HOBBS OCD Form 3160-3 (March 30 2) 2 0 2013		OCD Hobbs			ATS-1 APPROVED 0. 1004-0137 ctober 31, 2014	3-1)(
UNITED STATES RECEIVED DEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR			5. Lease Serial No. NM LC 029405B		
APPLICATION FOR PERMIT TO		REENTER		6. If Indian, Allotee N/A	or Tribe Nam	e
la. Type of work: DRILL REENT	ER			7 If Unit or CA Agree N/A	ement, Name a	and No.
lb. Type of Well: 🔽 Oil Well 🔲 Gas Well 🛄 Other	√ Sin	gle Zone 🔲 Multip	ole Zone	8. Lease Name and W Ruby Federal #37	Vell No.	865 3
2. Name of Operator ConocoPhillips Company	2178	317>		9. API Well No. 30-025- 4/40	17	
3a. Address P.O. Box 51810	1	(include area code)		10. Field and Pool, or E	· /	
Midland, Texas 79710-1810	432-688-69		· – <u>—</u>	Maljamar; Yeso We		4400
4. Location of Well (Report location clearly and in accordance with an At surface UL B, Sec. 17, T17S, R32E; 550' FNL and 16	•	ents.*)		11. Sec., T. R. M. or Bl Sec. 17, T17S, R32	•	or Area
At proposed prod. zone UL B, Bec. 17, T175, R32E, 300 TNE and 10 At proposed prod. zone UL B, Bec. 17, T175, R32E; 1003'		3' FF1		0000. 17, 1170, 102	L-	
 14. Distance in miles and direction from nearest town or post office* Approximately 3 miles south of Maljamar, New Mexico 			<u></u>	12. County or Parish Lea County	13. NM	State A
 Distance from proposed* About 333' location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of ac 1601.9	eres in lease	17. Spacin 40 acres	g Unit dedicated to this w	ell	
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed	Depth	ES-008	BIA Bond No. on file		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 4037' GL		nate date work will star		23. Estimated duration9 days		
· · · · · · · · · · · · · · · · · · ·	24. Attac	hments				
The following, completed in accordance with the requirements of Onsho	re Oil and Gas (Order No.1, must be a	tached to th	is form:		
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 	Lands, the	Item 20 above). 5. Operator certific 6. Such other site	ation	ns unless covered by an e ormation and/or plans as a		·
25. Signatur Susan Bi Maunder		BLM. (Printed/Typed) B. Maunder		1	Date 8/8	1/13
Title Senior Regulatory Specialist	·· I <u>-</u>	·····		· · ·	<u>-</u> -	4
Approved by (Signature)	Name	(Printed/Typed)		1	^D ₩OV 1	5 2013
Title FIELD MANAGER	Office	ĊAR	LSBAD F	IELD OFFICE		
Application approval does not warrant or certify that the applicant hole conduct operations thereon. Conditions of approval, if any, are attached.	ls legal or equit	able title to those righ		ject lease which would en PPROVAL FOF		
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a c States any false, fictitious or fraudulent statements or representations as	rime for any pe to any matter w	rson knowingly and v thin its jurisdiction.				
(Continued on page 2)		1/		*(Instr	uctions on	page 2)
Roswell Controlled Water Basin		Kt 1/22	2/13 A	pproval Subject to & Special Stip	General R ulations A	lequiremei ttached

CONDITIONS OF			AL
NOV	26	2013	Sur

Drilling Plan ConocoPhillips Company <u>Maljamar; Yeso (west)</u>

Ruby Federal #37

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Top Depths FT MD	Contents
Quaternary	Surface	Surface	Fresh Water
Rustler	791	791	Anhydrite
Salado (top of salt)	977	977	Salt
Tansill (base of salt)	1987	1987	Gas, Oil and Water
Yates	2175	2175	Gas, Oil and Water
Seven Rivers	2451	2452	Gas, Oil and Water
Queen	3089	3093	Gas, Oil and Water
Grayburg	3506	3512 [.]	Gas, Oil and Water
San Andres	3873	3881	Gas, Oil and Water
Glorieta	5365	5380	Gas, Oil and Water
Paddock	5466	5481	Gas, Oil and Water
Blinebry	5802	5819	Gas, Oil and Water
Tubb	6822	6843	Gas, Oil and Water
Deepest estimated perforation	6822	6843	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	7022	7043	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' - 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u> $5-1/2^{"}$ </u> production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

2ec	CON											
Hole Size	M	Interval D RKB (ft)	OD	Wt	Cr	Com	МІҮ	Col	Jt Str		lated per Co	nocoPhillips
(in)	From	То	(inches)	(lb/ft)	G	Com	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	B	Line Pipe	N/A	N/A	N/A	NA	NA	NA
20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
12-1/4	0	-816- <u>861'</u>	8-5/8	24#	J-55	STC	2950	1370	244	1.57 ,	3.58	3.59
7-7/8	0	6988' – 7033'	5-1/2	17#	L-80	LTC	7740	6290	338	2.12	2.51	1.98
	Size (in) 20 20 12-1/4	Hole Size M (in) From 20 0 20 0 12-1/4 0	Hole Size Interval MD RKB (ft) (in) From To 20 0 40' - 85' (30' - 75' BGL) 20 0 40' - 85' (30' - 75' BGL) 20 0 40' - 85' (30' - 75' BGL) 12-1/4 0	Hole Size Interval MD RKB (ft) OD (in) From To (inches) 20 0 $40' - 85'$ ($30' - 75'$ BGL) 16 20 0 $40' - 85'$ ($30' - 75'$ BGL) 13-3/8 20 0 $-816^{-} - 85'$ ($30' - 75'$ BGL) 13-3/8 12-1/4 0 $-816^{-} - 851'_{-}$ 8-5/8	Hole Size Interval MD RKB (ft) OD Wt (in) From To (inches) (lb/ft) 20 0 $40' - 85'$ ($30' - 75'$ BGL) 16 $0.5"$ wall 20 0 $40' - 85'$ ($30' - 75'$ BGL) 13-3/8 48# 12-1/4 0 $-816^{2} - 861'_{2m}$ 8-5/8 24#	Hole Size Interval MD RKB (ft) OD Wt Gr (in) From To (inches) (lb/ft) Gr 20 0 $40' - 85'$ ($30' - 75'$ BGL) 16 $0.5"$ wall B 20 0 $40' - 85'$ ($30' - 75'$ BGL) 13-3/8 48# H-40 12-1/4 0 $-846^{-} - 861'_{-m}$ 8-5/8 24# J-55	Hole Size Interval MD RKB (ft) OD Wt Gr Conn (in) From To (inches) (lb/ft) Conn 20 0 $40' - 85'$ ($30' - 75'$ BGL) 16 $0.5''$ wall B Line Pipe 20 0 $40' - 85'$ ($30' - 75'$ BGL) 13-3/8 48# H-40 PE 12-1/4 0 $-846' - 861'_{-1}$ 8-5/8 24# J-55 STC	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hole SizeInterval MD RKB (ft)ODWtGrConnMIYColJt StrSafety Fac Calculated per Concorporate

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	861	24	2950	1370	244000	8.5	7.75	3.60	11.8	13.6
Production Casing	7033	17	7740	6290	338000	10	2.12	1.72	2.83	3.34

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

	ConocoPhillips Corporate Cr	iteria for Minimum Design Factors	
	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Surface Casing (8-5/8" 24# J-55 STC)	861		5 35000 4 2950		0 244080	<u>43296</u> 38100		1.5	-	· 8 3.5					
Production Casing (5-1/2" 17# L-80 LTC)	7033		7 7740		338000	39700									
Burst ConocoPhillips Required Load Cases															
The maximum internal (curst) load on the Surface Casing occurs when the	e surface cas	ing is te	sted to 1500	psi (as	per BLM Onsi	iore Order 2	2 - II. Require	ements).							
¹ The maximum Internal (burst) load on the Production Casing occurs during (IJAVVP) is the pressure that would fit ConocoPhilips Corporate Criteria for			on where the	e ກອງເກເ	im atowable n	vorking pre	ssure								
Surface Casing Test Pressure =	1500			Prec	licted Pore Pro	ssure at TL) (PPTD) =	8.5	5 699						
Surface Rated Working Pressure (BOPE) =	3000	çsi			ed Frac Grad				3 660						
Field SW = Surface Casing Burst Safety Factor = APi Burst Rating / Nat	10 imum Departiet		an Brannur		10D* Hawimu		Suctaon Dra		1400						
Production Casing NAWP for the Fracture Stimulation = API						I AN I BUIC	Surface Pre		in ary						
Surface Casing Burst Safety Factor:															
Case #1. MPSP (MWhyd next section) =	861	x	0.052	x	10	=	448								
Case #2. MPSP (Field SW @ Bullhead _{CSFB} + 200 psi) = Case #3. MPSP (Kick Vol @ next section TD) =	861 7033	x x	0.052 0.052	x x	19.23 8.55	•	448 617.2	+	200 381	=	613 2129				
Case #3. INFSF (Rick Vill @ next section TD) = Case #4. MPSP (PPTD - GG) =	7033	x	0.052	x	8.55		703.3	=	2424	-	2129				
Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =	861	x	0.052	х (+	0.2) =	870						
MASP (MWhyd + Test Pressure) = Burst Safety Factor (Max, MPSP or MASP) =	661 2950	x /	0.052 1881	× =	8.5 1.57	+	1500	=	1881						
Production Casing Burst Safety Factor:	2550	,	1001	-	1.57										
Case #1. MPSP (MWhyd TD) =	7033	х	0.052	х	10	=	3657.16								
Case #1. MPSP (PPTD - GG) = Burst Safety Factor (Max. MPSP) =	7033 7740	× /	0.052 3657	× =	8.55 2.12	-	703.3	=	2424						
MAWP for the Fracture Stimulation (Corporate Criteria) =	7740	÷,	1.15] =	6730										
				•											
Collapse – ConocoPhillips Required Load Cases															
The maximum collapse load on the Surface Casing occurs when cementin	g to surface,	1/3 evac	cuation to the	e next ca	sing setting d	epth, or dea	epest depth o	of expos	sure (fulle:	acuation).					
The maximum collapse load on the Production Casing occurs when comen	ting to surface	e, or 1/3	evacuation	to the d	eepest depth	of exposure	; and								
therefore, the external pressure profile for the evacuation cases should b Surface Casing Collapse Safety Factor = API Collapse Ratio								we ass	umed to b	PPTD.					
Production Casing Collapse Safety Factor = API Collapse Rain	-			•	-	-		menting	to Surface						
Cement Displacement Fluid (FW) =	8.34					Cement to S		-							
Surface Cement Lead = Surface Cement Tail =	13.6 14.8	PPG FPG			ni Lead = vent Tail =		B ppg 4 ppg								
Top of Surface Tail Cement =	300				Cement =	520									
Surface Casing Collapse Safety Factor: Full Evacuation Diff Pressure =	861	x	0.052	x	8.55	=	383								
Cementing Diff Lift Pressure =	[(561		0.052	x	13.6) + (300	x	0.052	x	[.] 14.8) -	373	} = 254
Collapse Safety Factor =	1370	1	363	Ξ	3.58								•		•
Production Casing Collapse Safety Factor: 1/3 Evacuation Diff Pressure =	11	7033		0.052		8.55	, , ,	7022	,	3		0.063		0.24)) - - -
Cementing Diff Lift Pressure =	[([(1833		0.052	x x	11.8) - () + (7033 5200	×	0.052	x x	0.052 16.4).)] = 211] = 250
Collapse Safety Factor =	6290	1					1 . 1					10.1	,	2020	1 200
			2509	=	2.51										
			2509	=	2.51										
<u>Tensial Strength – ConocoPhillips Required Load Cases</u>			2509	=	2.51										
The maximum axial (lension) load occurs if casing were to get stuck and p		to get it	unsluck,												
The maximum axial (lension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe	Yield Strengt	to get it h Rating	unsluck, / Corporate	1.linimum	ı Axisi Design	Factor									
The maximum axial (lension) load occurs if casing were to get stuck and p	Yield Strengtl ngth Rating / C	to get it h Rating Corporat	unstuck, / Corporate te Minimum A	Minimum Ixial Des	ı Axial Design Ign Factor	Factor									
The maximum axial (lension) load occurs if cosing vere to get stuck and p Maximum Allowatte Axial Load for Pipe Vield = API Pipe Maximum Allowatte Axial Load for Joint = API Joint Stre Maximum Allowatte Hock Load (Limited to 75% of Rig M Maximum Allowatte Verpull Margin = Maximum Allowatte	Yield Strengti ngth Rating / C lax Load) = Wi ble Hook Load	to get it h Rating Corporat aximum / - Bouys	unstuck. / Corporate le Minimum A Allowable Ap ant Wt of the	filinimum Ixial Des Ixial Load String	ı Axial Design Ign Factor I										
The maximum axial (lension) load occurs if casing were to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Ster Maximum Allowable Hock Load (Limited to 75% of Rig M Maximum Allowable Overput Margin = Maximum Allowable Overput Margin = Margin = Maximum Allowable Overput Margin = Maximum Allowa	Yield Strengtl ngth Rating / C lax Load) = Wi ble Hook Load ength 'OR' Rig	to get it h Rating Corporat aximum - Bouys Max Los	unstuck, / Corporate te Minimum A Allowable Ap ant WL of the ad Rating / ()	filinimum Ixial Des Ixial Load String	ı Axial Design Ign Factor I	• Minimum C		sired)							
The maximum axial (lension) load occurs if cosing vere to get stuck and p Maximum Allowatte Axial Load for Pipe Vield = API Pipe Maximum Allowatte Axial Load for Joint = API Joint Stre Maximum Allowatte Hock Load (Limited to 75% of Rig M Maximum Allowatte Verpull Margin = Maximum Allowatte	Yield Strengtl ngth Rating / C lax Load) = Wi ble Hook Load ength 'OR' Rig	to get it h Rating Corporat aximum / - Bouy/ Max Loz bs	unstuck. / Corporate le Minimum A Allowable Ap ant Wt of the	filinimum Ixial Des Ixial Load String	ı Axial Design Ign Factor I			ived)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Naximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Overput Margin = Maximum Allowa Maximum Allowable Overput Margin = Maximum Allowa Tensial Safety Factor = API Pipe Yield '0R' API Joint Stro Rig Max Load (300,000 lbs) x 75% = Kinimum Overput Required =	Yield Strengti ngth Rating / C lax Load) = Ma ble Hook Load ength 'OR' Rig 225000 I	to get it h Rating Corporat aximum / - Bouy/ Max Loz bs	unstuck, / Corporate te Minimum A Allowable Ap ant WL of the ad Rating / ()	filinimum Ixial Des Ixial Load String	ı Axial Design Ign Factor I	• Minimum C		sired)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowatle Axial Load for Pipe Yield = API Pipe Maximum Alowatle Axial Load for Joint = API Joint Str Maximum Alowatele Hock Load (Limited to 75% of Rig M Maximum Alowatele Hock Load (Limited to 75% of Rig M Maximum Alowatele Hock Load (Limited to 75% of Rig M Maximum Alowatele Hock Load (Joint Str Tensial Safety Factor - API Pipe Yield '07: API Joint Str Rig Max Load (300,000 hos) x 75% = Kinimum Overpul Required = Surface Casing Tensial Strength Safety Factor:	Yield Strengti ngth Rating / ((ax Load) = 44 ble Hook Load ength 'OR' Rig 225000 (50000 (to get it h Rating Corporat aximum / - Bouy/ Max Loz bs	unstuck, / Corporate te Minimum A Allowable Ap ant WL of the ad Rating / ()	filinimum Ixial Des Ixial Load String	ı Axial Design Ign Factor I	• Minimum C		lired)			.				
The maximum axial (lension) load occurs if cosing vere to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Axial Load for Joint = API Joint Stre Maximum Allowable Overput Margin = Maximum Allowa Maximum Allowable Overput Margin = Maximum Allowa Tensial Safety Factor = API Pipe Yield '0R' API Joint Stre Rig Max Load (300,000 lbs) x 75% = Kinimum Overput Required =	Yield Strengti ngth Rating / C lax Load) = Ma ble Hook Load ength 'OR' Rig 225000 I	to get it h Rating Corporat aximum / - Bouy/ Max Loz bs	unstuck, / Corporate te Minimum A Allowable Ap ant WL of the ad Rating / ()	filinimum Ixial Des Ixial Load String	ı Axial Design Ign Factor I	• Minimum C		uired)			•				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Lead for Pipe Yield = API Pipe Maximum Alowable Acial Lead for Joint = API Joint Str Maximum Alowable Hock Lead (Limited to 75% of Rig M Maximum Alowable Overpul Nargin = Maximum Alowa Tensial Safety Factor = API Pipe Yield Vir API Joint Str Rig Max Lead (300,000 los) × 75% = Kinkmum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Lead (Pipe Yield) =	Yield Strengti ngth Rating / C (ax Load) = 42 ble Hook Load ength '0R' Rg 225000 1 50000 1 20664 20664 381000	to get it h Rating Corporat aximum / - Bouy! Max Los bs bs bs bs bs	unsluck / Corporate le Minimum A Allowable Ap ant Wi of the ad Rating / () 0.870	filinimum oxial Das xial Loac String Bouyant - - -	i Axial Design Ign Factor Wit of String 17982 272143	• Minimum C		iir∉d)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Allowable Axial Load for Dipe Vield = API Pipe Maximum Allowable Hock Load (Limited to 75% of Rig M Maximum Allowable Hock Load (Limited to 75% of Rig M Maximum Allowable Hock Load (Sto) (2000 los) x 75% = Rig Max Load (Sto) (2000 los) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dipe Steld)	Yield Strengti ngth Railng / G (ax Leed) = 14 ble Hook Load ength '0R' Rig 225000 (50000 (50000 (20664 20664 381000 244000	to get it h Rating Corporat aximum / - Bouys Llax Los bs bs bs	unstuck, / Corporate le Minimum A Aßowable Azi ant Wi of Ithe ad Rating / () 0.870	filinimum xial Des xial Loac String Bouyant	n Axial Design Ign Factor Wt of String 1 17982	• Minimum C		ıired)			.				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowatie Axial Load for Pipe Yield = API Pipe Maximum Alowatie Axial Load for Joint = Ari Joint Str Maximum Alowatie Hock Load (Limited to 75% of Rig M Maximum Alowatie Hock Load (Limited to 75% of Rig M Maximum Alowatie Hock Load (Limited to 75% of Rig M Maximum Alowatie Hock Load (200,000 los) x 75% = Rig Max Load (200,000 los) x 75% = Kinimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	Yield Strengti ngth Rating / C (ax Load) = 42 ble Hook Load ength '0R' Rg 225000 1 50000 1 20664 20664 381000	to get it h Rating Corporat aximum / - Bouys Max Los bs bs bs ts x /	unsluck. / Corporate le Minimum A Abowable As ant Wit of the ad Rating / (1 0.870 1.40 1.40 1.40 20664	filinimum oxial Das xial Loac String Bouyant - - -	i Axial Design Ign Factor Wit of String 17982 272143) =		ıired)			.				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Notal Load for Joint = API Joint Stre Maximum Allowable Note Load (Limited to 75% s of Rig M Maximum Allowable Note Load (Limited to 75% s) Rig Max Load (Stou) (2000 lob) × 75% s Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Ciou) (2) Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin = Tensial Safety Factor =	Yield Strengti ngth Raling / C (ax Lead) = M2 ble Hook Load ength 'OR' Rg 225000 (50000) 20664 20664 381000 244000 174286	to get it h Rating Corporat aximum / - Bouys Max Los bs bs bs / / /	unsluck. / Corporate le Minimum A Allowable As ant Wi of the ad Rating / (1 0.870 1.40 1.40	Minimum Xial Des Xial Load String Bouyant - - - -	i Axial Design Ign Factor J Vit of String 17982 272143 174286	Minimum C		ired)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Allowable Axial Load for Dipe Yield = API Pipe Maximum Allowable Axial Load for Dipe Yield 10 75% of Rig M Maximum Allowable Hock Load (Limited to 75% of Rig M Maximum Allowable Doreput Margin = Maximum Abava Tensial Safety Factor = API Pipe Yield 'DR' API Joint Stre Rig Max Load (200000 los) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (20iout) = Max. Allowable Axial Load (20iout) = Max. Allowable Axial Load (20iout) = Max. Allowable Coerput Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor:	Yield Strengti ngth Railing / (iax Load) = M bib Hook Load sigth 'OR' Rg 2250001 500001 20664 20664 381000 244000 174286 244000	to get it h Rating Corporat aximum / - Bouy/ Max Low bs bs bs / / / / / /	unsluck. / Corporate le Minimum A Abowable As ant Wit of the ad Rating / (1 0.870 1.40 1.40 1.40 20664	filinimum oxial Des xial Loace String Bouyant = = = = x	Axial Design Ign Factor Wt of String 17982 272143 174286 0.870) =	156303	sired)			.		·		
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Allowable Axial Load for Pipe Yield = API Pipe Maximum Allowable Notal Load for Joint = API Joint Stre Maximum Allowable Note Load (Limited to 75% s of Rig M Maximum Allowable Note Load (Limited to 75% s) Rig Max Load (Stou) (2000 lob) × 75% s Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Ciou) (2) Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin = Tensial Safety Factor =	Yield Strengti ngth Rating / G lax Lead) = Ma ble Hook Load 225000 50000 20664 20664 381000 244000 174286	to get it h Rating Corporat aximum / - Bouy/ Max Low bs bs bs / / / / / /	unsluck. / Corporate le Minimum A Abowable As ant Wit of the ad Rating / (1 0.870 1.40 1.40 1.40 20664	filinimum oxial Des xial Loace String Bouyant = = = = x	Axial Design Ign Factor Wt of String 17982 272143 174286 0.870) =	156303	ired)			.				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Allowable Axial Load for Dipe Yield = API Pipe Maximum Allowable Hock Load (Limited to 75% of Rig M Maximum Allowable Hock Load (Limited to 75% of Rig M Maximum Allowable Overpul Margin = Maximum Abova Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Big Max Load (190000 los) x 75% = Kinimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (2000tit) = Max. Allowable Axial Load (2000tit) = Max. Allowable Axial Load (2000tit) = Max. Allowable Overpul Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	Yisid Strengti ngth Raiting / C inst Leady = Mi ble Hook Load sngth: OX: Rb 225000] 200664 20664 20664 381000 244000 174286 244000 174286 244000 119561 119561 397000	to gel it h Rating Corporat - Bouys Max Los bs k x / / / / (x / /	unstuck. / Corporate te Minimum A Aflowable A ant Wt of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40	filinimum xiai Dess Siring Bouyani = = = = x + =	17982 17982 272143 174286 0.870 50000 101307 283571) =	156303	ived)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowatie Axial Lead for Pipe Yield = API Pipe Maximum Alowatie Axial Lead for Joint = API Joint Stre Maximum Alowatele Hock Lead (Limited to 75% of Rig M Maximum Alowatele Hock Lead (Limited to 75% of Rig M Maximum Alowatele Hock Lead (Limited to 75% of Rig M Maximum Alowatele Hock Lead (Joint) are Rig Max Lead (300,000 Ros) x 75% = Klinimum Overpull Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Fresial Safety Factor = Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Safety Factor:	Yiald Strengti ngth Rating / (lax Lead) = Ma lie Hook Load 200664 200664 381000 244000 174286 174286 174286 174286 397000	to gel il h Rating Corporat - Bouyi Max Loz Max Loz bs X / / / / / / / / / / / / / / /	unsluck. / Corporate & Minimum A Adovable A and Wi of the ad Rating / (1 0.870 1.40 1.40 20664 1.7982 0.847	filinimum xial Desc String Bouyani = = = x X +	1 Axial Design Ign Factor 9 17982 272143 174286 0.870 50000 101307) =	156303	ired)						• •	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Dipe Yield = API Pipe Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Deerpul Margin = Maximum Alowa Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stre Rig Max Load (1900 00 ko)x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (2000 clipt) = Max. Allowable Axial Load (2000 clipt) = Max. Allowable Axial Load (2000 clipt) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wt = Bouyant Wt = Conduction Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Bouyant Wt = Bouyant Wt =	Yisid Strengti ngth Raiting / C inst Leady = Mi ble Hook Load sngth: OX: Rb 225000] 200664 20664 20664 381000 244000 174286 244000 174286 244000 119561 119561 397000	to gel it h Rating Corporat - Bouys Max Los bs k x / / / / (x / /	unstuck. / Corporate te Minimum A Aflowable A ant Wt of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40	filinimum xiai Dess Siring Bouyani = = = = x + =	17982 17982 272143 174286 0.870 50000 101307 283571) =	156303	ifed)						• •	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Pipe Yield = API Pipe Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (200,000 los) x 75% • Rig Ifax Load (200,000 los) x 75% • Rig Ifax Load (200,000 los) x 75% • Rig Ifax Load (200,000 los) x 75% • Kinimum Dverpull Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	Yield Strengtl ngth Raiting / (and Raiting / (and Raiting / (and Raiting / (225000) 20664 20664 20664 20664 381000 244000 174286 174286 244000 174286 174286 174286 381000 244000 174286 174286 244000 174286 245000 245000 225000	to gel it h Rating Corporat aximum / I - Bouty/ Max Loz / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate & Minimum A Adovable A and Wi of the ad Rating / (1 0.870 1.40 20664 17982 0.847 1.40 1.40	filinimum xial Desc String Bouyani = = = x + = x + = = z	1 Axial Design Ign Factor 9 17982 272143 174286 0.870 50000 101307 283571 241429) =) =	156303 3.59	ifed)			.				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Dipe Yield = API Pipe Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (Storgo No Ros) 75% = Rig Max Load (Storgo No Ros) 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Diono) to y 75% = Max. Allowable Axial Load (Diono) to y Max. Allowable Axial Load (Diono) to y Max. Allowable Axial Load (Diono) to y Max. Allowable Axial Load (Diono) Max. Allowable Axial Load) Max. Allowable Axial Load (Diono) Max. Allowable Axial Load) Max. Allowable Axial Load (Diono) Max. Allowable Axial Load (Diono)	Yisid Strengti ngth Rating / (ark Leady = Ji ble Hook Load (225000) 200664 20664 20664 20664 244000 174286 244000 174286 244000 119561 119561 119561 397000 338000 225000	to gel it h Rating Corporat eximum, - Bouys bs tbs / / / / / / / / / / / / / / / / / / /	unstuck. / Corporate le Minimum A Adovable A ant Wi of the dd Rating / () 0.870 1.40 20664 17982 0.847 1.40 1.40 1.40	filinimum votal Dess xial Loac sing Bouyant = = = x + = = x + z x	17982 17982 272143 174286 0.870 50000 101307 283571 241429 0.847) =) =) =	156303 3.59 123693	uired)			.				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Dipe Yield = API Pipe Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (Storgo No Ros) 75% = Rig Max Load (Storgo No Ros) 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Diono) to y 75% = Max. Allowable Axial Load (Diono) to y Max. Allowable Axial Load (Diono) to y Max. Allowable Axial Load (Diono) to y Max. Allowable Axial Load (Diono) Max. Allowable Axial Load) Max. Allowable Axial Load (Diono) Max. Allowable Axial Load) Max. Allowable Axial Load (Diono) Max. Allowable Axial Load (Diono)	Yisid Strengti ngth Rating / (ark Leady = 1k ble Hook Load 200664 200604 200604 240000 174286 244000 174286 244000 174286 244000 119561 119561 119561 397000 338000 225000 300000	to gel it h Rating Corporat eximum, - Bouys bs tbs / / / / / / / / / / / / / / / / / / /	unstuck. / Corporate le Minimum A Adovable A ant Wi of the dd Rating / () 0.870 1.40 20664 17982 0.847 1.40 1.40 1.40	filinimum votal Dess xial Loac sing Bouyant = = = x + = = x + z x	17982 17982 272143 174286 0.870 50000 101307 283571 241429 0.847) =) =) =	156303 3.59 123693	uired)			· · ·				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alewable Axial Lead for Pipe Yield = API Pipe Maximum Alewable Axial Lead for Joint = API Joint Stre Maximum Alewable Hock Lead (Limited to 75% of Rig M Maximum Alewable Hock Lead (Limited to 75% of Rig M Maximum Alewable Overpul Margin = Maximum Alewable Tensial Safety Factor = API Pipe Yield 'O'R API Joint Stre Rig Max Lead (300,000 los) × 75% = Kilinimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Lead (Pipe Yield Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Diott) = Max. Allowable Axial Lead (Pipe Yield Joint) = Max. Allowable Axial Lead (Pipe Yield Joint) = Max. Allowable Axial Lead (Diott) = Max. Allowable Overpuli Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Lead Co	Yiald Strengti ngh Rating / (iax Lead) = Ma lei Hook Load 200664 200664 381000 244000 174286 174286 174286 174286 244000 119561 119561 397000 225000 225000 225000 308000 225000 300000	to gel it h Rating Corporat :- Bouys Max Los Max Los bs :- (/ / / / / / / / / / / / / / / / / / /	unsluck. / Corporate & Minimum A Adovable 32 and Wi of the ad Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1.40 1.19561 101307 conductor	filinimum votal Dess xial Loac sing Bouyant = = = x + = = x + z x	17982 17982 272143 174286 0.870 50000 101307 283571 241429 0.847) =) =) =	156303 3.59 123693	i≆ed)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Pipe Yield = API Pipe Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (limited to 75% of Rig M Maximum Alowable Hock Load (100,000 los) x 75% • Rig Ifax Load (200,000 los) x 75% • Rig Ifax Load (200,000 los) x 75% • Kinimum Overpuil Required = Max. Allowable Axial Load (100,000 los) x 75% • Max. Allowable Axial Load (200,000 los) x 75% • Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor = Compression Strength <u>- ConocoPhillips Required Load C</u> The maximum axial (compression) load for the well is where the surface c with a support of a plate or landing ring. The surface cessing is also calcul	Yield Strengti ngth Raiting / (ark Leady = Link ble Hook Load ngth Ox? Rb 225000 50000) 20664 20664 20664 20664 20664 244000 174286 244000 174286 244000 119561 119561 119561 119561 397000 225000 306000 225000 306000 225000 300000	iogelit h Rating Corporat - Bouy/ Max Loc Max Loc X / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Adovable A and Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	filinimum votal Dess xial Loac sing Bouyant = = = x + = = x + z x	17982 17982 272143 174286 0.870 50000 101307 283571 241429 0.847) =) =) =	156303 3.59 123693	ifed)			•• •• ••				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alewable Axial Lead for Pipe Yield = API Pipe Maximum Alewable Axial Lead for Joint = API Joint Stre Maximum Alewable Hock Lead (Limited to 75% of Rig M Maximum Alewable Hock Lead (Limited to 75% of Rig M Maximum Alewable Overpul Margin = Maximum Alewable Tensial Safety Factor = API Pipe Yield 'O'R API Joint Stre Rig Max Lead (300,000 los) × 75% = Kilinimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Lead (Pipe Yield Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Diott) = Max. Allowable Axial Lead (Pipe Yield Joint) = Max. Allowable Axial Lead (Pipe Yield Joint) = Max. Allowable Axial Lead (Diott) = Max. Allowable Overpuli Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Lead Co	Yiald Strengti ngth Raiting / (ark Lead) = Mi bie Hook Ladd argth OR Rg 225000 50000 174286 244000 174286 244000 174286 244000 174286 244000 174286 244000 307000 338000 225000 225000 300000	io gelili h Rating Corporat surimum . Hax Looys Max Loo J - { / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Añowable A ant Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1	f.finimum viai Des Siring Bouyani - - - - - - - - - - - - - - - - - - -	17982 272143 174286 0.870 50000 101307 283571 241429 0.847 50000) =) =) =	156303 3.59 123693	ired)							
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Dipe Yield - API Pipe Maximum Alowable Hock Load (Limited to 755s of Rig M Maximum Alowable Hock Load (Limited to 755s of Rig M Maximum Alowable Hock Load (Limited to 755s of Rig M Maximum Alowable Hock Load (Valoo Ros) 75% = Rig Max Load (Staloo Ros) 75% = Maximum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Valoo Ros) 75% = Max. Allowable Axial Load (Valor) Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Valor) Max. Allowable Axial Load (Valor) Max. Allowable Axial Load (Valor) = Max. Allowable Axial Load Valor) = Max. Allowable Axial Load Valo	Yiald Strengti ngth Raiting / (ark Lead) = Mi bie Hook Ladd argth OR Rg 225000 50000 174286 244000 174286 244000 174286 244000 174286 244000 174286 244000 307000 338000 225000 225000 300000	to gel it h Rating Corporat suimum , - Bouty Max Lou Max Lou Max Lou / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Añowable A ant Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1	f.finimum viai Des Siring Bouyani - - - - - - - - - - - - - - - - - - -	17982 272143 174286 0.870 50000 101307 283571 241429 0.847 50000) =) =) =	156303 3.59 123693	ired)						•••	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Dipe Vield - API Pipe Maximum Alowable Hock Load (Limited to 7555 of Rig M Maximum Alowable Hock Load (Limited to 7555 of Rig M Maximum Alowable Hock Load (Limited to 7555 of Rig M Maximum Alowable Hock Load (Storo Dor Box 7556 - Rig Max Load (Storo Dor Box 7556 - Kinimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Giolo Box 7556 - Max. Allowable Axial Load (Giolo Box 7566 - Max. Allowable Axial Load (Jioint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Bouyant Wt = Bouyant Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin = Tensial Safety Factor = Max. Allowable Overpuil Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Load C The maximum axial (compression) load for the veil is where the surface c whth a support of a pilet or banding rion; The surface cesing is also calcul but not limited. Any other axial loads such as a snubling unit or other vou Compression Safety Factor = API Axial Veiling Strength Rating 'OR' API Axial Veilinea Load =	Yiald Strengti ngth Rating / (iax Lead) = Ma the Hook Load 20564 20664 20664 381000 244000 174286 174286 244000 174286 174286 244000 174286 38000 225000 300000 300000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 225000 244000 1000 244000 100	to gel it h Rating Corporat suimum , - Bouty Max Lou Max Lou Max Lou / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Añowable A ant Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1	f.finimum viai Des Siring Bouyani - - - - - - - - - - - - - - - - - - -	17982 272143 174286 0.870 50000 101307 283571 241429 0.847 50000) =) =) =	156303 3.59 123693	ired)			•• • • • • • •			• •	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Pipe Yield - API Pipe Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (Limited to 75% of Rig M Maximum Alowable Hock Load (S00,000 los) x 75% - Rig Max Load (300,000 los) x 75% - Rig Max Load (300,000 los) x 75% - Kinimum Dverpull Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Gripe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength <u>– ConocoPhillips Required Load Co</u> The maximum axial (compression) load for the well is where the surface c with a support of a plate or banding ring. The surface casing is also cakulu but not limited. Any other axial loads such as a snubbing unt or other wou Compression Safety Factor = API Axisl Joint Strength Raling 'OR API Axisl Vetilicad Load = Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) =	Yiald Strengti ngth Rating / (ask Lead) = Ma bit Hook Load angth OR: Rb 225000 20664 20664 20664 381000 244000 174286 244000 174286 244000 174286 244000 174286 244000 308000 225000 308000 225000 300000 300000 225000 300000 300000 225000 300000 300000 225000 300000 300000 225000 300000 300000 225000 300000 300000 225000 300000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 225000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 2	to gel it h Rating Corporat suimum , - Bouty Max Lou Max Lou Max Lou / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Añowable A ant Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1	f.finimum viai Dea Siring Bouyani = = = = x + + x + cted Los	17982 272143 174286 0.870 50000 101307 283571 241429 0.847 50000) =) =) =	156303 3.59 123693 1.98	ired)						• •	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Pipe Yield - API Pipe Maximum Alowable Note Load (Limited to 7555 of Rig M Maximum Alowable Note Load (Limited to 7555 of Rig M Maximum Alowable Note Load (Limited to 7555 of Rig M Maximum Alowable Note Load (United to 7555 of Rig M Maximum Alowable Note Load (United to 7555 of Rig M Maximum Alowable Note Load (United D'R API Joint Stro Fig Ifax Load (300,000 los) × 7556 - Nig Ifax Load (300,000 los) × 7556 - Nig Ifax Load (300,000 los) × 7556 - Kinimum Overpuil Required = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Load Z The maximum axial (compression) load for the well is where the surface c with a support of e plate or landing ring. The surface cessing is also cakul but not limited. Any other axial loads such as a snubbing unit or other wou Compression Safety Factor = API Axibl Joint Strengt Rating 'OR' API Axial Velinead Load - Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) =	Yield Strengtl ngth Rating / (mgth Rating / (mgth Rating / (mgth Rating / (mgth Rate Rate) / (200604 20000 2000000 2000000 2000000 20000000 2000000 2000000 2000000 200000000	io geliti h Rating Corporat Surimum , Hax Looy / Max Loo Kat / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Adovable A ant Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 0.847 1.40 1.01307 conductor le load o the load, ximum Predk	finimum viai Des Siring Bouysen = = = = x + + = x + cted Los	17982 272143 174286 0.870 50000 101307 283571 241429 0.847 50000 d) =) =) =) =	156303 3.59 123693 1.98	sired)					·	• •	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Lead for Pipe Yield = API Pipe Maximum Alowable Axial Lead for Joint = API Joint Stre Maximum Alowable Hock Lead (Limited to 75% of Rig M Maximum Alowable Hock Lead (Limited to 75% of Rig M Maximum Alowable Hock Lead (Joint) = Maximum Alowable Tensial Safety Factor - API Pipe Yield 'O'R: API Joint Stre Bouyant Wt = Max. Allowable Axial Lead (Dipe Yield) 'Ar API Joint Stre Max. Allowable Axial Lead (Dipe Yield) 'Ar API Joint Stre Max. Allowable Axial Lead (Pipe Yield) 'Ar API Joint Stre Max. Allowable Axial Lead (Pipe Yield) 'Ar API Joint Stre Max. Allowable Axial Lead (Dipe Yield) = Max. Allowable Axial Lead (Dipe Yield) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Cloint) = Max. Allowable Axial Lead (Diott) = Max. Allowable Axial Lead (Diott) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Diott) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial	Yiald Strengti ngth Raiting / (ask Lead) = Ma Ele Hook Ladd angth Ork Rig 2250000 20664 20664 20664 20664 244000 174286 244000 174286 244000 174286 244000 174286 244000 338000 225000 300000 338000 225000 300000 300000 300000 225000 3000000 3000000 3000000 3000000 3000000 30000000 30000000 300000000	to gel it h Rating Corporat Surimum Has Looys Has Looys / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate & Minimum A Allouvable A2 ant W1 of the ad Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1.01307 conductor te load ximum Predk x 6.5	f.finimum viai Dea Siring Bouyani = = = = x + + cted Loa 0.8700 0.847 =	Axial Design Ign Factor Wt of String 272143 174286 0.870 50000 101307 283571 241429 0.847 50000 d d) =) = 45715) =) =) =) = 17982 101307	156303 3.59 123693 1.98						ĸ	• •	
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Load for Pipe Yield - API Pipe Maximum Alowable Note Load (Limited to 7555 of Rig M Maximum Alowable Note Load (Limited to 7555 of Rig M Maximum Alowable Note Load (Limited to 7555 of Rig M Maximum Alowable Note Load (United to 7555 of Rig M Maximum Alowable Note Load (United to 7555 of Rig M Maximum Alowable Note Load (United D'R API Joint Stro Fig Ifax Load (300,000 los) × 7556 - Nig Ifax Load (300,000 los) × 7556 - Nig Ifax Load (300,000 los) × 7556 - Kinimum Overpuil Required = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Cipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpull Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Load Z The maximum axial (compression) load for the well is where the surface c with a support of e plate or landing ring. The surface cessing is also cakul but not limited. Any other axial loads such as a snubbing unit or other wou Compression Safety Factor = API Axibl Joint Strengt Rating 'OR' API Axial Velinead Load - Conductor & Surface Compression Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) =	Yield Strengtl ngth Rating / (mgth Rating / (mgth Rating / (mgth Rating / (mgth Rate Rate) / (200604 20000 20000 20000 20000 20000 200000 20000 20000 20000 20000 2000	io geliti h Rating Corporat Surimum , Hax Looy / Max Loo Kat / / / / / / / / / / / / / / / / / / /	unsluck. / Corporate le Minimum A Adovable A ant Wi of the d Rating / (1 0.870 1.40 1.40 20664 17982 0.847 0.847 1.40 1.01307 conductor le load o the load, ximum Predk	finimum viai Des Siring Bouysen = = = = x + + = x + cted Los	17982 272143 174286 0.870 50000 101307 283571 241429 0.847 50000 d) =) =) =) =	156303 3.59 123693 1.98	x +	2.441		11210 179214				
The maximum axial (lension) load occurs if casing vere to get stuck and p Maximum Alowable Axial Lead for Pipe Yield - API Pipe Maximum Alowable Hock Lead (Limited to 75% of Rig M Maximum Alowable Hock Lead (Limited to 75% of Rig M Maximum Alowable Hock Lead (Limited to 75% of Rig M Maximum Alowable Hock Lead (200,000 hs) x 75% - Rig Max Lead (200,000 hs) x 75% - Kinimum Dverpull Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Lead (10) (200,000 hs) x 75% - Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Doint) = Max. Allowable Axial Lead (Doint) = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Doint) = Max. Allowable Coverpull Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Lead Co The maximum axial (compression) lead for the wel is where the surface c with a support of a plate or landing ring. The surface casing is alos cakul but not limited. Any other axial lead such as a snubbing unit or other wou Compression Safety Factor = API Axisl Joint Strength Safety Factor Surf Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Prod Casing Wt (Bouyant) = Tubing Fluid Wt =	Yield Strengtl ngh Raiting / (as Leaf) = Hi ble Hook Load angh Ox Ro 225000 20664 20664 20664 20664 20664 20664 206064 206064 206064 206064 206064 206000 174286 244000 174286 244000 174286 244000 174286 244000 174286 244000 174286 225000 300000 225000 225000 300000 225000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 206064 20664 20664 20664 20664 20664 20664 20660 174286 225000 244000 179561 199561 199561 199561 199561 20000 225000 225000 300000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 20000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 200000 200000 200000	to get it h Rating Corporate Surimum	unsluck. / Corporate = Minimum A Adovable A and Wi of the ad Rating / (1 0.870 1.40 1.40 20664 17982 0.847 1.40 1	finimum xial Loss xial Loss string Bouyani = = = = x + + = = x + + cted Loss 0.870 0.8471 = x	Axial Design ign Factor Wit of String 272143 174286 0.870 50000 101307 283571 241429 0.847 50000 d d) =) =) =) = 5.55) =) =) =) = 17982 101307 x	156303 3.59 123693 1.98	x	Long the second second						

• •

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft I	vals ND	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	516' – 561'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	516' 561'	816' – 861'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry	Inter Ft I		Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	6988' – 7033'	16.4	400	428	 0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume 	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	500 - 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 750

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.

Attachments:

- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment

Contact Information:

Proposed 8 August 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

ConocoPhillips MCBU

Buckeye Ruby Federal Ruby Federal 37

Original Hole

Plan: Slant Plan

Standard Planning Report - Geographic

05 August, 2013

Planning Report - Geographic

Database:			•••••••							• • • • • • •
		Central Planning				ordinate Refere	, ,	Vell Ruby Feder		
Company:		oPhillips MCBL)		TVD Refer			RKB @ 4050.0u	•	
Project:	Buckey				MD Refere			RKB @ 4050.0u	sft (PD 822)	
Site:	Ruby F	ederal			North Refe	erence:	. <u>†</u> (Grid		
Vell:	· Ruby F	ederal 37			Survey Ca	Iculation Meth	od: l	Ainimum Curvat	ture	
Vellbore:	Origina	al Hole					. 1			
Design:	Slant F	Plan	·	and the strength			1 אורייייייייייייייייייי	nan na starana (
Project	Buckey	e, Lea County,	NM	-						
Map System:		Plane 1927 (E			System Dat	um:	Me	an Sea Level		
Geo Datum:		7 (NADCON C	ONUS)							
Map Zone:	New Mex	tico East 3001					Us	ing geodetic sca	ale factor	
Site	Ruby Fe	ederal, New Me	exico, Southea	st	1	····· · · · · · · · · · · · · · · · ·		ана на во тери на н		
Site Position:			North	ng:	666	,097.48 usft	Latitude:			32° 49' 48.040
From:	Lat/l	ong	Eastir	ig:	666	,763.63 usft	Longitude:			103° 47' 25.559
Position Uncerta	ainty:	3.5	usft Slot R	adius:			Grid Converg	ence:		0.29
Weil	Ruby Fe	deral 37, Devi	ated Well				• •			
بالشريما لاحترام م				American's Antonio American's Antonio	· · · ·	11 11 11 11 11 11 11 11 11 11 11 11 11		tati un tribul tri	10 a 2 6 8 20 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	
Well Position	+N/-S			orthing:		669,843.22		tude:		32° 50' 25.020
	+E/-W	0	.0 usft Ea	sting:		668,399.47	usft Lon	gitude:		103° 47' 6.160 '
Position Uncerta	ainty	3	.5 usft W	ellhead Elevatio	on:		Gro	und Level:		4,037.0 us
Wellbore	Origina	i Hole								
Wellbore Magnetics	Origina Mo	il Hole del Name	Sampl	e Date	Declina (°)	tion	Dip A			Strength nT)
· · · · · · · · · · · · · · · · · · ·		·	Sampl	e Date 8/5/2013	Declina (°)	tion 7.57	Dip A (°			Strength nT) 48,717
Magnetics	Mo	del Name BGGM2012	Sampl				•)		nT)
Magnetics Design		del Name BGGM2012	Sampl				•)		nT)
Magnetics Design Audit Notes:	Mo	del Name BGGM2012	Sampl	8/5/2013		7.57	•	60.60		nT)
Magnetics Design	Mor Slant Pl 1	del Name BGGM2012		8/5/2013 e: PR	(°)	7.57	(° On Depth:) 60.60	(nT)
Magnetics Design Audit Notes: Version:	Mor Slant Pl 1	del Name BGGM2012	Phas	8/5/2013 e: PR	(°)	7.57 Tie	(° On Depth: -W) 60.60 Dire	0.0 ection	nT)
Magnetics Design Audit Notes: Version:	Mor Slant Pl 1	del Name BGGM2012	Phas epth From (TV	8/5/2013 e: PR	(°) ROTOTYPE +N/-S	7.57 Tie +E/	(° On Depth: -W ft)) 60.60 Dire	0.0	nT)
Magnetics Design Audit Notes: Version:	Mor Slant Pl 1	del Name BGGM2012	Phas epth From (TV (usft)	8/5/2013 e: PR	(°) ROTOTYPE +N/-S (usft)	7.57 Tie +E/ (us	(° On Depth: -W ft)) 60.60 Dire	(0.0 ection (°)	nT)
Magnetics Design Audit Notes: Version: Vertical Section Plan Sections	Mor Slant Pl 1	del Name BGGM2012	Phas epth From (TN (usft) -5.0	8/5/2013 e: PR	(°) ROTOTYPE +N/-S (usft)	7.57 Tie +E/ (us 0,	(° On Depth:) 60.60 Dire 17	(0.0 ection (°)	nT)
Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured	Mor Slant Pl 1	del Name BGGM2012	Phas epth From (TV (usft)	8/5/2013 e: PR	(°) ROTOTYPE +N/-S (usft)	7.57 Tie +E/ (us	(° On Depth: -W ft)) 60.60 Dire	() 0.0 ection (°) 6.25	nT)
Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured	Mor Slant Pl 1	del Name BGGM2012 lan D	Phas epth From (TN (usft) -5.0 Vertical	8/5/2013 e: PR /D)	(°) ROTOTYPE +N/-S (usft) 0.0	7.57 Tie +E/ (us 0. Dogleg	(° On Depth:) 60.60 Dire (17/ 17/	(0.0 ection (°)	nT)
Magnetics Design Audit Notes: /ersion: /ertical Sections Plan Sections Measured Depth	Mor Slant Pl 1 : Inclination	del Name BGGM2012 lan D	Phas epth From (TT (usft) -5.0 Vertical Depth	8/5/2013 e: PR (D) +N/-S	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W	7.57 Tie +E/ (us 0. Dogleg Rate	(° On Depth: -W ft) 0) 60.60 Dire (17 Turn Rate	() 0.0 ection (°) 6.25 TFO	nT) 48,717
Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured Depth (usft)	Mor Slant Pl 1 : Inclination (°)	del Name BGGM2012 lan D Azimuth (°)	Phas epth From (T (usft) -5.0 Vertical Depth (usft)	8/5/2013 e: PR /D) +N/-S (usft)	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	7.57 Tie +E/ (us 0. Dogleg Rate (°/100usft)	(° On Depth: W ft) 0 Build Rate (°/100usft)) 60.60 Dire (17) Turn Rate (°/100usft)	() 0.0 cction (°) 6.25 TFO (°)	nT) 48,717
Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured Depth (usft) 0.0 1,987.0	Mor Slant Pl 1 : Inclination (°) 0.00 0.00	del Name BGGM2012 lan D Azimuth (°) 0.00 0.00	Phas epth From (Th (usft) -5.0 Vertical Depth (usft) 0.0 1,987.0	8/5/2013 e: PR /D) +N/-S (usft) 0.0 0.0	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0	7.57 Tie +E/ (us 0. Dogleg Rate (*/100usft) 0.00 0.00	(* On Depth: W ft) 0) 60.60 Dire () 17 Turn Rate (°/100usft) 0.00 0.00	() 0.0 cction (°) 6.25 TFO (°) 0.00 0.00	nT) 48,717
Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured Depth (usft) 0.0 1,987.0 2,357.3	Mor Slant Pl 1 : Inclination (°) 0.00 0.00 5.55	del Name BGGM2012 lan D Azimuth (°) 0.00 0.00 176.25	Phas epth From (11 (usft) -5.0 Vertical Depth (usft) 0.0 1,987.0 2,356.7	8/5/2013 e: PR /D) +N/-S (usft) 0.0 0.0 -17.9	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 1.2	7.57 Tie +E/ (us 0. Dogleg Rate (*/100usft) 0.00 0.00 1.50	(* On Depth: W ft) 0) 60.60 Dire (*/100usft) 0.00 0.00 0.00 0.00	() 0.0 cction (°) 6.25 TFO (°) 0.00 0.00 176.25	nT) 48,717
Magnetics Design Audit Notes: Version: Vertical Sections Plan Sections Measured Depth (usft) 0.0 1,987.0	Mor Slant Pl 1 : Inclination (°) 0.00 0.00	del Name BGGM2012 lan D Azimuth (°) 0.00 0.00	Phas epth From (Th (usft) -5.0 Vertical Depth (usft) 0.0 1,987.0	8/5/2013 e: PR /D) +N/-S (usft) 0.0 0.0	(°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0	7.57 Tie +E/ (us 0. Dogleg Rate (*/100usft) 0.00 0.00	(* On Depth: W ft) 0) 60.60 Dire () 17 Turn Rate (°/100usft) 0.00 0.00	() 0.0 cction (°) 6.25 TFO. (°) 0.00 0.00 176.25 0.00	nT) 48,717

۰,

.

.

Planning Report - Geographic

Database:	LEOM	Central Plan	nina		l ocal C	o-ordinate Referen	ce: Well R	luby Federal 37		
Company: ConocoPhillips MCBU						ference:		B @ 4050.0usft (PD 822)		
Project: Buckeye										
Site: Ruby Federal				1	erence:	2 4050 Ousft (PD 822)	· · · · · · · · · · · · · · · · · · ·			
						eference:	Grid		· · ·	
Weij:	2	Federal 37	· · ·		Survey	Calculation Method	l: Minim	um Curvature	1	
Wellbore:	Origir	nal Hole			1					
Design:	Slant	Plan	بر سادیونون زمانی	بالمراجع المراجع المراجع				a and an analysis the total way in the same	a	
	. '(•	240.0	· · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·		- 10-10-10-10-10-10-10-10-10-10-10-10-10-1	
Planned Survey		مساد محاج	anta regionale i	• • • • •		بورايدها بالموجودة العا	بالاحتيارية العطار الص	یا می می اور	د اد. بوده بود دمونوم از ایده از ۲۰	
					• . •					
Measured			Vertical			Map	Мар	• •	1	
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting			
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude	
0.0	0.00	0.00	0.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
80.0	0.00	0.00	80.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
Conduct	tor					· .		· · ·		
100.0	0.00	0.00	100.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
200.0	0.00	0.00	200.0	. 0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
300.0	0.00	0.00	300.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
400.0	0.00	0.00	400.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
500.0	0.00	0.00	500.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
600.0	0.00	0.00	600.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
700.0	0.00	0.00	700.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
791.0	0.00	0.00	791.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
	0.00	0.00	101.0	0.0	0.0		000,000.11	02 00 20.02011	100 17 0.100 11	
Rustler 800.0	0.00	0.00	800.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
						669,843.22	668,399.47	32° 50' 25.020 N 32° 50' 25.020 N		
861.0	0.00	0.00	861.0	0.0	0.0	669,643.22	666,399.47	32°50 25.020 N	103° 47' 6.160 W	
Surface								·		
900.0	0.00	0.00	900.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
977.0	0.00	0.00	977.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
Salaido										
1,000.0	0.00	0.00	1,000.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,500.0	0.00	0.00	1,500.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,600.0	0.00	0.00	1,600.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,700.0	0.00	0.00	1,700.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,800.0	0.00	0.00	1,800.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,900.0	0.00	0.00	1,900.0	0.0	0.0	669,843.22	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
1,987.0	0:00	0.00	1,987.0	0.0	0.0	669,843.22	668,399.47	- 32° 50' 25.020 N	103° 47' 6.160 W	
	0.00	0.00	1,007.0	0.0	0.0	000,040.22	000,000.47	52 00 20.020 N	100 47 0.100 **	
Tansill	0.00	470.05	2,000.0	0.0		669,843.20	000 000 47		4008 4710 400 14	
2,000.0	0.20	176.25		0.0	0.0	,	668,399.47	32° 50' 25.020 N	103° 47' 6.160 W	
2,100.0	1.70	176.25	2,100.0	-1.7	0.1	669,841.56	668,399.58	32° 50' 25.003 N	103° 47' 6.159 W	
2,175.1	2.82	176.25	2,175.0	-4.6	0.3	669,838.61	668,399.77	32° 50' 24.974 N	103° 47' 6.157 W	
Yates										
2,200.0	3.20	176.25	2,199.9	-5.9	0.4	669,837.30	668,399.86	32° 50' 24.961 N	103° 47' 6.156 W	
2,300.0	4.70	176.25	2,299.6	-12.8	0.8	669,830.44	668,400.31	32° 50' 24.893 N	103° 47' 6.151 W	
2,357.3	5.55	176.25	2,356.7	-17.9	1.2	669,825.33	668,400.64	32° 50' 24.843 N	103° 47' 6.147 W	
2,400.0	5.55	176.25	2,399.2	-22.0	1.4	669,821.20	668,400.91	32° 50' 24.802 N	103° 47' 6.144 W	
2,452.0	5.55	176.25	2,451.0	-27.0	1.8	669,816.18	668,401.24	32° 50' 24.752 N	103° 47' 6.141 W	
Seven Ri	ivers						+		•	
2,500.0	5.55	176.25	2,498.8	-31.7	2.1	669,811.55	668,401.54	32° 50' 24.706 N	103° 47' 6.138 W	
2,600.0	5.55	176.25	2,598.3	-41.3	2.7	669,801.89	668,402.18	32° 50' 24.611 N	103° 47' 6.131 W	
2,700.0	5.55	176.25	2,697.8	-51.0	3.3	669,792.23	668,402.81	32° 50' 24.515 N	103° 47' 6.124 W	
2,800.0	5.55	176.25	2,797.3	-60.7	4.0	669,782.57	668,403.44	32° 50' 24.420 N	103° 47' 6.117 W	
2,900.0	5.55	176.25	2,896.9	-70.3	4.6	669,772.92	668,404.07	32° 50' 24.324 N	103° 47' 6,110 W	
3,000.0	5.55	176.25	2,996.4	-80.0	5.2	669,763.26	668,404.71	32° 50' 24.228 N	103° 47' 6.103 W	
3,093.0	5.55	176.25	3,089.0	-89.0	5.8	669,754.27	668,405.30	32° 50' 24.140 N	103° 47' 6.097 W	
Queen			2,000.0							
	E E F	176 05	3 005 0	90 C	F 0	660 762 60	669 405 34	30° 50' 04 400 M	1029 471 0 007 14	
3,100.0	5.55	176.25	3,095.9	-89.6	5.9	669,753.60	668,405.34	32° 50' 24.133 N	103° 47' 6.097 W	
3,200.0	5.55	176.25	3,195.5	-99.3	6.5	669,743.94	668,405.97	32° 50' 24.037 N	103° 47' 6.090 W	
3,300.0	5.55	176.25	3,295.0	-108.9	7.1	669,734.29	668,406.61	32° 50' 23.942 N	103° 47' 6.083 W	
3,400.0	5.55	176.25	3,394.5	-118.6	7.8	669,724.63	668,407.24	32° 50' 23.846 N	103° 47' 6.076 W	
3,500.0	5.55	176.25	3,494.1	-128.3	8.4	669,714.97	668,407.87	32° 50' 23.750 N	103° 47' 6.069 W	

• ·

,

.

COMPASS 5000.1 Build 61

.

Planning Report - Geographic

Database:	EDM (Central Plann	ing	· · · ·	Local Co	-ordinate Referenc	e: Well R	uby Federal 37	
Company:		oPhillips MC	•		TVD Refe			4050.0usft (PD 822)	
roject:	Bucke			•	MD Refer			4050.0usft (PD 822)	
and the second	1 1	7						94050.00sil (PD 622)	· .
ite:	Ruby	Federal			North Re		Grid	· · · ·	
Vell:	Ruby	Federal 37	· .		Survey C	alculation Method:	🥻 Minimu	ım Curvature	
Vellbore:	Origin	al Hole							
Design:	Slant	Plan							
vesign.				a there are a set of the	لشسيد شيفت يتبدد		••••••••••••••••••••••••••••••••••••••	an in a starting and a	
Planned Survey		يو د خاني وهيو ويونو او. د	<pre>i to a construction in the second construct</pre>				tin de anne in i de an	a an	n nan i ni in in an
i unica ourroj				na laca eta muno L	موجود فوار والاران	به ها ور دره خوشت الد ه ا	·		i na
Measured		•	Ventinel	1. A.		Man	Man	· ; • •	: · · ·
•			Vertical			Мар	Мар		. '
	nation	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
2 540 0		470.05	2 500 0	420.4		660 712 91	CC9 407 0E	20° EO' 02 720 N	1029 4710 000
3,512.0	5.55	176.25	3,506.0	-129.4	8.5	669,713.81	668,407.95	32° 50' 23.739 N	103° 47' 6.069
Grayburg									
3,600.0	5.55	176.25	3,593.6	-137.9	9.0	669,705.31	668,408.50	32° 50' 23.655 N	103° 47' 6.062
3,700.0	5.55	176.25	3,693.1	-147.6	9.7	669,695.65	668,409.14	32° 50' 23.559 N	103° 47' 6.056
3,800.0	5.55	176.25	3,792.6	-157.2	10.3	669,686.00	668,409.77	32° 50' 23.464 N	103° 47' 6.049
3,880.7	5.55	176.25	3,873.0	-165.0	10.8	669,678.20	668,410.28	32° 50' 23.387 N	103° 47' 6.043
	0.00	110.20	0,010.0	10010	1010	000,070,0120	000,110.20	02 00 200000 00	
San Andres	e	, <u> </u>					000 4/0 /0		1000 1710 110
3,900.0	5.55	176.25	3,892.2	-166.9	10.9	669,676.34	668,410.40	32° 50' 23.368 N	103° 47' 6.042
4,000.0	5.55	176.25	3,991.7	-176.6	11.6	669,666.68	668,411.03	32° 50' 23.273 N	103° 47' 6.035
4,100.0	5.55	176.25	4,091.2	-186.2	12.2	669,657.02	668,411.67	32° 50' 23.177 N	103° 47' 6.028
4,200.0	5.55	176.25	4,190.8	-195.9	12.8	669,647.37	668,412.30	32° 50' 23.081 N	103° 47' 6.022
4,300.0	5.55	176.25	4,290.3	-205.5	13.5	669,637.71	668,412.93	32° 50' 22.986 N	103° 47' 6.015
4,400.0	5.55	176.25	4,389.8	-215.2	14.1	669,628.05	668,413.57	32° 50' 22.890 N	103° 47' 6.008
4,500.0			4,489.4	-224.8	14.7	669,618.39	668,414.20	32° 50' 22.795 N	103° 47' 6.001
	5.55	176.25							
4,600.0	5.55	176.25	4,588.9	-234.5	15.4	669,608.73	668,414.83	32° 50' 22.699 N	103° 47' 5.994
4,700.0	5:55	176.25	4,688.4	-244.2	16.0	669,599.08	668,415.46	32° 50' 22.603 N	103° 47' 5.987
4,800.0	5.55	176.25	4,788.0	-253.8	16.6	669,589.42	668,416.10	32° 50' 22.508 N	103° 47' 5.981
4,900.0	5.55	176.25	4,887.5	-263.5	17.3	669,579.76	668,416.73	32° 50' 22.412 N	103° 47' 5.974
5,000.0	5.55	176.25	4,987.0	-273.1	17.9	669,570.10	668,417.36	32° 50' 22.317 N	103° 47' 5.967
5,100.0	5.55	176.25	5,086.5	-282.8	18.5	669,560.45	668,417.99	32° 50' 22.221 N	103° 47' 5.960
5,200.0	5.55	176.25	5,186.1	-292.5	19.2	669,550.79	668,418.63	32° 50' 22.125 N	103° 47' 5.953
5,300.0	5.55	176.25	5,285.6	-302.1	19.8	669,541.13	668,419.26	32° 50' 22.030 N	103° 47' 5.946
5,379.8	5.55	176.25	5,365.0	-309.8	20.3	669,533.43	668,419.76	32° 50' 21.954 N	103° 47' 5.941
Glorieta								,	
5,400.0	5.55	176.25	5,385.1	-311.8	20.4	669,531.47	668,419.89	32° 50' 21.934 N	103° 47' 5.940
5,481.2	5.55	176.25	5,466.0	-319.6	20.9	669,523.63	668,420.41	32° 50' 21.857 N	103° 47' 5.934
		110.20	0,10010				,		
Paddock									
5,500.0	5.55	176.25	5,484.7	-321.4	21.1	669,521.82	668,420.52	32° 50' 21.839 N	103° 47' 5.933
5,600.0	5.55	176.25	5;584.2	-331.1	21.7	669,512.16	668,421.16	32° 50' 21.743 N	103° 47' 5.926
5,700.0	5.55	176.25	5,683.7	-340.7	22.3	669,502.50	668,421.79	32° 50' 21.647 N	103° 47' 5.919
5,800.0	5.55	176.25	5,783.3	-350.4	23.0	669,492.84	668,422.42	32° 50' 21.552 N	103° 47' 5.912
5,818.8	5.55	176.25	5,802.0	-352.2	23.1	669,491.02	668,422.54	32° 50' 21.534 N	103° 47' 5.911
Blinebry			-,			=			
	5 ==	170.05	5 000 0	360.4	03 G	660 493 19	668 400 06	309 501 04 AEG N	1039 471 5 005
5,900.0	5.55	176.25	5,882.8	-360.1	23.6	669,483.18	668,423.06	32° 50' 21.456 N	103° 47' 5.905
6,000.0	5.55	176.25	5,982.3	-369.7	24.2	669,473.53	668,423.69	32° 50' 21.361 N	103° 47' 5.899
6,100.0	5.55	176.25	6,081.8	-379.4	24.9	669,463.87	668,424.32	32° 50' 21.265 N	103° 47' 5.892
6,200.0	5.55	176.25	6,181.4	-389.0	25.5	669,454.21	668,424.95	32° 50' 21.169 N	103° 47' 5.885
6,300.0	5.55	176.25	6,280.9	-398.7	26.1	669,444.55	668,425.59	32° 50' 21.074 N	103° 47' 5.878
6,400.0	5.55	176.25	6,380.4	-408.4	26.8	669,434.90	668,426.22	32° 50' 20.978 N	103° 47' 5.871
6,500.0	5.55	176.25	6,480.0	-418.0	27.4	669,425.24	668,426.85	32° 50' 20.883 N	103° 47' 5.864
6,600.0	5.55	176.25	6,579.5	-427.7	28.0	669,415.58	668,427.48	32° 50' 20.787 N	103° 47' 5.858
6,673.1				-434.7	28.5	669,408.52	668,427.95	32° 50' 20.717 N	103° 47' 5.853
	5.55	176.25	6,652.3						
6,700.0	5.15	176.25	6,679.0	-437.2	28.6	669,406.02	668,428.11	32° 50' 20.692 N	103° 47' 5.851
6,800.0	3.65	176.25	6,778.7	-444.9	29.1	669,398.36	668,428.61	32° 50' 20.617 N	103° 47' 5.845
6,843.3	3.00	176.25	6,822.0	-447.4	29.3	669,395.85	668,428.78	32° 50' 20.592 N	103° 47' 5.844
Tubb									i .
6,900.0	2.15	176 25	6,878.6	-449.9	29.5	669,393.31	668,428.94	32° 50' 20.567 N	103° 47' 5.842
		176.25							
7,000.0	0.65	176.25	6,978.6	-452.4	29.6	669,390.87	668,429.10	32° 50' 20.542 N	103° 47' 5.840
7,033.0	0.16	176.25	7,011.6	-452.6	29.7	669,390.64	668,429.12	32° 50' 20.540 N	103° 47' 5.840
Production			•			100 A.			
7,043.4	0.00	0.00	7,022.0	-452.6	29.7	669,390.62	668,429.12	32° 50' 20.540 N	103° 47' 5.840
TD									

٦

.

T

COMPASS 5000.1 Build 61

Planning Report - Geographic

hillips MCBU eral eral 37 Iole			TVD Refere MD Referer North Refe	nce: nce: rence:	RKB @ RKB @ Grid	4050.0usft (PD 822) 4050.0usft (PD 822)	1.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	n nan Manana an Ingina an Austra 1966 - Angina Angina 1966 - Angina				· · · · · · · ·	an a	
le Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
	,	-452.6 5478.8 TVD, -	29.2 320.9 N, 21.0	669,390.66 E)	668,428.68	32° 50' 20.540 N	103° 47' 5.845 W
0.00 0.00	0 7,022.0	-452.6	29.7	669,390.62	668,429.12	32° 50' 20.540 N	103° 47' 5.840 W
به استو به استو بر استو بر				an a	a nage on a terretaria		nimana ia ptani pta
Vertical Depth (usft)		· · ·	Name		Dia	meter Diameter	2
80.	0 Conductor		<u></u>	na tina ata aran ar	-9,15,20	and a contraction of the second se	20
861.	0 Surface					8-5/8 12-1/	/4
7,011.	6 Production					5-1/2 7-7	/8
		· • • • • • •			<mark> </mark>		
Vortical			•	1. A		Din	
	·	•	*			· · · · · · · · · · · · · · · · · · ·	
(usft)		Name	•	Litholog	IV .		
791.0	Rustler	**	teda a ananti, antipitar e an -			n sinananan anan ning ing ka	
-							
	Grayburg	•	•	· •		0.00	
	San Andres					0.00	
3.873.0							
						0.00	
5,365.0	Glorieta					0.00 0.00	
5,365.0 5,466.0	Glorieta Paddock					0.00	
5,365.0 5,466.0 5,802.0	Glorieta						·
	(°) 0.00 0.00 132.6usft at 5 0.00 0.00 Vertical Depth (usft) 80. 861. 7,011. Vertical Depth (usft) 791.0 977.0 1,987.0 2,175.0 2,451.0 3,089.0	hillips MCBU leral leral 37 iolé 1 ple Dip Dir. TVD (°) (usft) 0.00 0.00 5,466.0 132.6usft at 5494.1usft MD (5 0.00 0.00 7,022.0 Vertical Depth (usft) 80.0 Conductor 861.0 Surface 7,011.6 Production Vertical Depth (usft) 791.0 Rustler 977.0 Salaldo 1,987.0 Tansill 2,175.0 Yates 2,451.0 Seven Rivers 3,089.0 Queen	hillips MCBU leral ieral 37 iolé 1 ple Dip Dir. TVD +N/-S (°) (usft) (usft) 0.00 0.00 5,466.0 -452.6 132.6usft at 5494.1usft MD (5478.8 TVD, - 0.00 0.00 7,022.0 -452.6 Vertical Depth (usft) 80.0 Conductor 861.0 Surface 7,011.6 Production Vertical Depth (usft) Name 791.0 Rustler 977.0 Salaldo 1,987.0 Tansill 2,175.0 Yates 2,451.0 Seven Rivers 3,089.0 Queen	hillips MCBU TVD Refere ieral 37 Survey Cali iolé 1 ple Dip Dir. TVD (*) (usft) (usft) (00 0.00 5,466.0 -452.6 29.2 132.6usft at 5494.1usft MD (5478.8 TVD, -320.9 N, 21.0 0.00 0.00 7,022.0 -452.6 29.7 Vertical Depth (usft) Namé 80.0 Conductor 861.0 Surface 7,011.6 Production Namé Vertical Depth (usft) JDepth (usft) Namé 80.0 Conductor 861.0 Surface 7,011.6 Production Vertical Depth (usft) JDepth (usft) Name 791.0 Rustler 977.0 977.0 Salaldo 1,987.0 1,987.0 Tansill 2,175.0 2,451.0 Seven Rivers 3,089.0	Vertical Vertical Depth (usft) (usft) (usft) Vertical Depth (usft) Name Vertical Depth (usft) Litholog 7 North Reference: Survey Calculation Method:	hillips MCBU TVD Reference: RKB @ - ieral 37 MD Reference: RKB @ - ieral 37 Survey Calculation Method: Minimum iole 1 Survey Calculation Method: Minimum jle Dip Dir. TVD +N/-S. +E/-W North Reference: Grid jle Dip Dir. TVD +N/-S. +E/-W Northing. Easting jle Useft) (usft) (usft) (usft) (usft) (usft) 0.00 0.00 5,466.0 -452.6 29.2 669,390.66 668,428.68 132.6usft at 5494.1usft MD (5478.8 TVD, -320.9 N, 21.0 E) Dia Dia Dia 0.00 0.00 7,022.0 -452.6 29.7 669,390.62 668,429.12 Vertical Dia Dia Dia Dia Dia 0.00 Conductor 861.0 Surface 7,011.6 Production Vertical Dia Dia Dia Dia Dia Useft Name Lithology Totology Totology	Vertical Casing Hole Vertical 0.00 7,022.0 -452.6 29.7 669,390.62 668,428.68 32* 50' 20.540 N 100 0.00 5,466.0 -452.6 29.7 669,390.62 668,428.68 32* 50' 20.540 N 132.6usft Nome (usft) (usft) Latitude 0.00 0.00 7,022.0 -452.6 29.7 669,390.62 668,428.68 32* 50' 20.540 N 132.6usft at 5494.1usft MD (5478.8 TVD, -320.9 N, 21.0 E) 0.00 7,022.0 -452.6 29.7 669,390.62 668,429.12 32* 50' 20.540 N 132.6usft at 5494.1usft MD (5478.8 TVD, -320.9 N, 21.0 E) Diameter. Diameter. Diameter. Diameter. 0.00 0.00 7,022.0 -452.6 29.7 669,390.62 668,429.12 32* 50' 20.540 N 12.10 Namé ["] ["] ["] ["] ["] ["] 9.00 Conductor 16 2 [] [] [] [] [] [] []

1

Proposed Directional Well Plan

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 029405B Well: Ruby Federal #37 Location: Sec. 17, T17S, R32E Date: 7/25/2013

<u>Request:</u>

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 2

- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

Attachment # 1 ance . USA. Ltd. **Reliance Eliminator Choke & Kill**

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

			Nom OD We				nd Radiu	is Max	Max WP	
in.		in.	mm	lb/ft	kg/m	in.	mm.		Mpa	
3	76.2	5.11	129.79	14.5	21.46	48	1219.		34.4	
3-1/	2 88.9	5.79	147.06	20.14	29.80	54	1371.	6 5000	34.4	
Treneric and the										
	and and a second	ni antrajacija – ni Provjestvo – nave	ст) Калана Ст							
a sufficient and the second	ವಿಷ್ಠ <u>ಕ್ಷೇ</u> ನಿನ್ನ ಮುಖ್ಯಕ್ಷ ಕೊ	ans e	1							
		1							_	
Fittings	•		Flanges		Han	nmer Un	ions	i Othe	F	
Fittings RC4X5058		R35 - 3-'	Flanges 1/8 5000# AF			n mer Un ion Configu		LP Threaded C		
-	5	6	-	PI Type 6B					onnect	
RC4X5055	5	6	1/8 5000# AF	PI Type 6B				LP Threaded C	onnect sk	
RC4X5055 RC3X5055	5	6	1/8 5000# AF	PI Type 6B				LP Threaded C Graylor	onnect sk	

Attachment # 2

