	UNITED STATES DEPARTMENT OF THE INT BUREAU OF LAND MANAGE	ERIOR CON	Hobbs	OMB N	APPROVED O. 1004-0135 July 31, 2010		
	RY NOTICES AND REPORT e this form for proposals to dr		- CODOS	5. Lease Serial No. NMNM0559539			
abandoneo	SOCD	6. If Indian, Allottee o	or Tribe Name				
SUBMIT IN	TRIPLICATE - Other instruction		2014	7. If Unit or CA/Agreement, Name and/or No.			
1. Type of Well Straight Oil Well Gas Well		SEP	<u>, 7 2014</u>	8. Well Name and No. JAMES FEDERA			
2. Name of Operator CIMAREX ENERGY COM	Contact: TE MPANY OF CO-Mail: tstathem@cim	RRI STATHEM	CEIVED	9. API Well No. 30-025-41363-0			
Ba. Address 600 NORTH MARIENFEL MIDLAND, TX 79701	D STREET, SUITE 600	b. Phone No. (include area code Ph: 432-620-1936					
	ec., T., R., M., or Survey Description)			11. County or Parish,	and State		
Sec 29 T23S R32E NENE 32.165595 N Lat, 103.412			LEA COUNTY, NM				
12. CHECK A	APPROPRIATE BOX(ES) TO I	NDICATE NATURE OF	NOTICE, R	EPORT, OR OTHE	R DATA		
TYPE OF SUBMISSION		ТҮРЕ О	F ACTION				
Notice of Intent	Acidize	Deepen	Produc	tion (Start/Resume)	□ Water Shut-Off		
Subsequent Report	Alter Casing	Fracture Treat	🗖 Reclam		UWell Integrity		
	Casing Repair	■ New Construction	Recom		Other Change to Original A		
Final Abandonment Notic	Change Plans	Plug and Abandon Plug Back	□ Tempo □ Water I	rarily Abandon	PD		
follows: Approved: 5.5" 20# L-80 LTC/BTC Proposed: 7" 26# L-80 at approximat Stage tool and ACP at app Stage 1 lead cement: 120 Stage 1 tail cement: 260 s Stage 2 cement: 325 sy tu	tely 9650' MD / 9390' TVD (appropriately 9650' MD / 9390' TVD (approproximately 7000' esx tuned light lead at 10.8 ppg 2 sx Versacem H at 14.5 ppg 1.22 uned light lead at 10.8 ppg, 2.52 bint in curve, every 4 joints in ver	oximately 80 degrees incli 2.78 yield yield	nation)	ATTACHED I IDITIONS OF	FOR APPROVAL		
	Electronic Submission #264	GY COMPANY OF CO, sen	t to the Hobb	S			
	I STATHEM	Title COOR	DINATOR R	EGULATORY COM	PLIA		
,			Date 09/18/2014				
Con Name(Printed/Typed) TERR	onic Submission)	Date 09/18/2	2014				
Con Name(Printed/Typed) TERR	· · · · · · · · · · · · · · · · · · ·	Date 09/18/2		SE			
Name(Printed/Typed) TERR Signature (Electro Approved By_CHRISTOPHEF onditions of approval. if any, are at	THIS SPACE FOR WALLS	FEDERAL OR STATE	OFFICE U		Date 09/18/2014		
Con Name (Printed/Typed) TERR Signature (Electro Approved By_CHRISTOPHEF onditions of approval. if any, are at rtify that the applicant holds legal of nich would entitle the applicant to of the 18 U.S.C. Section 1001 and Titl	THIS SPACE FOR WALLS	FEDERAL OR STATE TitlePETROLE t warrant or bject lease Office Hobbs me for any person knowingly and	OFFICE U	EER	Date 09/18/2014 agency of the United		

Additional data for EC transaction #264377 that would not fit on the form

32. Additional remarks, continued

Drill 6" or 6.125" lateral 4.5" 11.6# L-80 Liner with liner hanger and packer or expandable type hanger - TOL: between 8650-8750' Cement: 330 sx VersacemH at 14.5 ppg, 1.22 yield TOC planned at 7" shoe No centralizers

Verbally approved by C. Walls 9-16-14.

<u>Conditions of Approval</u> James Federal 22 Cimarex Energy Company of Co.

1. The minimum required fill of cement behind the 7 inch production casing is:

Operator has proposed DV/ACP tool at a depth of 7000'. Operator is to submit sundry if DV tool depth varies by more than 100' from approved depth.

- a. First stage to DV tool:
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

2. The minimum required fill of cement behind the **4-1/2** inch production liner is:

Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

. . •

.

9/16/2014

13 3/8		csg in a 17 1/2	inch hole.		Design	Factors	SU	RFACE	
Segment	#/ft	Grade	Coupling	Joint	Collapse	Burst	Length	Weight	
"A"	48.00	H 40	ST&C	5.16	1.36 [0.7	1,300	62,400	
· · -		Csg Test psig: 644	Tail Cmt		circ to sfc.	Totals:	1,300	62,400	
	_	to Minimum Required						·	
Hole	Annular	1 Stage 1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist	
Size	Volume	Cmt Sx CuFt Cml		% Excess	Mud Wt	MASP	BOPE	Hole-Cplg	
17 1/2	0.6946	960 1610	957	68	8.40	1433	2M	1.56	
95/8	casing in		casing.	, a con a con a co , a con a con a co	Design Fac		INTER	MEDIATE	
Segment	#/ft	Grade	Coupling	Joint	Collapse	Burst	Length	Weight	
"A" " B "	40.00	J 55	LT&C	2.72	1.31	0.96	4,785 0	191,400 0	
		Csg Test psig: 677		• • •		Totals:	4,785	191,400	
		ne(s) are intended to a		0	ft from su		1300	overlap.	
Hole	Annular	1 Stage 1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist	
Size	Volume	Cmt Sx CuFt Cmt		% Excess	Mud Wt	MASP	BOPE	Hole-Cplg	
12 1/4	0.3132	1350 2381	1600	49	10.00	2032	ЗМ	0.81	
is Gradient us				> 0 70 OV					
		egment(s): A, B, C, D = 0		>0.70, OK.	~~~ <u>~</u> ~~~			a	
7 casing inside the 95/8					Design Fa	ctors	PROD	PRODUCTION	
Segment	#/ft	Grade	Counting				• • • • • • • • • • • • • • •		
beyment		Giaue	Coupling	Joint	Collapse	Burst	Length	Weight	
"A"	26.00	L 80	LT&C	2.09	Collapse 1.4	Burst 1.61	Length 8,835	Weight 229,710	
"A" " B "	26.00 26.00	L 80	in the second		، ، ، هم محمد الم المعالم الم		8,835 815	- ur	
"A" " B "	26.00 26.00 d, 30min Sfc	L 80 L 80 Csg Test psig: 971	LT&C LT&C	2.09 4.04	1.4 1.19	1.61 1.61 Totals:	8,835 815 9,650	229,710 21,190 250,900	
"A" " B "	26.00 26.00 d, 30min Sfc	L 80 L 80 Csg Test psig: 971 ent Design Factors	LT&C LT&C s would be:	2.09 4.04 35.41	1.4 1.19 1.32	1.61 1.61 Totals: if it were a	8,835 815 9,650 vertical we	229,710 21,190 250,900 ellbore.	
"A" " B " w/8.4#/g mu B	26.00 26.00 d, 30min Sfc (Segme	L 80 L 80 Csg Test psig: 971 ent Design Factors MTD	LT&C LT&C s would be: Max VTD	2.09 4.04 35.41 Csg VD	1.4 1.19 1.32 Curve KOP	1.61 1.61 Totals: if it were a Dogleg ^o	8,835 815 9,650 vertical we Severity ^o	229,710 21,190 250,900 ellbore. MEOC	
"A" " B " w/8.4#/g mu B No Pilot	26.00 26.00 d, 30min Sfc (Segme Hole Plar	L 80 Csg Test psig: 971 ent Design Factors nned MTD 9650	LT&C LT&C s would be: Max VTD 9390	2.09 4.04 35.41 Csg VD 9390	1.4 1.19 1.32 Curve KOP 8835	1.61 1.61 Totals: if it were a Dogleg ^o 90	8,835 815 9,650 vertical we Severity ^o 10	229,710 21,190 250,900 ellbore. MEOC 9755	
"A" " B " w/8.4#/g mu B No Pilot The ce	26.00 26.00 d, 30min Sfc (Segme Hole Plar ment volun	L 80 L 80 Csg Test psig: 971 ent Design Factors nned MTD 9650 ne(s) are intended to ac	LT&C LT&C s would be: Max VTD 9390 chieve a top of	2.09 4.04 35.41 Csg VD 9390 4285	1.4 1.19 1.32 Curve KOP 8835 ft from su	1.61 1.61 Totals: if it were a Dogleg ^o 90 i rface or a	8,835 815 9,650 vertical we Severity ^o 10 500	229,710 21,190 250,900 ellbore. MEOC 9755 overlap.	
"A" " B " w/8.4#/g mu B No Pilot The ce Hole	26.00 26.00 d, 30min Sfe Segme Hole Plar ment volun Annular	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling	1.61 1.61 Totals: if it were a Dogleg ^o 90 rface or a Calc	8,835 815 9,650 vertical we Severity ^o 10 500 Req'd	229,710 21,190 250,900 ellbore. MEOC 9755 overlap. Min Dist	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size	26.00 26.00 d, 30min Sfc (Segme Hole Plar ment volun Annular Volume	L 80 L 80 Csg Test psig: 971 ent Design Factors nned MTD 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min Cu Ft	2.09 4.04 35.41 Csg VD 9390 4285	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt	1.61 1.61 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP	8,835 815 9,650 vertical we Severity ^o 10 500 Req'd BOPE	229,710 21,190 250,900 ellbore. MEOC 9755 overlap. Min Dist Hole-Cplg	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole	26.00 26.00 d, 30min Sfc Segme Hole Plar ment volun Annular Volume 0.1503	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look > 0	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling	1.61 1.61 Totals: if it were a Dogleg ^o 90 rface or a Calc	8,835 815 9,650 vertical we Severity ^o 10 500 Req'd	229,710 21,190 250,900 ellbore. MEOC 9755 overlap. Min Dist	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 ail cement yiel	26.00 26.00 d, 30min Sfe Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look 0 5. Tail	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min Cu Ft	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou	1.61 1.61 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2424 Jld overlap	8,835 815 9,650 vertical we Severity° 10 500 Req'd BOPE 3M	229,710 21,190 250,900 Ilbore. MEOC 9755 overlap. Min Dist Hole-Cplg 0.55 us csg shoe	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 til cement yiel	26.00 26.00 d, 30min Sfe Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3 Liner	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look ↓ 0 5. Tail w/top @ 8750	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min Cu Ft 820	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou Design I	1.61 Totals: if it were a Dogleg ^o 90 irface or a Calc MASP 2424 uld overlap Factors	8,835 815 9,650 vertical we Severity° 10 500 Req'd BOPE 3M the previo	229,710 250,900 Ilbore. MEOC 9755 overlap. Min Dist Hole-Cplg 0.55 us csg shoe	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 til cement yiel	26.00 26.00 d, 30min Sfe Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look 0 5. Tail	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min Cu Ft 820	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou	1.61 1.61 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2424 Jld overlap	8,835 815 9,650 vertical we Severity° 10 500 Req'd BOPE 3M the previo Li Length	229,710 21,190 250,900 Ellbore. MEOC 9755 overlap. Min Dist Hole-Cplg 0.55 US csg shoe INER Weight	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 hil cement yiel 4 1/2 Segment	26.00 26.00 d, 30min Sfe Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3 Liner #/ft	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look ↓ 0 5. Tail w/top @ 8750 Grade	LT&C LT&C Max VTD 9390 chieve a top of Min Cu Ft 820 Coupling	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess d for the cs	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou <u>Design I</u> Collapse	1.61 1.61 Totals: if it were a Dogleg ^o 90 Inface or a Calc MASP 2424 Juid overlap Factors Burst	8,835 815 9,650 vertical we Severity° 10 500 Req'd BOPE 3M the previo	229,710 250,900 Ilbore. MEOC 9755 overlap. Min Dist Hole-Cplg 0.55 us csg shoe	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 hil cement yiel 4 1/2 Segment "A" "B"	26.00 26.00 d, 30min Sfe Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3 d above 1.3 Liner #/ft 11.60 11.60	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look 0 5. Tail w/top @ 8750 Grade L 80	LT&C LT&C s would be: Max VTD 9390 chieve a top of Min Cu Ft 820 cmt propose Coupling LT&C	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess d for the cs Joint 2.44	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou Design I Collapse 1.28	1.61 1.61 Totals: if it were a Dogleg ^o 90 Inface or a Calc MASP 2424 Uld overlap Factors Burst 1.73	8,835 815 9,650 vertical we Severity° 10 500 Req'd BOPE 3M the previo Li Length 1,005	229,710 21,190 250,900 ellbore. 9755 overlap. Min Dist Hole-Cplg 0.55 us csg shoe INER Weight 11,658	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 ail cement yiel 4 1/2 Segment "A" "B" w/8.4#/g mu	26.00 26.00 d, 30min Sfc (Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3 d above 1.3 Liner #/ft 11.60 11.60 d, 30min Sfc (L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look \> 0 5. Tail w/top @ 8750 Grade L 80 L 80 L 80	LT&C LT&C Max VTD 9390 chieve a top of Min Cu Ft 820 Coupling LT&C LT&C	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess d for the cs Joint 2.44	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou Design I Collapse 1.28	1.61 1.61 Totals: if it were a Dogleg ^o 90 Inface or a Calc MASP 2424 Id overlap Factors Burst 1.73 1.73 Totals :	8,835 815 9,650 vertical we Severity ^o 10 500 Req'd BOPE 3M the previo Li Length 1,005 4,076	229,710 21,190 250,900 ellbore. 9755 overlap. Min Dist Hole-Cplg 0.55 US csg shoe INER Weight 11,658 47,282	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 ail cement yiel 4 1/2 Segment "A" "B" w/8.4#/g mu	26.00 26.00 d, 30min Sfc (Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3 d above 1.3 Liner #/ft 11.60 11.60 d, 30min Sfc (L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look ↓ 0 5. Tail w/top @ 8750 Grade L 80 L 80 L 80 Csg Test psig: 1,344	LT&C LT&C Max VTD 9390 chieve a top of Min Cu Ft 820 Coupling LT&C LT&C	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess d for the cs Joint 2.44 4.48	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 sg below cou <u>Design I</u> Collapse 1.28 1.41	1.61 1.61 Totals: if it were a Dogleg ^o 90 Inface or a Calc MASP 2424 Id overlap Factors Burst 1.73 1.73 Totals :	8,835 815 9,650 vertical we Severity ^o 10 500 Req'd BOPE 3M the previo Li Length 1,005 4,076 5,081	229,710 21,190 250,900 ellbore. MEOC 9755 overlap. Min Dist Hole-Cpig 0.55 us csg shoe INER Weight 11,658 47,282 58,940	
"A" "B" w/8.4#/g mu B No Pilot The ce Hole Size 8 3/4 ail cement yiel 4 1/2 Segment "A" "B" w/8.4#/g mu The ce	26.00 26.00 d, 30min Sfc (Segme Hole Plar ment volun Annular Volume 0.1503 d above 1.3 Liner #/ft 11.60 11.60 d, 30min Sfc (ment volun	L 80 L 80 Csg Test psig: 971 ent Design Factors nned 9650 ne(s) are intended to ac 1 Stage 1 Stage Cmt Sx CuFt Cmt look ↓ 0 5. Tail w/top @ 8750 Grade L 80 L 80 L 80 Csg Test psig: 1,344 ne(s) are intended to ac	LT&C LT&C Max VTD 9390 chieve a top of Min Cu Ft 820 Coupling LT&C LT&C LT&C chieve a top of Min Cu Ft	2.09 4.04 35.41 Csg VD 9390 4285 1 Stage % Excess d for the cs Joint 2.44 4.48 8750	1.4 1.19 1.32 Curve KOP 8835 ft from su Drilling Mud Wt 8.40 Sg below col <u>Design I</u> Collapse 1.28 1.41 ft from su Drilling Mud Wt	1.61 1.61 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2424 JIId overlap Factors Burst 1.73 1.73 Totals: rface or a	8,835 815 9,650 vertical we Severity° 10 500 Req'd BOPE 3M the previo Lit Length 1,005 4,076 5,081 900	229,710 21,190 250,900 ellbore. MEOC 9755 overlap. Min Dist Hole-Cplg 0.55 us csg shoe NER Weight 11,658 47,282 58,940 overlap.	