Forn/3160-5 (March 2012)	UNITED STATES	OCD Hobbs	BS OCD	O	DRM APPROVED MB No. 1004-0137
	DEPARTMENT OF THE INTE UREAU OF LAND MANAGE		19201	5. Lease Serial No. NMLC 058395	ires: October 31, 2014
	Y NOTICES AND REPORTS			6. If Indian, Allottee or	Tribe Name
Do not use thi	s form for proposals to dri I. Use Form 3160-3 (APD)	ill or to re-enter an	ECEIVED	N/A	
			5.	7. If Unit of CA/Agreen	pent Name and/or No
I. Type of Well	SMIT IN TRIPLICATE – Other instru	ictions on page 2.		N/A	
	as Well Other			8. Well Name and No.	<u> </u>
2. Name of Operator ConocoPhillips Co. (P10)-4-4054)			9. API Well No. 30-025-40596	/
3a. Address	3b. P	hone No. (include area cod	le)	10. Field and Pool or Ex	ploratory Area
600 N. Dairy Ashford Ro		(281)206-5281		Maljamar; Yeso	
4. Location of Well <i>(Footage, Sec.</i> , 1195' FSL & 800' FEL; U	<i>T.,R.,M., or Survey Description)</i> JL P, Sec. 22, T17S, R32E			11. County or Parish, Sta Lea County	NM
12. CH	ECK THE APPROPRIATE BOX(ES)	TO INDICATE NATURE	OF NOTIC	E, REPORT OR OTHER	R DATA
TYPE OF SUBMISSION		TYI	PE OF ACTI	ON	
X Notice of Intent	Acidize	Deepen	Produ	ction (Start/Resume)	Water Shut-Off
	Alter Casing	Fracture Treat	Recla	mation	Well Integrity
Subsequent Report	Casing Repair	New Construction	Recor	-	Other
Final Abandonment Notice	Change Plans	Plug and Abandon Plug Back		orarily Abandon Disposal	
determined that the site is ready ConocoPhillips Company plan for this well. The fol program. Please find the attached -Updated Operator Certir -Updated Drilling Plan -Variance from Onshore -Updated H2S Continger -Changes to the Surface	y, as most recent operator of lowing changes are necessa documents: fication Order 2, III.A.2.b ncy Plan	record, respectfully ry to drill this well as	requests s part of o	s approval to chan	ge the approved development
14. I hereby certify that the foregoing i	s true and correct. Name (Printed/Typed))			
Susan B. Maunder		Title Senior F	Regulator	y Specialist	
Signature Sugar P	5. Mourder	Date 10	23/13		
	THIS SPACE FOR		TE OFFI	CE USE	
Approved by	LIEN J. CAFFEY			W	IAR 1 7 2014
that the applicant holds legal or equitable	EPHEN J. CAFFEY red. Approval of this notice does not war e title to those rights in the subject lease v	Fitle rant or certify which would		Date	
	ns thereon. 13 U.S.C. Section 1212, make it a crime for presentations as to any matter within its ju		willfully to	make to any department or	agency of the United States any false,
(Instructions on page 2)				an a	/
				М	AR 2 4 2014

•

Operator Certification

SC Federal #9 API #30-025-40596

HOBBS OCD

MAR 1 9 2014

CONOCOPHILLIPS COMPANY

CERTIFICATION:

I hereby certify that I, or persons under my direct supervision, have inspected the proposed drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application with bond coverage provided by Nationwide Bond ES0085. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Susan B. Maunder Senior Regulatory Specialist Date: 10 23 13

RECEIVED

Request Approval to Change Drill Plan ConocoPhillips Company Maljamar; Yeso

HOBBS OCD

MAR 1 9 2014

SC Federal 9 Lea County, New Mexico

RECEIVED

Request:

ConocoPhillips Company respectfully requests approval to revise the casing and cementing program, pressure control equipment, the proposed mud systems, diagram and schematic for BOP and choke manifold equipment, location schematic and rig layout, and updated H2S contingency plan. This request is made under the provision of Onshore Order No. 2 and No. 6.

1. Proposed casing program:

												Safety Fa	
Tune	Hole Size	N	Interval ID RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str	Calcu	lated per Co Corporate	onocoPhillips Criteria
Туре	(in)	From	То	(inches)	(lb/ft)		Com	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyar
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' 85' (30' 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	880' - 905'	.8-5/8	24#	J-55	STC	2950	1370	244	1.55	3.40	3.54
Option: Prod w/ Bond Coat	7-7/8	3000'	4000'	5-1/2	17#	L-80	LTC	7740	6290	338	NA	NA	NA
Prod	7-7/8	0	7045' – 7102'	5-1/2	17#	L-80	LTC	7740	6290	338	2.10	2.49	1.97

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

ConocoPhillips Company respectfully requests the option to run bond coated production casing with the two-stage cementing option for the intension to protect the casing from corrosion if needed.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	905	24	2950	1370	244000	8.5	7.37	3.42	11.2	12.9
Production Casing	7102	17	7740	6290	338000	10	2.10	1.70	2.80	3.30

Casing Safety Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Change to Drill Plan: SC Federal #9:July 2, 2013

Suttens Carina (8.5/8* 249 1 55 CTC)	85		65 35 00 0		Jt Str	4329		Barst	-	Ten -	_					
Surface Casing (8-5/8* 24# J-55 STC) Production Casing (5-1/2* 17# L-80 LTC)	905 7102		24 2950 17 7740		0 244000 0 338000											
Burst ConocoPhillips Required Load Cases The maximum internal (curst) bad on the Surface Casing occurs when the	e surface cas	sing is t	ested to 1500) psi (as	per BLM Ons	hore Order	2 - Q. Require	ments).								
The maximum Internal (burst) lead on the Production Casing occurs during			ian where th	e mexim	im allowable	working pr	essure									
(MAWP) is the pressure that woold fit ConocoPhilips Corporate Criteria for Surface Casing Test Pressure =	1500			Pred	licted Pore Pr	essure at T	D (PPTC) =	8.5	5 FFF 5							
Surface Rated Working Pressure (BOPE) =	3000			Predict	ed Frac Gra:	fient at Sho	e (CSFG) =	19.2								
Field SW = Surface Casing Burst Safety Factor = API Burst Rating / Max	anum Predict					m Allowaki	e Surface Pre	asore (1	JASP)							
Production Casing MAWP for the Fracture Stimulation = API E	Jurst Rating /	/ Corpoi	ngte Minimum	Burst De	sign Factor											
Surface Casing Burst Safety Factor: Case #1, MPSP (MWhyd next section) =	905	x	0.052	x	10	=	471									
Case #2_MPSP (Field SW @ Buthead _{CSFS} + 200 psi) =	905		0.052	x	19.23	-	471	÷	200	=	634					
Case #3. MPSP (Kick Vol @ next section TD) =	7102		0.052	x	8.55	-	619.7	-	400	=	2138					
Case #4. MPSP (PPTD - GG) = Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =	7102 905		0.052 0.052	× ×(8.55 19.23	-+	710.2 0.2	=)=	2447 914							
MASP (MWhyd + Test Pressure) =	905		0.052	x	8.5	÷	1500	=	1900							
Burst Safety Factor (Max. MPSP or MASP) =	2950	1	1900	=	1.55											
Production Casing Burst Safety Factor: Case #1. MPSP (MWbyd TD) =	7102	x	0.052	x	10	.=	3593.04									
Case #4. MPSP (PPTD - GG) =	7102		0.052	x	8.55	-	710.2	=	2447							
Burst Safety Factor (Max, MPSP) = MAWP for the Fracture Stimulation (Corporate Criteria) =	7740 7740		3693	=	2.10 6730											
Collapse – ConocoPhillips Required Load Cases																
The maximum collapse had on the Surface Casing occurs when cementing								f expos	ure (full ev	/acuation).						
The maximum collapse load on the Production Casing occurs when cement literefore, the external pressure profile for the evacuation cases should be								we 853	umed to be	PPTD.						
Surface Casing Collacse Safety Factor = API Collacse Rating	/ Full Evacut	ation 'O	R' Cement Dis	placeme	nt during Cer	nenting to S	urface									
Production Casing Colapse Safety Factor = API Colapse Rati Cement Displacement Fluid (FW) =	ng / Maximun 8.34		ted Surface			Displacem Cement to 5	-	renting	to Surface	•						
Surface Cement Lead =	13.6	ppg	Pro		nt Lead = [11.	8 crag									
Surface Cement Tell =	14.8 300				ent Tail =		4 FF9									
Top of Surface Tail Cement =		n	Top of P		ement =	520	ojn									
Surface Casing Collapse Safety Factor:	005		0.053		9 55	=	100									
Full Evacuation Diff Pressure = Cementing Diff Lift Pressure =	905 [(× 605	0.052 x	× 0.052	8.55 ×	13.6	402)+(300	x	0.052	x	14.8) -	392] = 2	66
Collapse Safety Factor =	1370	1	402	=	3.40		• •								•	
Production Casing Collapse Safety Factor: 1/3 Evacuation Diff Pressure =	K	7102	×	0.052	x	8.55) - (7102	1	3	x	0.052	x	8.34)] = 2	131
Cementing Diff Lift Pressure =	ſ	1902	x	0.052	x	11.8		5200	x	0.052	x	16,4) -		j = 2	
Collapse Safety Factor =	6290	1														
	0230	,	2522	=	2.49											
	0250	,	2522	=	2.49											
Tensial Strength - ConocoPhillips Required Load Cases The maximum axial (leasies) load accurs if casing were to get stuck and gu				=	2.49											
The maximum axial (lension) bad occurs if casing were to get stuck and pu Naximum Allowable Axial Load for Pipe Yield = API Pipe Y	lled on io by Yield Strength	to get i h Rating	t unstuck. 1 Corporate I	Minimum .	Axial Design	Factor										
The maximum axial (lension) load occurs if casing were to get stuck and pu Uaximum Allowable Axial Load for Pipe Yield = API Pipe Y Maximum Allowable Axial Load for Joint = API Joint Stren	lled on to try Yield Strength gth Rating / C	lo get i h Rating Corpora	t unstuck. 1 / Corporate I te Minimum A:	Minimum . xial Desig	Axial Design	Factor										
The maximum axial (Lensico) bad occurs if casing were to get stuck and pu Haximum Allowable Axial Load for Pipe Yield = API Pipe Y	Bed on to by Yield Strength gth Rating / C x Load) = Ma	to get i h Rating Corpora aximum	t unstuck. 1 / Corporate I te Minimum A Allowable Ax	Vinimum xial Desig iial Load	Axial Design	Factor										
The maximum axial (lensico) load accurs if casing were to get stuck and pu Uaximum Alowable Axial Lead for Pipe Yield = API Pipe Y Maximum Alowable Axial Lead for Joint = API Joint Sten Maximum Alowable Hock Lead (Limbed to 75% of Rig Ma Maximum Alowable Overpuil Margin = Maximum Alowabl Tensial Safety Factor = API Pipe Yield 'OR' API Joint Strer	lled on io try Yield Strength gth Rating / C x Load) = Ma le Hook Load ngth 'OR' Rig	to get i h Rating Corpora aximum I - Bouy Max Lo	t unstuck. / Corporate I te Minimum A: Allowable Au ant WI of the	Minimum . xial Desig xial Load Sbring	Axial Design gn Factor		iverpul Requi	red)								
The maximum axial (lension) load occurs if casing were to get shuck and pu linximum Alowable Axial Land for Pice Yield - API Pipe Y Maximum Alowable Axial Land at Juint = API Joint Stren Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Overput Margin = Maximum Alowable Tensial Safety Factor = API Pipe Yield 'OR' API Joint Stren Rig Max Laad (300,000 hs;) x 75% =	lled on io by Yield Strength gth Rating / C x Load) = Ma le Hook Load ngth 'OR' Rig 225000 1	lo get i h Rating Corpora aximum I - Bouy Max Lo Its	t unstuck. / Corporate I te Minimum A: Allowable Au ant WI of the	Minimum . xial Desig xial Load Sbring	Axial Design gn Factor		verpul Requi	red)								
The maximum axial (Lensich) load occurs if casing were to get stuck and pu Maximum Alovable Axial Load for Pice Yield - API Pipe 1 Maximum Alovable Axial Load for Joint Stem Maximum Alovable Hock Load (Limbed to 75% of Rig Ma Maximum Alovable Overpui Margin = Maximum Alovabl Tensial Sofety Factor = API Pipe Yield 'OR' API Joint Stem Rig Max Load (300,000 bs) x 75% = Minimum Overpui Required =	lled on io try Yield Strength gth Rating / C x Load) = Ma le Hook Load ngth 'OR' Rig	lo get i h Rating Corpora aximum I - Bouy Max Lo Its	t unstuck. / Corporate I te Minimum A: Allowable Au ant WI of the	Minimum . xial Desig xial Load Sbring	Axial Design gn Factor		iverpul Requi	ret)								
The maximum axial (lension) load occurs if casing were to get shuck and pu liandmum Alowable Axial Load of Load for Pice Yield - API Pipe > Maximum Alowable Axial Load of Load at + API Aint Stren Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Aint Stren Rig Max Load (300,000 hs) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor:	Red on to try Yield Strength gth Rating / C x Load) = Ma He Hook Load rigth 'OR' Rig 225000 1 50000 1	lo get i h Rating Corpora aximum I - Bouy Max Lo Its	t unstuck. / Corporate I te Minimum A: Allowable Au ant WI of the	Minimum . xial Desig xial Load Sbring	Axial Design gn Factor		iverpul Requi	red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu Maximum Alowable Axial Load for Pice Yiel = API Pice Y Maximum Alowable Axial Load for Joint Stem Maximum Alowable Host Load (Limited to 75% of Rig Ma Maximum Alowable Overpul Margin = Maximum Alowable Tensial Sofety Factor = API Pice Yiel 'OR API Joint Stem Rig Max Load (300,000 bs) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt =	lled on to by Yield Strength gth Rating / L k Load) = Me te Hook Load ngth 'OR' Rig 225000 1 50000 1 50000 1 21720 21720	lo get i h Rating Corpora aximum I - Bouy Max Lo Its Its X	t unstuck. / Corporate i e Uinimum A: Atlowable Ay ant Wi of the ad Rating / (1 0.870	Minimum , xini Desig xini Lond Sbring Bouyant 1 Bouyant 1	Axial Design gn Factor Wt of String - 18901		iverpul Requi	red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu Haximum Alowable Axial Land for Pice Ytels - API Rips V Maximum Alowable Maxial Land for Jint = API John Stren Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Vergraff Margin = Maximum Alowable Tensial Safety Factor = API Pep Ytel VOR API John Stren Rig Max Load (300,000 bs) x 75% = Minimum Overpuil Required = Sourface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) =	lied on to by 'ield Strength gth Rating / C x Load) = Ma te Hoat Load ngth 'OR' Rig 225000 1 50000 1 211720 21720 381000	to get in h Rating Corpora aximum I- Bouy Max Lo Ins Ins Ins Ins X /	t unstuck. / Corporate i te Minimum A Allowable As and Wi of the ad Rafing / (i 0.870 1.40	Minimum (xial Desig xial Load Sbring Bouyant) = = =	Axial Design gn Factor Wt of String - 18901 272143		iverpul Requi	ret)								
The maximum axial (lension) load occurs if casing were to get stuck and pu Haximum Alowable Axial Lead for Pice Yeld - API Rpo Y Maximum Alowable Axial Load for Joint - API Aint Stren Navimum Alowable Hock Load (Limited In 75% of Rig La Maximum Alowable Hock Load (Limited In 75% of Rig La Maximum Alowable Overpuil Margin - Maximum Alowable Tensial Safety Factor - API Pipe Yeld OR API Joint Stren Rig Max Lead (300,000 hs) x 75% - Minimum Overpuil Required - Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	led on to try field Strength gth Rating / C x Load) = Us Hook Load (225000) 225000) 21720 21720 21720 21720 247000 244000 244000	lo get i h Rating Corpora aximum I - Bouy Max Lo Its Its X	t unstuck. / Corporate I te Minimum At Absyrable As ant W1 of the ad Rating / (1 0.870 1.40 1.40	Minimum , xini Desig xini Lond Sbring Bouyant 1 Bouyant 1	Axial Design gn Factor Wt of String - 18901 272143 174286			red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu Haximum Alowable Axial Land for Pice Ytels - API Rips V Maximum Alowable Maxia Land for Jint - API Ainti Stren Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (200,000 bs) x 75% = Minimum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin =	Red on to by Viet Strength gth Raing / C x Load) = Mae te Hoak Load igth '06'' Rig 225000 50000 21720 21720 21720 24720 381000 244000 174266	to get i h Rating Corpora aximum I - Bouy Max Lo Ibs bs X / / /	t unstuck. / Corporate i te Minimum A Allowable Az and Wo of the ad Rating / (i 0.870 1.40 1.40 21720	Ninimum , xial Desig ital Lead String Jouyant 1 Jouyant 1 = = = =	Axial Design gn Factor Wit of String - 18901 272143 174286 0.870	⊢ Minimum C	155384	red)								
The maximum axial (lensice) load occurs if casing were to get stuck and pu Haximum Alowable Axial Lead for Pice Yeld - API Rpo Y Maximum Alowable Axial Lead for Joint - API Aint Stren Navimum Alowable Host Lead (Limited In 75% of Rig Ma Maximum Alowable Host Lead (Limited In 75% of Rig Ma Maximum Alowable Overpuil Margin - Maximum Alowable Tensial Safety Factor - API Pipe Yeld OR API Joint Stren Rig Max Lead (300,000 hs) x 75% - Minimum Overpuil Required - Max Minimum Overpuil Required - Bouryant Wt = Bouryant Wt = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpuil Margin = Max. Allowable Overpuil Margin = Tensial Safety Factor =	Red on to by Viet Strength gth Raing / C x Load) = Mae te Hoak Load igth '06'' Rig 225000 50000 21720 21720 21720 24720 381000 244000 174266	logeti hRating Corpora aximum I-Bouy Max Lo Its bs bs x / /	t unstuck. / Corporate I te Minimum At Absyrable As ant W1 of the ad Rating / (1 0.870 1.40 1.40	Minimum, xial Desig ial Lead Sbring Bouyant 1 Souyant 1 = = =	Axial Design gn Factor Wt of String - 18901 272143 174286	- Minimum C		red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu Haximum Alowable Axial Load for Pice Yiel - API Pipe Y Maximum Alowable Axial Load for Joint Stem, Maximum Alowable Axial Load for Joint 50% of Rig Ma Maximum Alowable Overpul Margin = Maximum Alowable Trensial Sofety Fector = API Pipe Yielt OR API Joint Stem, Rig Hax Load (300,000 hs) x 75% = Wintrum Overpul Required = Max, Allowable Axial Load (Pipe Yield) = Max, Allowable Axial Load (Joint) = Max, Allowable Axial Load (Joint) = Max, Allowable Overpull Margin = Tensial Safety Factor = roduction Casing Tensial Strength Safety Factor:	led on 15 by /i=W Strength gth Rating / C x Load) = Mae Honk Load (25000) 2000) 21720 21720 21720 21720 21720 244000 174286 244000 120734	lo get i h Rating Corpora aximum I-Bouy Max Lo bis bis bis x / / / / / / / /	t unstuck. // Corporate i le kinimum A Abovable Ax ad Walf the ad Rating / (1 0.870 1.40 1.40 1.40 1.40 1.801	Winimum, xiai Desig Sbing Bouyant 1 = = = X +	Axial Design gn Factor 18901 272143 174286 0.870 50000	⊢ Minimum C	155384	red)								
The maximum axial (lension) load occurs if casing were to get shuck and pu Haximum Alowable Axial Lard for Pice Ytel - API Rpo Y Maximum Alowable Axial Lard for Lint + API Aint Stren Maximum Alowable Hack Load (Lintled Io 75% of Rig Ma Maximum Alowable Hack Load (Lintled Io 75% of Rig Ma Maximum Alowable Prest Margin - Maximum Alowable Tensial Safety Factor - API Pipe Yteld OR API Joint Stren Rig Max Lead (200,000 hs) x 75% - Minimum Overpuil Required = Uninum Overpuil Required = Bouynant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Tensial Safety Factor = Torduction Casing Tensial Strength Safety Factors: Air Wt =	Red on 10 by Field Strengt gth Rating / C x: Load) = Uk te Hook Load ngth 'OR' Rig 225000 1 50000 1 24720 24720 244000 174266 174266 174266 174263 17465 17	to get i h Rating Corpora aximum I - Bouy Max Lo Ibs bs X / / /	t unstuck. / Corporate i te Minimum AA Adowable Aa and Wi of the ad Rating / (1 0.870 1.40 1.40 21720 18901 0.847	Ninimum , xial Desig ital Lead String Jouyant 1 Jouyant 1 = = = =	Axial Design gn Factor Wit of String - 18901 272143 174286 0.870	⊢ Minimum C	155384	red)								
The maximum axial (lensico) load occurs if casing were to get stuck and pu Maximum Alowable Axial Lead for Pice Yeld - API Pice Y Maximum Alowable Axial Load for Joint Stern Maximum Alowable Axial Load for Joint 50% of Rig Ma Maximum Alowable Overpul Margin = Maximum Alowable Tensial Sofety Factor = API Pice Yeld 'OR API Joint Stern Rig Max Lead (30,000 fise) x 75% = Minimum Overpul Required = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpul Margin = Tensial Safety Factor: Max. Allowable Overpul Margin = Tensial Safety Factor = Max. Allowable Safety Factor = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint Wit =	led on ib try riett Strengti gih Rating / C x Loady = Like le Hook Load rgth OR: Rig 225000 50000 50000 24720 21720 21720 24720 24720 244000 174286 174286 244000 174286 244000 120734 120734 397000	to get i h Rating Corpora eximum Hes Lo Uns bs X / / / / (X	t unstuck. // Corporate i le kinimum A Abovable Ax ad Walf the ad Rating / (1 0.870 1.40 1.40 1.40 1.40 1.801	Minimum. kiai Dasig iai Load Sbing Jouyant Souyant = = = x + +	Axial Design gn Factor Wit of String - 18901 272143 174285 0.870 50000 102301	⊢ Minimum C	155384	red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu liaximum Alowable Axial Land for Pice Ytel - API Rips - Maximum Alowable Axial Land for Jint - API Alori Stren Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) Production Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) =	Red on 10 by /eH Strengt gth Rating / C x Load) = We Hoth Load ngth OR Rig 225000 50000 21720 21720 21720 244000 244000 244000 174286 244000 124266 244000 120734 120734 3378000 338000	to get i h Rating corpora corinsm H-Bouy Max Lo Bas K to S - (/ / (x / / / /	t unstuck. // Corporate i te Winimum AA Abovable Aa and Wi of the ad Rating / (1 0.870 1.40 1.40 21720 18901 0.847 1.40 1.40	Ninimum, xini Deskj sbring Sbring Souyant 1 = = = X + + = = = = = =	Axial Design gn Factor Wit of String - 18901 272143 174286 0.870 50000 102301 283571 241429) =) =	155384 3.54	red)								
The maximum axial (Lensicn) load occurs if casing were to get stuck and pu Baximum Allowable Axial Lead for Pice Yeld - API Pice Y Maximum Allowable Axial Load for Joint Stern Baximum Allowable Axial Load for Joint Stern Baximum Allowable Overpul Margin = Maximum Allowable Tensial Sofety Factor = API Pice Yeld 'OR API Joint Stern Rig Max Lead (20,000 Bs) x 75% = Winimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpul Margin = Tensial Safety Factor = Production Casing Tensial Strength Safety Factor = Bouyant Wt = Bouyant Wt = Bouyant Wt = Bouyant Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dimt Wt = Bouyant Bout Bout Bout Bout Bout Bout Bout Bou	Red on 10 by 'rel Strengt t Load) = Ue te Hank Load ngth 'OR' R0 225000 150000 24720 21720 21720 24720 24720 24720 24720 244000 174286 174286 244000 120734 120734 120734 338000 338000	to get i h Rating Corpora aximum I-Bouy Max Lo Its bs X / / / / (/ / (X / / / / / / / /	t unstuck. // Corporate in the Minimum AA Abovable Ay ant Wi of the ad Rating / (1 0.870 1.40 21720 18301 0.847 1.40	Minimum. kiai Deskj iai Load Sbing Jouyant 1 = = = = X + +	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571	⊢ Minimum C	155384	red)								
The maximum axial (lensice) load occurs if casing were to get stuck and pu Haximum Alowable Axial Lead for Pice Yell - API Pice Y Maximum Alowable Axial Load for Joint - API Aint Strem Haximum Alowable Hot Load (Limited In 75% of Rig Ma Maximum Alowable Hot Load (Limited In 75% of Rig Ma Maximum Alowable Overpuil Margin - Maximum Alowable Tensial Safety Factor - API Pipe Yeld OR API Joint Strem Rig Max Lead (300,000 fbs) x 75% - Minimum Overpuil Required - Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpuil Margin = Tensial Safety Factor = roduction Casing Tensial Strength Safety Factors Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axield Axial Load (Pipe Yield	Red on 10 by Fell Strengt gih Rating / C x Load) = Like te Hook Load igth 'OR' Rig 225000 1 21720 21720 24720 244000 174286 244000 174286 244000 120734 120734 120734 120734 338000 225000	to get i h Rating Corpora aximum I-Bouy Max Lo Its bs X / / / / (/ / (X / / / / / / / /	t unstuck. // Corporate in the Minimum AA Adowshek AA ant W1 of the ad Rating / (1 0.870 1.40 21720 18901 0.847 1.40 1.40 1.40 1.40	Vinimum xial Deskj xial Load Sbing Jouyant 1 = = = X + + x + x X	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847	<pre>> Minimum C) =) =) =</pre>	155384 3.54 122699	red)								
The maximum axial (lensice) load occurs if casing were to get stuck and pu Haximum Alowable Axial Lead for Pice Yell - API Pice Y Maximum Alowable Axial Load for Joint - API Aint Strem Haximum Alowable Hot Load (Limited In 75% of Rig Ma Maximum Alowable Hot Load (Limited In 75% of Rig Ma Maximum Alowable Overpuil Margin - Maximum Alowable Tensial Safety Factor - API Pipe Yeld OR API Joint Strem Rig Max Lead (300,000 fbs) x 75% - Minimum Overpuil Required - Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpuil Margin = Tensial Safety Factor = roduction Casing Tensial Strength Safety Factors Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axield Axial Load (Pipe Yield	Red on 10 by red Strengt gth Rating / C x Load) = Ua E boot Load 100 225000 21720 21720 21720 21720 21720 24700 244000 174266 174266 174286 244000 120734 12	to get i h Rating Corpora aximum I-Bouy Max Lo Its bs X / / / / (/ / (X / / / / / / / /	t unstuck. // Corporate in the Minimum AA Adowshek AA ant W1 of the ad Rating / (1 0.870 1.40 21720 18901 0.847 1.40 1.40 1.40 1.40	Vinimum xial Deskj xial Load Sbing Jouyant 1 = = = X + + x + x X	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847	<pre>> Minimum C) =) =) =</pre>	155384 3.54 122699	red)								
The maximum axial (lensich) load occurs if casing were to get stuck and pu Haximum Alowable Axial Load of Laint + API Aich Sten Maximum Alowable Mack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Hack Load (Limited to 75% of Rig Ma Maximum Alowable Axial Load (Odd) (Limited to 75% of Rig Ma Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Hook Load (Limited to 75% of Rig Max Load) = Max. Allowable Axial Load (Odint) = Max. Allowable Strength Safety Factor = Yroduction Cosing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max	led on ib by riett Strengt gih Raing / C x Loady = Like le Hook Load rgh 'OR' Rig 225000] 1000 24720 21720 21720 21720 24720 24720 244000 174266 174266 174265 244000 120734 120734 120734 397000 308000 225000 300000 steps sing is landed	to get i h Rating Corpora aximum Hax Lo bis bis tis / / / / / / / (x / / (to bis tis	t unstuck. / Corporate i te kinimum A Abweble As and Wi of the ad Rating / (1 0.870 1.40 1.40 21720 18901 0.847 1.40 120734 102301 conductor	Vinimum xial Deskj xial Load Sbing Jouyant 1 = = = X + + x + x X	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847	<pre>> Minimum C) =) =) =</pre>	155384 3.54 122699	red)								
The maximum axial (lensico) load occurs if casing were to get stuck and pu Haximum Alowable Axial Lead for Pice Yell - API (per) Maximum Alowable Axial Load for Joint - API Join Stren- Bucimum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (200,000 fbs) x 75% - Minimum Overput Required - Max Milowable Axial Load (30,000 fbs) x 75% - Minimum Overput Required - Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Strength Safety Factor: Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overput Margin = Tensial Safety Factor = Compression Strength ConocoPhillips Required Load Casing Compression Strength ConocoPhillips Required Load Casing Casing Compression Strength ConocoPhillips Required Load Casing Ca	Red on 10 by Field Strengt gth Rating / C x Load) = Uk te Hoat Load ngth OR Raj 225000 1 50000 1 24720 24720 244000 174266 17466 17	to get i h Rating Corpora sximum (- Bouy Max Lo bs / / / / / / / / / / / / / / / / / /	t unstuck. // Corporate i te klinimum AA Adbovable AA ant Wi of the ad Rating / (1 0.870 1.40 1.40 21720 18901 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Vinimum xial Deskj xial Load Sbing Jouyant 1 = = = X + + x + x X	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847	<pre>> Minimum C) =) =) =</pre>	155384 3.54 122699	r년)								
The maximum axial (lensich) load occurs if casing were to get stuck and pu Haximum Alowable Axial Load for Pice Ytel - API Rpo Y Maximum Alowable Axial Load for Jint - API Aint Stren Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Overpuil Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Diont) = Max. Allowable Axial Load (Joint) = Max. Allowable Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) = Max. Allowable	led on ib by ried Strengt gih Rating / C x Load) = like le Hook Load igh Orr Rej 225000 j 50000 j 21720 21720 21720 21720 247000 174286 174286 244000 174286 174286 244000 120734 120734 120734 120734 337000 338000 225000 338000 225000 338000 225000 338000 225000 338000 225000 397000 3000000 3000000 300000000	to get i h Rating Corpora H-Bouy Max Lo bs thes x / / / / / / / / / / / / / / / / / /	t unstuck. // Corporate in te Minimum A Abovable A ant Wi of the ad Rating / (1 0.870 1.40 21720 18901 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Vinimum, kial Desk Sbring Souyant 1 = = = X + + x + x +	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000	<pre>> Minimum C) =) =) =</pre>	155384 3.54 122699	r년)								
The maximum axial (lension) load occurs if casing were to get shuck and pu liaximum Alowable Axial Lead for Pice Yell - API Rpo Y liaximum Alowable Hosk Lead (Linhed Io 75% of Rig La liaximum Alowable Hosk Lead (Linhed Io 75% of Rig La liaximum Alowable Hosk Lead (Linhed Io 75% of Rig La liaximum Alowable Hosk Lead (Linhed Io 75% of Rig La liaximum Alowable Hosk Lead (Linhed Io 75% of Rig La liaximum Alowable Axial Lead (300,000 hs) x 75% - liaminum Overput Required - Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Bouyant Wt = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Oint) = Max. Allowable Axial Lead (Oint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Dipe Yield) = Max. Allowable Axial Lead (Coint) = Max. Allowable Axial Lead (Dipe Yield) = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Oxerput Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Lead Car The maximum axial (compression) bad for the well is where the surface cas with a support of a phater theoring ring. The surface cashing is abo calculab but not Minde. Any other axial bad such as a soubbing unt or other would	Red on 15 by Field Strengt git Rating / C x Load) = Uite te Hook Load rgth 'OR' Rig 2250000 1 221720 24720 24720 24720 174266 244000 120734 120734 120734 120734 120734 120734 120734 338000 225000 308000 50	to get i h Rating Corpora H-Bouy Max Lo bs thes x / / / / / / / / / / / / / / / / / /	t unstuck. // Corporate in te Minimum A Abovable A ant Wi of the ad Rating / (1 0.870 1.40 21720 18901 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Minimum, kial Desk Sbring Bouyant 1 = = = X + + X + X	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000) =) =) =	155384 3.54 122699	r년)								
The maximum axial (lension) load occurs if casing were to get stuck and pu Haximum Alowable Axial Load for Pice Yell - API (per Maximum Alowable Axial Load for Joint - API Joint Stren- Baximum Alowable Hock Load (Limited to 75% of Rig Ma Haximum Alowable Hock Load (Limited to 75% of Rig Ma Haximum Alowable Hock Load (Limited to 75% of Rig Ma Haximum Alowable Hock Load (200,000 fbs) x 75% - Winkrum Overpul Required - Max. Allowable Axial Load (50,000 fbs) x 75% - Minkrum Overpul Required - Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Dint) = Max. Allowable Axial Load (D	led on 10 by ried Strengt git Rating / C x Load) = Mis e Hook Load righ Orr Rej 225000 1 50000 1 21720 21720 21720 24720 174286 174286 174286 174286 174286 244000 174286 174286 120734 120734 120734 120734 397000 308000 225000 300000 1205 120	to get i h Rating Corpora H-Bouy Max Lo Its bs x / / / / / / / / / / / / / / / / / /	t unstuck. / Corporate in te kinimum A Abovable A ant Wi of the ad Rating / (1 0.870 1.40 1.20734 102301 1.55 be bad. xinum Predict	Minimum, kial Desk String Jouyant 1 = = = X + + x + +	Axial Design pr Factor Vil of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000) =) =) =) =	155384 3.54 122699 1.97	rस्)								
The maximum axial (lension) load occurs if casing were to get stuck and pu lixorinum Alowable Axial Load of Lait + API Alor M lixorinum Alowable Axial Load of Lait + API Alor M lixorinum Alowable Hock Load (Linited to 75% of Rig Ma lixorinum Alowable Hock Load (Linited to 75% of Rig Ma lixorinum Alowable Hock Load (Linited to 75% of Rig Ma lixorinum Alowable Hock Load (Linited to 75% of Rig Ma lixorinum Alowable Hock Load (Linited to 75% of Rig Ma lixorinum Alowable Hock Load (Linited to 75% of Rig Ma lixorinum Alowable Axial Load (Dir Alori Alori Alori Rig Max Lead (200,000 hs) x 75% - Linitrum Overpul Required - Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Dir Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dirit) = Max. A	Red on 15 by Field Strengt gth Rating / C x Load) = Mis Rating / C x Load) = Mis 225000 225000 244000 174286 174286 244000 120734 120734 120734 120734 120734 338000 225000 225000 225000 300000 ISES sing is landed at to bear 60 need to be ar pe Yteld Ratin 3000 a	to get i h Rating Corpora Scimum Has Lo Bus ts x / / / / / / / / / / / / / / / / / /	t unstuck. // Corporate i te klinimum AA Abwable AA and Wi of the ad Rating / (1 0.8670 1.40 1.40 21720 18901 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Minimum, xial Desk ial Load String Bouyant 1 = = = x + + + + + ted Load	Axial Design gn Factor Wit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000) =) =) =) =	155384 3.54 122699 1.97	red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu liaximum Alowable Axial Land for Jets Y Fel - API (pos Y liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Hack Load (Lintide Io 75% of Rig Ma liaximum Alowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Allowable Axial Load Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Allowable Axial Load Allowable Axial Load Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Allowable Axial Load Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load	Red on 15 by Field Strengt gth Rating / C x: Load) = Uite Hoats Load 1000 1 2255000 1 227720 21720 21720 21720 247000 244000 174286 174286 244000 120734 120746 120746 120746 120746 120746 120746 120746 1207	to get i h Rating Corpora I-Bouy Max Lo bas bas tas / / / / / / / / / / / / / / / / / / /	t unstuck. / Corporate is te Minimum AA Abovable Ay ant W1 of the ad Rating / (1) 0.870 1.40 1.40 21720 18901 0.847 1.40 120734 102301 conductor is bad o the bad. ximum Predict	Minimum, kial Desk String Jouyant 1 = = = X + + x + +	Axial Design gn Factor Vit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000) =) =) =) =	155384 3.54 122699 1.97	red)								
The maximum axial (lension) load occurs if casing were to get stuck and pu lixorinum Alowable Axial Load of Lait + API Rips V lixorinum Alowable Axial Load of Lait + API Rips V lixorinum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Maximum Alowable Hock Load (Linited to 75% of Rig Ma Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Hook Load (Linited to 75% of Rig Max Load) = Max. Allowable Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Dint) =	Red on 10 by field Strengt gth Rating / C x Load) = Mike Hoak Load ngth OR Rig 225000 150000 174286 174286 174286 174286 244000 174286 174286 244000 120734 120734 120734 120734 338000 225000 225000 225000 300000 1885 sing is landed ed to bear 60 need to bear pe Yield Rati 30000 la (1 7102	to get i h Rating Corpora Scimum Has Lo Bus ts x / / / / / / / / / / / / / / / / / /	t unstuck. // Corporate i te Minimum AA Abovable AA and Wi of the ad Rating / (1 0.6670 1.40 1.40 1.40 21720 18901 0.647 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Minimum. ital Desk ital Load String Souyant 1 = = x + ted Load 0.870 0.877 x ×	Axial Design gn Factor Wit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000 0.847 50000) =) =) =) = 18901 102301 x	155384 3.54 122699 1.97	red)	2.441	42 =	11320					
The maximum axial (Lensich) load occurs if casing were to get stuck and pu Haximum Alowable Axial Load for Pice Ytel - API (per Maximum Alowable Hock Load (Linthed Io 75% of Rig Ma Maximum Alowable Hock Load (Linthed Io 75% of Rig Ma Maximum Alowable Hock Load (Linthed Io 75% of Rig Ma Maximum Alowable Hock Load (Linthed Io 75% of Rig Ma Maximum Alowable Hock Load (Linthed Io 75% of Rig Ma Maximum Alowable Hock Load (Linthed Io 75% of Rig Ma Maximum Alowable Axial Coad (Pipe Yteld OR API Joint Stern Rig Max Lead (200,000 hs) x 75% - Minimum Overpuil Required - Surface Casing Tensial Strength Safety Factor: Air Wt = Max. Allowable Axial Load (Pipe Yteld) = Max. Allowable Axial Load (Pipe Yteld) = Max. Allowable Axial Load (Pipe Yteld) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yteld) = Max. Allowable Axial Load (Pi	Red on 10 by Fell Strengt gth Rating / C x: Load) = Uk te Hook Load right OR Rej 225000 150000 24720 21720 21720 24720 24700 244000 174266 174266 174266 174266 174266 244000 174266 174266 244000 174266 244000 174266 244000 174266 244000 174266 244000 174266 244000 174266 174266 244000 174266 17426 17426 17426 17402 1	to get i h Rating Corpora I-Bouy Max Lo bis its x / / / / / / / / / / / / / / / / / /	t unshuck. / Corporate i te kilnimum AA Adhovable AA and Wi of the ad Rating / (1 0.870 1.4	Vinimum. sil Lead String souyant 1 = = x + + ted Lead 0.870 0.847 = x + +	Axial Design gn Factor 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000) =) = 46163 6.55 102301) =) =) =) =) = 18901 102301	155384 3.54 122699 1.97		<u>2.441</u> 11320	42 = =	1132D 181686					
The maximum axial (lensich) load occurs if casing were to get stuck and pu Haximum Alowable Axial Land for Pice Ytel - API Rips V Maximum Alowable Axial Land for Jint - API Aint Stren Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Maximum Alowable Hock Load (Limited to 75% of Rig Ma Max. Allowable Axial Load (Of Rig Ma) Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Diont) = Max. A	Red on 10 by field Strengt gth Rating / C x Load) = Mike Hoak Load ngth OR Rig 225000 150000 174286 174286 174286 174286 244000 174286 174286 244000 120734 120734 120734 120734 338000 225000 225000 225000 300000 1885 sing is landed ed to bear 60 need to bear pe Yield Rati 30000 la (1 7102	to get i h Rating Corpora sufinsum Has Lo bus tas x / / / / / / / / / / / / / / / / / /	t unstuck. // Corporate i te Minimum AA Abovable AA and Wi of the ad Rating / (1 0.6670 1.40 1.40 1.40 21720 18901 0.647 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Minimum. ital Desk ital Load String Souyant 1 = = x + ted Load 0.870 0.877 x ×	Axial Design gn Factor Wit of String - 18901 272143 174286 0.870 50000 102301 283571 241429 0.847 50000 0.847 50000) =) =) =) = 18901 102301 x	155384 3.54 122699 1.97	× [

2. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	560' – 605'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	560' – 605'	860' 905'	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing - Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt '0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	7045' – 7102'	16.4	400	428	 0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume 	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing Cementing Program – Two-Stage Cementing w/ Comingle Option:

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or water flow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

Stag	je 1 - Slurry		ervals t MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/H	3000'	7045' – 7102'	13.2	800	1120	 0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume 	1.40

Staç	ge 2 - Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	Stage Tool ~ 3000'	11.8	500	1300	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0:125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 50 % or more if needed based on gauge hole volume	2.6

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

3. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** The BOPE may be configured to use flexible hose. Pressure test data and hose specification information will be provided to BLM prior to site construction.

4. Proposed Mud System:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	1250 - 2500
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	34 – 45	5 – 10	10 11	0 - 1250

The mud systems that are proposed for use are as follows: $\frac{1}{\sqrt{\frac{1}{2}}}$

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole.

Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. The gases shall be piped into the flare system. Gas detection equipment and pit level flow monitoring equipment will be on location. Gas detecting equipment will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells in 2013 after receiving approval of the APD.

Attachments:

• Attachment # 1 BOP and Choke Manifold Schematic – 3M System

٠,٠

• Attachment # 2...... Diagram of Choke Manifold Equipment

Contact Information:

Sundry Request proposed 16 October 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

Drawn by: Steven O. Moore Chief Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 25-Sept-2012

Request for Variance

ConocoPhillips Company Lease Number: USA LC 058395 Well: SC Federal #9 Location: Sec. 22, T17S, R32E Date: 10-16-13

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647 Date: 26 September 2012

Attachment # 1

'. '.

Endustria	AL Products US	A, Lid.	ن في أون مو	- -	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	÷.			
	>			· · · · · · · · · · · · · · · · · · ·					
	Relie	ince D	• • •						
	ļ	Relia	nce E	limin	ator	Chok	ke & Kil	I	
							BOP stack to		l-off
		1					io the BOP ki		
CO'	ver that rep	olaces ru	bber cove	ered Asbes	tos, Fibre	glass and	ly bonded co I other fire re	tardant	ed
ina v	aterials whi ercomes co	ich are pi ostly repa	rone to da airs and do	amage. Th owntime a	is high cu ssociated	ut.and.go with old	uge resistan er designs.	cover	
		;	- Challen						
, Th	e Reliance	Eliminat	or Choke	& Kill hose	has been	verified	by an indepe	ndent	
Th en	e Reliance gineer to n	Eliminato neet and	exceed E	& Kill hose UB Directiv	has been ve 36 (70	verified 1 0°C for 5	by an indepe minutes).	ndent	
Th en	e Reliance gineer to n	Eliminati neet and	exceed E	& Kill hose UB Directiv	has been ve 36 (70	verified 0°C for 5	by an indepe minutes).	ndent	
i en	e Reliance gineer to n m. ID	neet and	exceed E	UB Directiv	ve 36 (70	0°C for 5	by an indepe minutes). and Radius	ndent Max	WP
• en Nor in.	gineer to n m . ID mm.	neet and Non in.	exceed E n OD mm	UB Directiv Wei 16/ft	ve 36 (70 ght kg/m	O°C for 5 Min Be in.	minutes). and Radius mm.	Max psi	Мра
i en Nor	gineer to r m. ID	neet and Non	exceed E n OD mm	UB Directiv Wei	ve 36 (70 ght	0°C for 5 Min Be	minutes). and Radius	Max	
en Nor in 3	gineer to n m. ID mm. 76.2	neet and Non in. 5.11	exceed E n OD mm 129.79	UB Directiv Wei Ib/ft 14.5	ve 36 (70 ght kg/m 21.46	0°C for 5 Min Be in. 48	minutes). and Radius mm. 1219.2	Max psi 5000	Mpa 34.47
en Nor in 3	gineer to n m. ID mm. 76.2	neet and Non in. 5.11	exceed E n OD mm 129.79	UB Directiv Wei Ib/ft 14.5	ve 36 (70 ght kg/m 21.46	0°C for 5 Min Be in. 48	minutes). and Radius mm. 1219.2	Max psi 5000	Mpa 34.47
en in. 3 3-1/2	gineer to n m. ID mm. 76.2	neet and Non in. 5.11	exceed E n OD mm 129.79 147.06	Wei Ib/ft 14.5 20.14	ve 36 (70 ght kg/m 21.46 29.80	0°C for 5 Min Be in. 48 54	minutes). and Radius mm. 1219.2 1371.6	Max psi 5000 5000	Mpa 34.47 34.47
en in. 3 3-1/2 Fittings RC4X5055	gineer to n m. ID mm. 76.2	Non in. 5.11 5.79 R35 - 3-1	exceed E n OD mm 129.79 147.06 Flanges /8 5000# A	Wei Ib/ft 14.5 20.14 Pl Type 6B	ve 36 (70 ght kg/m 21.46 29.80 Han	0°C for 5 Min Be in. 48	minutes). and Radius mm. 1219.2 1371.6	Max psi 5000 5000 000 Other hreaded Ca	Mpa 34.47 34.47 1 1 1 1 1
en in. 3 3-1/2 Fittings RC4X5055 RC3X5055	gineer to n m. ID mm. 76.2	Non in. 5.11 5.79 R35 - 3-1	exceed E n OD mm 129.79 147.06 Flanges	Wei Ib/ft 14.5 20.14 Pl Type 6B	ve 36 (70 ght kg/m 21.46 29.80 Han	0°C for 5 Min Be in. 48 54 54	minutes). and Radius mm. 1219.2 1371.6	Max psi 5000 5000 5000 Dthe hreaded Ca Grayloc	Mpa 34.47 34.47 r onnectio
en in. 3 3-1/2 Fittings RC4X5055	gineer to n m. ID mm. 76.2	Non in. 5.11 5.79 R35 - 3-1	exceed E n OD mm 129.79 147.06 Flanges /8 5000# A	Wei Ib/ft 14.5 20.14 Pl Type 6B	ve 36 (70 ght kg/m 21.46 29.80 Han	0°C for 5 Min Be in. 48 54 54	minutes). and Radius mm. 1219.2 1371.6	Max psi 5000 5000 000 Other hreaded Ca	Mpa 34.47 34.47 r onnectio

Attachment # 2

1,

