be required by the BLM 5. Signifure Signifure Name (PrintedTyped)/S/George MacDonell Date Hull (13. 2013 ife Serior Regulatory Specialist Office CARLSBAD Field OFFICE gaplication approval does no	At surface 420' FSL and 1340' FEL; UL O, Sec. 17, T17	'S, R32E			Sec. 17, T17S, R	32E		
Approximately 3 miles south of Maijamar, New Mexico Lea County NM 3. Distance from proposed location 1 monostication of maijamar, New Mexico 17. Spacing Unit dedicated to this well 40 4. Also to neared 4 mile, if any) 19. Proposed Depth 704 km / 100 monostication 1 mile km / 100 mile	<u></u>	. <u>17, T17S, F</u>	32E		10.0	r	12 (1)	_
location to nearest (Also to nearest drig, unit the, if any) 22.76 40 Also to nearest drig, unit the, if any) 19. Proposed Depth 7044' MD/7026TVD 20. BLM6HA Bend No. on file ES 0085 I. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 08/23/2013 400 24. Attachments I. Elevations (Show whether DF, KDB, RT, GL, etc.) 24. Attachments 40 8. Autrachments he following, completed in accordance with the requirements of Onshore OII and Gas Order No.1, must be attached to this form: 4. Well patcertified by a registered surveyor. 2. A Driling Plm. A surface Use Pln of the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office) 5. Signature Businer Comparison of the location is on National Forest System Lands, the BLM 6. Support Regulatory Specialist worder by Signature Inflet 6. Support Regulatory Specialist Part Field ManAGER Name (Printed/Typed)'s/George MacDonell Office CARLSBAD FIELD OFFICE Pilletoin approval field, as a tracked. Mate (Printed/Typed)'s/George MacDonell Office Continued on page 2) Roswell Controlled Water Basin Methods begain representations as as ony matter within in instruction. (Continued on page	14. Distance in miles and direction from nearest town or post office* Approximately 3 miles south of Maljamar, New Mexico				•			
8. Distance from proposed localion* to nearest well, drilling, completed, parked for, on this lease, ft. 402 BLM/BIA Bond No. on file ES 0085 1. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate data work will start* 23. Estimated duration 10 days 4032* GL 24. Attachments 24. Attachments he following, completed in accordance with the requirements of Onshore Oil and Gas Order No.1, must be attached to this form: 10 days 4. Well plat certified by a registered surveyor. 4. Abriling Plan. A. Abriling Plan. 6. Such other site specific information and/or plans as may be required by the BLM on the supportiate Forest Service Office) 5. Signature Name (PrintedTyped) Sugar B. Maunder Date High 24 (13) ite Senior Regulatory Specialist Date (Signature) Date High 20 (Signature) Date High 24 (13) ite Senior Regulatory Specialist Office CARLSBAD FIELD OFFICE proved by (Signature) /S/George MacDonell Office CARLSBAD FIELD OFFICE proved by (Signature) /S/George MacDonell Date JUN 1 3 2013 ite Senior Regulatory Specialist PrintedTyped/S/George MacDonell Date JUN 1 3 2013 ite Senior Regulatory approval for any, are attached. APPROVAL FOR TWO YEARS ite B U	location to nearest	16. No. of a 323.76	cres in lease		g Unit dedicated to thi	s well		-
1. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 4032° GL 24. Attachments he following, completed in accordance with the requirements of Onshore Oil and Gas Order No.1, must be attached to this form: 4. 1. Well plat certified by a registered surveyor. 24. Attachments 2. A Drilling Plan. 4. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 4. 5. Signature Name (PrintedTyped) Date 1/24/1/3 5. Signature Name (PrintedTyped) Date 1/24/1/3 5. Signature ////////////////////////////////////	18. Distance from proposed location* to nearest well, drilling, completed.	1 .	-				·	-
4032' GL 08/23/2013 10 days 24. Attachments he following, completed in accordance with the requirements of Onshore Oil and Gas Order No. I, must be attached to this form: 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. A. Surface Use Plan (if the location is on National Forest System Lands, the SUBO must be filed with the appropriate Forest Service Office). 1. Surface Use Plan (if the location is on National Forest System Lands, the SUBO must be did use propriate Forest Service Office). 1. Signature Surface Use Plan (if the location is on National Forest System Lands, the SUBO must be did util the appropriate Forest Service Office). 1. Signature Supervised by (Signature) Name (PrintedTyped) Date Mark (PrintedTyped) Serior Regulatory Specialist proved by (Signature) /S/George MacDonell Office CARLSBAD FIELD OFFICE puplication approval does not warrant or certify that the applicant holds legal or equitable filt to those rights in the subjectlease which would entitle the applicant to conduct operations thereon. Onditions of approval, if any, are attached. APPROVAL FOR TWO YEARS (If the USLS, Section 101 and Tile 43 USC. Section 1012, make it a crime for any person knowingly and willfully to make to any department or agency of the United tares any false, fi		22. Approxir	nate date work will sta	 rt*	23. Estimated durat	ion		-
he following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, must be attached to this form: 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). Meme (PrintedTyped) Sugarther Mame (PrintedTyped) Sugarther Senior Regulatory Specialist upproved by (Signature) /s/George MacDonell Office: CARLSBAD FIELD MANAGER Office: CARLSBAD FIELD OFFICE piptication approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subjectlease which would entitle the applicant to adverse any matter within its jurisdiction. Action on proval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to adverse. (Continued on page 2) Roswell Controlled Water Basin								
 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above). 5. Signature 3. Such other site specific information and/or plans as may be required by the BLM. 5. Signature 3. Name (Printed/Typed) 3. Such other site specific information and/or plans as may be required by the BLM. 5. Signature 3. Name (Printed/Typed) 3. Such other site specific information and/or plans as may be required by the BLM. 5. Signature 3. Name (Printed/Typed) 3. Such other site specific information and/or plans as may be required by the BLM. 5. Signature 3. Such other site specific information and/or plans as may be required by the BLM. 5. Signature 3. Name (Printed/Typed) 3. Such other site specific information and/or plans as may be required by the BLM. 5. Signature 3. Signature 3. Signature 3. Second Regulatory Specialist 4. Bod to cover the operations three on any special study of the second regulatory special study of the applicant holds legal or equitable title to those rights in the subject/lease which would entitle the applicant to adaptive of fraudulent statements or representations as to any matter within its jurisdiction. 4. CARLSBAD FIELD OFFICE 4. Sock cetion 1001 and Tile 43 USC. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United ates any false, fictitious or fraudulent statements or representations as to any matter		24. Attac	hments		·*			-
2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). Item 20 above). 5. Support the filed with the appropriate Forest Service Office). Such other site specific information and/or plans as may be required by the BLM. 5. Signature Name (Printed/Typed) Date 4/24/13 5. Signature Name (Printed/Typed) Date 4/24/13 5. Signature Is/George MacDone/I Susan B. Maunder Date JUN 1 3 2013 inte Senior Regulatory Specialist Office CARLSBAD FIELD OFFICE JUN 1 3 2013 inte Office CARLSBAD FIELD OFFICE JUN 1 3 2013 2013 inte Office CARLSBAD FIELD OFFICE JUN 1 3 2013 inte Office CARLSBAD FIELD OFFICE JUN 1 3 2013 inte Subject to a not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to onduct operations of approval, if any, are attached. APPROVAL FOR TWO YEARS ites BLSC. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United lases any false, fictitious or fradulent statements or representations as to any matter wit	The following, completed in accordance with the requirements of Onshor	re Oil and Gas	Order No.1, must be a	ttached to thi	s form:			-
A. Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office). 5. Operator certification S. Such others site specific information and/or plans as may be required by the BLM. 6. Such others site specific information and/or plans as may be required by the BLM. S. Signature Name (Printed/Typed) Date 4/24/13 State other site specific information and/or plans as may be required by the BLM. Date 4/24/13 State other site specific information and/or plans as may be required by the BLM. Date 4/24/13 State other site specific information and/or plans as may be required by the BLM. Date 4/24/13 State other site specific information and/or plans as may be required by the BLM. Date JUN 1 3 2013 itle State other site specific information approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to onduct operations thereon. APPROVAL FOR TWO YEARS itle B U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United lates any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. (Continued on page 2) (Continued on page 2) KIM Approval Subject to General Requirements & Special Stipulations Attached	 Well plat certified by a registered surveyor. A Drilling Plan. 			he operation	ns unless covered by a	in existing b	ond on file (see	
Intermining Senior Regulatory Specialist part Regulatory Specialist Date JUN 1 3 2013 Date JUN 20 Date JUN 20 Date JUN 20 Date JUN 20 Dat	3. A Surface Use Plan (if the location is on National Forest System	Lands, the	6. Such other site		ormation and/or plans			_
Intermining Senior Regulatory Specialist part Regulatory Specialist Date JUN 1 3 2013 Date JUN 20 Date JUN 20 Date JUN 20 Date JUN 20 Dat						Date 4/2	6/13	
Image (Printed/Typed)'s/George MacDonell Date JUN 1 3 2013 Inder MacDonell Office CARLSBAD FIELD OFFICE Inder MacDonell March Carlsbad field Office Inder MacDonell Office CARLSBAD FIELD OFFICE Inder MacDonell MacDonell Carlsbad field Office Inder MacDonell MacDonell MacDonell Inder MacDonell Inder MacDonell <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Pielo MANAGER CARLSBAD Field OFFICE Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject/lease which would entitle the applicant to onduct operations thereon. Approval, if any, are attached. APPROVAL FOR TWO YEARS inditions of approval, if any, are attached. APPROVAL for TWO YEARS intle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United tates any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. *(Instructions on page 2) (Continued on page 2) *(Instructions on page 2) Roswell Controlled Water Basin SEE ATTACHED FOR SEE ATTACHED FOR See ATTACHED FOR	Approved by (Signature) /s/George MacDonell	Name	(Printed/Typed)s/G	eorge	MacDonell	Date JU	IN 132	013
Approval FOR TWO YEARS interestions of approval, if any, are attached. ittle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United lates any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. (Continued on page 2) Roswell Controlled Water Basin SEE ATTACHED FOR SEE ATTACHED FOR	Title for FIELD MANAGER	- ' Office	C	ARLSBA	D FIELD OFFICE		·	-
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United tates any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. (Continued on page 2) *(Instructions on page 2) Roswell Controlled Water Basin SEE ATTACHED FOR	conduct operations thereon.	ls legal or equit	1 · · · · · · · · · · · · · · · · · · ·					-
tates any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. *(Instructions on page 2) (Continued on page 2) KIII Approval Subject to General Requirements & Special Stipulations Attached SEE ATTACHED FOR	Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cr	rime for any pe	rson knowingly and y					:
Roswell Controlled Water Basin & Special Stipulations Attached SEE ATTACHED FOR	States any false, fictitious or fraudulent statements or representations as t	to any matter w	ithin its jurisdiction.					:
& Special Stipulations Attached SEE ATTACHED FOR	(Continued on page 2)		1/2		•. *(Ins	structions	on page 2)	
	Roswell Controlled Water Basin		KN	Approv 8	val Subject to Ge & Special Stipula	eneral Re tions Atta	quirements ached	
			3		ه المحمد (1994) المحمد (1994)	,		
		. •••	SEE ATT	ACHE	DFOR			
		€ A S	۵			17 A 17		
CONDITIONS OF APPROVAL		:	CONDITI	ON2 (Jr Affru	VAL		¢
				на на и На им				Ď

Sim

• . •.

.

Drilling Plan ConocoPhillips Company <u>Maljamar; Yeso, west</u>

Emerald Federal #9

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Top Depths FT MD	Contents
Quaternary	Surface	Surface	Fresh Water
Rustler	791	791	Anhydrite
Salado (top of salt)	972	972	Salt
Tansill (base of salt)	1980	1980	Gas, Oil and Water
Yates	2116	2116	Gas, Oil and Water
Seven Rivers	2451	2451	Gas, Oil and Water
Queen	3082	3085	Gas, Oil and Water
Grayburg	3493	3497	Gas, Oil and Water
San Andres	3875	3881	Gas, Oil and Water
Glorieta	5364	5375	Gas, Oil and Water
Paddock	5438	5450	Gas, Oil and Water
Blinebry	5780	5793	Gas, Oil and Water
Tubb	6826	6843	Gas, Oil and Water
Deepest estimated perforation	6826	6843	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	7026	7044	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u> $8-5/8^{*}$ </u> surface casing <u>25' - 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

Emerald Federal #9

(Date: 4/16/2013)

Page 1 of 9

2. Proposed casing program

Туре	Hole Size	M	Interval D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fac lated per Co Corporate C	nocoPhillips
Type	(in)	From	То	(inches)	(lb/ft)		Conn	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	816' - 861'	8-5/8	24#	J-55	STC	2950	1370	244	1.57	5.39	3.59
Prod	7-7/8	0	6989' – 7034'	5-1/2	17#	L-80	LTC	7740	6290	338	2.12	2.46	1.98

The casing will be suitable for H_2S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

		W					Burs	Collaps		
Туре	Depth	t	MIY	Col	Jt Str	Drill Fluid	t	е	Tensile-Dry	Tens-Bouy
				137	24400					
Surface Casing	861	24	2950	0	0	8.5	7.75	3.60	11.8	13.6
-				629	33800					
Production Casing	7034	17	7740	0	0	10	2.12	1.72	2.83	3.34

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

 ConocoPhillips Corporate Criteria for Minimum Design Factors	

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Emerald Federal #9

(Date: 4/16/2013)

· · · · · ·

Surface Casing (8-5/8" 24# J-55 STC)	85		MIY 5 35000 4 2950	<u> </u>	Jt Str - 244000	432968 381000	- l	Burst - 5 1.67	5.3	Ten 9 3.6	9				
Production Casing (5-1/2" 17# L-80 LTC)	7034		7 7740		338000	397000		0 2.12							
Safety Factors - ConocoPhillips Criteria The maximum internal (burst) load on the Surface Casing occurs when the	-141200 000	na in fai	stad to 1600		BLM Onst	ore Órder 3	- III Regui	rements)							
The maximum internal (burst) load on the Production Casing occurs during	the fracture s	timulatio						iemeniaj.							
(MAWP) is the pressure that would fit ConocoPhillips Corporate Criteria for Surface Casing Test Pressure =	1500	psi				essure at TD		8.55							
Surface Rated Working Pressure (BOPE) = Field SW =	3000			Fredicted.	Frac Grad	ient at Shoe	(CSFG) =	19.23	l]ppg						
Surface Casing Burst Safety Factor = API Burst Rating / Max Production Casing MAWP for the Fracture Stimulation = API E						n Allowable	Surface Pi	ressure (N	iasp)						
Surface Casing Burst Safety Factor:					40										
Case #1, MPSP (MWhyd next section) = Case #2, MPSP (Field SW @ Bullheadcsrc + 200 psi) =	861 861	x x	0.052 0.052	x x	10 19.23	-	448 448	+	200	=	613				
Case #3. MPSP (Kick Vol @ next section TD) = Case #4. MPSP (PPTD - GG) =	7034 7034	х х	0.052 0.052	x x	8.55 8.55	-	617.3 703.4		381 2424	=	2129				
Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =	861	x	0.052	× (19.23	+ ``	0.2) =	870						
MASP (MWhyd + Test Pressure) = Burst Safety Factor (Max. MPSP or MASP) =	861 2950	× /	0.052 1881	× =	8.5 1.57	+	1500	=	1881						
Production Casing Burst Safety Factor: Case #1. MPSP (MWhyd TD) =	7034	x	0.052	X	10	=	3657.6	8							
Case #4. MPSP (PPTD · GG) = Burst Safety Factor (Max. MPSP) =	7034 7740	×	0 052 3658	x =	8.55 2.12	-	703.4		2424						
MAWP for the Fracture Stimulation (Corporate Criteria) =	7740	,	1.15] =	6730										
<u>Collapse Safety Factors – ConocoPhillips Criteria</u>															
The maximum collapse load on the Surface Casing occurs when the press job. The maximum collapse load on the production casing occurs with the															
casing to surface, and therefore the external pressure profile on the produ outside of the casing which we estimate to be 8.5 ppg gradlent.															
Surface Casing Collapse Safety Factor = API Collapse Rating						0.4									
Production Casing Collapse Safety Factor = API Collapse Ret Cement Displacement Fluid (FW) =	8.34		led Surface	Pressure 'C	K Cemerit	Uispiaceme	nt auring C	ementing t	o Surtace	1					
Surface Casing Collapse Safety Factor:		504		0.050	r	12.0	٦	000	1	0.053		[110]			
Maximum Diff Lift Pressure = Collapse Safety Factor =	[(1370	561 /	х 254	0.052	× [5.39	13.6])+(300] ×	0.052	x	14.8)	373] =	254
Production Casing Collapse Safety Factor: Maximum Diff Lift Pressure =	[(1634	x	0.052	× [11.8	1)+(5400] ×	0.052	×	16.4) - 3	3051]=	2557
Case #4. MPSP (PPTD-GG) = Collapse Safety Factor =	7034 6290	x /	0.052 2557	х	8.6 2.46	-	703.4	=	2424			L	,		
<u>Tensial Strength Safety Factors – ConocoPhillips Criteria</u> The maximum axial (tension) load occurs if casing were to get stuck and po	ulled on to try														
	ulled on to try Yield Strength ngth Rating / C ax Load) = Ma ble Hook Load	n Reting Corporat aximum - Bouye Max Loa	. / Corporate le Minimum A Allowable A ant V/t of the	kxial Design xial Load String	Factor		verpuli Re	quired)							
The maximum axial (itension) load occurs if casing were to get struck and p Maximum Alloweble Axial Load for Pipe Yield = API Pipe Maximum Alloweble Axial Load for Joint = API Joint Stru- Maximum Alloweble Hook Load (Limited to 75% of Rig M Maximum Alloweble Overpull Margin = Maximum Alloweb Tensiel Sofety Fedor = API Pipe Yield 'OR' API Joint Stru	ulled on to try Yield Strengtl Ingth Rating / C ax Load) = Ma Ne Hook Load Ing <u>th 'OR' Rig</u>	n Reting Corporat aximum - Bouya Max Loa bs	. / Corporate le Minimum A Allowable A ant V/t of the	kxial Design xial Load String	Factor		verpuli Rei	quíred)						·	
The maximum axial (iension) load occurs if casing were to get stuck and pu Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Strer Maximum Allowable Hook Load (Linted to 75% of Righ Maximum Allowable Overpull Margin = Maximum Allowab Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (300,000 loss) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wit =	viled on to try Yield Strengtl ngth Rating / C ax Load) = Ma ble Hook Load ingth 'OR' Rig 225000 50000 1 50000 1	n Reting Corporat aximum - Bouya Max Loa bs	/ Corporate le Minimum A Allowable A ant Wt of the ad Rating / (Axial Design Xial Load String Bouyant W	Factor		varpuli Rei	quired)						·	
The maximum axial (iension) load occurs if casing were to get stuck and pu Maximum Allowable Axial Load for Origo Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Hook Load (Linited to 75% of Rig M Maximum Allowable Overpull Margin = Maximum Allowable Tensial Safety Factor = API Pipe Yield '9K' API Joint Stree Rig Max Load (300,000 los) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor:	ulled on to try Yield Strengtl ngth Rating / C ax Load) = Ma ble Hook Load ingth 'OR' Rig 225000 50000 1	n Reting Corporat aximum - Bouya Max Loa bs	. / Corporate le Minimum A Allowable A ant V/t of the	Axial Design xial Load String Bouyant W	Factor		vërpul Re	quíred)							aa
The maximum axial (itension) isod occurs if casing were to get struck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Struct Maximum Allowable Overpuil Margin = Maximum Allowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Struct Rig Max Load (300,000 los) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Joint) =	ulled on to try Yield Strengtl hgth Rating / C ax Load) = Mic ble Hook Load nigth 'OR' Rig 225000 50000 1 50000 1 20664 20664 38,1000 244000	n Reting Corporat aximum - Bouya Max Loa bs	./ Corporate le Minimum A Allowable A ant Wt of the ad Rating / (0.870	Axial Design xial Load String Bouyant W = 1 = 2	Factor t of String :		verpull Rei	quíred)							
The maximum axial (lension) load occurs if casing were to get stuck and pu Maximum Allowable Axial Load for Origine Yield = API Pipe Maximum Allowable Axial Load for Origin = API John Strem Maximum Allowable Hook Load (Linited to 75% of Rig M Maximum Allowable Voerpull Margin = Maximum Abowab Tensial Safety Factor = API Pipe Yield (VA API John Stre Rig Max Load (300,000 los) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Air V(t = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load (Pipe Yield) =	uled on to fry Yield Strengt righ Reling / C ax Load) = Mo be Hook Load be Hook Load 225000 50000 50000 20664 20664 38(100) 244000 174286 174286	n Rating Corporat aximum I- Bouys Max Los bs bs x / / / /	/ Corporate le Minimum A Allowable A Allowable A ant Wi of the ad Rating / (0.870 1.40 1.40 20664	Axial Design xial Load String Bouyant W = 1 = 2	Factor t of String : 272143 174286 0.870	+ Minimum O	156303								
The maximum axial (iension) load occurs if casing were to get stuck and pu Maximum Allowable Axial Load for Origine Yield = API Pipe Maximum Allowable Axial Load for Origin - Maximum Allowable Axial Load for John - API John Star Maximum Allowable Axial Load for John - API John Star Tensial Safety Factor = API Pipe Yield 'OR' API John Star Rig Max Load (J00,000 lbs) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor: Max. Allowable Overpull Margin = Tensial Safety Factor:	ulled on to try Yield Strengt mgth Raling / C as Load) = Mich ble Hook Load mgth 'OR' Rig 225000] 500001 500001 20664 20664 381000 244000 174286 244000	n Rating Corporat aximum J - Bouya Max Loa bs bs bs X / /	J Corporate le Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40	Axial Design xial Load String Bouyant W = 1 = 2	Factor t of String - 17982 272143 174286	+ Minimum O									
The maximum axial (iension) load occurs if casing were to get struck and pu Meximum Alloweble Axial Load for Pipe Yield = API Pipe Maximum Alloweble Axial Load for Joint = API Joint Stre Maximum Alloweble Hok Load (Linited to 75% of Rig M Maximum Alloweble Overpull Mergin = Maximum Alloweble Constraints and the State of API Pipe Yield (OR' API Joint Stre Rig Max Load (300,000 los) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Joint) = Max. Al	ulled on to try Yield Strengt might Reling / f ex Load) = Mk be Hook Load ingth 'OR' Rig 225000 50000 20664 20664 381000 244000 174286 174286 174286 119578	n Rating Corporat aximum I- Bouys Max Los bs bs x / / / /	/ Corporate le Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40 20664 17982 0.847	Axial Design xiel Load e String Bouyani Wi = 1 = 2 } = 1 x + = 1	Factor , t of Skring 17982 272143 174286 0.870 50000 101322	+ Minimum O	156303								
The maximum axial (iension) isod occurs if casing were to get struck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Overpul Margin = Maximum Allowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stree Rig Max Load (300,000 lips) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Diright) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wi = Max. Allowable Overpul Margin = Tensial Safety Factor: Min Max Allowable Overpul Margin = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	ulled on to try Yteld Strengt grift Rating (7 ax Load) = M ble Hook Load <u>and how Rig</u> 225000 50000 50000 24000 174286 244000 174286 244000 119578 397000 338000	n Reting Corporat aximum I-Bouye Max Loa bs bs x / / / / /	/ Corporate le Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40 1.40 20664 17982	Axial Design xiel Load e String Bouyani W = 1 x + = 1 x + = 2] = 2 x +	Factor t of String : 17982 272143 174286 0.870 50000	+ Minimum O	156303								
The maximum axial (iension) load occurs if casing were to get stuck and pa Meximum Alloweble Axial Load for Pipe Yield = API Pipe Maximum Alloweble Axia Load for Pipe Yield = API Pipe Maximum Alloweble Axia Load for Joint = API Joint Stre Maximum Alloweble Overpull Mergin = Maximum Alloweble Rig Max Load (200,000 los) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Joint) = Max. Alloweble Axial Load (Joint) = Max. Alloweble Axial Load (Joint) =	ulled on to try Yield Strengt ingth Raiting (2 az Load) = Mi Ne Hook Load ingth 'OR' Rig 225000) 500001 20664 20664 20664 381000 244000 174286 244000 174286 244000 174286 244000	n Reting Corporat aximum I-Bouye Max Loa bs bs x / / / / /	/ Corporate le Minimum A Allowable A and Wol the ad Rating / (0.870 1.40 1.40 20664 17982 0.847 1.40 1.40	Xial Design xial Load e String Bouyani Wi = 1 = 2 = 1 x + = 1 X + = 2 = 2 = 2 = 2 = 2 = 2 = 2	Factor t of String - 272143 174286 0.870 50000 101322 283571	+ Minimum O	156303	3							
The maximum axial (iension) isod occurs if casing were to get struck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Overpul Margin = Maximum Allowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stree Rig Max Load (300,000 lips) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Diright) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wi = Max. Allowable Overpul Margin = Tensial Safety Factor: Min Max Allowable Overpul Margin = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	ulled on to try Yield Strengtl gifth Rating (2 ex Load) = M Nole Hook Load inght Norr nig 2250001 500001 20664 381000 244000 174286 174286 244000 174286 174286 397000 338000 225000	n Retting Corporet eximum J Max Louys Max Lou bas bas X / / / (X / / / (X / / / / (/ Corporate le Minimum A Allowable A and Wol the ad Rating / (0.870 1.40 20664 17982 0.847 1.40	Xial Design xial Load s String Bouyani With = 1 = 2 = 1 x + + = 2 = 2 = 2 x +	Factor t of String 272143 174286 0.870 50000 101322 283571 241429	+ Minimum O	156303 3.59	3							
The maximum axial (iension) load occurs if casing were to get stuck and pu Meximum Allowable Axial Load for Origine Yield = API Pipe Maximum Allowable Axial Load for Origin + API John Stren Maximum Allowable Axial Load for John Allowahl Tensial Safety Factor = API Pipe Yield (VAI) John Sta Rig Max Load (300,000 lbs) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Origin + Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin = Tensial Safety Factor: Max. Allowable Overpuil Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Max. Allowable Overpuil Margin = Tensial Safety Factor = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Origin = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) =	ulled on to try Yield Strengtl might Rating (2 ax Load) = M Nole Hock Load (225000) 200664 20664 20664 20664 20664 20664 20664 244000 174286 174286 174286 19578 397000 238000 225000 20664 20664 20664 20664 20664 20600 244000 250	n Retting Corporat aximum Bouys Max Lo: bs bs - (/	/ Corporate le Minimum A Allowable A ant Wi of the ad Reting / (0.870 1.40 1.40 20664 17982 0.847 1.40 1.40 1.9578 101322 conductor reconductor reconductor for he foad,	Xial Design Xial Load String Bouyant With = = = = - = -	Factor	+ Minimum O 	156303 3.59 123676	3				· · · · · · · · · · · · · · · · · · ·			
The maximum axial (cension) load occurs if casing were to get stuck and pa Meximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Overpull Mergin = Maximum Allowable Tensiel Safety Factor = API Pipe Yield (OR' AFI John Stre Rig Max Load (300,000 los) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor = Maximum Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConcoePhillips Cr The maximum axial (compression) load for the well is where the surface acid with a support of a plate or landing ring. The surface casing is also calcula but not interé. Any other axial loads Such as e s nuclbing unit or other wou Compression Safety Factor = API Axial Joint Strength Raing 'OR' API Axial Weilheed Load =	uled on to try Yield Strengtl spin Rating (2 ex Load) = M ble Hock Load ingh Ner rig 2250001 500001 20664 20664 381000 244000 174286 174286 244000 174286 174286 244000 119578 119578 119578 397000 338000 225000 300000 225000 300000	n Retting Corporat aximum Bouys Max Lo: bs bs - (/	/ Corporate le Minimum A Allowable A ant Wi of the ad Reting / (0.870 1.40 1.40 20664 17982 0.847 1.40 1.40 1.9578 101322 conductor reconductor reconductor for he foad,	Xial Design Xial Load String Bouyant With = = = = - = -	Factor	+ Minimum O 	156303 3.59 123676	3							
The maximum axial (tension) load occurs if casing were to get stuck and p Meximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Overpuil Margin = Maximum Allowable Tensiel Safety Factor = API Pipe Yield 'OR' API Joint Stre Big Max Load (300,000 los) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Diright Or API Joint Stre Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Diright Or API Joint Stre Max. Allowable Axial Load (Diright Or API Joint Stre Max. Allowable Axial Load (Diright Pice) Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Jo	uled on to try Yield Strengtl might Rating (2 ex Load) = M Nel Hook Load ngh Ner Rig 225000] 20664 20664 20664 38,1000 24,4000 17,4286 24,4000 17,4286 24,4000 17,4286 119578 397000 338000 225000 225000 225000 225000 338000 225000 225000 338000 225000 225000 338000 225000 338000 225000 338000 225000 338000 225000 225000 225000 225000 225000 225000 225000 225000 2064 19578 374286 2440 19578 374286 24400 19578 379000 225000 225000 20604 24400 19578 24400 24400 19578 379000 25000 25000 20000 20000 244000 19578 379000 25000 20000 25000 25000 25000 25000 244000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 25000 2000 2000 2000	n Reting Corpords I - Bouys Max Lot Max Lot bs bs s x / / - ((/ (x / / / - ((/ () conthe cost of the added ti ing / Ma bs s	/ Corporate le Minimum A Allowable A ant Wi of the ad Rating / (0.870 1.40 1.40 20654 17982 0.847 1.40 1.9578 101322 conductor re load o the (oad, xiximum Predi	Xial Design Xial Load String Bouyant With = <	Factor . of String 17982 1792143 174286 0.870 50000 0.872 283571 241429 0.847 50000 0.847 50000	+ Minimum C) =) =) =) = 17982	156303 3.59 123676 1.98	3							
The maximum axial (lension) load occurs if casing were to get stuck and pa Maximum Allowable Axial Load for Origin Yield = API Pipe Maximum Allowable Axial Load for Origin - Maximum Allowable Axianum Allowable Axial Load for Joint - API Joint Star Tensials Safety Factor = API Pipe Yield (OR' API Joint Star Rig Max Load (300,000 lbs) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Overpuil Margin = Tensial Safety Factor: Air Wi = Max. Allowable Overpuil Margin = Max. Allowable Axial Load (Dipe Yield) = Max. Allowable Axial Load (Dipipe Yield) = Max. Allowable Axial Load (Dipipe Yield) = Max. Allowable Overpuil Margin = Tensial Safety Factor = Compression Strength Safety Factors ConcoePhillips Cr The maximum axial (compression) load for the well Is where the surface or with a support of a plate or landing ring. The surface casing is also calcul but nd Imded. Any other axial load Such as a soubling unt or other wou Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Tubing Wt (Air Wt)) =	uled on to try Yield Strengtl mith Rating (C ax Load) = M bible Hook Load ingh NoR rig 2250001 500001 20664 20664 381000 244000 174286 174286 244000 119578 119578 397000 338000 225000 338000 225000 338000 225000 300000 ititeria asing is lande sted to bear 6 (d need to b	n Reding Corpords I - Bouys Max Loo's ba ba ba ba ba ba ba c I I I I I I I I I I I I I I I I I I	/ Corporate te Minimum A Allowable A ant Wi of the ad Rating / (0.870 1.40 1.40 20664 17982 0.847 1.40 1.9578 101322 0.647 1.40 1.9578 101322 0 conductor te load o the foad, xiximum Predi	Xial Design Xial Load String Bouyant With = 1 = 1 = 1 = 2 + = = 2 > = icted Load 0.870 0.847 =	Factor . of String 17982 1722143 174286 0.870 50000 0.847 50000 0.847 50000 0.847 50000	+ Minimum C) =) =) =) = 17982 101322	156300 3.59 123676 1.98	3			19945	· · · · · · · · · · · · · · · · · · ·			
The maximum axial (Jension) load occurs if casing were to get stuck and p Meximum Alloweble Axial Load for Pipe Yield = API Pipe Maximum Alloweble Axia Load for Oint = API Joint Stree Maximum Alloweble Axia Load for Joint = API Joint Stree Maximum Alloweble Overpull Mergin = Maximum Alloweble Rig Max Load (JOIO,000 los) x 75% = Minimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Joint) = Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Joint) = Max. Alloweble Axial Load (Pipe Yield) = Max. Alloweble Axial Load (Joint) = Max. Alloweble Overpull Margin = Tensial Safety Factor = Compression Strength Safety Factors — ConcoePhillips Cr The maximum axial (compression) load for the well is where the surface or with a support of a plate or landing ring. The surface casing is also calcule tor tof inded. Any other axial loads Strength Reting 'OR' API Axial Veelhead Load = Compression Safety Factor	uled on to try Yield Strengtl might Rating (2 ex Load) = M Nole Hook Load ingli Nor rig 225000 50000 20664 20664 381000 244000 174286 174286 244000 119578 119	n Reding Corpored I-Bouye Max Loo's bas bas bas y / / / / / / / / / / / / / / / / / /	/ Corporate te Minimum A Allowable A ant Wi of the ad Rating / (0.870 1.40 1.40 1.40 20664 1.7982 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Xial Design Xial Load String Bouyant With = 1 = 1 = 2 = 1 = 2 = 2 = 2 icted Load 2 0.870 0.847 = 2 + +	Factor . of String 17982	+ Minimum C) =) =) =) = 17982	156303 3.59 123676 1.98	3 3	2.441 11212] ^2 =	11212 179237				
The maximum axial (tension) load occurs if casing were to get stuck and p Meximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Overpuil Margin = Maximum Allowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Big Max Load (300,000 los) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Dirpe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Ma	uled on to try Yield Strengtl yield Strengtl yield Strengtl yield Strengtl yield Strengtl 205001 205001 205001 205001 205001 205001 205001 205001 204000 174286 174286 244000 174286 174286 244000 19578 397000 338000 225000 225000 225000 300000 025000 300000 025000 300000 00001 000000 00001 000001 000001 000001 00001 00001 00001 00001 00001 000001 00001 0000001	n Reding Corpored I-Bouya Max Loo bs bs S X / / / (/ (/ (/ (/ (/ (/ (/ (/	/ Corporate / Corporate te Minimum A Allowable A and Wi of the ad Rating / (0.870 1.40 1.40 1.40 20664 1.7982 0.847 1.40 1.40 1.9578 101322 0.647 1.40 1.40 1.40 1.40 1.40 1.9578 101322 0.652 17982 1	<pre>Xial Design Xial Load</pre>	Factor . of String 17982 179243 174286 0.870 50000 0.870 50000 0.873 50000 0.847 50000 0.857 1.857 1.857 1.857 1.857 1.857 1.857 1.857 1.957 1.957 1.957 1.957 1.957 1.957 1.957 1.957 1.957 1.95777 1.95777 1.95777 1.95777 1.95777 1.95777 1.95777 1.95777 1.95777 1.957777 1.957777 1.957777 1.95777777 1.95777777777777777777777777777777777777	+ Minimum C) =) =) =) = 17982 101322 x	15630; 3.59 123676 1.98	3 3		_					
The maximum axial (tension) load occurs if casing were to get stuck and p Meximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stree Maximum Allowable Overpuil Mergin = Maximum Allowable Fig Max Load (300,000 los) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor = Max. Allowable Axial Load (Or), 200 los) x 75% = Minimum Overpuil Required = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load (Joint) = M	uled on to try Vield Strengtl ngth Rating (ket Load) = M ket Hook Load ngth Norr kill 20064 20064 20064 20064 20064 20001 20001 20001 20001 174286 119578 397000 244000 119578 397000 225000 20	n Reding Corpord I - Bouys Max Loo Bas bas bas 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	/ Corporate te Minimum A Allowable A ant Wi of the ad Rating / (1.40 1.40 1.40 20664 17982 0.847 1.40 1.9578 101322 0.647 1.40 1.9578 101322 0.647 1.40 1.9578 101322 0.627 1.927 0.052 17923	<pre>Xial Design Xial Load</pre>	Factor . of String 17982 1722143 174286 0.870 50000 0.847 50000 0.847 50000 0.847 50000 0.847 50000 0.1322 2.425 101322 2.455 101322 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.455 101322 2.555 1015	+ Minimum C) =) =) =) = 17982 101322 x	15630; 3.59 123676 1.98	3 3		_					••• • • • • •

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	516' – 561'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess =200% based on gauge hole volume	1.70
Tail	Class C	516' – 561'	816' – 861'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Sx Vol Additives Cuft		Yield ft³/sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 8 lbs/sx Salt 0.4% Fluid loss additive 0.125% LCM if needed Excess = 115 % or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	6989' – 7034'	16.4	400	428	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 45% or more if needed based on gauge hole volume	1.07

. .

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes: Emerald Federal #9 (Date: 4/16/2013) The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 – 40	N.C.	N.C.	150 - 300
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	300 – 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 - 10	10 – 11	0 – 1000

Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. H2S Monitoring Alarm installed at the possum belly could be set as low as 5 to 10 ppm and go into high alarm. The gases shall be piped into the flare system. Gas detection equipment and pit level flow monitoring equipment will be on location. A percentage flow paddle installed in the flow line measures relative amount of mud flowing in non-pressurized return line. There are 4 mud probes in the system. One probe is installed in each of the individual tanks to measure the volume of the drilling fluid in individual mud and trip tanks at the well site. The mud probe data is collected by the Pit Volume Totalizer (PVT) system and the information is available real-time via display in the dog house and the company representative's office on location. ConocoPhillips Company will maintain sufficient mud and weighting material on location if hole conditions warrant.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

6. Logging, Coring, and Testing Program: See COA

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Total Depth to 2500'; Dielectric Scanner (optional)
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation Micromager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

110

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well is mid 2013 after receiving approval of the APD.

Attachments:

٠,

• Attachment # 1......BOP and Choke Manifold Schematic - 3M System

;

• Attachment # 2...... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 16 April 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

1.17

. . .

ConocoPhillips MCBU

Buckeye Emerald Federal Emerald Federal 9

Original Hole

Plan: Actual Plan

Standard Planning Report - Geographic

22 April, 2013

Planning Report - Geographic

and a second s								
Database:	EDM Central Pla	nning	Loca	I Co-ordinate Refer	énce:	Well Emerald Feder	al 9	
Company:	ConocoPhillips N	ICBU	TVD	Reference:		RKB @ 4045.0usft ((PD 822)	
Project:	Buckeye		MD F	Reference:		RKB @ 4045.0usft ((PD 822)	
Site:	Emerald Federal			h Reference:		Grid	. ,	
Well:	Emerald Federal	9	· · ·	vey Calculation Meth		Minimum Curvature		
Wellbore:	Original Hole	• • •)					
Design:	Actual Plan							:
–		akin akka, muankin lunak ya		Same and a second second second			****	antoni ka anta da ka
Project	Buckeye, Lea Co	unty, NM	semanes as the	ianti a de	e 1	tere same at	ne o se su c	
Map System: Geo Datum:	US State Plane 192 NAD 1927 (NADCO		Syster	m Datum:	Me	ean Sea Level		
Map Zone:	New Mexico East 3				Us	sing geodetic scale f	actor	
	· · · · •		· · · · · · · · · · · · · · · · · · ·					
Site	Emerald Federal,	New Mexico, Southe	and an Allon on the second s	and a second			n en antestanones n en la secono	ی می مواند و میکور مید بود و در این اور هر و این اور میشود. این اور این اور این این این اور
Site Position:		Northing	g:	666,142.95 usft	Latitude:			32° 49' 48.382 N
From:	Lat/Long	Easting	:		Longitude:			103° 47' 0.841 W
Position Uncertainty	-	3.5 usft Slot Rad			Grid Converg	ence:		0.30 °
Well	Emerald Federal 9	, Deviated Well	in the second	a san na na maran.				
Well Position	+N/-S	0.0 usft Nort	hing:	. 665,535.91	usft lat	itude:		32° 49' 42.380 N
Wen'r Osidon			anng.					103° 47' 2.020 W
			•	000 775 00				
	+E/-W		ting:	668,775.09		igitude:		
Position Uncertainty Wellbore			ing: head Elevation:	668,775.09		ngitude: bund Level:		4,032.0 usft
Position Uncertainty Wellbore Magnetics	y for several distances	3.5 usft Well	head Elevation:	668,775.09 eclination (°) 7.60		ngle	Field Stréng (nŤ)	4,032.0 usft
Wellbore	Original Hole Model Name	3.5 usft Well	head Elevation: Date De 1/22/2013	eçlination (°)	Gro Dip A	nund Level:	Field Ştréng	4,032.0 usft
Wellböre Magnetics	Original Hole Model Name BGGM2	3.5 usft Well	head Elevation:	eçlination (°)	Gro Dip A	nund Level:	Field Ştréng	4,032.0 usft
Wellbore Magnetics Design	Original Hole Model Name BGGM2	3.5 usft Well	head Elevation:	eclination (°) 7.60	Gro Dip A	nund Level:	Field Ştréng	4,032.0 usft
Wellbore Magnetics Design Audit Notes:	Original Hole Model Name BGGM2	3.5 usft Well Sample I 012 4/	head Elevation: Date De /22/2013	eclination (°) 7.60 Tie /-S +E/ ft) (us	Gro Dip / (() On Depth: /-W sft)	ound Level:	Field Ștréng (nŤ)	4,032.0 usft
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	Original Hole Model Name BGGM2	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft)	head Elevation: Date De /22/2013 PLAN	eclination (°) 7.60 Tie /-S +E/ ft) (us	Gro Dip / (() On Depth: /-W sft)	vund Level: vrigle 2) 60.61 0.0 Directic ()	Field Ștréng (nŤ)	4,032.0 usft
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	Original Hole Model Name BGGM2	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft)	head Elevation: Date De /22/2013 PLAN	eclination (°) 7.60 Tie /-S +E/ ft) (us	Gro Dip / (() On Depth: /-W sft)	vind Level: vingle) 60.61 0.0 Directio (°) 103.55 Turn	Field Ștréng (nŤ)	4,032.0 usft
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth inclu	Original Hole Model Name BGGM2 1 Actual Plan 1	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft) 0.0 Vertical Depth	head Elevation: Date De //22/2013 PLAN)) +N/ (usi 0.(eclination (°) 7.60 Tie (-S +E (us 0 0 0 0 0 0 0 0	Gro Dip A ((On Depth: (-W sft) .0 .0 .0 	vind Level: vingle) 60.61 0.0 Directio (°) 103.55 Turn Rate	Field Ștréng (nŤ) 7	4,032.0 usft
Wellbore Magnetics Design Audit Notes: Version: Vertical Section; Plan Sections Measured Depth inclin (usft) (Original Hole Model Name BGGM2 1 Actual Plan 1 1	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft) 0.0 Vertical Depth	head Elevation: Date De //22/2013 PLAN))	eçlination (°) 7.60 Tie (-S +E/ ft) (us 0 0. 0 Dogleg / Rate (%/100usft)	Gro Dip A ((On Depth: (-W sft) .0 .0 .0 	vund Level: vrigle) 60.61 0.0 Directio (°) 103.55 Turn Rate (°/100usft)	Field Ștréng (nŤ) 7 ŤFO (°)	4,032.0 usfi
Wellbore Magnetics Design Audit Notes: Version: Vertical Section; Plan Sections Measured Depth inclin (usft) (Original Hole Model Name BGGM2 1 Actual Plan 1 1	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft) 0.0	head Elevation: Date De /22/2013 PLAN)) +N/ (usi +N/-S +E/-W (usit) (usit)	eçlination (°) 7.60 Tie (-S +E/ ft) (us 0 0, Dogleg /, Rate (°/100usft)	Gro Dip A (() On Depth: (/-W sft) .0 .0 	ound Level: 	Field Stréng (nŤ) 7 .ŦFO (°)	4,032.0 usf tth 48,746
Wellbore Magnetics Design Audit Notes: Version: Vertical Section; Plan Sections Measured Depth inclin (usft) (Original Hole Model Name BGGM2 1 Actual Plan 1 1 1 1 0.00 0.	3.5 usft Well Sample I O12 4/ Phase: Depth From (TVD (usft) 0.0 Vertical Depth (usft) 0.0 00 0.0	head Elevation: Date De /22/2013 PLAN)) +N/ (usi +N/-S +E/-W (usit) (usit) 0.0	eclination (°) 7.60 Tie (-S +E/ ft) (us 0 0, Dogleg / Rate (°/100usft) 0.0 0.00	Gro Dip A ((((/-W sft) .0 .0 .0 .0 .0 .0 .0 .00	ound Level: nigle) 60.61 0.0 Directio (°) 103.51 Turn Rate (°/100usft) 0.00	Field Stréng (nT) 7 7 (*) 0.00	4,032.0 usf
Wellbore Magnetics Design Audit Notes: Version: Vertical Section; Plan Sections Measured Depth inclin (usft) (0.0 2,116.0	Original Hole Model Name BGGM2 1 Actual Plan 1 1 1 0.00 0.00 0.00 0.00	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft) 0.0 Vertical Depth (usft) 0.0 0.	head Elevation: Date De /22/2013 PLAN)) +N/ (usi +N/-S +E/-W (usit) (usit) 0.0 0.0 0.0	eclination (°) 7.60 Tie (-S -ft) (us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gro Dip A (() () () () () () () () ()	nigle) 60.61 0.0 Directio (°) 103.51 Turn Rate (°/100usft) 0.00 0.00	Field Stréng (nT) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4,032.0 usf
Wellbore Magnetics Design Audit Notes: Version: Vertical Section; Plan Sections Measured Depth inclin (usft) (0.0 2,116.0 2,425.6	Original Hole Model Name BGGM2 1 Actual Plan 1 1	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft) 0.0 Vertical Depth (usft) 00 0.0 00 0.0 00 0.0 00 2,116.0 57 2,425.2	head Elevation: Date De /22/2013 PLAN)) +N/ (usi +N/-S +E/-W (usit) (usit) 0.0 0.0 -2.9 1	eclination (°) 7.60 Tie /-S +E/ ft) (us 0 0, Dogleg / Rate (°/100,usft) 0.0 0.00 0.0 0.00 12.2 1.50	Gro Dip A (() () () () () () () () ()	nigle) 60.61 0.0 Directio (°) 103.57 Turn Rate (°/100usit) 0.00 0.00 0.00 0.00	Field Stréng (nT) 7 7 (*) 0.00 0.00 103.57	4,032.0 usfi tth 48,746 Target
Wellbore Magnetics Design Audit Notes: Version: Vertical Section; Plan Sections Measured Depth inclin (usft) (0.0 2,116.0	Original Hole Model Name BGGM2 1 Actual Plan 1 1 1 0.00 0.00 0.00 0.00	3.5 usft Well Sample I 012 4/ Phase: Depth From (TVD (usft) 0.0 Vertical Depth (usft) 00 0.0 00 2,116.0 57 2,425.2 57 5,438.0 Well	head Elevation: Date De /22/2013 PLAN)) +N/ (usi +N/-S +E/-W (usit) (usit) 0.0 0.0 -2.9 1 -60.4 25	eclination (°) 7.60 Tie (-S -ft) (us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gro Dip A (() () () () () () () () ()	nigle) 60.61 0.0 Directio (°) 103.51 Turn Rate (°/100usft) 0.00 0.00	Field Stréng (nT) 7 7 (*) 0.00 0.00 103.57	4,032.0 usft tth 48,746

1

.

.

.

· · · ·

. . .

Planning Report - Geographic

Database:	FDM C	entral Plannin	n, and a' start a selfaran Sanata (Sanata Sanata) Sanata (Sanata Sanata) Sanata (Sanata Sanata)	Marine an 1986 a mailteach - Tairteach an tairteach - ann a Marine an tairteach - ann an ta		ordinăte Referenc		nerald Federal 9	الالالكان من من كلي المعاملين المكرم من الالكان من من المكرم من المكرم من المكرم من المكرم من المكرم من المكرم من من م
Company:		Phillips MCB	-		5			4045.0usft (PD 822)	
			0		TVD Ref			• •	
Project:	- Buckeye				MD Refe			4045.0usft (PD 822)	
Site:		Federal				ference:	Grid	. .	
Nell:	· · · · ·	I Federal 9			Survey C	Calculation Method	: Minimu	m Curvature	
Nellbore:	(Original				ي جي ٿي. 				
Désign:	Actual F	lan	NALILI IMPROVIDI MARTO I	adaannaatta oo katariikaasii to				- 1689-abis - 1889-abis at 22,000 a atoma at abis at a 1992.	auzerania stanta o sectore non tor
Planned Survey	· · · · · · · · · · · · · · · · · · ·			ه میشد میدسید بیمیم ماده ا - این درم از امریکاند ایو ا	in an	and a second	ana a santa ante ana ante ante a	a des administrantes de les de de la colocita de la	an e i se de ten finne annance. A an e i san an e fin anna a
	i se stario								
Measured			Vertical		·	Мар	Мар		
	clination A	zimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
75.0	0.00	0.00	75.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
	0.00	0.00	10.0	0.0	0.0	000,000.01	000,770.00	02 10 12:00011	100 11 2.020 11
Conductor	0.00	0.00	100.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42,380 N	103° 47' 2.020 W
100.0	0.00	0.00	100.0				•		
200.0	0.00	0.00	200.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
300.0	0.00	0.00	300.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
400.0	0.00	0.00	400.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
500.0	0.00	0.00	500.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
600.0	0.00	0.00	600.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
700.0	0.00	0.00	700.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
791.0	0.00	0.00	791.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
Rustler									
800.0	0.00	0.00	800.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
816.0	0.00	0.00	816.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
Surface						,	,		
900.0	0.00	0.00	900.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
							•		
972.0	0.00	0.00	972.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
Salado									
1,000.0	0.00	0.00	1,000.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42,380 N	103° 47' 2.020 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,800.0	0,00	0.00	1,800.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
1,980.0	0.00	0.00	1,980.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
	0.00	0.00	1,000.0	0.0	0.0	000,000.01	000,170.00	02 10 42.000 1	100 47 2.020 10
Tansill	0.00	0.00	0 000 0			005 505 04	000 775 00	008 401 40 000 N	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
2,100.0	0.00	0.00	2,100.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
2,116.0	0.00	0.00	2,116.0	0.0	0.0	665,535.91	668,775.09	32° 49' 42.380 N	103° 47' 2.020 W
Yates									
2,200.0	1.26	103.57	2,200.0	-0.2	0.9	665,535.69	668,775.98	32° 49' 42.378 N	103° 47' 2.009 W
2,300.0	2.76	103.57	2,299.9	-1.0	4.3	665,534.87	668,779.39	32° 49' 42.370 N	103° 47' 1.970 W
2,400.0	4.26	103.57	2,399.7	-2.5	10.3	665,533.44	668,785.34	32° 49' 42.355 N	103° 47' 1.900 W
2,425.6	4.64	103.57	2,425.2	-2.9	12.2	665,532.97	668,787.27	32° 49' 42.350 N	103° 47' 1.877 W
2,451.4	4.64	103.57	2,451.0	-3.4	14.2	665,532.48	668,789.31	32° 49' 42.345 N	103° 47' 1.854 W
Seven River	rs								
2,500.0	4.64	103.57	2,499.4	-4.4	18.0	665,531.56	668,793.13	32° 49' 42.336 N	103° 47' 1.809 W
2,600.0	4.64	103.57	2,599.1	-6.3	25.9	665,529.66	668,801.00	32° 49' 42.317 N	103° 47' 1.717 W
2,700.0	4.64	103.57	2,698.8	-8.2	33.8	665,527.76	668,808.87	32° 49' 42.298 N	103° 47' 1.625 W
2,800.0	4.64	103.57	2,798.4	-10.1	41.7	665,525.86	668,816.74	32° 49' 42.278 N	103° 47' 1.523 W
2,900.0	4.64	103.57	2,898.1	-12.0	49.5	665,523.96	668,824.61	32° 49' 42.259 N	103° 47' 1.332 W
3,000.0	4.64	103.57	2,997.8	-13.9	57.4	665,522.06	668,832.48	32° 49' 42.240 N	103° 47' 1.348 W
3,084.5	4.64	103.57	3,082.0	-15.5	64.0	665,520.45	668,839.13	32° 49' 42.224 N	103° 47' 1.270 W
Queen									
3,100.0	4.64	103.57	3,097.4	-15.8	65.3	665,520.16	668,840.35	32° 49' 42.221 N	103° 47' 1.256 W
3,200.0	4.64	103.57	3,197.1	-17.7	73.1	665,518.26	668,848.22	32° 49' 42.202 N	103° 47' 1.164 W
3,300.0	4.64	103.57	3,296.8	-19.6	81.0	665,516.36	668,856.09	32° 49' 42.182 N	103° 47' 1.072 W
3,400.0	4.64	103.57	3,396.5	-21.5	88.9	665,514.46	668,863.96	32° 49' 42.163 N	103° 47' 0.980 W

.

,

Page 3

Planning Report - Geographic

tabase:	FDM	Central Plann	nina	-	Local C	o-ordinate Referenc	e: We	ll Emerald Federal 9		
mpany:	1	coPhillips MC	-	-						
	1		,60		1	ference:		B @ 4045.0usft (PD 822)		
oject:	Buck	•			' MD Ref			RKB @ 4045.0usft (PD 822)		
te:	Emer	ald Federal			North R	eference:	Grid			
ell:	Emer	ald Federal 9			Survey	Calculation Method	: Min	imum Curvature		
ellbore:	Origir	nal Hole								
sign:	Actua	l Plan			÷	, .				
	· •····	ratar abitus itur atas s	2015 and 2017 a 2 Mar 2	na an an talan Talan sa sa			ana ina ana ana ana ana ana ana ana ana	مربعه مسید به ایکینه مطلقه مربعه افاریک این ایس میشان	ه الملا الهرد التعمار. - الهوارات المارد المسور	
anned Survey	1						· • • •			
						· •				
Measured	, . 		Vertical		•	Мар	Мар	a ^c i i		
	nclination	Ázimuth	Depth	+N/-S	+E/-W	Northing	Easting	•		
(usft)	(°) :	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude	
3 406 0	4.64	103.57	3,493.0	-23.3	96.5	665,512.62	668,871.58	3 32° 49' 42,145 N	103° 47' 0.891	
3,496.9	4.04	103.57	3,493.0	-20.0	30.5	005,512.02	000,071.00	5 52 45 42, 145 14	100 47 0.001	
Grayburg					· ·				(
3,500.0	4.64	103.57	3,496.1	-23.4	96.7	665,512.56	668,871.83		103° 47' 0.888	
3,600.0	4.64	103.57	3,595.8	-25.2	104.6	665,510.66	668,879.70		103° 47' 0.796	
3,700.0	4.64	103.57	3,695.5	-27.1	112.5	665,508.76	668,887.57		103° 47' 0.703	
3,800.0	4.64	103.57	3,795.1	-29.0	120.4	665,506.86	668,895.44		103° 47' 0.611	
3,880.1	4.64	103.57	3,875.0	-30.6	126.7	665,505.34	668,901.74	4 32° 49' 42.071 N	103° 47' 0.538	
San Andre	s									
3,900.0	4.64	103.57	3,894.8	-30.9	128.2	665,504.96	668,903.31	1 32° 49' 42.067 N	103° 47' 0.519	
4,000.0	4.64	103.57	3,994.5	-32.8	136.1	665,503.07	668,911.18		103° 47' 0.427	
4,100.0	4.64	103.57	4,094.2	-34.7	144.0	665,501.17	668,919.05		103° 47' 0.335	
4,200.0	4.64	103.57	4,193.8	-36.6	151.8	665,499.27	668,926.92		103° 47' 0.243	
4,300.0	4.64	103.57	4,293.5	-38.5	159.7	665,497.37	668,934.78		103° 47' 0.151	
4,400.0	4.64	103.57	4,393.2	-40.4	167.6	665,495.47	668,942.65		103° 47' 0.059	
4,500.0	4.64	103.57	4,492.9	-42.3	175.4	665,493.57	668,950.52		103° 46' 59.967	
						665,491.67	668,958.39		103° 46' 59.874	
4,600.0	4.64	103.57	4,592.5	-44.2	183.3		-			
4,700.0	4.64	103.57	4,692.2	-46.1	191.2	665,489.77	668,966.26		103° 46' 59.782	
4,800.0	4.64	103.57	4,791.9	-48.0	199.1	665,487.87	668,974.13		103° 46' 59.690	
4,900.0	4.64	103.57	4,891.5	-49.9	206.9	665,485.97	668,982.00		103° 46' 59.598	
5,000.0	4.64	103.57	4,991.2	-51.8	214.8	665,484.07	668,989.87		103° 46' 59.506	
5,100.0	4.64	103.57	5,090.9	-53.7	222.7	665,482.17	668,997.74		103° 46' 59.414	
5,200.0	4.64	103.57	5,190.6	-55.6	230.5	665,480.27	669,005.61		103° 46' 59.322	
5,300.0	4.64	103.57	5,290.2	-57.5	238.4	665,478.37	669,013.48	3 32° 49' 41.798 N	103° 46' 59.230	
5,374.0	4.64	103.57	5,364.0	-58.9	244.2	665,476.97	669,019.31	I 32° 49' 41.784 N	103° 46' 59.162	
Glorieta										
5,400.0	4.64	103.57	5,389.9	-59.4	246.3	665,476.47	669,021.35	5 32° 49' 41.779 N	103° 46' 59.138	
5,448.3	4.64	103.57	5,438.0	-60.4	250.1	665,475.56	669,025.15	5 32° 49' 41.770 N	103° 46' 59.093	
Paddock										
5,500.0	4.64	103.57	5,489.6	-61.3	254.1	665,474.57	669,029.22	2 32° 49' 41,760 N	103° 46' 59.045	
5,600.0	4.64	103.57	5;589.2	-63.2	262.0	665,472.68	669,037.09		103° 46' 58.953	
	4.64	103.57	5,688.9	-65.1	262.0	665,470.78	669,037.08		103° 46' 58.861	
5,700.0										
5,791.4	4.64	103.57	5,780.0	-66.9	277.1	665,469.04	669,052.15	5 32° 49' 41.704 N	103° 46' 58.777	
Blinebry					a== -					
5,800.0	4.64	103.57	5,788.6	-67.0	277.8	665,468.88	669,052.83		103° 46' 58.769	
5,900.0	4.64	103.57	5,888.3	-68.9	285.6	665,466.98	669,060.70		103° 46' 58.677	
6,000.0	4.64	103.57	5,987.9	-70.8	293.5	665,465.08	669,068.57		103° 46' 58.585	
6,100.0	4.64	103.57	6,087.6	-72.7	301.4	665,463.18	669,076.44		103° 46' 58.493	
6,200.0	4.64	103.57	6,187.3	-74.6	309.2	665,461.28	669,084.31	32° 49' 41.626 N	103° 46' 58.401	
6,300.0	4.64	103.57	6,286.9	-76.5	317.1	665,459.38	669,092.18	32° 49' 41.606 N	103° 46' 58.309	
6,400.0	4.64	103.57	6,386.6	-78.4	325.0	665,457.48	669,100.05	5 32° 49' 41.587 N	103° 46' 58.217	
6,500.0	4.64	103.57	6,486.3	-80.3	332.9	665,455.58	669,107.92	2 32° 49' 41.568 N	103° 46' 58.124	
6,600.0	4.64	103.57	6,586:0	-82.2	340.7	665,453.68	669,115.79	32° 49' 41.549 N	103° 46' 58.032	
6,700.0	4.64	103.57	6,685.6	-84.1	348.6	665,451.78	669,123.66		103° 46' 57.940	
6,800.0	4.64	103.57	6,785.3	-86.0	356.5	665,449.88	669,131.53		103° 46' 57.848	
6,840.8	4.64	103.57	6,826.0	-86.8	359.7	665,449.11	669,134.74		103° 46' 57.810	
Tubb			• • •	. –		• • • •				
6,900.0	4.64	103.57	6,885.0	-87.9	364.3	665,447.98	669,139.40) 32° 49' 41.491 N	103° 46' 57.756	
8,900.0 7,000.0	4.64 4.64	103.57		-07.9 -89.8						
			6,984.6 7.018.5		372.2 374 9	665,446.08 665,445,44	669,147.27		103° 46' 57.664	
7,034.0	4.64	103.57	7,018.5	-90.5	374.9	665,445.44	669,149.94	32° 49' 41.465 N	103° 46′ 57.633	
Production										
7,041.5	4.64	103.57	7,026.0	-90.6	375.5	665,445.30	669,150.53	32° 49' 41.464 N	103° 46' 57.626	

4

.

,

COMPASS 5000.1 Build 61

;

.

Planning Report - Geographic

Database: EDM Central Planning Company: ConocoPhillips MCBU Project: Buckeye Site: Emerald Federal Well: Ernerald Federal 9 Wellbore: Original Hole Design: Actual Plan	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Emerald Federal 9 RKB @ 4045.0usft (PD 822) RKB @ 4045.0usft (PD 822) Grid Minimum Curvature
Design Targets Target Name - hit/miss target Dip Angle, Dip Dir. TVD - Shape (°) (°) (usft) Emerald Federal 9 (Top 0.00 0.01 5,438.0	+N/-S +E/-W Northing Easting (usft) (usft) (usft) Latitude Longitude -126.5 355.7 665,409.41 669,130.72 32° 49' 41.110 N 103° 46' 57.860 W
- plan misses target center by 124.2usft at 5457.8usft MD - Circle (radius 150.0) Casing Points Measured Vertical Depth (usft) (usft) 75.0 75.0 Conductor 816.0 816.0 Surface 7,034.0 7,018.5 Production	Casing Hole Diameter Diameter Name (") (") r 16 20 8-5/8 12-1/4
Formations Measured Vertical Depth Depth Depth (usft) (usft) (usft) 791.0 791.0 Rustler 972.0 972.0 Salado 1,980.0 1,980.0 Tansill 2,116.0 2,116.0 Yates 2,451.4 2,451.0 Seven Rivers 3,084.5 3,082.0 Queen 3,496.9 3,493.0 Grayburg 3,880.1 3,875.0 San Andres 5,374.0 5,364.0 Glorieta 5,448.3 5,438.0 Paddock 5,791.4 5,780.0 Blinebry 6,840.8 6,826.0 Tubb 7,041.5 7,026.0 TD	Dip Direction Dia Direction Dia (°) (°) (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4

.

-

Proposed Directional Well Plan

Attachment #1

Attachment # 2

Emerald Federal #9

(Date: 4/16/2013)

Page 9 of 9

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 060329 Well: Emerald Federal #9 Location: Sec. 17, T17S, R32E Date: 02-24-13

Request:

i

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 24 February 2013

Attachment # 1 **Reliance Eliminator Choke & Kill** This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve. The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs. The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes). Nom OD Weight **Min Bend Radius** Max WP Nom. ID in. mm. iŋ. mm ib/ft kg/m in. mm. psi Mpa 21.46 48 1219.2 5000 34.47 3 76.2 5.11 129.79 14.5 3-1/2 88.9 147.06 20.14 29.80 54 1371.6 5000 34.47 5.79 Hammer Unions Fittings Flanges Other RC4X5055 R35 - 3-1/8 5000# API Type 6B All Union Configurations LP Threaded Connectio RC3X5055 R31 - 3-1/8 3000# API Type 68 Graylock RC4X5575 **Custom Ends**

*

Attachment # 2

4

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Emerald Federal #9 Location: Sec. 17, T17S, R32E Date: 02-22-13

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

 We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs's steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

The closed loop system components will be inspected daily by each tour and any needed repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

Controlled Recovery Inc./ Operator: R-360 Permian Basin, LLC 4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles West of Hobbs, NM and 32 miles East of Carlsbad, NM).

The Permit Number for R-360 is NM-1-006/R-9166

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at Controlled Recovery Inc at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

James Chen Drilling Engineer Office: 832.486.2184 Cell: 832.678.1647

SPECIFICATIONS

LOOR: 3/16" PL one piece CROSS MEMBER: 31x4,11 chennel 16" on

CHOSSIWEWEERT OX a base center WALLSE 3/16" IPL solid welded with Woing top, inside liner hooks DOOR. 3/16" PL with Wing frame HRONIE, 3/16" PL stantformed PICK UPE Standard cable with 2" x6" x 1/2" rails, go sset at each crossmember WHEELS: 10 DIA x 9 long with reasofillings DOOR LATCHE S Independent at the biodocs with chalas verified second biob with chalks, verified second lateb CASKE TS: Express (about seel with well) relefinera

WELDE: All welds continuous excepted be sinciple dossimables

FINISH Costed Inside and cut with direction tico toloo lemene olivera ontilelinini tevri disem HYDROTESTINC: Full capacity statistics: DIMENSIONS: 22-4(1° long (214-6° thatds), 99° wide (88° inside), see drawing for height OPTIONS: Steel giftblast and special paint; Amplifell. Hell and Dino pickup ROOFE 3/16" PL roof panels with tubing and channel support frame LUDS: 4(2) 68" x 90" metel rolling licespring r loaded self raising

ROULERS: 4" V-groove rollers with delifin bearings and grease fillings OPENING: (2) 60" x 82° gpenings with 8" divider centered on

containe EATCH:(2) independent ratchet, binders with charges

CASKETS: Extruded rubber seal with metal relations

Heavy Duty Split Metal Rolling Lid

CONT.	A	В
20 YD	41	53
25 YD	53	65
30 YD	65	77