HOBBS OCD					ATS-13-804
Form 3160-3 (March 2012) SEP 0 9 2013		OCD Ho	bb s	OMB No	APPROVED . 1004-0137 tober 31, 2014
UNITED STAT RECEIVED PARTMENT OF THI	E INTERIOR	r		5. Lease Serial No. USA LC 058698A	
BUREAU OF LAND M. APPLICATION FOR PERMIT T				6. If Indian, Allotee of N/A	or Tribe Name
la. Type of work: DRILL REE	NTER			7. If Unit or CA Agree 1.0.1.645 NM 70	987 A
Ib. Type of Well: Oil Well Gas Well Other	V s	ngle Zone 🔲 Mi	ultiple Zone	8. Lease Name and W MCA Unit 488	Vell No. 31422
2. Name of Operator ConocoPhillips Company	2178	17>		9. API Well No. 30-025-	393 '
^{3a.} Address P.O. Box 51810 Midland, Texas 79710-1810	3b. Phone N 432-688-6). (include area code) 913		10. Field and Pool, or E Maljamar; Grayburg	/San Andres
 Location of Well (Report location clearly and in accordance with At surface UL M, Sec. 23, T17S, R32E; 70' FSL and 5 At proposed prod. zone same 		nents.*)		11. Sec., T. R. M. or Bll Sec. 23, T17S, R32	
 14. Distance in miles and direction from nearest town or post office* Approximately 5 miles SE of Maljamar, New Mexico 				12. County or Parish Lea County	13. State NM
 Distance from proposed* 70' location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any) 		acres in lease		ng Unit dedicated to this w	ell
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 610' 	19. Propose 4385'	d Depth	20. BLM/ ES 008	BIA Bond No. on file 5	
 Elevations (Show whether DF, KDB, RT, GL, etc.) 3974' GL 	22 Approxi	mate date work will 3	start*	23. Estimated duration 10 Days	
	24. Atta		<u> </u>		
 The following, completed in accordance with the requirements of Ons Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office). 		 Bond to cove Item 20 above Operator cert 	er the operation e). ification	ons unless covered by an e ormation and/or plans as r	
25. Signature Susan B. Maund		<i>(Printed/Typed)</i> n B. Maunder		1	Date 5/14/13
Title Senior Regulatory Specialist					
Approved by (Signature) /s/George MacDonell		(Printed/Typed)			^{Dai} SEP - 4 2013
Title FIELD MANAGER	Office			RLSBAD FIELD OF	
Application approval does not warrant or certify that the applicant he conduct operations thereon. Conditions of approval, if any, are attached.	olds legal or equi	table title to those ri	-	pject lease which would en PROVAL FOR 1	
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations	a crime for any p as to any matter w	erson knowingly and vithin its jurisdiction.	d willfully to n	nake to any department or	agency of the United
(Continued on page 2) Roswell Controlled Water Basin	 	K#101	17		actions on page 2) t to General Requiren Stipulations Attached
					· · · · · · · · · · · · · · · · · · ·
		SEE ATTA CONDITI(ACHED		L 2 2013

Drilling Plan ConocoPhillips Company <u>Maljamar; Grayburg-San Andres</u>

MCA Unit #488

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The ranges of depths for the formation tops, thicknesses, and planned Total Depths for all the wells to be drilled under this Master Drilling Plan are presented in the table below.

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Contents				
Quaternary	Surface	Fresh Water				
Rustler	890	Anhydrite				
Salado (top of salt)	1073	Salt				
Tansill	2095	Gas, Oil and Water				
Yates	2234	Gas, Oil and Water				
Seven Rivers	2561	Gas, Oil and Water				
Queen	3225	Gas, Oil and Water				
Grayburg	3613	Gas, Oil and Water				
Grayburg-6	3868	Gas, Oil and Water				
San Andres-7	4025	Gas, Oil and Water				
San Andres-9	4181	Gas, Oil and Water				
Total Depth	4385	200' below deepest estimated perforation				

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

MCA Unit #488

(Date: 4/22/2013)

2. Proposed casing program:

Turne	Hole Size	м	Interval MD RKB (ft) OD V		Wt	Wt Gr Cor		MIY	MIY Col		Safety Factors Calculated per ConocoPhillips Corporate Criteria		
Туре	(in)	From	То	(inches) (lb/ft)	(lb/ft)	G	Conin	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wali	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	945' - 960'	8-5/8	24#	J-55	STC	2950	1370	244	1.53	3.21	3.48
Prod	7-7/8	0	4330' – 4375'	5-1/2	17#	J-55	LTC	5320	4910	247	2.34	3.74	2.19

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	W. t	MIY	Col	Jt Str	Drill Fluid	Burs t	Collaps e	Tensile-Dry	Tens-Bouy
				137	24400					
Surface Casing	960	24	2950	0	0	8.5	6.95	3.23	10.6	12.2
				491	24700					
Production Casing	4375	17	5320	0	0	10	2.34	2.16	3.32	3.92

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Desig	an Factors
---	------------

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

ξĮ[

rpe Inductor Inface Casing (0-5/8*,24# J-55 STC) oduction Casing (5-1/2*, 17# J-55 LTC		85 65 35 960 24 2	Col 2:: Jt Strik: Pi 000 -	432966 - ## 381000 8.5 ±	-ant (#459) 1153 (#483) 1153 (#443)21 (***)		
Burst – ConocoPhillips Required			Carencerse Name Terres				
The maximum internal (burst) load on the The maximum internal (burst) load on the (MAVP) is the pressure that would fit Co	Production Casing occurs during the nocoPhillips Corporate Criteria for M	fracture stimulation when inimum Factors		rking pressure	an an the second se Second second		
Surface Reter	tace Casing Test Pressure = Working Pressure (BOPE) = 5 Field SW =	1500 pst 3000 pst 10 ppg	Predicted Pore Press Predicted Frec Gredien	t et Shoe (CSFG) = 1	3.55 ppg 3.23 ppg		and the second
Production Casing MAVVP for	y Factor = API Burst Rating / Maxim in the Fracture Stimulation = API Bur and a straight state of the state of the state of the state o			Nowable Surface Pressu	re (MASP)		
Case #2. MPSP (Field SW @	P (MWnyd next section) = Bullhead _{CSFC} + 200 psi) =	960 x 0.0 960 x 0.0	52 👘 x 📰 19.23 👘	= 1141 , 499 - 771 , 57499	+ 200	- 661	
Case Case #3 & #4 Limited to N	Vol @ inext section TD) = #4+MPSP (PPTD - GG) = #PSP (CSFG+0.2 ppg) =	4375 x 0.0 4375 x 0.0 960 x 0.0	52 x 8.55 52 x (19.23	- 341.5 - 437.5 + 0.2)	- 424 = 1508 = 970	-11. 1179 	
Burst Safety Factor oduction Casing Burst Safety Fac		960 x 10.0 2950 / 19	24= 1.53	+ 1500	= 1924 (b)		
Case Sater Burst Safe	e #1 MPSP (MWhyd TD) = #4 MPSP (PPTD GG) = aty Factor (Max MPSP) =	4375 x 0.0 4375 x 0.0 5320 / = 22 5320 / 1.1	52 x 8.55 75 = 1 2.34		= 1508		an a
MAWP for the Fracture Stimul							en fin 17 Gestriken 17 Gestriken
<u>Compose - conocurrinnips requi</u> The maximum collapse load on the Surfac The maximum collapse load on the Produc therefore, the external pressure profile for	e Cesing occurs when cementing to tion Casing occurs when cementing	to surface, or 1/3 evacua	tion to the deepest depth of i	exposure; and		승규가 가 있는	
Surface Casing Collapse St	itety Factor = API Collapse Reting / Satety Factor = API Collapse Reting Int Displacement Fauld (FW) =	Full Evacuation 'OR', Camer	t Displacement during Cemer	ting to Surfece			
	Surface Cement Lead - Surface Cement Tail = Surface Cement Tail = Top of Surface Tail Cement =	13.6 ppg 14.8 ppg	Prod Cement Lead = Prod Cement Tail = of Prod Tail Cement =	11.8 ppg 14.5 ppg 3200 n 1			
	vacuation Diff Pressure =	960 x 0.05	1	=_1; 427			
oduction Casing Collapse Safety		(660 × 1370 / 42	7 ::::::::::::::::::::::::::::::::::::		00 g = 0, x , 12, 0.0€ 	MORE (
Cem	vacuation Diff Pressure = enting Diff Lift Pressure = Collapse Safety Factor =	, ((8.55) - (4. 118 •) + (3. 10 •	375 / 3 200 × 1 0.05	3 x 0.05: 2 x 14:	
Tensial Strength — ConocoPhilli The maximum axial (tension) load occurs							
Maximum Allowable Ax Maximum Allowable Ax	ial Load for Pipe Yield = API Pipe Yi lai Load for Joint = API Joint Streng ok Load (Limited to 75% of Rig Max	eld Strength Rating / Corpo h Rating / Corporate Minim	rete Minimum Axial Design Fe um Axial Design Factor	actor			
Maximum Allowable Ov Tensial Safety Factor =	erpull Margin = Maximum Allowabla API Pipe Yield 'OR' API Joint Streng	Hook Load - Bouyant Wt o	of the String g / (Bouyant Wt of String + h	Ainknum Overpull Required	i)) and a second s		
	Minimum Overpull Required =	<u>50000</u> 65	Sola III. Ang Ang Ang Ang Ang Ang Ang Ang Ang Ang				
Max: Allowable	Air Wt = Bouyant Wt = Axial Load (Pipe Yield) =	381000 1.4			ar an		
fax-Allowable Hook Load (Limited to	The second se	244000 / <u>1.4</u> 174286 174286 (230	40, to x) = :::: 154236			
oduction Casing Tensial Strength	Safety Factors in Marking the	244000 27 (12, 200 74375 27, 200 74375 27, 200		1) = 3.48 • • • • • • • • • • • • • • • • • • •			
	Axial Load (Pipe Yield) =	273000 / 1.4 247000 / 1.4 176429	0 = 19500 0				
Max." Al	owable Overpull Margin =	176429 = (743 247000 - / (630		().= 113409) = 2.19			
- <u>Compression Strength Conocc</u> The maximum exial (compression) load for			tor				
with a support of a plate or landing ring. but not limited - Any other axial loads such Compression Safety Factor = API Axial Jo	as a snubbing unit or other would Int Strength Rating 'OR' API Axial Pi	need to be added to the lo be Yield Rating / Maximum I	nd.				N. C. MILLION
nductor & Surface Compression S		1000 tos					
	d Casing Wt (Bouyant) = Tubing Wt (Air Wt) = ##**	4375 x 6.		20050 63020		= 6973	
Conductor Corr	Tubing Fluid Wt = Load on Conductor = pression Safety Factor = .oad on Surface Casing =	3000 + 20 432966 / 121)50 + 63020	x 0.7654 + 28437.5		= 6973 = 121481	
Surface Casing Com JNIT #488	oad on Sunace Casing = pression Safety Factor =	244000 / / 720	0% = 72009 389 = 3.35 Jate: 4/22/2013	5) 5)			Page 3 (

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

·	Slurry		vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lead	Class C	Surface	615' – 660'	13.6	300	510	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer Excess =200% based on gauge hole volume	1.70
Tail	Class C	615' – 660'	915' – 960'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft³/sx
Lea d	50:50 Poz/C	Surface	3200'	11.8	450	1031	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 20% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cement	3200'	4330' – 4375'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

MCA Unit #488

5-1/2" Production Casing Cementing Program – Two-Stage Cementing Option: See COP

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow
 if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

Sta	e 1 - Sitterv I		Intervals Ft MD		Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lea d	Poz/C CO2 Resistant Cement	3200'	4330' – 4375'	14.5	300	378	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 60% or more if needed based on gauge hole volume	1.26

Staç	ge 2 - Slurry		rvals MD	Weight ppg	Sx	x Vol Additives Cuft		Yield ft ³ /sx
Lea d	50:50 Poz/C	Surface	1400'	11.8	250	573	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 120% or more if needed based on gauge hole volume	2.29
Tail	Poz/C CO2 Resistant Cernent	1400'	Stage Tool ~ 3200'	14.5	400	504	+ 1 % Extender + 0.5 % Fluid Loss + 0.4 % Dispersant + 0.2 % Defoamer Excess = 10% or more if needed based on gauge hole volume	1.26

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

MCA Unit #488

Page 5 of 10

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. See Attached BOPE Schematic. A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	300 – 500
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 – 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 500

The mud systems that are proposed for use are as follows:

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

MCA Unit #488

(Date: 4/22/2013)

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700': Spectral GR, Gamma Ray, Resistivity, Density, and BHC Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Total Depth to 3200'; Dielectric Scanner
 - Formation pressure data (XPT) on electric line
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S	Gas Rate	ROE	ROE
	(PPM)	(MCFD)	100 PPM	500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well is in late 2013 after receiving approval of the APD.

Attachments:

- Attachment # 1 Two-stage Cementing Schematic
- Attachment # 2......BOP and Choke Manifold Schematic 3M System
- Attachment # 3...... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 22 April 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

MCA Unit #488

(Date: 4/22/2013)

Page 7 of 10

Page 8 of 10

Page 9 of 10

(Date: 4/22/2013)

Page 10 of 10

Request for Variance

ConocoPhillips Company

Lease Number: USA LC 058698A Well: MCA Unit #488 Location: Sec. 23, T17S, R32E Date: 04-21-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

<u>Attachments:</u>

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom. ID		Nom OD	Weig	ght	Min Bei	nd Radius	Max	WP
in, mm			ib/ft	kg/m	ln.	mm.	psi	Mpa
3 76.2			14.5	21.46	48	1219.2	5000	34.4
3-1/2 88.9) 5.7	9 147.06	20.14	29.80	54	1371.6	5000	34.4
			:					
		у. С.					·	
Fittings	ļ	Flanges		Han	nmer Uni	ons	Other	r
RC4)(5055	R35 -	- 3-1/8 5000# AF	PI Type 6B	All Un	ion Configu	ations L	P Threaded Co	onnecti
RC3X5055	R31 -	- 3-1/8 3000# AF	'I Type 6B				Grayloc	:k
RC4X5575	i						Custom E	nds
			•					
							-	

Variance Request