Submit 1 Copy To Appropriate District Office	State of New N	1exico	Form C-103
District 1 – (575) 393-6161	Energy, Minerals and Na	tural Resources	Revised August 1, 2011
1625 N. French Dr., Hobbs, NM 88240			WELL API NO.
District II - (575) 748-1283	OIL CONSERVATIO	N DIVISION	30-025-42455
811 S. First St., Artesia, NM 88210 <u>District III</u> ~ (505) 334-6178	1220 South St. Fr		5. Indicate Type of Lease
1000 Rio Brazos Rd., Aztec, NM 87410			STATE FEE
<u>District IV</u> – (505) 476-3460 1220 S. St. Francis Dr., Santa Fe, NM	Santa Fe, NM	8/303	6. State Oil & Gas Lease No.
87505			
	ES AND REPORTS ON WELI	LS	7. Lease Name or Unit Agreement Name
(DO NOT USE THIS FORM FOR PROPOSA			·
DIFFERENT RESERVOIR. USE "APPLICA PROPOSALS.)	TION FOR PERMIT" (FORM C-101)	FOR SUCH	CHILES 28 STATE
	as Well 🔲 Other	HOBBSOCD	8. Well Number 1H
2. Name of Operator			9. OGRID Number
Devon Energy Production Company,	L.P.	APR 2 1 2015	6137
3. Address of Operator			10. Pool name or Wildcat
333 West Sheridan Ave. Oklahoma	City, Oklahoma 73102-5010	(405) 552-7848	2 nd Bone Spring; Bone Spring
4. Well Location		RECEIVED	
	350 feet from the N		350feet from theWline
Section 28	Township 21S		MPM Lea County New Mexico
	11. Elevation (Show whether D		
	3712'	л, кк <i>о,</i> к1, ук, есс.)	
	3712		
12 Charle A.		NT-4 CNT-4:)	Daniel an Other Date
12. Check Ap	propriate Box to Indicate	nature of Notice,	Report of Other Data
NOTICE OF INT	ENTION TO:	SUBS	SEQUENT REPORT OF:
	PLUG AND ABANDON	REMEDIAL WORK	
•	CHANGE PLANS	COMMENCE DRI	
	MULTIPLE COMPL	CASING/CEMENT	
DOWNHOLE COMMINGLE		CASING/CEWENT	<u> 100</u> В
DOWNINGLE COMMINGLE	•		
OTHER:		OTHER:	П
	ted operations. (Clearly state a		give pertinent dates, including estimated date
			apletions: Attach wellbore diagram of
proposed completion or recon		•	
Devon Energy Production Co., L.P. res	spectfully requests approval to	change the approved A	APD as follows:
		. .	
 Change approved formation f 	from 3 rd Bone Spring to 2 nd Bon	e Spring.	
Notes this seed to make the day	and late May 2016		
Note: this well is projected to	spud late May 2015.		
See attached revised C-	102, Drill Plan and directional	entages/	
See attached revised C-		sui voy.	
	•		
		1 . C 1 11	11 11.6
hereby certify that the information ab	ove is true and complete to the	best of my knowledge	e and belief.
)		
SIGNATURE 1	/ TITLE Dec	ulatory Specialist	DATE 4/21/2015
HONATORE / =	IIILE_Keg	matory specialist	DITTO
Type or print name David H. Cook	E-mail addres	ss:- david.cook@dvn	com PHONE: (405) 552-7848
For State Use Only	L-man addres	uu i iu.oookwanii	110112. (100) 002 7010
		3 1 =	1-1-
APPROVED BY:	TITLE	Petroleum Engine	er: DATE 99/22/15
Conditions of Approval (if any):		• .	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

MENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

	API Numbe -025-424					³ Pool Name 2nd Bone Spring; Bone Spring			
⁴ Property Co 314219			5 Property Name 6 Well Number CHILES 28 STATE 1H					6 Well Number 1 H	
70GRID1 6137	NO.		DEVON ENERGY PRODUCTION COMPANY, L.P. 9Elevation 3712						
					¹⁰ Surface	Location			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County
D	28	21S	34E		350	NORTH	350	WEST	LEA
			11]	Bottom H	ole Location	If Different Fre	om Surface		
UL or lot no.	Section	Township	Range	Lot ldn	Feet from the	North/South line	Feet from the	East/West line	County
M	28	21S	34E		330	SOUTH	350	WEST	LEA
12 Dedicated Acres	13 Joint	or Infill 14	Consolidation	Code 15 O	rder No.				
160									

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

1. Geologic Formations

TVD of target	10,927'	Pilot hole depth	N/A
MD at TD:	15,324'	Deepest expected fresh water:	85'

Basin

Formation (*)	Depth (TVD), from KB		Hazards*
D41	Charles of the second of the s	Target Zone! +	
Rustler	1,826	Water	
Top of Salt	1,644	Salt	
Yates	3,797		
Base of Salt	5,524		
Cherry Canyon	5,769	Oil	
Brushy Canyon	7,037	Oil	
Lower Brushy	8,419	Oil .	
1 st Bone Spring Lime	9,184	Oil	
2 nd Bone Spring Lime	10,204	Oil	
2 nd Bone Spring Sand	10,474	Oil	
3 rd Bone Spring Lime	10,900	Oil	
		<u> </u>	·
	-		

2. Casing Program

Hole Size	Casing	Interval	Listen Company of the		100 100 100 100 100 100 100 100 100 100		A CONTRACTOR OF THE PARTY OF TH	SF Burst	, SF
	From	To	Size	(lbs)/-			Collapse		Tension
17.5"	0	1,900'	13.375"	54.5	J-55	BTC	1.40	3.40	9.90
12.25"	0	4,300'	9.625"	40	J-55	BTC	1.40	1.90	3.30
12.25"	4,300'	5,650'	9.625"	40	HCK-55	BTC			
8.75"	0	10,350'	7"	29	P-110	BTC	1.80	2.20	3.10
8.75"	10,350°	15,324'	5.5"	17	P-110	BTC	2.10	1.40	2.00
				BLM Min	imum Safet	y Factor	1.125	1.00	1.6 Dry
					•				1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Yeoren :
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
111 - 11 GODA 1 - 1 D 111 DO	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well be ested in spitical Cove/Verset?	N
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	H ₂ 0 gal/sk	100	500# Comp. Strength: (hours)	Slurry Description
13-3/8"	1140	13.5	9.07	1.72	12	Lead: Class C Cement + 4% Bentonite Gel + 0.125 lbs/sack Poly-E-Flake
Surface	550	14.8	6.32	1.33	6	Tail: Class C Cement + 0.125 lbs/sack Poly-E-Flake
9-5/8" Inter.	1160	12.9	9.81	1.85	17	Lead: (65:35) Class C Cement: Poz (Fly Ash): 6% BWOC Bentonite + 5% BWOW Sodium Chloride + 0.125 Ibs/sack Poly-E-Flake
	430	14.8	6.32	1.33	6	Tail: Class C Cement + 0.125 lbs/sack Poly-E-Flake
7x5.5"	520	10.4	16.9	3.17	16	Lead: Tuned Light ® + 0.125 lb/sk Pol-E-Flake
Como	1290	14.5	5.31	1.2	25	Tail: (50:50) Class H Cement: Poz (Fly Ash) + 0.5% bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC HR-601 + 2% bwoc Bentonite

sGasing String As 1847	TOC 15 TO SEE	EXCESS.
13-3/8" Surface	0'	100%
9-5/8" Intermediate	0′	75%
7x5.5" Production	5150′	25%

4. Pressure Control Equipment

N A variance is requested for the use of a diverter on the surface casing.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	ype		Tested to:									
				nular	X	50% of working pressure									
			Blin	d Ram											
12-1/4"	13-5/8"	3M	Pipe	e Ram		3M									
			Doub	le Ram	X	5141									
			Other*												
			An	nular	X	50% testing pressure									
ļ			Blind Ram												
8-3/4"	13-5/8"	3M	Pipe Ram												
0 3/ 1	13 3/0	0112	-	5212	5212			51.1				Doub	le Ram	X	3M
			Other *			,									
			An	nular	X	50% testing pressure									
		,	Blin	Blind Ram											
			Pipe Ram												
			Double Ram		x										
			Other *			_									

^{*}Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Y Formation integrity test will be performed per Onshore Order #2.
On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

Y A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

- Y Are anchors required by manufacturer?
- Y A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly (FMC Uni-head). This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi.

- Wellhead will be installed by FMC's representatives.
- If the welding is performed by a third party, the FMC's representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- FMC representative will install the test plug for the initial BOP test.
- FMC will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 3M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible
 with a standard wellhead, the well head will be cut and top out operations will be
 conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the FMC Uni-head wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 3,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the 9-5/8" intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 3M will already be installed on the FMC Uni-head.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 3,000 psi WP.

Devon requests a variance to use a flexible line with flanged ends between the BOP and the choke manifold (choke line). The line will be kept as straight as possible with minimal turns.

5. Mud Program

<u> </u>	epîli -	Type :	Weight (ppg)	Viscosity	- Water Loss
From	To				Charles 1
0_	1,900'	FW Gel	8.6-8.8	28-34	N/C
1,900'	5,524'	Saturated Brine	10.0-10.2	28-34	N/C
5,524'	15,324'	Cut Brine	8.5-9.3	28-34	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ging, Coring and Testing.
X	Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated
	logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Add	litional logs planne	il Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition .	Specify what type and where?
BH Pressure at deepest TVD	2880 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

Is this a walking operation? No. Will be pre-setting casing? No.

Attachments

 \underline{x} Directional Plan

___ Other, describe

Weatherford

400

Chiles 28 State 1H Lea Co, NM

Plan Data for Chiles 28 State 1H

Plan Point Information:

DogLeg Severity Unit: °/100.00ft Position offsets from Slot centre

MD Inc Az TVD +H/-5 +E/-W Northing Easting VSec DLS

(USft) (°) (°) (USft) (USft) (USft) (USft) (USft) (USft) (USft) (DLSU)

0.00 0.00 0.00 0.00 0.00 0.00 530722.90 803837.30 0.00 0.00

10445.64 0.00 0.00 10445.64 0.00 0.00 530722.90 803837.30 0.00 0.00

10428.97 70.00 168.21 10894.31 -307.53 64.19 530415.37 803901.49 308.08 12.00

11228.49 91.23 179.50 10830.00 -4596.54 119.91 526126.36 803957.21 4597.41 0.00

Plan Data for Chiles 28 State 1H

Target Set Information:
Name: Chiles 28 State 1H
Position offsets from Slot centre
+ HV/-5 + EF/-W Northing Easting Shape Comment
(USft) (USft) (USft)
-4596.54 119.91 526126.36 803957.21 Cuboid Name TVD (USft) PBHL 1H 10839.00

Plan Data for Chiles 28 State 1H

Plan Data for Chiles 28 State 1H

Well: Chiles 28 State 1H Type: Main-Well File Number:

with the Constitution of t

Chiles 28 State 1H -

Sign Off: Russell Joyner

5D Plan Report

Devon Energy

Field Name: Lea Co, NM Nad 83 NMEZ

Site Name: Chiles 28 State 1H
Well Name: Chiles 28 State 1H

Plan: *P1:V2*

17 April 2015

Chiles 28 State 1H

Map Units: US ft

Company Name: Devon Energy

Vertical Reference Datum (VRD): Mean Sea Level

Projected Coordinate System: NAD83 / New Mexico East (ftUS)

Comment:

Units: US ft North Reference: Grid

Convergence Angle: 0.46

Northing: 530722.90 US ft Latitude: 32° 27' 22:12" Position : Easting: \$803837/30 US/ft Longitude: -103928356

Elevation above Mean Sea Level:3712.00 US ft

Comment :

Position (Offsets relative to Site Centre)

Slot TVD Reference: Ground Elevation

Elevation above Mean Sea Level: 3712.00 US ft

Comment:

Vell Name

Type: Main well

UWI:

Plan: P1:V2

Rig Height Kelly Bushing: 25.00 US ft Comment:

Relative to Mean Sea Level: 3737.00 US

Closure Distance: 4598.1 US ft

Closure Azimuth: 178.506°

Vertical Section (Position of Origin Relative to Slot)

+N / -S: 0.00 US ft

+E / -W: 0.00 US ft

Az:179.50°

Magnetic Parameters

Field Strength: Model: BGGM 48346.4nT

Dec: 7.26°

Dip: 60.31°

15/May/2015

Date:

Target Set Name: Chiles 28 State 1H Number of Targets: 1

Comment:

Position (Relative to Slot centre)

+N / -S: -4596.54US ft Northing:: 526126.367US ft Latitude:: 32 +E / -W: ::119:917US ft Easting:: 803957.21US ft Longitude:

TVD (Kelly Bushing): 10839.00 US ft

Orientation Azimuth: 179.50°

Inclination: 1.23°

Dimensions Length: 8222.00 US ft Breadth: 100.00 US ft

Height: 40.00 US ft

Salient Point	s (Relative t	o Slot centr	e, TVD relat	ive to Kelly	Bushing)					47.44	
MD	Inc.	AZ.	์ (ปร. กับ	N.Offset (US:fr)	E.Offset	VS - (US ft)	(2/100 US	B.Rate 1	T:Raté	्राः[fáce] ा (e)	Contiment
(05.17)		, de 1 de 1	(00)()	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(05 (0),)	100 10	(ty.100 l05)	ft)	fr)		
0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	

5D Plan Report

MD (US,it)	inc.	AZ (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	vs (us ft)	Di.S (°/100 US ft)	B.Rate (°/100 U ft)	T.Rate S (°/100 U: fb)	T.Face ,	Comment
10445.64	0.00	0.00	10445.64	0.00	0.00	-0.00	0.00	0,00	0.00	0.00	КОР
11028.97	70.00	168.21	10894.31	-307.53	64.19	308.08	12.00	12.00	0.00	168.21	Build/Turn
11228.49	91.23	179.50	10926.77	-501.87	84.50	502.59	12.00	10.64	5.66	28.85	LP
15324,26	91.23	179.50	10839.00	-4596.54	119.91	4597.41	0.00	0.00	0.00	0.00	PBHL 1H
Interpolated P	oints (Rela	tive to Slot	(centre, TVD)	elative to	Kelly Bushi	ng)) 🤻 🦠					
MD ⁴	Inc	Az	TVD	N.Offse	t E.Oi	set	VS (US (t) (°	DLS	Northing (US:It)	Easting: (US.(t)	Comment
* (UŞ ft)	0.00	0.00	(US ft)	(US ft)				/100 US (t)			
10400.00 10445.64	0.00	0.00 0.00	10400.00 10445.64		0.0		-0.00	0.00	530722.90	803837.30	КОР
10500.00	6.52	168.21	10499.88		0.6		3.03	0.00 12.00	530722.90 530719.87	803837.30 803837.93	ÝOF
10600.00	18.52	168.21	10597,33		5.0		24.26	12.00	530698.69	803842.35	
10700.00	30.52	168.21	10688.14				64.88	12.00	530658.13	803850.82	
10800.00	42.52	168.21	10768.35	-122.92	2 25.	66	123.14	12.00	530599.98	803862.96	
10900.00	54,52	168.21	10834,46	-196.13	3 40.	94	196.48	12.00	530526.77	803878.24	
11000.00	66.52	168.21	10883.58	-281.19	58.	69	281.69	12.00	530441.71	803895.99	
11028.97	70.00	168.21	10894.31	-307.53	64.	19	308.08	12.00	530415.37	803901.49	Build/Turn
11100.00	77.51	172,41	10914.17				375.34	12.00	530348.20	803912.91	•
11200.00	88.18	177,95	10926.62				474.10	12.00	530249.51	803921.17	
11228,49	91.23	179,50	10926.77				502.59	12.00	530221.03	803921.80	LP
11300.00 11400.00	91,23 91,23	179.50 179.50	10925.23 10923.09	-573.36			574.08 574.06	0.00	530149.54 530049.57	803922.42	
11500.00	91.23	179.50	10923.09				674.06 774.03	0.00	529949.60	803923.29 803924.15	
11600.00	91.23	179.50	10918.81	-873,28			874.01	0.00	529849.62	803925.02	
11700.00	91.23	179.50	10916.66		•		973.99	0.00	529749.65	803925,88	
11800.00	91.23	179.50	10914.52				1073.96	0.00	529649.68	803926.74	
11900.00	91.23	179.50	10912.38	-1173,2	0 90.	31	1173.94	0.00	529549.70	803927.61	
12000.00	91.23	179.50	10910.23	-1273.1	7 91.	17	1273.92	0.00	529449.73	803928.47	
12100.00	91.23	179.50	10908.09	-1373.1	4 92.	04	1373.89	0.00	529349.76	803929.34	
12200.00	91.23	179.50	10905.95	-1473.1	2 92.	90	1473.87	0.00	529249.78	803930.20	
12300.00	91.23	179.50	10903.81	-1573.0			1573.85	0.00	529149.81	803931.07	
12400.00	91.23	179.50	10901.66				1673.83	0.00	529049.84	803931.93	
12500.00	91.23	179.50	10899.52				1773.80	0.00	528949.86	803932.80	
12600.00 12700.00	91.23 91.23	179.50 179.50	10897.38 10895.23	-1873.0 -1972.9			1873.78 1973.76	0.00	528849.89 528749.92	803933.66 803934.52	
12800.00	91.23	179.50	10893.23	-2072,9			2073.73	0.00	528649.94	803935.39	
12900.00	91.23	179.50	10890.95	-2172.9			2173.71	0.00	528549.97	803936,25	
13000.00	91.23	179.50	10888.81	-2272.9			2273.69	0.00	528450.00	803937.12	
13100.00	91.23	179.50	10886.66	-2372.8	8 100	68	2373.67	0.00	528350.02	803937.98	
13200.00	91.23	179.50	10884.52	-2472.8	5 101	55 :	2473.64	0.00	528250.05	803938.85	
13300.00	91.23	179.50	10882.38	-2572.8	2 102	41 7	2573.62	0.00	528150.08	803939.71	
13400.00	91.23	179.50	10880.23	-2672.8		28	2673. 6 0	0.00	528050.10	803940.58	
13500.00	91.23	179.50	10878.09	-2772.7			2773.57	0.00	527950.13	803941.44	
13600.00	91.23	179.50	10875,95	-2872.7			2873,55	0.00	527850.16	803942.30	
13700.00 13800.00	91.23 91.23	179.50 179.50	10873.81 10871.66	-2972.7			2973.53	0.00 0.00	527750.18	803943.17	
13900.00	91,23	179.50	10869.52	-3072.69 -3172.60			3073.50 3173.48	0.00	527650.21 527550.24	803944.03 803944.90	
14000.00	91,23	179.50	10867.38	-3272.6			3273.46	0.00	527450,26	803945.76	
14100.00	91.23	179.50	10865.23	-3372.6			3373.44	0.00	527350.29	803946.63	
14200.00	91.23	179.50	10863.09	-3472.5			3473.41	0.00	527250.32	803947.49	
14300.00	91.23	179.50	10860.95	-3572.50			3573.39	0.00	527150.34	803948.36	
14400.00	91.23	179.50	10858.81	-3672.5	3 111	92	3673.37	0.00	527050.37	803949.22	
14500.00	91.23	179.50	10856.66	-3772.5	112	78 :	3773,34	0.00	526950.40	803950.08	
14600.00	91.23	179.50	10854.52	-3872.4			3873.32	0.00	526850.42	803950.95	
14700.00	91.23	179.50	10852.38	-3972.4			3973.30	0.00	526750.45	803951.81	
14800.00	91.23	179.50	10850.23	-4072.4			4073.27	0.00	526650.48	803952.68	
14900.00	91.23	179.50	10848.09	-4172.40			4173.25	0.00	526550.50	803953.54	
15000.00	91.23	179.50	10845.95	-4272.31 -4272.31			4273.23	0.00	526450.53	803954.41	
15100.00	91.23	179.50	10843.81	-4372.3	4 117	9/ ·	4373.21	0.00	526350.56	803955.27	

Salient Points ((Relative to Slot scentre, TVD relative to () Kelly Bushing))

5D Plan Report

Interpolated MD (US It)	Points (Relati Inc (°)	ve to Slot (^2 (°)	entre <mark>, TVD rel</mark> TVD (US ft)	ative to (Kell N.Offset (US [t)	y Bushing)) E.Offset (US.ft)	VS; (US ft)	DLS ("/100 US-ft)	Northing (US.ft)	Easting (US ft)	Comment
15200.00	91.23	179.50	10841.66	-4472.32	118.84	4473.18	0.00	526250.58	803956.14	
15300.00	91.23	179.50	10839.52	-4572.29	119.70	4573.16	0.00	526150.61	803957.00	
15324.26	91.23	179.50	10839.00	-4596.54	119,91	4597.41	0.00	526126.36	803957.21	PBHL 1H

Weatherford Drilling Services

GeoDec4 v2.1.0.0

		Date:					
Run Date	= May 15, 2015	Magnetic Vector H = 23945 nT					
Magnetic Model	= bggm2014.dat	Magnetic Vector Z = 42000 nT					
Magnetic Dip	= 60.31 deg	Magnetic Vector Y = 3026 nT					
Local Gravity Local Field Strengt	=	Magnetic Vector X = 23753 nT					
Magnetic Declination Local Gravity	on = 7.26 deg = .9988 g	[True North Offset] CheckSum = 6534					
Longitude =							
Latitude =	000 071 00 4011 14						
Geodetic Location MSL Elevation =	•						
Datum Transforma							
Declination: 7.26° Total Correction: 6	800						
Convergence: 0.46)-						
East: 803837.30 US	·	Longitude: -103.4823 Degree					
North: 530722.90 U	•	Latitude: 32.456145 Degree					
EPSG: 2257		EPSG: 4269					
Ellipsoid: GRS 198	U	Ellipsoid: GRS 1980					
	erican Datum 1983 (1986)	Datum: North American Datum 1983 (198					
Projected Coordina	-	Geodetic Coordinate System					
NAD83 / New Mex		NAD83 (1986)					
Engineer:	RWJ						
Block:							
Location:	Lea Co, NM Nad83 NME						
Rig Name:							
API Number:							
Well Name:	Paint 33 Fed 2H	•					
Customer:	Devon Energy						
Report Date: Job Number:	April 17, 2015 Chiles 28 State 1H						