۲					ATS-14-501	
· Form 3166,-3 (March 2012)	UNITED STATE DEPARTMENT OF THE BUREAU OF LAND MA	INTERIOR	Hobbes	FOR OMB N Expires O 5. Lease Serial No. NMLC 03167	No. 1004-0137 October 31, 2014	
LOCATION	APPLICATION FOR PERMIT TO		•	6. If Indian, Allotee N/A	or Tribe Name	
la. Type of wor		TER	<u></u>	7. If Unit or CA Agre Southeast Mo	eement, Name and No. Onument Unit NM71	1041
lb. Type of We	ll: Oil Well Gas Well X Other Inje	ction X Single Zone Mul	tiple Zone	8. Lease Name and V SEMU	Well No. 243	3167
2. Name of Op		>		0 A DI Wall No	2015	
3a. Address 60	0 N. Dairy Ashford Road,	3b. Phone No. (include area code) (281)206-5281	~D	10. Field and Pool, or F Skaggs; Graybu	· · · ·	, >
4, Location of At surface 1	ffice P10-4054 ouston, TX 77079-1175 Well (<i>Report location clearly and in accordance with c</i> JL O, Sec. 19, T20S, R38E; 150' FSL prod. zone same as above	iny State requirements.*/HOBBS O	2014	11. Sec., T. R. M. or B Sec. 19, T20S,	lk. and Survey or Area	
14. Distance in m	iles and direction from nearest town or post office* ately 13 miles south of Hobbs, NM	RECE		12. County or Parish Lea County	13. State NM	
15. Distance from location to ne property or le	n proposed* 150' arest	16. No. of acres in lease 641.68	17. Spacin 40	ng Unit dedicated to this w	well	.*
18. Distance from to nearest well applied for, or	proposed location* 700' l, drilling, completed, n this lease, ft.	19. Proposed Depth 4197' TVD/MD	ES 00	BIA Bond No. on file 85		
21. Elevations (\$ 3532' GL	Show whether DF, KDB, RT, GL, etc.)	22 Approximate date work will s 06/15/2014	tart*	23. Estimated duration 5 days	n .	
······································	· · · · · · · · · · · · · · · · · · ·	24. Attachments				
SUPO must be	Plan (if the location is on National Forest System filed with the appropriate Forest Service Office).			òrmation and/or plans as	may be required by the	
25. Signature	usan B. Maunder	Susan B. Maunder			2/7/14	
, Senior Re	egulatory Specialist					
Approved by (Sign	^{att} Steve Caffey	Name (Printed/Typed)			Datug - 4 2014	
Title	FIELD MANAGER	Office	CARLSBA	D. IELD OFFICE		
conduct operations	val does not warrant or certify that the applicant hol s thereon. roval, if any, are attached.			oject lease which would er		
Title 18 U.S.C. Sec States any false, fic	tion 1001 and Title 43 U.S.C. Section 1212, make it a titious or fraudulent statements or representations as		willfully to n	nake to any department.or	r agency of the United	
(Continued o	n page 2)	/		*(Instr	ructions on page 2)	
[©] Lea Coun	ty Controlled Water Basin		V >	Kaloglik		
				offloylit	- AN	
	Approval Subject to Ge & Special Stipula	neral Requirements tions Attached		E ATTACHE	D FOR OF APPROVA	AL
		74000070200		AUG 0 7 201	14	

Operator Certification

HOBBS OCD

AUG 0 5 2014

CONOCOPHILLIPS COMPANY

RECEIVED

CERTIFICATION:

I hereby certify that I, or persons under my direct supervision, have inspected the proposed drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application with bond coverage provided by Nationwide Bond ES0085. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Date: _ Ə

aundon

Susan B. Maunder Senior Regulatory Specialist

Drilling Plan ConocoPhillips Company <u>SEMU; Grayburg</u>

HOBBS OCD

SEMU #243

Lea County, New Mexico

RECEIVED

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents
Quaternary	Surface	Fresh Water
Rustler	1355	Anhydrite
Salado (top of salt)	1456	Salt
Tansill (base of salt)	2530	Gas, Oil and Water
Yates	2656	Gas, Oil and Water
Seven Rivers	2899	Gas, Oil and Water
Queen	3474	Gas, Oil and Water
Penrose	3619	Gas, Oil and Water
Grayburg	3767	Gas, Oil and Water
San Andres	3997	Gas, Oil and Water
Deepest estimated perforation	3997	Deepest estimated perf. is above Top of San Andres
Total Depth (maximum)	4197	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

See COA

2. Proposed casing program:

		· · · ·						·			l	Safety Fac	ctors
Tura	Hole Size	N	Interval ID RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str			nocoPhillips
Туре	(in)	From	То	(inches)	(lb/ft)	G	Conn	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	_ 20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	1425 ' - 1425'	8-5/8	24#	J-55	STC	2950	1370	244	1.39	2.16	3.06
Prod	7-7/8	0	4142' 4187'	5-1/2	17#	L-80	LTC	7740	6290	338	3.55	5.01	2.72

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	1425	24	2950	1370	244000	8.5	4.68	2.18	7.1	8.2
Production Casing	4187	17	7740	6290	338000	10	3.55	2.89	4.75	5.60

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors	
--	--

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Conductor		Wt	MIY	Col	Jt Str	Pipe Yie			t Col	Ten						
Surface Casing (8-5/8" 24# J-55 STC)	85		65 3500 24 295		70 244000	43296		1.3	-	-	36					
Production Casing (5-1/2" 17# L-80 LTC)	4187		17 774		90 338000											
Burst ConocoPhillips Required Load Cases																
The maximum Internal (burst) load on the Surface Casing occurs when it The maximum Internal (burst) load on the Production Casing occurs durin								ementaj								
(MAWP) is the pressure that would fit ConocoPhilips Corporate Criteria t Surface Casing Test Pressura =	or Winknum Fa 1500			D =4	dicted Pore P			66	5 ppg							
Surface Rated Working Pressure (BOPE) =	3000	psi			ted Frac Gra				3 668							
Field SW = Surface Casing Burst Safety Factor = API Burst Rating / M		PP9 ted Suri	face Pressu	re (NPSP	n 'OR' Maxim	ım Aflowabis	Surface Pre	asure f	MASP)							
Production Casing MAWP for the Fracture Stimulation = AP																
Surface Casing Burst Safety Factor:																•
Case #1. MPSP (MWhyd next section) = Case #2. MPSP (Field SW @ Bullhead _{CSF0} + 200 psi) =			0.052 0.052		10 19.23	=	741 741		200	=	884					
Case #3. MPSP (Kick Vol @ next section TD) =			0.052		8.55	•	276.2	:	630	=	955					
Case #4. MPSP (PPTD - GG) = Case #3 & #4 Limited to MPSP (CSFG + 0.2 ppg) =			0.052 0.052		8,55 19,23	• +	418.7 0.2	=)=	1443 1440							
MASP (MWhyd + Test Pressure) =	1425	x	0.052	x	8.5	+	1500]=	2130							
Burst Safety Factor (Max. MPSP or MASP) = Production Casing Burst Safety Factor:	2950	1	2130	=	1.39											
Case #1, MPSP (MWhyd TD) =			0.052		10	2	2177.24									
Case #4. MPSP (PPTD - GG) = Burst Safety Factor (Max. MPSP) =	7740	x /	0.052	_ =	8.55 3.55	•	418.7	=	1443							
MAWP for the Fracture Stimulation (Corporate Criteria) =	7740	1	1.15] =	6730											
<u>Collapse - ConocoPhillips Required Load Cases</u> The maximum collapse load on the Surface Casing occurs when cementi	ig to surface,	1/3 eva	cuation to th	iê nêxt ci	asing setting	depth, or dea	epest depth o	of excess	ure (full ev	scuation).						
The maximum collapse load on the Production Casing occurs when ceme therefore, the external pressure profile for the evacuation cases should it	nting to surfac	æ, or 1/	3 evacuation	n to the đ	eepest depth	of exposure	; and									
Surface Casing Collapse Safety Factor = API Collapse Rain								WC 833		PPID.						
Production Casing Collapse Safety Factor = API Collapse Ru Cement Displacement Fluid (FW) =	iling i Maximur 8.34		ded Surface		e 'OR' Cemen Cement =	t Displaceme Cement to S		menting	to Surface							
Surface Cement Lead =	13.6	663		od Ceme	nt Lead =	11.	5 668									
Surface Cement Tail = Top of Surface Tail Cement =	14.8 350				tent Tall = Cement =	300	1 ppg) ft		·							
•			·				_									
Surface Cosing Collapse Safety Factor: Full Evacuation Diff Pressure =	1425	x	0.052	x	8,55	=	634									
Cementing Diff Lift Pressure = Collapse Safety Factor =	[(1370	1075 /	× 634.	0.052 =	x 2.16	13.6) + (350	×	0.052	×	14.8) -	618] =	412
Production Casing Collapse Safety Factor:																
1/3 Evacuation Diff Pressure = Cementing Diff Lift Pressure =	((((4187 1187		0.052 0.052	x x	8.55 11.5) • () + (4187 3000	/ x	3 0,052	x x	0.052 14	х)-	6.34 1816		
Collapse Safety Factor =	6290	1	1256	=	5.01								'		•	
Tensial Strength – ConocoPhillips Required Load Cases	wheel on to too	to cel i														
The maximum axial (lension) had occurs if casing were to get stuck and Maximum Altawable Axial Load for Pipe Yield = API Pipe Maximum Altawable Axial Load for John = API Aichi Stre Maximum Altawable Hook Load (Linded to 75% of Rig L Maximum Altawable Hook Load (Linded to 75% of Rig L Maximum Altawable Overput Margin = Maximum Altawa Tensial Safety Factor = API Pipe Yield 'OR' API John Sh Rib Nax Load (1300 000 ba) x 75% =	Yieki Strengti ngth Rating / C iax Load) = Ma ble Hook Load ength 'OR' Rig	h Rating Corporat aximum I - Bouyi Max Lo:) / Corporate te Minimum / Allowable A ant Wt of the	Axial Des Ixial Losd String	ign Factor I		verpult Requi	ired)								
Maximum Allowable Axial Lead for Pipe Yieki = API Pipe Maximum Allowable Axial Lead for John = API John Sire Maximum Allowable Hoak Load (Linded to 75% of Rig b Maximum Allowable Yorpul Margin = Maximum Allowab	Yield Strengti ngth Rating / C (ax Load) = Ma ble Hook Load	h Rating Corporal aximum I - Bouyi Max Lo: Da) / Corporate te Minimum / Allowable A ant Wt of the	Axial Des Ixial Losd String	ign Factor I		verpuli Requi	red)								
Maximum Allowable Axial Load for Pipe Yieki = API Pipe Maximum Allowable Axial Load for John = API John Stre Maximum Allowable Nook Load (Linded to 75% of Rig M Maximum Allowable Overput Margin = Maximum Allowa Maximum Allowable Overput Margin = Maximum Allowa Tensial Safety Factor = API Pipe Yieki 'OR' API John Str Rig Nax Load (300,000 lba) x 75% = Minimum Overput Required =	Yield Strengti ngth Rating / C lax Load) = Ma ble Hook Load ength 'OR' Rig 225000 (h Rating Corporal aximum I - Bouyi Max Lo: Da) / Corporate te Minimum / Allowable A ant Wt of the	Axial Des Ixial Losd String	ign Factor I		verpuli Requi	ired)								
Maximum Allowable Axial Load for Pipe Yieki - AP Res Maximum Allowable Axial Load for Joint - AP Joint Stre Maximum Allowable Nock Load (Linded to 75% of Rig L Maximum Allowable Overput Margin - Maximum Allowable Norput Margin - Maximum Allowable Overput Margin - Maximum Allowable Norput Margin - Margin - Maximum Allowable Norput Margin - Maximum Allowable Norput Margin - Margin	Yield Strengti ngth Rating / C (ax Losd) = Ma Ete Hook Load ength 'OR' Rig 225000 t 50000 t 34200 34200	h Rating Corporat aximum I - Bouyn I tax Lo: Itax Lo: Itax Ita Itax Ita Itax Itax Itax Itax I	I Corporate te Minimum A Allowable A ant Wt of the ad Rating / (0.870	Axial Des axial Load a String Bouyant Bouyant	ign Factor Wit of String 29762		verpul Requi	red)								
Maximum Allowable Axial Load for Pipe Yiekt = AP Rea Maximum Allowable Axial Load for Joint = AP Joint Stre Maximum Allowable Axial Load for Joint = AP Joint Stre Maximum Allowable Overpul Margin = Maximum Allowab Tensial Safety Factor = AP Rep Yield 'OR' API Joint Str Rig Max Load (300,000 bb) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) =	Yield Strengti ngth Rating / C (ax Load) = Ma Lee Hook Load (mgth OR Re 225000 (50000 (50000 (34200 34200 381000 244000	h Rating Corporat aximum I - Bouyi I ax Lo: Max Lo: Ds Ds) / Corporate te Likimum A Allowable A ant Wt of the ad Rating / (Axial Des xial Load a String Bouyant	ign Factor I		verput Requi	red)								
Maximum Allowable Axial Lead for Pipe Yield = AP Res Maximum Allowable Axial Lead for Joint = AP Joint Sire Maximum Allowable Hook Lead (Linded to 75% of Rig L Maximum Allowable Hook Lead (Linded to 75% of Rig L Maximum Allowable Hook Lead (Joint) AP Joint Sir Rig Jax Lead (Joint) Bay 75% = Winimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Daint) = Max. Allowable Hook Lead (Limited to 75% of Rig Max Lead) =	• Yield Strengti ngth Rating / C (ax Load) = Ma ble Hook Load Ength <u>OR</u> Reg 225000 t 50000 t 34200 34200 381000	h Rating Corporat aximum I - Bouyn Max Lo: Itax Lo: Itax Ita Itax Lo Itax Itax Itax Itax Itax Itax Itax Itax	Corporate te Minimum A Allowable A ant Wt of the ad Rating / (0.870 1.40	Axial Des axial Load e String Bouyant = = =	29762 272143			fred)								
Maximum Allowable Axial Lead for Pipe Yield = AP Res Maximum Allowable Axial Lead for Joint = AP Joint Sire Maximum Allowable Max Lead (Lindeed to 75% of Rig L Maximum Allowable Overpul Margin = Maximum Allowab Tensial Safety Factor = AP Repe Yield 'OR' AP Joint Sin Rig Nax Load (300,000 ba) x 75% = Minimum Overpul Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Tensial Safety Factor =	Yield Strengti ngth Rating / C (ax Load) = Ma ble Hook Load (225000) (225000) (30000) (34200 34200 381000 244000 174286	h Rating Corporat aximum I - Bouyn Max Lo: Das Das Das Das Das Das Das) / Corporate te Minimum A Allowabic A ani Wt of the ad Rating / (0.870 1.40 1.40	Axial Des xial Load a String Bouyant = = =	29762 272143	+ Minimum O	verpul Requi 144524 3.06	red)								
Maximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sire Maximum Allowable Mook Load (Linded to 75% of Rig M Maximum Allowable Overput Margin - Maximum Allowable Overput Margin - Maximum Allowable Overput Margin - Maximum Allowable Rig Nax Load (300,000 lbs) x 75% - Winimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wt = Bouyant Wt = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor = Production Cosing Tensial Strength Safety Factor: Air Wt =	Yield Strengtl ngth Railing / C lax Load) = Ma lex Hook Load E Hook Load 225000 l 225000 l 225000 l 225000 l 225000 l 34200	h Rating Corporat aximum - Bouyn Max Lo: Itax Lo: Itax Lo: Itax Itax X - (0.870 0.870 1.40 1.40 1.40 34200 29762	Axial Des oxial Load a String Bouyant = = = x +	29762 272143 174286 0.870 50000	+ Minimum O	144524	red)								
Maximum Allowable Axial Lead for Pipe Yield = AP Red Maximum Allowable Axial Lead for Joint = AP Joint Stre Maximum Allowable Max Lead (Lindeed to 75% of Rig L Maximum Allowable Overput Margin = Maximum Allowab Tensial Safety Factor = AP Repe Yield 'OR' AP Joint Stin Rig Nax Load (300,000 ba) x 75% = Minimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Bauyant Wi = Max. Allowable Axial Load (Dirint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Max. Allowable Overput Margin = Tensial Safety Factor: Production Casing Tensial Strength Safety Factor: Air Wi = Bauyant Wi =	Yield Strengtl ngth Rating / C lax Load) = Ma be Hook Load De Hook Load 225000 (1) 50000 (1) 500000 (1) 50000 (1) 500000 (1) 50000 (1	h Rating Corporat aximum I - Bouyn I - Bouyn Itax Lo: Itax Itas Itas Itas Itas Itas Itas Itas Itas	0.870 0.870 0.870 1.40 34200 29762 0.847	Axial Des oxial Load a String Bouyant = = = x +	29762 272143 174286 0.870 50000 60312	+ Minimum O	144524	red)								
Haximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sire Maximum Allowable Hook Load (Linded to 75% of Rig M Maximum Allowable Yorput Margin - Maximum Adawa Tensial Safety Factor - AP Pipe Yield 'OR API Joint Sin Rig Nax Load (300,000 bis) x 75% - Wainnum Overput Required - Surface Casing Tensial Strength Safety Factor: Air W = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Overput Margin = Tensial Safety Factor: Air Wi = Bouyant Bouyant Bo	Yeld Sirengil ngth Raing / C fax Load) = Ma te Hook Load (225000) 225000 34200	h Rating Corporal aximum. I-Bouyn Max Lo: Ds Ds Ds Ds Ds Los Los Los Los Los Los Los Los Los Lo	0.870 0.870 1.40 1.40 1.40 34200 29762	Axial Des oxial Load a String Bouyant = = = x +	29762 272143 174286 0.870 50000	+ Minimum O	144524	red)								
Maximum Allowable Axial Lead for Pipe Yield = AP Res Maximum Allowable Axial Lead for Joint = AP Joint Sim Maximum Allowable Moat Lead (Linded to 75% of Rig L Maximum Allowable Overput Margin = Maximum Allowable Tensial Safety Factor = AP Rige Yield 'OR AP Joint Sim Rig Max Lead (300,000 bis) x 75% = Winimum Overput Required = Surface Casing Tensial Strength Safety Factor: Air Wi = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor: Air Wi = Production Cosing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Overput Margin = Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Bouyant Wi =	Yeld Strengtl ngth Railing / C ngth Railing / C ngth Railing / C 2250000 34200 34200 34200 34200 174286 174286 244000 174286 244000 174286 344000 174286 174286 244000	h Rating Corporal aximum, I- Bouyn Max Lo: Dis Dis Dis Dis Cis / / / / / / / / / / / / / / / / /	0.870 0.870 1.40 34200 0.870 1.40 34200 29762 0.847 1.40	Axial Des xial Load a String Bouyant = = x + =	29762 272143 174286 0.870 50000 60312 283571	+ Mihimum O) =) =	144524									
Maximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Stre Maximum Allowable Hook Lead (Linded to 75% of Rig M Maximum Allowable Overpul Margin - Maximum Allowable Overpul Margin - Maximum Allowable Overpul Margin - Maximum Allowable Rig Nax Lead (300,000 bs) x 75% - Winimum Overpul Required - Unimum Overpul Required - Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Axial Lead (Joint) = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Stery Factor: Air W1 = Bouyant W1 = Max. Allowable Axial Lead (Pipe Yield) = Max. Allowable Overpul Margin = Max. Allowable Axial Lead (Pipe Yield) =	Yeld Strengtl ngth Railing / C ngth Railing / C ngth Railing / C Second States / C Second States / Second	h Rating Corporal aximum, I- Bouyn Max Lo: Dis Dis Dis Dis Cis / / / / / / / / / / / / / / / / /	0.870 0.870 0.870 1.40 1.40 34200 29762 0.847 1.40 1.40	Axial Des xial Load a String Bouyant = = x + = = = x +	29762 272143 174286 0.870 50000 60312 283571 241429	+ Minimum O) =) =	144524 3.06	red)								
Maximum Allowable Axial Lead for Pipe Yield - AP Res Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Moak Load (Linked to 75% of Rig L Maximum Allowable Overpul Margin - Maximum Allowab Tensial Safety Factor - AP Ripe Yield 'OR' AP Joint Sim Rig Max Load (300,000 bb) x 75% - Minimum Overpul Required - Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Max. Allowable Overpul Margin = Max. Allowable Overpul Margin = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) =	Yield Strengtl, ngth Railing / C ngth Railing / C axt Leady = Like bib Hook Load 2250000 34200 34200 34200 34200 34200 34200 34200 34200 34200 34200 34200 74286 244000 71179 71179 337000 338000 225000 300000	h Rating Corporal aximum. I- Bouy: I Max Lo: Utax Lo: Utax Lo: Utax Lo: Utax Lo: V A - (/ (X / / / / / / / / /) / Corporate le Minimum A Allowable A ani Wi of the ad Rating / (0.870 1.40 1.40 34200 29762 0.847 1.40 1.40 1.40 71179	Axial Des xial Load a String Bouyant = x + = x + = x X X	29762 272143 174286 0.870 60312 283571 241429 0.847	+ Mihimum O) =) =	144524 3.06 164688	red)								
Maximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Max Lead (Linited to 75% of Rig L Maximum Allowable Overput Margin - Maximum Allowab Tensial Safety Factor - AP Pipe Yield 'OR' AP Joint Sim Rig Nax Lead (300,000 ba) x 75% - Minimum Overput Required - Max. Allowable Axial Lead (Joint) = Max. Allowable Overput Margin = Max. Allowable Axial Lead (Joint) = Max. Allowable Overput Margin = Max. Allowable Overput Margin = Max. Allowable Overput Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Lead Cod	Yield Strengtlingth Raining / Cast Leady = Using the Raining / Cast Leady = Using the Raining in Cast R	h Rating Corporal aximum I- Bouynum. Max Lo: bas bas bas kas / / / / / / / / / / / / / / / / / / /	/ Corporate le Minimum A Allowable A anil Wt of the ad Rating / (0.870 1.40 1.40 29762 0.847 1.40 1.40 1.40 71179 60312 conductor le load	Axial Des xial Load a String Bouyant = x + = x + = x X X	29762 272143 174286 0.870 60312 283571 241429 0.847	+ Mihimum O) =) =	144524 3.06 164688	red)								
Maximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Hoat Load (Linded to 75% of Rig U Maximum Allowable Hoat Load (Joint) - NP Joint Sim Rig Jax Load (300,000 ba) x 75% - Winimum Overpul Margin - Bouyant With - Max. Allowable Axial Load (Joint) - Max. Allowable Axial Load (Cripe Yield) - Max. Allowable Axial Load (Cripe Yield) - Max. Allowable Axial Load (Joint) - Max. Allowable Axial Load (Cripe Yield) - Max. Allowable Axial Load (Joint) - Max. Allowable	Yeld Sirengili ngth Railing / C izz Load) = Mat ke Hook Load (225000) i 225000 i 225000 i 225000 i 224000 34200 34200 34200 34200 34200 34200 174286 174286 174286 174286 174286 174286 244000 71179 71179 397000 338000 225000 309000 300000 225000 200 2	h Rating Corporal aximum I - Bouyn Max Lo: ba ba Cas Cas / / / / / / / / / / / / / / / / / / /	1 Corporate le Minimum A Allowable A anil Wi of the ad Rating / (0.870 1.40 1.40 34200 29762 0.847 1.40 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 0.817 0.8	Axial Des xial Load s String Bouyant = x + = x + x + x +	29762 272143 174286 0.870 50000 60312 283571 241429 0.847 50000	+ Mihimum O) =) =	144524 3.06 164688	red)								
Maximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Hoak Lead (Lindeel to 75% of Rig L Maximum Allowable Overpul Margin - Maximum Allowable Tensial Safety Factor - AP Pipe Yield 'OR' AP Joint Sim Rig Max Lead (300,000 bis) x 75% - Uninnum Overpul Required - Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Lead (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Overpul Margin = Max. Allowable Axial Lead (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor = Compression Strength — ConocoPhillips Required Lead C The maximum axial (compression) load for the vvel is where the surface cov with a support of a plate or landag ring. The surface casing is elso catcul but not Imded. Any other axial kads such as a sanubbing unt ar other wou	Yeld Sirengil ngth Railing / C ngth Railing / C ngth Railing / C 225000 225000 225000 224000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 174286 244000 174286 17486 174286 174886 174286 174886 174886 174886 174886 174886 174886 174886 1748	h Rating Corporal aximum I - Bouyn Max Lo: ba ba Cas Cas / / / / / / / / / / / / / / / / / / /	1 Corporate le Minimum A Allowable A anil Wi of the ad Rating / (0.870 1.40 1.40 34200 29762 0.847 1.40 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 0.817 0.8	Axial Des xial Load s String Bouyant = x + = x + x + x +	29762 272143 174286 0.870 50000 60312 283571 241429 0.847 50000	+ Mihimum O) =) =	144524 3.06 164688									
Maximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Hoak Lead (Linded to 75% of Rig U Maximum Allowable Overput Margin - Maximum Adrove Tensial Safety Factor - AP Pipe Yield OR AP Joint Sim Rig Max Lead (300,000 ba) x 75% - Winimum Overput Required - Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Lead (Cript Yield) = Max. Allowable Axial Lead (Cript Yield) = Max. Allowable Axial Lead (Cript Yield) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead (Joint) = Max. Allowable Overput Margin = Tensial Safety Factor: Air Wi = Bouyant Wi = Bouyant Wi = Max. Allowable Axial Lead (Cript Yield) = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead Lead (Linited to 75% of Rig Max Lead) = Max. Allowable Axial Lead Lead (Joint) = Max. Allowable Axial Lead Lead (Linited to 75% of Rig Max Lead) = Max. Allowable Axial Lead Lead Lead + Compression Strength - ConocoPhillips Required Lead A Wetheed Lead - Conductor & Surface Compression Safety Factor = API Axial Joint Strength Axial Wetheed Lead -	Yield Sirengtingth Raining / Cast Load) Mark Sirengting / Cast Load) Sax Load) = Mark Sirengtingth Raining / Cast Cast Sirengtingth Rainingth Rainingt	h Rating Carparal I - Bouy Max La: bas bas c x / / / / / / / / / / / / / / / / / / /	/ Corporate le Minimum A Allowable A anil Wt of the ad Rating / (0.870 1.40 34200 29762 0.847 1.40 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 0.312 0.0312	Axial Des xial Load a String = = - - - - - - - - - - - - -	29762 272143 174286 0.870 60312 283571 241429 0.847 50000	+ Mihimum ()) =) =) =	144524 3.06 164688 2.72	red)			·					
Maximum Allowable Axial Lead for Pipe Yieti - AP Rips Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Moak Lead (Lindeed to 75% of Rig Jo Maximum Allowable Overput Margin = Maximum Adawa Tensial Safety Factor - AP APipe Yieti OR AP Joint Sim Rig Max Lead (300,000 bis) × 75% - Unimum Overput Required = Surface Casing Tensial Strength Safety Factor: Max. Allowable Axial Lead (Joint) = Max. Allowable Overput Margin = Max. Allowable Overput Margin = Max. Allowable Overput Margin = Max. Allowable Axial Lead (Joint) = Max. Allowable Overput Margin = Max. Allowable Axial Lead (Joint) = Max. Allowable Axial Lead Lead (Joint) = Max. Allowable Axial Lead Lead (Joint) = Max. Allowable Axial Lead Lead Lead (Joint) = Max. Allowable Axial Lead Lead Lead Lead (Joint) = Max. Allowable Axial Lead Lead Lead Lead Lead Lead Lead Lead	Yeld Sirengil ngth Raing / C fax Losd) = Ma to the Hook Load (225000) 1 225000 1 225000 1 225000 34200 338000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 20000 20000 20000 200000 20000	h Rating Corporal aximum I - Bouyn Max Lo: ba ba Cas Cas / / / / / / / / / / / / / / / / / / /	/ Corporate le Minimum A Alowebte A ani Wt of the ad Rating / (0.870 1.40 34200 29762 0.847 1.40 1.40 34200 29762 0.847 1.40 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	Axial Des xial Load s String Bouyant = x + = x + x + x +	29762 272143 174286 0.870 50000 60312 283571 241429 0.847 50000	+ Mihimum O) =) =	144524 3.06 164688 2.72	red)								
Haximum Allowable Axial Lead for Pipe Yield - AP Pipe Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Hoat Load (Linded to 75% of Rig U Maximum Allowable Overpul Margin - Maximum Adrova Tensial Safety Factor - AP Pipe Yield 'OR AP Joint Sim Rig Max Load (300,000 bb) x 75% - Uninnum Overpul Required - Surface Cosing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Overpul Margin = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load Such as a subbing unt or other wu Compression Safety Factor = API Axial Joint Strength Rating 'OR API Axial Wetheod Load - Conductor & Surface Compression Safety Factor Surf Casing Wit (Bouyant) = Tubing Wit (Air WI) =	Yeld Strengtl ngth Railing / C ngth Railing / C ngth Railing / C 225000 225000 225000 224000 174286 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 244000 174286 174286 174286 244000 174286 17486 174886 174886 174886 174886 174886 174886 1748	h Rating Carpara I - Bouy Max La: bas bas bas - ((/ (/ , / (/ , / , / (/ , / (/ , / (/ , / , / , / , / , / , / , / , / , / ,	/ Corporate le Minimum A Allowable A Anni Wt of the ad Rating / (0.870 1.40 34200 29762 0.847 1.40 34200 29762 0.847 1.40 1.40 34200 29762 0.847 1.40 1.40 0.312 0.0312 conductor the load ximum Predl x x 6.5	Axial Dess xial Load a String Bauyant = = X + Cted Loan 0.670 0.677	gn Factor 29762 272143 174286 0.870 60312 283571 241429 0.847 50000	+ Minimum O) =) =) =) = 29762 60312	144524 3.06 154688 2.72				6674					
Haximum Allowable Axial Lead for Pipe Yield - AP Res Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Hook Load (Lined to 75% of Rig L Maximum Allowable Overpul Margin - Maximum Allowab Tensial Safety Factor - AP Repe Yield 'OR' AP Joint Sim Rig Max Load (300,000 ba) x 75% - Unimum Overpul Required - Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Overpul Margin = Tensial Safety Factor = Production Cosing Tensial Strength Safety Factor = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor = Compression Strength - ConocoPhillips Required Load 1 The maximum axial (compression) load for the well is where the surface c what a support of a piete or landing ring. The surface casing is aliso catuul but not linded. Any other axial leads such as a snubbing unt or other wou Compression Safety Factor = API Axial Joint Strengt Rating 'OR API Axial Wetheed Load = Conductor & Surface Compression Safety Factor = Surf Casing Wi (Bouyant) = Prod Casing Wi (Bouyant) = Tubing Fluid Wi = Load on Conductor =	Yeld Strengtl ngth Railing / C ngth Railing / C ngth Railing / C ngth Railing / C 2255000 [34200 34200 34200 34200 244000 174286 244000 174286 244000 174286 244000 174286 244000 174286 244000 25000 338000 225000 338000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 300000 225000 225000 300000 225000 2000 225000 2000	h Rating Carparal I-Bouyn Max Lo: ba ba ba ba ba / / / / / / / / / / / /	2 Corporate te Mitimum A Allowebte A ani Wt of the ad Rating / (0.870 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 0.847 1.40 1.40 29762 0.847 0.34200 29762 0.847 0.852 29762 29762	Axial Dess xial Load = String = - = - = - = - x + + = - = - x + + - cted Loan 0.870 0.847 = - x + +	29762 272143 174286 0.870 50000 60312 283571 241429 0.847 50000 0.847 50000 d d) =) = 27216 60312	+ Mihimum ()) =) =) =) = 29762	144524 3.06 164688 2.72	red)	<u>2.441</u> 6674		6674 126963					
Haximum Allowable Axial Lead for Pipe Yield - AP Res Maximum Allowable Axial Lead for Joint - AP Joint Sim Maximum Allowable Hoat Load (Linded to 75% of Rig M Maximum Allowable Hoat Load (Linded to 75% of Rig M Maximum Allowable Overpul Margin - Maximum ABrove Tensial Safety Factor - AP Reje Yield 'OR AP Joint Sim Rig Max Load (300,000 bas) x 75% - Uninnum Overpul Required - Surface Casing Tensial Strength Safety Factor: Air Wi = Bouyant Wi = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Chint) = Max. Allowable Axial Load (Joint) = Max. Allowable Overpul Margin = Tensial Safety Factor: Air Wi = Bouyant Wi = Bouyant Wi = Bouyant Wi = Max. Allowable Axial Load (Joint) = Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Axial Load (Joint) = Max.	Yeld Sirengil ngth Raing / C izz Losd) = Mat ke Hook Load 1 (225000) 34200 34200 34200 34200 34200 34200 34200 174286 174286 174286 174286 174286 174286 174286 174286 244000 309000 309000 309000 300000 225000 300000 225000 225000 300000 225000 225000 300000 225000 225000 225000 300000 225000 200	h Rating Carperal - Bouy Max La: - Bouy Max La: bs bs bs - (/ / (/ / (/ / (/ / (/ / (/ / / (/ / / (/ / / /	(Corporate le Minimum A Alsowebite A Alsowebite A Alsowebite A and Wt of the and Rating / (0.870 1.40 1.40 34200 29762 0.847 1.40 34200 29762 0.847 1.40 1.40 34200 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 29762 0.847 1.40 1.40 1.40 29762 0.847 1.40 1.40 0.870 1.40 29762 0.847 1.40 1.40 29762 0.857 1.40 1.40 29762 0.857 1.40 1.40 1.40 29762 0.857 1.40 1.40 1.40 29762 0.870 1.40 1.40 1.40 29762 0.870 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	Axial Des xial Load a String Bouyant	gn Factor 29762 272143 174266 0.870 50000 60312 283571 241429 0.847 50000 d d) = 27216 6.55	+ Minimum ()) =) =) =) = 29762 60312 x	144524 3.06 164688 2.72			,						

.

•.

,

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 350' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		ntervals W Ft MD		Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	1030' – 1075'	13.6	450	765	+ 2% Extender + 2% CaCl ₂ + 0.125 lb/sx Lost Circulation Control Agent + 0.2% Defoamer	1.70
							Excess =200% based on gauge hole volume	
Tail	Class C	1030' – 1075'	1380' – 1425'	14.8	300	402	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

See COA

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Grayburg,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	C Gas Tight Slurry	Surface	3000'	11.5	400	1292	Class C 94 lb/sx 6% Extender 10% Gas Migration Control 2% Sodium Metasilicate (dry) 1% Cement Bonding Agent 3% Aluminum Silicate 0.125 lb/sx Cello Flake 3 lb/sx LCM-1	3.23
Tail	Poz/C Gas Tight Slurry	3000'	4142' – 4187'	14.0	320	4 <u>3</u> 8	(35:65) Poz:C 33 lb/sx 1% Sodium Metasilicate (dry) 1.5% Fluid Loss Control,	1.37

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing Cementing Program – Two-Stage Cementing Option (Shallow Flow):

ConocoPhillips Company respectfully requests an additional option to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate shallow saltwater or gas flow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to surface.
- Proceed with Stage 2 Cement only if cement returns are contaminated or flow was observed after pumping 1st stage.

Spacer: 20 bbls Fresh Water

Stage	1 - Slurry		IntervalsWeightSxVolAdditivesFt MDppgCuft		Ft MD ppg Cuft		Additives	Yield ft ³ /sx
Lead	C Gas Tight Slurry	Surface	3000'	11.5	400	1292	Class C 94 lb/sx 6% Extender 10% Gas Migration Control 2% Sodium Metasilicate (dry) 1% Cement Bonding Agent 3% Aluminum Silicate 0.125 lb/sx Cello Flake 3 lb/sx LCM-1	3.23
Tail	Poz/C Gas Tight Slurry	3000'	4142' – 4187' ·	14.0	320	438	(35:65) Poz:C 33 lb/sx 1% Sodium Metasilicate (dry) 1.5% Fluid Loss Control,	1.37

1st stage displacement: FW followed by Weighted Spacer

Spacer: Remaining Weighted Spacer in cementing lines from the 1st stage displacement

Sta	age 2 - Slurry	Intervals Ft MD				Vol Cuft	Additives Yield ft ³ /sx			
Tail	Class C	Surface	Stage Tool ~1450'	14.8	300	402	1% CaCl2 Excess = 100% based on gauge hole volume	1.34		

2nd stage displacement: Fresh Water

<u>5-1/2" Production Casing Cementing Program – Two-Stage Cementing Option (Lower Zone Losses or Waterflow):</u>

ConocoPhillips Company respectfully requests an additional option to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water See COA

Sta	ge 1 – Slurry	Inter Ft N		Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Poz/C Gas Tight Slurry	Stage Tool ~2900'	4142' – 4187'	14.0	320	438	(35:65) Poz:C 33 lb/sx 1% Sodium Metasilicate (dry) 1.5% Fluid Loss Control,	1.37

1st stage displacement: FW followed by Brine

Spacer: 20 bbls Fresh Water

Stage 2 - Slurry		Intervals Ft MD		Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx	
Lead	C Gas Tight Slurry	Surface	Stage Tool ~2900'	11.5	400	1292	Class C 94 lb/sx 6% Extender 10% Gas Migration Control 2% Sodium Metasilicate (dry) 1% Cement Bonding Agent 3% Aluminum Silicate 0.125 lb/sx Cello Flake 3 lb/sx LCM-1	3.23	

Displacement: Fresh Water

See COA

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

See COA

5. Proposed Mud System:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 – 9.0	28 – 40	N.C.	N.C.	150 – 300
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	300 - 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	, 10	33 – 40	5 – 10	10 – 11	0 – 1000

The mud systems that are proposed for use are as follows:

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 1700' MD: Spectral Gamma Ray, PE, Resistivity (laterologs), Bulk Density, and Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Total Gamma Ray and Neutron
 - Total Depth to 2350' MD ; Mud Log (optional)
 - Total Depth to 2350' MD ; Dielectric Scanner (optional)
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)
- e. Cement Bond Log (optional).

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.

- The bottom hole pressure is expected to be 7.8 ppg gradient.
- The expected Bottom Hole Temperature is 100 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Seven Rivers	6	50 - 100 MCFD	0	0
Grayburg / San Andres	18360	20 - 50 MCFD	95	43

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells is mid- 2014 after receiving approval of the APD.

Attachments:

- Attachment # 1 Two-stage Cementing Schematic
- Attachment # 2 BOP and Choke Manifold Schematic 3M System
- Attachment # 3..... Diagram of Choke Manifold Equipment

Contact Information:

Proposed 5 February 2014 by: Steven Herrin Drilling Engineer, ConocoPhillips Company Phone: (281) 206-5115 Cell: (432) 209-7558 SEMU #243

(Date: 2/5/2014)

Page 9 of 11

SEMU #243

Attachment # 3

- Item Description
 - Manual Adjustable Choke, 2-1/16", 3M 1
 - Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M 2
 - 3 Gate Valve, 2-1/16" 5M
 - Gate Valve, 2-1/16" 5M 4
 - 5 Gate Valve, 2-1/16" 5M
 - 6 Gate Valve, 2-1/16" 5M
 - 7 Gate Valve, 3-1/8" 3M
 - Gate Valve, 2-1/16" 5M 8
 - Gate Valve, 2-1/16" 5M 9
 - 10 Gate Valve, 2-1/16" 5M
 - Gate Valve, 3-1/8" 3M 11
 - Gate Valve, 2-1/16" 5M 12
 - 13
 - **Pressure Gauge**
 - 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013

Page 11 of 11

Request for Variance

ConocoPhillips Company

Lease Number: LC 031670A Well: SEMU #243 Location: Sec. 19, T20S, R38E Date: 2/5/2014

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: Steven Herrin Drilling Engineer, ConocoPhillips Company Phone: (281) 206-5115 Cell: (432) 209-7558 Date: 20 January 2014

Attachment # 1

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

Nom.	ID	Кол	n OD	Weig	ght	Min Bei	nd Radiu	is Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	ín.	mm.	psi	Mp
· <u>3</u>	76.2	5.11	129.79	14.5	21.46	48	1219.	2 5000	34.4
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.	6 5000	34.4
Fittings			Flanges	·	Han	nmer Uni	005	Othe	r .
RC4X5055	F	35 - 3-1	/8 5000# AP	Type 6B		ion Configu		LP Threaded C	
RC3X5055			/8 3000# AP	•••				Graylo	
RC4X5575	•	1 .						Custom E	
		1							
•					•				

Attachment # 2

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: SEMU #243 Location: Sec. 19, T20S, R38E Date: 2/5/2014

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

1. We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs' steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

The closed loop system components will be inspected daily by each tour and any needed repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

R-360 Inc.

4507 West Carlsbad Hwy, Hobbs, NM 88240,

P.O. Box 388; Hobbs, New Mexico 88241

Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

The Permit Number for R-360 is NM-01-0006.

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at R-360 Inc. at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

Steven Herrin Drilling Engineer, ConocoPhillips Company Phone: (281) 206-5115 Cell: (432) 209-7558

SPECIFICATIONS

FLOOR = 3/16" PL one piece CROSS MEMBER: 3 x 4.1 channel 16" on center

WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks

DOOR: 3/16" PL with tubing trame FRONT: 3/16" PL with tubing trame PICK UP: Standard cable with 2" x 6" x 1/4" rails, guisset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings. DOOR LATCH: Sindependent ratchet binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal retainers

WELDS: All welds continuous except sub-structurie crossmembers FINISH : Coated Inside and out with direct to metal, rust inhibiting acrylic enamel color coat

HMDROITESTINGR Full capacity staticitest DIMENSIONS, 22-11" long (21-8" inside). 99" wide (88" inside), see drawing for height 99 Wide (88 Inside); see drawing for neight OPTIONS: Steel grit blast and special paint, Amplino II, Hell and Dino pickup ROOF: 3/16" PL roof panels with tubing and channe I support frame LIDS: (2) 68" x 90" metal rolling lids spring

loaded, self raising

ROLLERS: 4 V-groove rollers with defrin bearings and grease titlings OPENING: (2) 60" x 82" openings

with 8st divider centered on container

LATCH:(2) independent ratchet binders with chains penilo

CASKERSMEXINGEGINISTER seal with metal relainers

Heavy Duty Split Metal Rolling Lid

CONT.	A	8
20 YD	41	53
25 YD	53	65
30 YD	65	77

31