t i			 /	ATS-14-423
Form 3160-3 (March 2012) UNITED ST		HOBBS COS	OMB No Expires Oc	APPROVED . 1004-0137 tober 31, 2014
DEPARTMENT OF T BUREAU OF LAND APPLICATION FOR PERMIT	MANAGEMENT	DEC 03 201	6. If Indian, Allotee of N/A	
la. Type of work: XDRILL R	EENTER	RECEIVER	7. If Unit or CA Agree	ment, Name and No.
	EENTER		N/A 8. Lease Name and W	-11 No (38693)
lb. Type of Well: Oil Well Gas Well Other	Single Zone	X Multiple Zone	Ruby Federal	58
2. Name of Operator ConocoPhillips Company 2/78/7	>		9. API Well No. 30-025-	2297
3a. Address 600 N. Dairy Ashford P-10-4054	3b. Phone No. (include an (281)206-5281	ea code)	10. Field and Pool, or Ex Maljamar; Yeso	ploratory
4. Location of Well (Report location clearly and in accordance	with any State requirements.*)		11. Sec., T. R. M. or Blk	
At surface UL J 1520' FSL & 1651' FEL			Sec. 18, T17S, R	.32E
At proposed prod. zone UL O 990' FSL & 1650 F			12 County on Decish	13. State
 Distance in miles and direction from nearest town or post offic Approximately 6.8 miles from Maljamar 	ce* ·		12. County or Parish Lea	NM
15. Distance from proposed* 330' location to nearest	16. No. of acres in lease	17. Spacir	ig Unit dedicated to this we	.11
property or lease line, ft. (Also to nearest drig, unit line, if any)	1601.9 6	40		
 18. Distance from proposed location* 130' to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed Depth 6949' TVD/ 698		BIA Bond No. on file 85	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date we	ork will start*	23. Estimated duration	
3972' GL	12/15/2014		9 days	
	24. Attachments			
 The following, completed in accordance with the requirements of Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest S SUPO must be filed with the appropriate Forest Service Office 	4. Bond Item 2 system Lands, the 5. Opera	to cover the operatio 20 above). tor certification other site specific info	ns unless covered by an exponential and/or plans as m	2
25. Signature Susan B. Mauna	Name (Printed/Typ Susan B. Mar		D	hate 3/4/2014
Title Senior Regulatory Specialist				
Approved by (Signature)	Name (Printed/Ty)	ped)	E	DateNOV 2 4 2014
Title FIELD MANAGER	Office			
Application approval does not warrant or certify that the application	nt holds legal or equitable title to	those rights in the sub	SBAD FIELD OFFICE ject lease which would enti	tle the applicant to
conduct operations thereon. Conditions of approval, if any, are attached.		APPR	OVAL FOR TW	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make States any false, fictitious or fraudulent statements or representation	it a crime for any person knowing ons as to any matter within its juris	igly and willfully to m		
(Continued on page 2)			*(Instru	ctions on page 2)
Roswell Controlled Water Basin	l	103/14 n 103/14		
	peral Requirements	SEE V	TTACHED F	ÖR

Approval Subject to General Requirements & Special Stipulations Attached

•

۴....

SEE ATTACHED FOR CONDITIONS OF APPROVAL TO A 2014

HOBBS OCD

Operator Certification

DEC 03 2014

RECEIVED

CONOCOPHILLIPS COMPANY

CERTIFICATION:

I hereby certify that I, or persons under my direct supervision, have inspected the proposed drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application with bond coverage provided by Nationwide Bond ES0085. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Maunder Date: 3/4/14 Jugan

Susan B. Maunder Senior Regulatory Specialist

Drilling Plan ConocoPhillips Company Maljamar; Yeso (west)

HOBBS OCD

DEC 03 2014

Ruby Federal #58

RECEIVED

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depth FT TVD	Top Depths FT MD	Contents
Quaternary	Surface	Surface	Fresh Water
Rustler	696	696	Anhydrite
Salado (top of salt)	866	866	Salt
Tansill (base of salt)	1860	1860	Gas, Oil and Water
Yates	2063	2063	Gas, Oil and Water
Seven Rivers	2371	2372	Gas, Oil and Water
Queen	3001	3007	Gas, Oil and Water
Grayburg	3414	3424	Gas, Oil and Water
San Andres	3777	3790	Gas, Oil and Water
Glorieta	5270	5295	Gas, Oil and Water
Paddock	5347	5373	Gas, Oil and Water
Blinebry	5673	5701	Gas, Oil and Water
Tubb	6749	6780	Gas, Oil and Water
Deepest estimated perforation	6749	6780	Deepest estimated perf. is ~ Top of Tubb
Total Depth (maximum)	6949	6980	200' below deepest estimated perforation

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program: Λ

1

Type	Hole Size	N	Interval 1D RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fa lated per Co Corporate (nocoPhillips
i ype	(in)	From	То	(inches)	(lb/ft)		Com	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0	18977 17-766	8-5/8	24#	J-55	STC	2950	1370	244	1.57	3.58	3.59
Prod	7-7/8	0	6915' – 6960'	5-1/2	17#	L-80	LTC	7740	6290	338	2.12	2.51	1.98

The casing will be suitable for H₂S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	780 786	24	2950	1370	244000	8.5	7.75	3.60	11.8	13.6
Production Casing	6960	17	7740	6290	338000	10	2.12	1.72	2.83	3.34

Casing Safety Factors – Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

ConocoPhillips Corporate Criteria for Minimum Design Factors

	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

yrpe exadurator	Depin 85		MIY 5 3500	Cal	JIST	Fipe Vield		BUTS1	Col	Ten	T		* • ****	• •• •• • • •	•••
reduction Casing (3-5/3" 244 J-55 STC) reduction Casing (3-3/2" 17/4 L-80 LTC)	786		24 295 17 774	0 13		381000	8.5		0 4.0	2 3.					
		·						1	<u> </u>	<u>- </u>					
Burst - ConscoPhillips Peopliced Load Cases. The maximum riseral (bars) load on the Exitize Caseg bouns when the surface	te nasna is k	estad ka	1500 pct (co	1327 B .M	Ondara Ordar	2 - St. Bocusa	mintrà								
The maturem internal (burnt) load on the Production Gasing occurs during the in	ectero struta														
(NWWP) is the pressure that world it ConnocPhiles Corporate Oriesta for Massa Surface Casing Test Pressure -	1500	154			Fielded Par	o Pressure at 1	TD (FFTD) -	8.5	6]::p;						
Exiting Reliad Waiting Pression (EOPE) . Fight Say .	2000 10				Fipticiad Fizz (යාන්ෂාන් ක්.මස	na (CERC) .	19.23							
Surface Casing Burst Selary Forder - AFI Burst Pathog/ Machism I Production Casing WAYP for the Fracture Scinuteion - AFI Burst 1	Fielded Su	ctace Pi				bio Surface Pi	inter (MASP	7							
·	nazier oorp	ineta in	280100 C142	6 1969-jn 1	-2126										
Iface Casing Burst Sale ty Factor: Care #1. MPSP (MWays next section) =	786	x	0.052	x	10		256								
Case #2. MPSP (Field SW @ Bulhead _{(case} + 200 ps) =	786	x	0.052		19,23	•	358	Ŧ	200	a	569				
Case #2: MPSP (Kick Vol @ rext section TD) = Case #4: MPSP (PPTD - GG) =	8960 8360		0.052 0.052		8.55 8.55	-	819.4 896		339 2399	ia.	2138				
Case #3 & #4 Linžied to MPSP (CSFG + 0.2 ppg) -	788		0.052		19,23	-	0.2) =	774						
MASP (MWinyi + Test Pressure) = Burst Salety Factor (Max, MPSP or MASP) =	766 2950	× /	0.052 1639	х 8	8.5 1.60	4	1500	· 🖬	1639						
duction Casing Burst Salety Factor:															
Case #1. MPSP (MW tys TD) = Case #4. MPSP (PPTD - GG) =	6960 6960	X X	0.052 0.052	я Х	10 8.55	-	2819.2 896		2336						
Burst Safety Faster (Max. MPSP) =	7740	1	2619		2.14										
MAWP for the Fracture Stimulation (Corporate Griteria) =	7740	ł	_1.15_	- *	6720										
Collegge - ConocoPhillips Regulared Load Cases															
The maximum collepse fouriers the Surface Casing occurs when consering to sur The maximum collepse fouriers the Production Casing occurs when consering to							i opesse (til)	i erzenato	n).						
thereises, foo actemnit processes profile for the evaluation cause should be equal t	o he propietio	eccune (ci the barizon	nei nes tha	a tele al ito c	użą wathwa	assemed to b	a FPTD.							
Surface Carsing Collepse Salety Factor & AFI Collepse Raing / Fai Productors Carsing Collepse Salety Factor & AFI Collepse Haing / A							Camation in 2	Sustana							
Contact Depletement Fluid (FA) -	B.34	φg		Tep	of Connection	Content to Su	cia::0								
Surface Comort Loss - Surface Comort Tell -	13.6				neti Lezi . eneri Tali .	<u>11.8</u> 18.4									
Top of Siziano Tel Comori .	300		Tep s		el Camera "	5200									
Nate Casing Collapse Salety Factor:															
Full Evacuation Diff Pressure -	786	X	0.052	x	8.55	-	341	000	-	B (27)	_	14.0		200	
Costensing Diff LH Pressure = Collapse Salety Factor =	j(1370	488 1	* 341	0.052	x 4.02	12.6)+{	300	x	0.052	x	14.8	<i>i</i> -	332] - 22
oduction Casing Collapse Salery Factor:		2000	_	0.057		0.65		0100	,	~	-	0.050	_	0.04	
1/2 Evacuation Dff Pressure - Cementing Diff Lft Pressure -	₽ K	8980 1780		0.052 0.052	¥ K	8.55 11.8	}-{ }+{	6960 5200	/ x	3 0.052	x	0.052 18.4	x }-	3018)] = 20] = 24
Collapse Salety Factor -	8290	1	2498	-	2.52										-
The maximum axial (banaon) load ensure & casing wave to get shock and pulled on Maximum Allowable Axial Load for Pipe Yerde APIPipe Yard B				um Seinili	වනුදුරු වනුදුරුම										
Maxatum Al'owab's Azaf Laas ha John AFF Josh Staruph Ra Maxatum Al'owab's Hook Load (Lumizot in 75% of Rig Nat Load Maxatum Al'owab's Overpail Margin e Maximum Al'owab's Hoo Torizal Safay Festor - AFP Roo Yash (UTFAF) Joint Storigh (V Rig Max Load (300,000 bis) x 75% e	ting/ Corpon d) - Maximum k Load - Bou XT Ro Max L 225000 t	n Albur n Albur 1921ti Wi 1921ti Ra 193	ruun Adal D ada Adal Le tol De Shnj	lazign Fez adi J	11 T	n Dvandi Fa	cured)								
Maxatum Al'owab'o Aard Laab ku John - AFI Josh Sarangh Ra Maxatum Al'owab'o Hook Load (Lumido to 75% of Raf Max Loa Maxatum Al'owab'o Curpan Mangao – Maxatum Al'owab'o Hoo Torizzal Sofay Factor – API Pop Yand 'Off AFI Joint Etiongh 'O Raj Max Load (S10,000 Brd) 77% – Unfimum Overpui) Requised –	ting/Comon d)= Macman k Lozd - Sou XT Ro Max L	n Albur n Albur 1921ti Wi 1921ti Ra 193	ruun Adal D ada Adal Le tol De Shnj	lazign Fez adi J	11 T	n Ovensell Fø	chroq)								
Maxatum Al'owab'o Andi Loao ha John A Fi Jost Saurgh Ra Maxamum Al'owab'o Hook Load (Lumizor in 75% of Ray Max Maxatum Al'owab'o Curpan Mangine Maxamum Alowab'o Hoo Maxatur Al Maximum Alexandri Saurgh (Ray Max Load (S30,000 Ba) x 75% - Untimum Overpui) Requised -	ting/ Corpon d) - Maximum k Load - Bou XT Ro Max L 225000 t	n Albur n Albur 1921ti Wi 1921ti Ra 193	ruun Adal D ada Adal Le tol De Shnj	lazign Fez adi J	11 T	n Drandi Fø	child)								
Maxatian Allowabio Andi Loao ha Johni - AFi Jost Sarangh Ra Maxamin Allowabio Hook Load (Lunizor to 75% of Rig Max Load Maxatian Allowabio Graphia Mangio - Maxamin Allowabio Hoo Terraal Sofay Factor - API Poo Yani Ort AFI Joan Energin O Rig Max Load (St0,000 tod) 17796 - Unimum Oversul Required - face Casing Tensial Strength Salety Factor: Air W1 - Bouy ant W1 -	trg/ Coman a) - Macristi & Load - Bau 37 Ro Max L 225000 1 50000 1 18364 18364	Ep Mna: m Abovi iyzni Wi cont Re is is	num Anti D thia Anti Lo toi the Shing ting / (Borys 0.270	lazign Fez adi J	ttr Ebing - Manimum 15998	n Overpul Fø	chrod)								
Maxatum Al'ovable Azel Load bu John - AFI Jost Stramph Ra Uncenten Al'ovable Hook Load (Lumizot to 75% of Rig Nat Load Maxatum Al'ovable Overpail Margine - Maximum Al'ovable Hoo Torizal Safay Fostor - API Poe Yabi UST AFI Jost Storgh V Rig Max Load (Sciol, 200 bai) x 75% - Unimum Overpail Regulari - face Casing Tensial Strength Safety Factor: Air W1 =	ting/ Coman d) = Macman k Load - Bau M Ro Max L 225000 1 50000 1 18364 18364 18364 331000 244000	in Alber Main Alber Iyani Wi Can Ra Is	num Anti D 1999 Antii Le 101 Die Stanj 108 Die Stanj 109 (Borry	lazign Fez adi J	ttr Ebing - Manimum	n Ovendi Fø	chreq)								
Maxatum Alowabio Andi Laatin Johni AFI Jont Stangh Ra Maxatum Alowabio Hook Load (Lumitor to 75% of Rig Max Load Maxtean Alowabio Provide) Kungo – Maxatum Alowabio Hoo Teresal Safay Factor – API Pop Yaid 'OFT AFI Jont Stangh C Rig Max Load (Stitu) 2000 Baij x 75% – Unimum Overpuil Required – face Casing Tensial Strength Salery Factor: Air W1 – Bouyant W1 – Max. Allowabio Axial Load (Joint) –	trq/ Coman d) = Macman k Load - Sou FR Ro Max L 225000 1 50000 1 18364 18364 18364 331000 244000 174286	rzo Mna m Alboo tyzni Wi cost Rz is is is is is is is	num Act D tota Act Lo tot the Strat ing / (Bocy: 0.270 1.40 1.40	iozign Fzz दर्व दर्व Wioti दर्व Wioti = = =	155993 2772143 174288										
Maxaum Alowabia Aasi Laat ku John A Fi Jost Starryk Ra Maxaum Alowabia Hook Load (Lumator to 75% of Fig Mat Load Maran Alowabia Overpel Margin - Maxaum Alowabia Hoo Terzal Salay Fester - API Pop Yosh UR API Joen Storryk - Unimum Overpel Registred - Hace Casing Tensial Strength Salery Factor: Air Wi = Bouyant Wi = Max. Alowabia Avial Load (Joint) = Max. Alowabia Aviab Avial Load (Joint) = Max. Alowabia Aviab Avial Load (Joint) = Max. Alowabia Cremptil Margin = Tensial Salery Factor =	ting/ Coman d) = Macman k Load - Bau M Ro Max L 225000 1 50000 1 18364 18364 18364 331000 244000	Ep Mna: m Abovi iyzni Wi cont Re is is	num Anti D nita Anti Lo tol the Sting ing / (Borry ing / (Borry 0.270	azign Fzz azi ardWioti ardWioti	ttr Ebing + Minimum 15993 272143	n Dvಞಾಟೆ Fø) =) =	्याच्व) 156267 270								
Maxatum Allowablo Andi Laat ku John A Fi Jont Starigh Ra Maxatum Allowablo Hook Load (Lumizot to 75% of Rig Max Load Maximum Allowablo Warby Okryania Maximum Allowablo Hoo Torizal Sofay Factor - API Pop Yald 'OFT AFI Joint Strength'O Rig Max Load (St00,000 tod) x 75% - Unimum Overpuil Regimed - face Casing Tensial Strength Salety Factor: Air W1 - Bouyant W1 - Max. Allowable Axial Load (Pipe Yicki) - Max. Allowable Axial Load (Pipe Yicki) - Max. Allowable Axial Load (Pipe Yicki) - Max. Allowable Axial Load (Joint) - Max. Allowable Axial Load (Joint) - Max. Allowable Overpuil Margin - Tensial Salety Factor - duction Casing Tensial Strength Salety Factor:	ting/ Convert a) = Macmet * Lear - Eau 225000 1 50000 1 50000 1 18384 18384 18384 331000 244000 174286 174286 244000	zzo Mina m Albeen iyzni Wi eozri Rzi izs izs izs izs izs izs izs izs izs i	num Acci D nite Acti L tol the Straig ing / (Bory) 0.070 1.40 1.8394	kazign F22 sad satWt of 1 = = = x	ttr Ebing - Marinan 15998 272143 174298 0.670)-	156267								
Maximum Allowable Aced Load for John - AFI / and Starryth Ra Maximum Allowable Hook Load (Lumizer to 75% of Rg Max Load Marcelan Allowable Overpet Wargen - Maximum Allowable Hoo Terzal Solay Factor - API Poo Yard (UR API Joan Elangth C Rg Max Load (S00,000 Baj x 75% - Mrimum Overpet) Required - Hace Casing Tensial Strength Salery Factor: Air W1 = Bouy ant W1 = Max. Allowable Axial Load (Pipe Yiek!) = Max. Allowable Axial Load (Pipe Yiek!) = Max. Allowable Axial Load) = Max. Allowable Xeizel Load (Joint) = Max. Allowable Overpet) Maximi = duction Casing Tensial Strength Salery Factor: Air W1 = Bouy ant W1 =	traj Conor. d) - Wacmet k Lost - Sou W Ro V.z 1 225000 1 50000 1 18364 18364 18384 331000 244000 174296 244000 118320 118320	zzo Mina m Albow ryzni Wi iozri Rz is is is is i i i i i i i i i i i i i	num Acci D nita Acci L Lita Anti Le Loi the Straj Ing / Eccy L40 L40 18394 15958 0.647	kazign F22 sad satWt of 1 = = = x	irr Ehing - Mahau 15989 272143 174298 0.870 50000 100256)-	156267								
Maxatian Allowabio And Laat for Joint April A Fillont Startigh Ra Maxatian Allowabio Hook Load (Linitato for Fill of Rig Max Load Maximum Allowabio Hook Load (Linitato for Fill of Rig Max Load Startight (Status) - API Pop Yald 'OFF AFI Joint Startight O Rig Max Load (Status) - Maximum Allowabio - C Hannum Overpuil Regimed - Maximum Allowabio - C Hannum Overpuil Regimed - Maximum Allowabio - API Pop Yald 'OFF AFI Joint Startight O Hannum Overpuil Regimed - C Hannum Overpuil Regimed - Max. Allowabio Load (Pipe Yield) - Max. Allowabio Axial Load (Pipe Yield) - Max. Allowabio Axial Coad (Pipe Yield) - Max. Allowabio Axial Starty Factor - duction Casing Tensial Strength Salety Factor: Air Wi = Bouyant Wi = Max. Allowabio Coerpuil Margin = Hang Allowabio Salety Factor - Bouyant Wi = Bouyant Wi = Bouyant Wi =	traj Conor. d) - Macmat k Load - Buch 225000 1 50000 1 18364 18364 18390 244000 174286 174286 244000 118320 118320 397000	zzo Mina m Alzowa nyani Wi ioani Raz izo ioani Raz i ioani Raz i i i i i i i i i i i i i i i i i i i	0.270 0.270 0.40 0.40 0.270 0.270 0.270 1.40 1.8324 1.5953 0.847 1.40	kazign F22 sad satWt of 1 = = = x	15999 2772143 174298 0.570 56000 100258 263571)-	156267								
Maximum Allowable Aport Load for John - AFI Jont Strangth Ra Maximum Allowable Aport Load (Lumator to 75% of Rg Max Load Marcinum Allowable Aport Dividing - Maximum Allowable House Torizaal Sectory Factor - API Pop Yord 'UFF AFI Joint Ebrorgh 'C Rg Max Load (Stot, 2000 Edg 1775% - Minimum Overpui) Regimed - face Casing Tensial Strength Salery Factor: Air W1 - House Allowable Axial Load (Pipe Yield) - Max. Allowable Overpuil Margin - Tensial Salery Factor: Air W1 - Bouyant W1 - Max. Allowable Overpuil Margin - Tensial Salery Factor: Air W1 - Bouyant W1 - Max. Allowable Overpuil Margin - Max. Allowable Overpuil Margin - Max. Allowable Code (Cipe Yield) - Max. Allowable Load (Cipe Yield) - Max. Allowable Axial Load (Cipe Yield) - Max. Allowable Axial Load (Dipe Yield) -	traj Const. a) - Macmart Mac	20 Mmin mABow yyzni W och Rz bs z / / / / / / / / / / /	0.870 0.870 0.870 1.40 1.8384 1.8384 1.5953 0.847 1.40 1.40	kazign Fzz and and Wied i 	15999 272143 174296 0.670 50000 100256 263571 241429) =) =	156267 2.70								
Maxatian Alowabio And Laat for John AFI/ont Staringh Ra Maxatian Alowabio Hook Load (Linitadi 10 75% of Rg Max Load Maxatian Alowabio Gurayal Margine Maxatian Alowabio Hoo Tereasi Safay Factor - AFI Poo Yield 'UR AFI-Joint Ehengh 'C Rig Max Load (Stitu,000 Biol 1775% - Urimum Oversul Required = face Casing Tensial Strength Salety Factor: Air W1 = Bouyant W1 = Max. Allowabio Axial Load (Pipe Yield) = Max. Allowabio Axial Load (Joint) = Max. Allowabio Axial Load (Joint) = Max. Allowabio Overputil Margin = Tensial Gafety Factor: Air W1 = Bouyant W1 = Bouyant W1 = Bouyant W1 = Max. Allowabio Overputil Margin = Tensial Gafety Factor: Air W1 = Bouyant W	trop / Corport a) = Macimum	zzo Mina m Alzowa nyani Wi kozd Rz bs ts ts ts ts ts ts ts ts ts ts ts ts ts	0.270 0.270 0.40 0.40 0.270 0.270 0.270 1.40 1.8324 1.5953 0.847 1.40	kazign F22 sad satWt of 1 = = = x	15999 2772143 174298 0.570 56000 100258 263571)-	156267								
Maximum Alowabie And Laat bu John AFI Jont Soungh Ra Maximum Alowabie Hook Load (Lumido to 75% of Rig Max Load Maximum Alowabie Hook Load (Lumido to 75% of Rig Max Load Solay Faster - API Poo Yaid 'OFT AFI Jont Strength'C Rig Max Load (St00,000 tod) 177% - Unimum Overcui Required - face Casing Tensial Strength Salety Factor: Air W1 - Bouyant W1 - Max. Alowabie Axial Load (Pipe Yicki) - Max. Alowabie Axial Load (Pipe Yicki) - Max. Alowabie Axial Load (Pipe Yicki) - Max. Alowabie Axial Load (Stont) - Max. Alowabie Axial Load (Joint) - Max. Alowabie Axial Load (Joint) - Bouyant W1 - Max. Alowabie Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load (Pipe Yicki) - Max. Alowabie Hook Load (Limite Axial Load High Axial Load) -	trop / Corport a) = Macimum	20 Mmi m Alber yem W kood Re 15 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	num Acci D the Anti Le lot the Strap ing / Leery 0.270 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	kazign F22 33 34 44 44 4 4 4 4 4 4 4 4 4 4 4 4 4	15999 277143 174298 0.870 50000 100258 263571 241429 0.647	}-)-)-	156267 3.70 124744								
Maximum Alowable And Laat for John - AFI Jont Stamph Ra Maximum Alowable Hook Load (Luminad to 75% of Rig Max Load Maximum Alowable Another Margine Maximum Alowable Hoo Tornaal Safety Factor - API Pop Yaid 'OFT AFI Joint Etergin' O Rig Max Load (St0,000 test a 75% - Minimum Oversetil Reputed - flace Casing Tensial Strength Safety Factor: Air W1 - Bouy ant W4 - Max, Allowable Axial Load (Pipe Yield) - Max, Allowable Axial Load (Pipe Yield) - Max, Allowable Axial Load (Pipe Yield) - Max, Allowable Axial Load (Joint) - Max, Allowable Axial Load (Pipe Yield) - Max, Allowable Axial Load (Joint) -	trup / Corport a) - MacInet Marcin		0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 1.40 1.00 1	kazign F22 33 34 44 44 4 4 4 4 4 4 4 4 4 4 4 4 4	15999 277143 174298 0.870 50000 100258 263571 241429 0.847	}-)-)-	156267 3.70 124744	·							
Maximum Alowable Hook Load (Limited to 75% of Rig Max Load Maximum Alowable Hook Load (Limited to 75% of Rig Max Load Maximum Alowable Hook Load (Limited to 75% of Rig Max Load Rig Max Load (200,000 that 77% - Max Minum Overbuil Repured - Max Alowable Factor: Max Minum Overbuil Repured - Max. Alowable Axial Load (Pipe Yieki) - Max. Alowable Overpuil Margin - Tensial Safety Factor: Max. Alowable Overpuil Margin - Tensial Safety Factor: Max. Alowable Overpuil Margin - Max. Alowable Overpuil Margin - Max. Alowable Axial Load (Pipe Yieki) - Max. Alowable Axial Load (Pipe Yieki) - Max. Alowable Axial Load (Pipe Yieki) - Max. Alowable Axial Load (Dig Max Load) - Max. Alowable Axial Load (Dig Max Load) - Max. Alowable Overpuil Margin - Tensial Safety Factor - Max. Alowable Axial Load (Pipe Yieki) - Max. Alowable Axial Load (Dig Max Load) - Max. Alowable Overpuil Margin - Tensial Safety Factor - Tensial Safety Factor - Max. Alowable Overpuil Margin - Tensial Safety Factor - Max. Alowable Overpuil Margin - Tensial Safety Factor -	the Construction of the Co	zo Mini m Albeen ryzni Wi co cari Riz is z z z z z z z z z z z z z z z z z	0.870 0.870 0.870 1.40 1.40 1.8384 1.5953 0.847 1.40	kazign F22 33 34 44 44 4 4 4 4 4 4 4 4 4 4 4 4 4	15999 277143 174298 0.870 50000 100258 263571 241429 0.847	}-)-)-	156267 3.70 124744								
Maximum Allowable Arad Laas for John - AFI Jont Stamph Ra Maximum Allowable Hook Load (Lumiant for 7%) of Rg Max Load Maximum Allowable Hook Load (Lumiant for 7%) of Rg Max Load (Stamum Allowable Arad) Rugine - Maximum Allowable Hook Rg Max Load (Stat) South Stamph O Rg Max Load (Stat) South Stamph O Hone Casing Tensial Strength Salety Factor: Air W1 - Bouy ant W1 - Max, Allowable Axial Load (Pipe Yieki) - Max, Allowable Overpull Margin = Bouy ant W1 - Bouy ant W1 - Max, Allowable Overpull Margin = Max, Allowable Axial Load (Pipe Yieki) - Max, Allowable Coerput Margin = Tensial Salety Factor - Compression Strength - ConocoPhillips Required Load Cases The maximum and (Caspeasce) factor casing is the atabac casing is the atabacasing is the atabac casing is the atabac casin	trup/ Conver. g) = Maximum M	zo Mina mAbues nyari Wi casi Ra is is is is is is is is is is is is is	D.270 1.40 0.270 1.40 1.40 1.40 18394 1.5993 0.647 1.40 116320 1.00259 100259 1.00259	iczign Fzz cad cad cadWiot: - - - - - - - - - - - - - - - - - - -	15999 277143 174298 0.870 50000 100258 263571 241429 0.847	}-)-)-	156267 3.70 124744	·							
Maximum Allowable And Laat for John AFI Jont Startph Ra Maximum Allowable Hook Load (Lundor for File of Rig Max Load Maximum Allowable Hook Load (Lundor for File of Rig Max Load Startpart Allowable Oranged Startph - Jont Startph C Rig Max Load (Status) Bay 1978 - Minnum Overpul Reputed = (face Casing Tensial Strength Salety Factor: Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Overpull Margin = Max. Allowable Overpull Margin = Max. Allowable Overpull Margin = Bouyant W1= Bouyant W1= Max. Allowable Overpull Margin = Bouyant W1= Max. Allowable Axial Load (Pipe Yield) = Max. Allowable Deverpull Margin = Bouyant W1= Max. Allowable Deverpul Margin = Max. Al	trup/ Conver. g) = Maximum M		D.270 1.40 0.270 1.40 1.40 1.40 18394 1.5993 0.647 1.40 116320 1.00259 100259 1.00259	iczign Fzz cad cad cadWiot: - - - - - - - - - - - - - - - - - - -	15999 277143 174298 0.870 50000 100258 263571 241429 0.847	}-)-)-	156267 3.70 124744								
Maximum Aloxable Acril Laas bu John - AFI Jont Everyth Ra Maximum Aloxable Hook Load (Lumdor to 75% of Rig Max Load Garanam Aloxable Hook Load (Lumdor to 75% of Rig Max Load Garanam Aloxable Arabi Ragine Load Rights Load (GalQadd Bar) 75% - Unimum Oversull Repured - Iface Casing Tensial Strength Salety Factor: Air W1 - Bouy ant W1 - Max. Allowable Axial Load (Pipe Yieki) - Max. Allowable Axial Load (Dint) - Max. Allowable Axial Load (Joint) - Max. Allowable Axial Load (Joint) - Max. Allowable Overpull Margin - Tensial Salety Factor - Bouy ant W1 - Bouy ant W1 - Bouy ant W1 - Max. Allowable Axial Load (Pipe Yieki) - Max. Allowable Coreput Margin - Tensici Salety Factor - Allowable Coreput Margin - Compression Strength - ConocoPhillips Required Load Cases The maximum and (Caspeascies) had but howalls whate as a subbe world ravide a but that haid. Avy ofter ordit load sum as a subbay and or other world ravid Compression Salety Factor - AFIAcial Joint Exargin Hargin CH APIAnt Pipe Yieki - AFIAcia Joint India Axy ofter ordit load sum as a subbay and or other world ravid Compression Salety Factor - AFIAcia Joint Exargin Hargin CH APIAnt Pipe Yieki - AFIAcia Joint Hardor Axy ofter ordit load sum as a subbay and or other world ravid Compression Salety Factor - AFIAcia Joint Exargin Hargin CH	the construction of the co		21117 Acci 10 21178 Acci 10 21178 Acci 10 20170	iczign Fzz cad cad cadWiot: - - - - - - - - - - - - - - - - - - -	15999 277143 174298 0.870 50000 100258 263571 241429 0.847	}-)-)-	156267 3.70 124744								
Maximum Alowable Hook Load (Limited to 75% of Rig Max Load Maximum Alowable Hook Load (Limited to 75% of Rig Max Load Maximum Alowable Hook Load (Limited to 75% of Rig Max Load Generation 2000 Book 17796 - Urbinum Overvill Repured - Flace Casing Tensial Strength Salety Factor: Air W1 - Bouyant W4 - Max, Alowable Axial Load (Pipe Yieki) - Max, Alowable Overpull Margin - Tensial Salety Factor: Air W1 - Bouyant W4 - Max, Alowable Overpull Margin - Tensial Salety Factor - Max, Alowable Overpull Margin - Tensial Salety Factor - Max, Alowable Overpull Margin - Tensial Salety Factor - Max, Alowable Axial Load (Pipe Yieki) - Max, Alowable Overpull Margin - Tensial Salety Factor - Max, Alowable Axial Load (Joint) - Max, Alowable Axial	ting / Corport g) = Macmart	zo Mrai m Alboxi (.cat Rz rs rs rs r / / / / / / / / / / / / / /	num Acci D num Acci D	inaigin Faz and and Wind 1 	15993 272143 174298 0.670 50000 100256 263571 241429 0.647 50000))) 15996	156267 3.70 124744								
Maximum Alowable And Laat bu John AFI Jont Stamph Ra Maximum Alowable Hook Load (Lundor to 75% of Rig Max Load Granal Sofay Factor - API Pop Yaid 'OFT AFI Jont Stamph' O Rig Max Load (Stot,000 Bai) 177% - Unimum Overvul Reputed - face Casing Tensial Strength Salety Factor: Air W1 - Bouyant W1 - Max, Allowable Axial Load (Pipe Yieki) - Max, Allowable Axial Load (Chin) - Max, Allowable Composition (Chin) - Max, Allowable Comparison (Chin) - Max, Allowable Chin) - Max, Allowable Comparison (Chin) - Max, Allowable Comparison (Chin) - Max, Allowable Chin) - Max, Allowable Ch	ting / Corport g) = Macmart		num Acci D num Acci D	inzign Fizz and and Wind 1 - - - - - - - - - - - - - - - - - - -	15993 277143 174298 0.670 56000 100258 263571 241429 0.847 56000)))	156267 3.70 124744								
Maximum Aloxable Axed Load for John - AFI Joint Everyth Ra Maximum Aloxable Hook Load (Lumized to 75% of Rg Max Load Granult Xiowable Orthogo Wargen - Maximum Alowable Hoo Torizal Safety Factor - API Pop Yard VIF AFI Joint Eberght O Rg Max Load (St00,000 tod 1779% - Uninnum Overvill Reprind - Flace Casing Tensial Strength Safety Factor: Air W1 - Bouy ant W4 - Max, Allowable Axial Load (Pipe Yicki) - Max, Allowable Axial Load (Pipe Yicki) - Max, Allowable Axial Load (Joint) - Max, Allowable Overpull Margin - Tensial Safety Factor: Air W1 - Bouyant W1 - Bouyant W1 - Max, Allowable Overpull Margin - Tensial Safety Factor - Max, Allowable Overpull Margin - Tensial Safety Factor - Max, Allowable Axial Load (Joint) - Max, Allowable Axial Load (Jo	the Corport a) = Macmart Mac		D.E70 1.40 0.E70 1.40 1.8324 1.5958 0.847 1.8324 1.8324 1.5958 0.847 1.40 1.8324 1.5958 0.847 1.40 1.8324 1.9558 0.847 1.40 1.8324 1.90259 1.00259 1.40 1.8320 1.00259 1.8 1.60 1.8 0.65	inzign Fizz and antiWiofi	15993 272143 174298 0.670 50000 100258 263571 241429 0.647 50000) - 45240) - 45240 6.55))) 15998 100256 x	156267 3.70 124744 2.00		2441	*2 =	11094				
Maximum Aloxable Axel Laas bu Johl - AFI/ort Everyth Ra Maximum Aloxable Hook Load (Lundor to 75% of Rig Max Load Maximum Aloxable Hook Load (Lundor to 75% of Rig Max Load Fig Max Load (200,000 but 177% - Unimum Overvui) Reputed - Fig Max Load (200,000 but 177% - Max. Allowable Axel Load (200,000 but 177% - Haury ant W1 - Bouyant W1 - Max. Allowable Axel Load (Pipe Yicki) - Max. Allowable Axel Load (Chini) - Max. Allowable Doverpull Margin - Max. Allowable Doverpull Margin - Tensicl Safety Factor - Max. Allowable Doverpull Margin - Max. Allowable Doverpull Margin - Max. Allowable Doverpull Margin - Compression Strength - ConocoPhillips Required Load Cases The maximum and (compressed had in the walls where the sufficience casing Compression Strength - ConocoPhillips Required Load Cases The maximum and (compressed had in the walls where the sufficience casing Compression Strength - ConocoPhillips Required Load Cases The maximum and (compressed had in the walls where the sufficience casing Compression Safety Fictor - Nath a superior to a plater tracking mp. The antare cases of the conductor - Nathrang W1 (Bouyant) - Prod Casing W1 (Bouyant) - Tubing Ruid W1 - Load on Conductor -	trup / Corport (1) = Maximut		D.270 1.40 0.270 1.40 1.40 1.40 1.6324 1.5958 0.647 1.40 116320 100258 at. 0.652 at. 0.652 0.552 15938	inaigin Faz and and Wind 1 - - - - - - - - - - - - -	15999 277143 174298 0.570 50000 100258 263571 241429 0.647 50000) -) -) -) -) -) -) -) -) -) -)))	156287 3.70 124744 2.00	×	<u>2.441</u> 11094	*2 = =	11094 175569				
Maximum Aloxable Axed Load for John - AFI Joint Everyth Ra Maximum Aloxable Hook Load (Lumized to 75% of Rg Max Load Granult Xiowable Orthogo Wargen - Maximum Alowable Hoo Torizal Safety Factor - API Pop Yard VIF AFI Joint Eberght O Rg Max Load (St00,000 tod 1779% - Uninnum Overvill Reprind - Flace Casing Tensial Strength Safety Factor: Air W1 - Bouy ant W4 - Max, Allowable Axial Load (Pipe Yicki) - Max, Allowable Axial Load (Pipe Yicki) - Max, Allowable Axial Load (Joint) - Max, Allowable Overpull Margin - Tensial Safety Factor: Air W1 - Bouyant W1 - Bouyant W1 - Max, Allowable Overpull Margin - Tensial Safety Factor - Max, Allowable Overpull Margin - Tensial Safety Factor - Max, Allowable Axial Load (Joint) - Max, Allowable Axial Load (Jo	the Corport a) = Macmart Mac		D.E70 1.40 0.E70 1.40 1.8324 1.5958 0.847 1.8324 1.8324 1.5958 0.847 1.40 1.8324 1.5958 0.847 1.40 1.8324 1.9558 0.847 1.40 1.8324 1.90259 1.00259 1.40 1.8320 1.00259 1.8 1.60 1.8 0.65	inzign Fizz and antiWiofi	15993 272143 174298 0.670 50000 100258 263571 241429 0.647 50000) - 45240) - 45240 6.55))) 15998 100256 x	156267 3.70 124744 2.00	ж +		*2 -					

۴.

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

:	Slurry		vals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	511' – 566'	13.6	300	510	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	511' – 566'	780 711 - 766 '	14.8	200	268	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing & Cementing Program:

The intention for the cementing program for the Production Casing is to:

- · Place the Tail Slurry from the casing shoe to a point approximately 200' above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry 🔹		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	5200'	11.8	700	1820	10% Bentonite 5% Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 220% or more if needed based on gauge hole volume	2.6
Tail	Class H	5200'	6915' – 6960'	16.4	400	428	0.2% Fluid loss additive 0.3% Dispersant 0.15% Retarder 0.2% Antifoam Excess = 100% or more if needed based on gauge hole volume	1.07

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing & Cementing Program – TXI/LW Cementing Option for Grayburg-San Andres:

ConocoPhillips Company respectfully requests the options to our cementing program. This option will only be implemented in the cementing operation of wells requesting for co-mingling after approval and authorization by all agencies have been obtained. The intention for the alternative option to the cementing program for the Production Casing is to:

- Accommodate the additional frac'ing and stimulation of the Grayburg-San Andres by placement of the Tail Slurry from the casing shoe to the top of the Grayburg-San Andres formation,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	3000'	11.8	500	1300	10% Bentonite 8 lbs/sx Salt 0.2%-0.4% Fluid loss additive 0.125 lb/sx LCM if needed Excess = 200% or more if needed based on gauge hole volume	2.6
Tail	TXI/LW	3000'	6915' – 6960'	13.2	800	1120	0.5% Fluid loss additive 0.10% Retarder 0.2% Antifoam 0.125 lb/sx LCM if needed Excess = 150% or more if needed based on gauge hole volume	1.40

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volume presented above are estimates based on gauge 7-7/8" hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

źą.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to 50 percent of rated working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

The mud systems that are proposed for use are as follows:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 – 40	N.C.	N.C.	120 – 160
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 — 11	500 - 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 – 750

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2500': Resistivity, Density, and Gamma Ray
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Gamma Ray and Neutron
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - BHC or Dipole Sonic if needed (optional)
 - Spectral Gamma Ray if needed (optional)

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - o The bottom hole pressure is expected to be 8.55 ppg gradient.
 - The expected Bottom Hole Temperature is 115 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Grayburg / San Andres (from MCA)	14000	38	59	27
Yeso Group	400	433	34	15

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill this well as early as 2014 after receiving approval of the APD.

Attachments:

- Attachment # 1 BOP and Choke Manifold Schematic 3M System
- Attachment # 2 Diagram of Choke Manifold Equipment

Contact Information:

Proposed 15 January 2014 by: Steven Herrin Drilling Engineer, ConocoPhillips Company Phone (281) 206-5115 Cell (432) 209-7558

Attachment # 2

All Tees must be targeted

Description Item

- Manual Adjustable Choke, 2-1/16", 3M 1
- Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M 2
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

We will test each valve to 3000 psi from the upstream side.

Submitted by: Steven Herrin Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 3-January-2014

ConocoPhillips MCBU

Buckeye Ruby Federal Ruby Federal 58

Original Hole

Plan: Plan Design

Standard Planning Report - Geographic

11 December, 2013

Planning Report - Geographic

Database:		entral Plannin		•	Local Co	-ordinate Refe	rence:	Well Ruby Fede		
Company:		oPhillips MCBL	J		TVD Refe	егепсе:		RKB @ 3985.0	usft (PD 822)	
Project:	Buckey				MD Refer	ence:		RKB @ 3985.0u	usft (PD 822)	·.
Site:	Ruby F	ederal			North Rei	ference:		Grid		
Well:	Ruby F	ederal 58			Survey C	alculation Met	hod:	Minimum Curva	ture	
Wellbore:	Origina	l Hole			í.					•
Design:	Plan D	esign	tinte a anticipation	iá mitrationite a nar a starochtai				tertininintisterentite mitte te		
Project	Buckeye	, Lea County	NM		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	مدين من مد مدين م محمد من مدين م	nanani di shini ing i		and a strate and an end and and and a strategy and
Map System:	US State	Plane 1927 (E	Exact solution	on)	System Da	tum:	M	ean Sea Level		
Geo Datum:	NAD 1927	7 (NADCON C	ONUS)							
Map Zone:	New Mexi	ico East 3001					U	sing geodetic sca	ale factor	
Site		doral Now M	avioo Sout							· · · · · · · · · · · · · · · · · · ·
Sile		deral, New Me	exico, Souli	least	i the constant	an 1911, an 1914, an 1914, an Normality, software and a station.e.			و هم او مورون او گرم مان موها رو مناطقه و مانده میشوند.	
Site Position:				rthing:		6,097.48 usft	Latitude:			32° 49' 48.040
From:	Lat/L	ong	Eas	sting:	666	5,763.63 usft	Longitude:			103° 47' 25.559 V
Position Uncerta	inty:	3.5	iusft Slo	t Radius:		8 "	Grid Conver	gence:		0.29
Well	Ruby Fe	deral 58, Devia	ated Well	میں بند ہو			• • • • • • • •			na na mana angé nana na k
Well Position	+N/-S	0	.0 usft	Northing:		666,611.93	usft lat	itude:		32° 49' 53,310
Wein Position		Ū		Northing.		-				103° 48' 7.459 V
	+=/.\/	0	Oueft	Facting						
Position Uncertai	+E/-W inty		.0 usft .0 usft	Easting: Wellhead Elevat	tion:	663,185.74		ngitude: ound Level:		3,972.0 us
Position Uncerta				-	tion:	663,185.74		-		
Position Uncerta		0		-	tion:	663,185.74		-		
	inty Original	0	.0 usft	-	Declina	ation	Gra Dip J	ound Level:	• •	3,972.0 us
Wellbore	inty Original	0 Hole	.0 usft	Wellhead Elevat		ation	Gra Dip J	ound Level:	• •	3,972.0 us
Wellbore Magnetics	inty : Original Mod	0 Hole lel Name BGGM2013	.0 usft	Wellhead Elevat	Declina	ntion	Gra Dip J	ound Level: Angle.	• •	3,972.0 us Strength ' (nT)
Wellbore Magnetics Design	inty Original	0 Hole lel Name BGGM2013	.0 usft	Wellhead Elevat	Declina	ntion	Gra Dip J	ound Level: Angle.	• •	3,972.0 us Strength ' (nT)
Wellbore Magnetics Design Audit Notes:	inty 1. Original Mod	0 Hole lel Name BGGM2013	.0 usft	Wellhead Elevat	Declina (°)	ation 7.55	Gru Dip /	Sound Level:		3,972.0 us Strength ' (nT)
Wellbore Magnetics Design Audit Notes: Version:	inty : Original Mod	0 Hole lei Name BGGM2013 sign	.0 usft San Ph	Wellhead Elevat	Declina (°) PROTOTYPE	ation 7.55 Tie	Gru Dip / (On Depth:	Sound Level:	0.0	3,972.0 us Strength ' (nT)
Wellbore Magnetics Design Audit Notes: Version:	inty 1. Original Mod	0 Hole lei Name BGGM2013 sign	.0 usft San Ph	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S	ation 7.55 Tie +E	Gru Dip / (On Depth: /-W	Dund Level:	0.0 ection	3,972.0 us Strength ' (nT)
Wellbore Magnetics Design Audit Notes:	inty 1. Original Mod	0 Hole lei Name BGGM2013 sign	.0 usft San Ph epth From (usft)	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S (usft)	ation 7.55 Tie +E (u	Gru Dip / (On Depth: /-W sft)	Sound Level: Angle. 2) 60.64 Dire	0.0 setion (°)	3,972.0 us Strength ' (nT)
Wellbore Magnetics Design Audit Notes: Version:	inty 1. Original Mod	0 Hole lei Name BGGM2013 sign	.0 usft San Ph	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S	ation 7.55 Tie +E (u	Gru Dip / (On Depth: /-W	Sound Level: Angle. 2) 60.64 Dire	0.0 ection	3,972.0 us Strength '
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	inty 1. Original Mod	0 Hole lei Name BGGM2013 sign	.0 usft San Ph epth From (usft)	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S (usft)	ation 7.55 Tie +E (u	Gru Dip / (On Depth: /-W sft)	Sound Level: Angle. 2) 60.64 Dire	0.0 setion (°)	3,972.0 us Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	inty 1. Original Mod	0 Hole lei Name BGGM2013 sign	.0 usft San Ph epth From (usft)	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S (usft)	ation 7.55 Tie +E (u	Gru Dip / (On Depth: /-W sft)	Sound Level: Angle. 2) 60.64 Dire	0.0 setion (°)	3,972.0 us Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	inty 1 Original Mod 2 Plan Des 1	0 Hole lei Name BGGM2013 sign	.0 usft San Ph epth From (usft) 0.0	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S (usft)	rtion 7.55 Tie +E (u 0	Gru Dip / ((On Depth: /-W sft) .0	Dund Level:	0.0 setion (°)	3,972.0 us Strength (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	inty 1 Original Mod 2 Plan Des 1	0 Hole BGGM2013 sign De	0 usft San Ph epth From (usft) 0.0 Vertical	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S (usft) 0.0	ation 7.55 Tie +E (u 0 Dogleg	Gru Dip / ((On Depth: /-W sft) .0	Angle) 60.64 Dire 17 Turn	0.0 ection (°) 9.61	3,972.0 us Strength ' (nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir	1 Original Mod Plan Des 1	0 Hole BGGM2013 sign De Azimuth	0 usft San Ph epth From (usft) 0.0 Vertical Depth	Wellhead Elevat	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W	ation 7.55 Tie +E (u 0 Dogleg Rate	Gru Dip / (On Depth: /-W sft) .0	Angle. 3) 60.64 Dire 17 Turn Rate	0.0 ection (°) 9.61 TFO	3,972.0 us
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft)	1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 Hole BGGM2013 Sign De Azimuth (°)	0 usft San Ph epth From (usft) 0.0 Vertical Depth (usft)	Wellhead Elevat nple Date 12/3/2013 ase: F (TVD) +N/-S (usft) 0 0.0	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	ation 7.55 Tie +E (u 0 Dogleg Rate (°/100usft)	Gru Dip / ((On Depth: /-W sft) .0 Build Rate (*/100usft)	Dund Level: Single. 2) 60.64 Direction Turn Rate (°/100usft)	0.0 ection (°) 9.61 TFO (°)	3,972.0 us
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft) 0.0	1 Plan Des Plan Des 1 clination (°) 0.00	0 Hole BGGM2013 sign De Azimuth (°) 0.00	0 usft San Ph epth From (usft) 0.0 Vertical Depth (usft) 0.0	Wellhead Elevat nple Date 12/3/2013 ase: F (TVD) +N/-S (usft) 0 0.0 0 0.0	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0	ation 7.55 Tie +E (u 0 Dogleg Rate (°/100usft) 0.00	Gru Dip / ((On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00	Dund Level: Single. 2) 60.64 Direc 17 Turn Rate (°/100usft) 0.00	0.0 ection (°) 9.61 TFO (°) 0.00	3,972.0 us
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft) 0.0 1,860.0	1 1 1 1 1 1 0.00 0.00 0.00	0 Hole BGGM2013 sign De Azimuth (°) 0.00 0.00	.0 usft San Ph epth From (usft) 0.0 Vertical Depth (usft) 0.0 1,860.0	Wellhead Elevat nple Date 12/3/2013 ase: F (TVD) +N/-S (usft) 0 0.0 0 0.0 -31.6	Declina (*) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0	ation 7.55 Tie +E (u 0 Dogleg Rate (°/100usft) 0.00 0.00	Gru Dip / ((On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00 0.00	Dund Level: Angle. 2) 60.64 Direction 17 Turn Rate (*/100usft) 0.00 0.00	0.0 ection (°) 9.61 TFO (°) 0.00 0.00	3,972.0 us

1

,

,

Planning Report - Geographic

Database:	EDM Central Planning	Local Co-ordinate Reference:	Well Ruby Federal 58
Company:	ConocoPhillips MCBU	TVD Reference:	, RKB @ 3985.0usft (PD 822)
Project:	Buckeye	MD Reference:	RKB @ 3985.0usft (PD 822)
Site:	Ruby Federal	North Reference:	Grid
Well:	Ruby Federal 58	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	Plan Design		
	na n	•	n po na presidente de la constante de la consta La constante de la constante de La constante de la constante d
Planned Survey	- Countingutantes and we are used that the events	ي د المراجع مي مركز المركز	an a sa a sa ana an a sa an

Measured			Vertical	•		Мар	Мар		
Depth Ir	nclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 \
80.0	0.00	0.00	80.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 \
Conductor		•		•		·	.*		•
100.0	0.00	0.00	100.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 \
200.0	0.00	0.00	200.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 \
300.0	0.00	0.00	300.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
400.0	0.00	0.00	400.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
500.0	0.00	0.00	500.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
600.0	0.00	0.00	600.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
696.0	0.00	0.00	696.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 '
Rustler	0.00	0.00	700.0				000 405 74		
700.0	0.00	0.00	700.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
766.0	0.00	0.00	766.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
Surface									
800.0	0.00	0.00	800.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
866.0	0.00	0.00	866.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
Salado									
900.0	0.00	0.00	900.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,000.0	0.00	0.00	1,000.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,100.0	0.00	0.00	1,100.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,200.0	0.00	0.00	1,200.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,300.0	0.00	0.00	1,300.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,400.0	0.00	0.00	1,400.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,500.0	0.00	0.00	1,500.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 '
1,600.0	0.00	0.00	1,600.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,700.0	0.00	0.00	1,700.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
1,800.0	0.00	0.00	1,800.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459 \
1,860.0	0.00	0.00	1,860.0	0.0	0.0	666,611.93	663,185.74	32° 49' 53.310 N	103° 48' 7.459
Tansill 1,900.0	0.60	179.61	1,900.0	-0.2	. 0.0	666,611.72	663,185.74	32° 49' 53.308 N	103° 48' 7.459
	0.60		-		0.0				
2,000.0	2.10 3.05	179.61	2,000.0	-2.6 -5.4	0.0	666,609.37	663,185.75	32° 49' 53.285 N	103° 48' 7.459
2,063.1	3.05	179.61	2,063.0	-5.4	0.0	666,606.53	663,185.77	32° 49' 53.257 N	103° 48' 7.459
Yates	0.00	470.04	0.000.0			000 004 00	000 405 70		4008 401 7 450 1
2,100.0	3.60	179.61	2,099.8	-7.5	0.1	666,604.39	663,185.79	32° 49' 53.235 N	103° 48' 7.459
2,200.0	5.10	179.61	2,199.6	-15.1	0.1	666,596.81	663,185.84	32° 49' 53.160 N	103° 48' 7.459
2,300.0	6.60	179.61	2,299.0	-25.3	0.2	666,586.62	663,185.91	32° 49' 53.060 N	103° 48' 7.459
2,351.4 2,372.5	7.37 7.37	179.61 179.61	2,350.1	-31.6	0.2 0.2	666,580.36	663,185.95	32° 49' 52.998 N 32° 49' 52.971 N	103° 48' 7.459 \ 103° 48' 7.459 \
		1/9.01	2,371.0	-34.3	0.2	666,577.66	663,185.97	32 49 52.971 N	103 46 7.4591
Seven River	rs 7.37	170 61	2 209 2	27.9	0.2	CCC 574 12	662 195 00	32° 49' 52.936 N	103° 48' 7.458 \
2,400.0 2,500.0	7.37	179.61	2,398.2	-37.8 -50.6	0.3 0.3	666,574.13 666,561.30	663,185.99 663,186.08	32° 49' 52,809 N	103° 48' 7.458 \
2,500.0	7.37	179.61 179.61	2,497.4 2,596.6	-63.5	0.3	666,548.48	663,186.17	32° 49' 52.682 N	103° 48' 7.458 \
2,000.0	7.37	179.61	2,695.8	-76.3	0.4	666,535.65	663,186.25	32° 49' 52.555 N	103° 48' 7.458 \
2,800.0	7.37	179.61	2,093.8	-89.1	0.5	666,522.82	663,186.34	32° 49' 52.428 N	103° 48' 7.457 \
						666,509.99			
2,900.0 3,000.0	7.37 7 37	179.61 179.61	2,894.1	-101.9 -114.8	0.7 0.8	666,497.16	663,186.43 663,186.51	32° 49' 52.301 N 32° 49' 52.174 N	103° 48' 7.457 \ 103° 48' 7.457 \
3,000.0 3,007.8	7.37 7.37	179.61 179.61	2,993.3 3,001.0	-114.8 -115.8	0.8 0.8	666,496.16	663,186.52	32° 49' 52.174 N 32° 49' 52.164 N	103 48 7.457 \ 103° 48' 7.457 \
	1.37		3,001.0		0.8	,490.10	003,100.32	32 49 32.104 N	103 46 7.457
Queen		· • •	2 000 5	107.6	0.0	666 494 99	· •	20% ADI E2 047 N	103° 48' 7.457 \
3,100.0	7.37	179.61	3,092.5 3,101.6	-127.6	0.9	666,484.33	663,186.60	32° 49' 52.047 N	
3,200.0	7.37	179.61 179.61	3,191.6 3,200 P	-140.4	1.0	666,471.50	663,186.69	32° 49' 51.920 N	103° 48' 7.456 V
3,300.0	7.37	179.61	3,290.8	-153.3	1.0	666,458.67	663,186.77	32° 49' 51.793 N	103° 48' 7.456 V
3,400.0	7.37	179.61	3,390.0	-166.1	1,1	666,445.84	663,186.86	32° 49' 51.666 N	103° 48' 7.456 \

,

ı

Planning Report - Geographic

Databa	se:	EDM	Central Plan	nina		Local C	o-ordinate Referen	ice:	Vell Ruby Federal 58	
Compa			coPhillips MC			TVD Ref			RKB @ 3985.0usft (PD 822)	.:
•										
Project		Buck				MD Refe	erence:	, F	RKB @ 3985.0usft (PD 822)	•
Site:	and a general second	Ruby	Federal			North R	eference:	10	Grid	•
Well: Wellbo		in the second	Federal 58			Survey	Calculation Metho	d: N	Ainimum Curvature	
velido: Design		(nal Hole Design		•		a da			
Jesign		, Flair								
Planne	d Survey		÷	•••••••		····				
Me	asured			Vertical			Мар	Мар	· · · · · · · · · · · · · · · · · · ·	
Ċ	Depth	Inclination	Azimuth	Depth	,+N/-S	+E/-W	Northing	Easting	· · · · · · · · · · · · · · · · · · ·	
	usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
	3,424.2	7.37	179.61	3,414.0	-169.2	1.1	666,442.73	663,186	.88 32° 49' 51.636 N	103° 48' 7.456 V
	Grayburg						· .		1 2	
	3,500.0	7.37	179.61	3,489.2	-178.9	1.2	666,433.01	663,186	.95 32° 49' 51.540 N	103° 48' 7.456 V
	3,600.0	7.37	179.61	3,588.3	-191.8	1.3	666,420.18	663,187	.03 32° 49' 51.413 N	103° 48' 7.455 V
	3,700.0	7.37	179.61	3,687.5	-204.6	1.4	666,407.35	663,187		103° 48' 7.455 V
	3,790.2	7.37	179.61	3,777.0	-204.0	1.5				
				3,111.0	-210.2	1.5	666,395.78	663,187	.20 32° 49' 51.171 N	103° 48' 7.455 V
	San Andre		470.04	, , , , , , , , , , , , , , , , , , , ,	. 047 4		660 204 50	CC0 40-	04 000 401 E4 450 M	1000 4017 402
	3,800.0	7.37	179.61	3,786.7	-217.4	1.5	666,394.52	663,187		103° 48' 7.455 V
	3,900.0	7.37	179.61	3,885.8	-230.2	1.6	666,381.70	663,187	•	103° 48' 7.455 V
	4,000.0	7.37	179.61	3,985.0	-243.1	1.6	666,368.87	663,187	.38 32° 49' 50.905 N	103° 48' 7.454 V
	4,100.0	7.37	179.61	4,084.2	-255.9	1.7	666,356.04	663,187	.47 32° 49' 50.778 N	103° 48' 7.454 V
	4,200.0	7.37	179.61	4,183.4	-268.7	1.8	666,343.21	663,187	.55 32° 49' 50.651 N	103° 48' 7.454 V
	4,300.0	7.37	179.61	4,282.5	-281.6	1.9	666,330.38	663,187		103° 48' 7.453 V
	4,400.0	7.37	179.61	4,381.7	-294.4	2.0	666,317.55	663,187		103° 48' 7.453 V
							,			
	4,500.0	7.37	179.61	4,480.9	-307.2	2.1	666,304.72	663,187		103° 48' 7.453 V
	4,600.0	7.37	179.61	4,580.1	-320.1	2.2	666,291.89	663,187.		103° 48' 7.453 V
	4,700.0	7.37	179.61	4,679.2	-332.9	2.3	666,279.06	663,187.	.99 32° 49' 50.016 N	103° 48' 7.452 V
	4,800.0	7.37	179.61	4,778.4	-345.7	2.3	666,266.23	663,188.	.07 32° 49' 49.889 N	103° 48' 7.452 V
	4,900.0	7.37	179.61	4,877.6	-358.5	2.4	666,253.40	663,188.	16 32° 49' 49.762 N	103° 48' 7.452 V
	5,000.0	7.37	179.61	4,976.8	-371.4	2.5	666,240.57	663,188.		103° 48' 7.452 V
	5,100.0	7.37	179.61	5,075.9	-384.2	2.6	666,227.74	663,188.		103° 48' 7.451 V
	5,200.0	7.37	179.61	5,175.1	-397.0	2.7	666,214.92	663,188.		103° 48' 7.451 V
	5,295.7	7.37	179.61	5,270.0	-409.3	2.8	666,202.64	663,188.	51 32° 49' 49.260 N	103° 48' 7.451 V
	Glorieta		· .					·		
	5,300.0	7.37	179.61	5,274.3	-409.9	2.8	666,202.09	663,188.	51 32° 49' 49.254 N	103° 48' 7.451 V
	5,373.3	7.37	179.61	5,347.0	-419.3	2.8	666,192.68	663,188.		103° 48' 7.451 V
	Paddock			-,						
	• • • • • • • • •	7.07	470.04	F 070 4	400 7	·				4000 4017 4511
	5,400.0	7,37	179.61	5,373.4	-422.7	2.9	666,189.26	663,188.		103° 48' 7.451 W
	5,496.1	7.37	179.61	5,468.8	-435.0	2.9	666,176.93	663,188.		103° 48' 7.450 V
	5,500.0	7.35	179.61	5,472.6	-435.5	2.9	666,176.43	663,188.		103° 48' 7.450 V
	5,600.0	6.85	179.61	5,571.9	-447.9	3.0	666,164.07	663,188.	77 32° 49' 48.878 N	103° 48' 7.450 V
	5,700.0	6.35	179.61	5,671.2	-459.4	3.1	666,152.57	663,188.	84 32° 49' 48.764 N	103° 48' 7.450 V
	5,701.8	6.34	179.61	5,673.0	-459.6	3.1	666,152.37	663,188.		103° 48' 7.450 V
							•			
	Blinebry		170.04	E 770 0	470.0	• • •	000 444 04	000 400		
	5,800.0	5.85	179.61	5,770.6	-470.0	3.2	666,141.94	663,188.		103° 48' 7.450 V
	5,900.0	5.35	179.61	5,870.1	-479.8	3.2	666,132.18	663,188.		103° 48' 7.449 V
	6,000.0	4.85	179.61	5,969.8	-488.7	3.3	666,123.29	663,189.	04 32° 49' 48.475 N	103° 48' 7.449 V
	6,100.0	4.35	179.61	6,069.4	-496.7	3.4	666,115.26	663,189.	10 32° 49' 48.395 N	103° 48' 7.449 W
	6,200.0	3.85	179.61	6,169.2	-503.8	3.4	666,108.11	663,189.	14 32° 49' 48.325 N	103° 48' 7.449 V
	6,300.0	3.35	179.61	6,269.0	-510.1	3.5	666,101.83	663,189.		103° 48' 7.449 W
	6,400.0	2.85	179.61	6,368.8	-515.5	3.5	666,096.42	663,189.3		103° 48' 7.449 W
						3.5	666,091.88	663,189.3		103° 48' 7.449 W
	6,500.0	2.35	179.61	6,468.7	-520.1			-		
	6,600.0	1.85	179.61	6,568.7	-523.8	3.5	666,088.21	663,189.3		103° 48' 7.449 W
	6,700.0	1.35	179.61	6,668.6	-526.5	3.6	666,085.42	663,189.3		103° 48' 7.448 W
	6,780.4	0.95	179.61	6,749.0	-528.2	3.6	666,083.80	663,189.3	31 32° 49' 48.084 N	103° 48' 7.448 W
;. i	Tubb		· · ·	· · ·	۰.,			· · ·		· · · · · ·
	6,800.0	0.85	179.61	6,768.6	-528.5	3.6	666,083,49	663,189.3		103° 48' 7.448 V
	6,900.0	0.35	179.61	6,868.6	-529.5	3.6	666,082.44	663,189.3		103° 48' 7.448 W
	6,960.0	0.05	179.61	6,928.6	-529.7	3.6	666,082.23	663,189.3	32 32° 49' 48.068 N	103° 48' 7.448 W
· F	Production	• :	-					•		•
								663,189.3		

1

۰.

•

Planning Report - Geographic

Project: Site:	ederal ederal 58 Hole	Local Co-ordinate Reference: Well Ruby Federal: 58 TVD Reference: RKB @ 3985;0usft (PD 822) MD Reference: RKB @ 3985;0usft (PD 822) North Reference: Grid Survey Calculation Method: Minimum Curvature
Design Targets Target Name - hit/miss target Dip Ar - Shape (°)		
Ruby Federal 58 (BHL) - plan hits target center - Circle (radius 150.0)	0.00 0.00 6,939.0 -52	29.7 3.6 666,082.23 663,189.32 32° 49' 48.068 N 103° 48' 7.448 W
Casing Points Measured. Depth (usft)	Vertical Depth (usft)	Casing Hole Diameter Diameter Name ("). (")
80.0		16 20 D 5/0 12 1/4
766.0	766.0 Surface	8-5/8 12-1/4
	766.0 Surface	
766.0) 766.0 Surface) 6,928.6 Production Vertical Depth (usft) Name	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°)
766.0 6,960.0 -Formations (0 766.0 Surface 0 6,928.6 Production Vertical Depth (usft) Name 696.0 Rustler	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) 0.00 0.00
766.0 6,960.0 -Formations (usft) 696.0 866.0	0) 766.0 Surface 0) 6,928.6 Production Vertical Depth (usft) Name 696.0 Rustler 866.0 Salado	B-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°) 0.00 0.00
766.0 6,960.0 -Formations (111111111111111111111111111111111111	0) 766.0 Surface 0) 6,928.6 Production Vertical Depth (usft) Name 696.0 Rustler 866.0 Salado 1,860.0 Tansill	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°) 0.00 0.00 0.00
766.0 6,960.0 -Formations (111111111111111111111111111111111111	0) 766.0 Surface 0) 6,928.6 Production Vertical Depth (usft) Name 696.0 Rustler 866.0 Salado 1,860.0 Tansill 2,063.0 Yates	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
766.0 6,960.0 -Formations Measured Depti (usft) 696.0 866.0 1,860.0 2,063.1 2,372.5	0) 766.0 Surface 6,928.6 Production Vertical Depth (usft) Name 696.0 Rustler 866.0 Salado 1,860.0 Tansill 2,063.0 Yates 2,371.0 Seven Rivers	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
766.0 6,960.0 Formations Measured Depth (usft) 696.0 866.0 1,860.0 2,063.1 2,372.5 3,007.8	0) 766.0 Surface 0) 6,928.6 Production Vertical Depth (usft) Name 696.0 Rustler 866.0 Salado 1,860.0 Tansill 2,063.0 Yates 2,371.0 Seven Rivers 3,001.0 Queen	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
766.0 6,960.0 Formations Measured Depth (usft) 696.0 866.0 1,860.0 2,063.1 2,372.5 3,007.8 3,424.2	Vertical Vertical Depth 6,928.6 Vertical Name 696.0 Rustler 696.0 Salado 1,860.0 Tansill 2,063.0 Yates 2,371.0 Seven Rivers 3,001.0 Queen 3,414.0 Grayburg	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
766.0 6,960.0 Formations Measured Depth (usft) 696.0 866.0 1,860.0 2,063.1 2,372.5 3,007.8 3,424.2 3,790.2	Vertical Vertical Depth Kame 696.0 Rustler 696.0 Rustler 696.0 Rustler 696.0 Rustler 696.0 Tansill 2,063.0 Yates 2,371.0 Seven Rivers 3,001.0 Queen 3,414.0 Grayburg 3,777.0 San Andres	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°) 0.00
766.0 6,960.0 Formations Measured Depth (usft) 696.0 866.0 1,860.0 2,063.1 2,372.5 3,007.8 3,424.2 3,790.2 5,295.7	Vertical Vertical Depth Kame 696.0 Rustler 696.0 Rustler 696.0 Salado 1,860.0 Tansill 2,063.0 Yates 2,371.0 Seven Rivers 3,001.0 Queen 3,414.0 Grayburg 3,777.0 San Andres 5,270.0 Glorieta	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°) 0.00
766.0 6,960.0 Formations Measured Depth (usft) 696.0 866.0 1,860.0 2,063.1 2,372.5 3,007.8 3,424.2 3,790.2	Vertical Vertical Depth Kame 696.0 Rustler 696.0 Rustler 696.0 Rustler 696.0 Rustler 696.0 Tansill 2,063.0 Yates 2,371.0 Seven Rivers 3,001.0 Queen 3,414.0 Grayburg 3,777.0 San Andres	8-5/8 12-1/4 5-1/2 7-7/8 Dip Direction Lithology (°) (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

,

'**.**

.

Proposed Directional Well Plan

Request for Variance

ConocoPhillips Company

Lease Number: NM LC 029405B Well: Ruby Federal 58 Location: Sec. 18, T17S, R32E Date: 1/22/2014

Request:

ConocoPhillips Company respectfully requests a variance to install a flexible choke line instead of a straight choke line prescribed in the Onshore Order No. 2, III.A.2.b Minimum standards and enforcement provisions for choke manifold equipment. This request is made under the provision of Onshore Order No. 2, IV Variances from Minimum Standard. The rig to be used to drill this well is equipped with a flexible choke line if the requested variance is approved and determined that the proposed alternative meets the objectives of the applicable minimum standards.

Justifications:

The applicability of the flexible choke line will reduce the number of target tees required to make up from the choke valve to the choke manifold. This configuration will facilitate ease of rig up and BOPE Testing.

Attachments:

- Attachment # 1 Specification from Manufacturer
- Attachment # 2 Mill & Test Certification from Manufacturer

Contact Information:

Program prepared by: Steve Herrin Drilling Engineer, ConocoPhillips Company Phone (281) 206-5115 Cell (432) 209-7558 Date: 26 September 2012

Attachment # 1

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the bleed-off manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive 36 (700°C for 5 minutes).

in.		17	lom OD	Wei	ght	Min Be	nd Radius	Max	WP
	നന.	in.	mm	ib/ft	kg/m	in.	mm.	psi	Мра
3	76.2	5.11			21.46	48	1219.2	5000	34.4
3-1/	2 88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.4
				_					
						•	•		
Fittings			Flange	s	Han	nmer Un	ions .	Othe	r
RC4X5055		R35 -	3-1/8 5000# /		All Un	ion Configu	rations LP	Threaded C	
RC3X5055			3-1/8 3000# /			Ŭ		Graylo	
		,						Custom E	

Attachment # 2

Closed Loop System Design, Operating and Maintenance, and Closure Plan

ConocoPhillips Company Well: Ruby Federal 58 Location: Sec. 18, T17S, R32E Date: 1/14/2014

ConocoPhillips proposes the following plan for design, operating and maintenance, and closure of our proposed closed loop system for the above named well:

 We propose to use a closed loop system with steel pits, haul-off bins, and frac tanks for containing all cuttings, solids, mud, water, brine, and liquids. We will not dig a pit, nor will we use a drying pad, nor will we build an earth pit above ground level, nor will we dispose of or bury any waste on location.

All drilling waste and all drilling fluids (fresh water, brine, mud, cuttings, drill solids, cement returns, and any other liquid or solid that may be involved) will be contained on location in the rig's steel pits or in hauloff bins or in frac tanks as needed. The intent is as follows:

- We propose to use the rigs' steel pits for containing and maintaining the drilling fluids.
- We propose to remove cuttings and drilled solids from the mud by using solids control equipment and to contain such cuttings and drilled solids on location in haul-off bins.
- We propose that any excess water that may need to be stored on location will be stored in tanks.

The closed loop system components will be inspected daily by each tour and any needed repairs will be made immediately. Any leak in the system will be repaired immediately, and any spilled liquids and/or solids will be cleaned immediately, and the area where any such spill occurred will be remediated immediately.

2. Cuttings and solids will be removed from location in haul-off bins by an authorized contractor and disposed of at an authorized facility. For this well, we propose the following disposal facility:

R-360 Inc. 4507 West Carlsbad Hwy, Hobbs, NM 88240, P.O. Box 388; Hobbs, New Mexico 88241 Toll Free Phone: 877.505.4274, Local Phone Number: 432.638.4076

The physical address for the plant where the disposal facility is located is Highway 62/180 at mile marker 66 (33 miles East of Hobbs, NM and 32 miles West of Carlsbad, NM).

The Permit Number for R-360 is NM-01-0006.

A photograph showing the type of haul-off bins that will be used is attached.

- 3. Mud will be transported by vacuum truck and disposed of at R-360 Inc. at the facility described above.
- 4. Fresh Water and Brine will be hauled off by vacuum truck and disposed of at an authorized salt water disposal well. We propose the following for disposal of fresh water and brine as needed:
 - Nabors Well Services Company, 3221 NW County Rd; Hobbs, NM 88240, PO 5208 Hobbs, NM, 88241, Permit SWD 092. (Well Location: Section 3, T19S R37E)
 - Basic Energy Services, P.O. Box 1869; Eunice, NM 88231 Phone Number: 575.394.2545, Facility located at Hwy 18, Mile Marker 19; Eunice, NM.

Steven Herrin Drilling Engineer Office: 281-206-5115 Cell: 432.209.7558

SPECIFICATIONS.

FLOOR: 3/16" PL one piece GROSS MEMBER: 3 x 4.1 channel 16" on center

center WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant formed PICK UP: Standard cable with 2" x.6" x 1/4" rails, guissel at each crossmember WHEELS: 10 DIA x 9 long with rease fittings DOOR LATCH: 3 Independent ratchet binders with chains, vertical second later GASKE TSE Extruded rubber seal with metal

retainers WELDE: All welds continuous except sub structur e crossmembers FINISH : Coated inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMENSIONS: 22-11¹ long (21-8¹ inside), 99" wide (88 inside), see drawing for height OPTIONS: Steel grit blast and special paint, Amelical well codiples to the Amplirell, Heil and Dino pickup

ROOF 3/16" PL roof panels with tubing and channel support frame. LIDS: (2) 68" x 90" metal rolling lids spring

loaded, self raising

ROLLERS: 4" V-groove rollers with delrin bearings and grease fittings OPENING: (2) 60" x 82" openings with 8" divider centered on container

LATGH (2) Independent letchet binders with chains peald GASKETS Extructed rubber

seal with metal retainers

Heavy Duty Split Metal Rolling Lid

CONT.	<u>A</u>	B	1
20 YD	41	53	
25 YD	53	65	
30 YD	65	77	

31

ĩ

for Closed Loop System

Reviewed by: Steven Hentin Drilling Engineer, ConscoPhillips Company Date: updated January 2014

NOTE: There are two righter areas depending on the prevaling wind direction, generally south in this area. The muster area that is furthers upward crasswind will be the designated area for breaking and accessing the cluablon. If the event a full evanistion is deemed necessary, all pensional will exit the location via the access road, if the main access road is blocked off, they will exit via a secondary road (diaveliable) of walls of roles in the upwind(closswind direction)

ŝ

H₂S Contingency Plan

H₂S Contingency Plan Holders:

Attached is an H₂S Contingency Plan for COPC Permian Drilling working in the West Texas and Southeastern New Mexico areas operated by ConocoPhillips Company.

If you have any questions regarding this plan, please call Tom Samarripa at ConocoPhillips Company, 432.368.1263.

Table of Contents

Section

,

I. Purpose

II. Scope

III. Procedures

IV. Emergency Equipment and Maintenance

Emergency Equipment Suppliers General Information H2S Safety Equipment and Monitoring Systems

V. Emergency Call List

VI. Public/Media Relations

VII. Pubic Notification/Evacuation

VIII. Forms/Reports