Form 3160-3 (March 2012) *			OCD Hobbs	2	Fi Omb	ATS-14		
	UNITED STATES		AAP 110000		5. Lease Serial No.	October 31, 2	014	
	DEPARTMENT OF THE I BUREAU OF LAND MAN				NM 055768	6		
APPLI	CATION FOR PERMIT TO				6. If Indian, Alloted N/A	e or Tribe N	Jame	
la. Type of work: XD	RILL REENTE	ER	Split E	stat	7. If Unit or CA Age N/A NM TI	041		=11-
lb. Type of Well: X Oi	1 Well Gas Well Other	Si	ngle Zone X Multip	ple Zone	8. Lease Name and SEMU	Well No.	185	210
2. Name of Operator ConocoPhillips Co	mpany (217817)				9. API Well No. 30-025-43	28	> ,	-
3a. Address 600 N. DAI P10-4-4056 HOUSTON	TEXAS 77079	(281)2	0. (include area code)	000	10. Field and Pool, or SEMU; BLIN	EBRY-T	UBB-DR	5 30 UNKA
 Location of Well (Report At surface UL C, Sec 	location clearly and in accordance with an c. 14, T20S, R37E; 415' FNL & SAME AS ABOVE			2016	11. Sec., T. R. M. or 1 Sec. 14, T20S		vey or Area	
14. Distance in miles and direc	tion from nearest town or post office* iles SE of Monument, NM		RECE	IVED	12. County or Parish LEA County		13. State NM	
 Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit) 	415' line, if any)	16. No. of a 1800	acres in lease	17. Spacin 40	g Unit dedicated to this	well		
 Distance from proposed loc to nearest well, drilling, co applied for, on this lease, fit 		19. Propose 7167'	d Depth	20. BLM/I ES008	BIA Bond No. on file 5			
21. Elevations (Show whether 3566'	r DF, KDB, RT, GL, etc.)	22. Approxim 01/10/	mate date work will star /2014	rt*	23. Estimated duration 10 days	DII		_
		24. Attac	chments					
 Well plat certified by a regis A Drilling Plan. A Surface Use Plan (if the 	cordance with the requirements of Onshor stered surveyor. location is on National Forest System I a appropriate Forest Service Office).		 Bond to cover th Item 20 above). Operator certific 	he operation	ns unless covered by an primation and/or plans a			
25. Signatur Kuust	ina Micken		(Printed/Typed) STINA MICKEN	NS		Date 10)/16/2013	
REGULATORY S	PECIALIST	Mama	(During of Trues 1)			Detraca		
pproved by (Signature)	James A. Amos	INALLE	(Printed/Typed)			JUN	1 - 20	16
itle	FIELD MANAGER	Office		C	ARLSBAD FIELD	OFFICE		
application approval does not onduct operations thereon. Conditions of approval, if any	See attached NMC	000	table title to those right		ectlease which would e			ARS
itle 18 U.S.C. Section 1001 and tates any false, fictitious or fi	Conditions of Appr	oval	owingly and w jurisdiction.	rillfully to m	ake to any department of	or agency of	f the United	
Continued on page 2.			1/		*(Inst	ructions	on page 2	2)
	TROLLED WATER BASIN		KE	76/0	16/10			
APPROVAL SUI	IREMENTS AND		ar i	,				
SPECIAL STIPU	LATIONS		SI	EE AT	TACHED FO	R		

ATTACHED

CONDITIONS OF APPROVAL

Drilling Plan ConocoPhillips Company <u>SEMU; Glorieta / Blinebry, Tubb, Drinkard</u>

SEMU #185

Lea County, New Mexico

1. Estimated tops of geological markers and estimated depths to water, oil, or gas formations:

The datum for these depths is RKB (which is 13' above Ground Level).

Formations	Top Depths FT MD	Contents						
Quaternary	Surface	Fresh Water						
Rustler	1341	Anhydrite						
Salado (top of salt)	1426	Salt						
Tansill (base of salt)	2530	Gas, Oil and Water						
Yates	2679	Gas, Oil and Water						
Seven Rivers	2933	Gas, Oil and Water						
Queen	3486	Gas, Oil and Water						
Penrose	3611	Gas, Oil and Water						
Grayburg	3744	Gas, Oil and Water						
San Andres	4042	Gas, Oil and Water						
Glorieta	5217	Gas, Oil and Water						
Paddock	5351	Gas, Oil and Water						
Blinebry	5649	Gas, Oil and Water						
Tubb	6354	Gas, Oil and Water						
Drinkard	6666	Gas, Oil and Water						
Abo	6967	Deepest estimated perf. is above Top of Abo						
Total Depth (maximum)	7167	200' below deepest estimated perforation						

All of the water bearing formations identified above will be protected by setting of the <u>8-5/8</u> surface casing <u>25' – 70' into the Rustler formation</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

The targeted oil and gas bearing formations identified above will be protected by setting of the <u>5-1/2</u>" production casing <u>10' off bottom of TD</u> and circulating of cement from casing shoe to surface in accordance with the provisions of Onshore Oil and Gas Order No. 2 and New Mexico Oil Conservation Division Title 19.

2. Proposed casing program:

Type	Type Hole		Interval MD RKB (ft)	OD	Wt	Gr	Conn	MIY	Col	Jt Str		Safety Fac lated per Co Corporate C	nocoPhillips
туре	(in)	From	То	(inches)	(lb/ft)		Com	(psi)	(psi)	(klbs)	Burst DF	Collapse DF	Jt Str DF (Tension) Dry/Buoyant
Cond	20	0	40' – 85' (30' – 75' BGL)	16	0.5" wall	В	Line Pipe	N/A	N/A	N/A	NA	NA	NA
Alt. Cond	20	0	40' – 85' (30' – 75' BGL)	13-3/8	48#	H-40	PE	1730	740	N/A	NA	NA	NA
Surf	12-1/4	0.	13 66' - 1411'	8-5/8	24#	J-55	STC	2950	1370	244	1.39	2.18	3.07
Option: Prod w/ Bond Coat	7-7/8	4000'	5200'	5-1/2	17#	L-80	LTC	7740	6290	338	NA	NA	NA
Prod	7-7/8	0	7112' – 7157'	5-1/2	17#	L-80	LTC	7740	6290	338	2.08	2.93	1.96

The casing will be suitable for H_2S Service. All casing will be new.

The surface and production casing will be set approximately 10' off bottom and we will drill the hole with a 45' range uncertainty for casing set depth to fit the casing string so that the cementing head is positioned at the floor for the cement job.

The production casing will be set 155' to 200' below the deepest estimated perforation to provide rathole for the pumping completion and for the logs to get deep enough to log the interval of interest.

ConocoPhillips Company respectfully requests the option to run bond coated production casing with the two-stage cementing option for the intension to protect the casing from corrosion if needed.

Casing Safety Factors - BLM Criteria:

Туре	Depth	Wt	MIY	Col	Jt Str	Drill Fluid	Burst	Collapse	Tensile-Dry	Tens-Bouy
Surface Casing	1411	24	2950	1370	244000	8.5	4.73	2.20	7.2	8.3
Production Casing	7157	17	7740	6290	338000	10	2.08	1.69	2.78	3.28

Casing Safety Factors - Additional ConocoPhillips Criteria:

ConocoPhillips casing design policy establishes Corporate Minimum Design Factors (see table below) and requires that service life load cases be considered and provided for in the casing design.

	ConocoPhillips Corporate C	riteria for Minimum Design Factors	
Ind S days W	Burst	Collapse	Axial
Casing Design Factors	1.15	1.05	1.4

Ty	p	e				
Co	n	d	u	cl	0	r

Su

8

Surface Casing (8-5/8" 24# J-55 STC) Production Casing (5-1/2" 17# L-80 LTC)

Depth	Wt			Col	Jt Str	Pipe Yield MW E		Burst	Col	Ten
85		65	35000	-	-	432966	-	-1-15	180-18	· 11.
1411		24	2950	1370	244000	381000	8.5	1.39	2.18	3.07
7157		17	7740	6290	338000	397000	10	2.08	2.93	1.96

1 877 -1984

Burst - ConocoPhillips Required Load Cases

The maximum internal (burst) lead on the Surface Casing occurs when the surface casing is tested to 1500 psi (as per BLM Onshere Order 2 - II. Requirements). The maximum internal (burst) load on the Production Casing occurs during the fracture stimulation where the maximum allowable working pressure

(MAWP) is the pressure that would fit ConocoPhillips Corporate Criteria for M	linimum Fact	ors.						12.24		
Surface Casing Test Pressure =	1500	si		Predic	ted Pore Pres	sure at Ti) (PPTD) =	8.5	5 ppg	
Surface Rated Working Pressure (BOPE) =	3000	Isl		Predicte	Frac Gradie	nt at Shoe	(CSFG) =	19.2	Bppg	
Field SW =	10	pg						100		
Surface Casing Burat Safety Factor = API Burat Rating / Maxim	um Predicte	d Surfa	ce Pressure	(MPSP) "	OR' Maximum	Allowable	Surface Pre	ssure (I	LASP)	
Production Casing MAWP for the Fracture Stimulation = API Bur	st Rating / C	arpora	te Minimum B	urst Desi	gn Factor					
urface Casing Burst Safety Factor:									使考虑	
Case #1. MPSP (MWhyd next section) =	1411	x	0.052	x	10	=	734			
Case #2. MPSP (Field SW @ Bullhead _{CSFG} + 200 psi) =	1411	x	0.052	x	19.23		734	+	200	
Case #3. MPSP (Kick Vol @ next section TD) =	7157	x	0.052	x	8.55	4. 12	574.6		624	
Case #4. MPSP (PPTD - GG) =	7157	x	0.052	x	8.55		715.7	=	2456	
		1500	0.050	15.01.5	40.00	and the second			4400	

1411	X	0.052	X(19.23	20.000	U.Z	1=	1420	
1411	x	0.052	x	8.5	+	1500	=	2124	
2950	1	2124	=	1.39					
7157	x	0.052	x	10	=	3721.64			
7157	x	0.052	x	8.55	-	715.7	=	2465	
7740	1	3722	=	2.08					
7740	1	1.15	=	6730					
	2950 7157 7157 7740	1411 x 2950 / 7157 x 7157 x 7740 /	1411 x 0.052 2950 / 2124 7157 x 0.052 7157 x 0.052 7157 x 0.052 7740 / 3722	1411 x 0.052 x 2950 / 2124 = 7157 x 0.052 x 7157 x 0.052 x 7157 x 0.052 x 7740 / 3722 =	1411 x 0.052 x 8.5 2950 / 2124 = 1.39 7157 x 0.052 x 10 7157 x 0.052 x 10 7157 x 0.052 x 8.55 7740 / 3722 = 2.08	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Collapse - ConocoPhillips Required Load Cases

The maximum collapse indoces in the Surface Casing occurs when cementing to surface, 1/3 evacuation to the next casing setting depth, or deepest depth of exposure (full evacuation). The maximum collapse lead on the Production Casing occurs when cementing to surface, or 1/3 evacuation to the deepest depth of exposure; and

the maximum compace was on the Frontier profile for the evacuation cases should be qualed be pore pressure of the horizons on the outside of the casing which we assumed to be PPTD. Surface Casing Colleges Safety Factor = API Colleges Rating / Full Evacuation 'OR' Cement Displacement during Cementing to Surface

Production Casing Collapse Safety Factor = API Collapse Rai			ed Surfac	e Pressur	e 'OR' Cem	ent Displacem	ent during Co	ementing to	surfac	0						
Cement Displacement Fluid (FW) =	8.34	ppg		Top of	Cement =	Cement to !	Surface									
Surface Cement Lead =	13.6	ppg	F	rod Ceme	nt Lead =	11.	8 ppg									
Surface Cement Tail =	14.8	PPg		Prod Cen	ent Tail =	14.	2 ppg									
Top of Surface Tail Cement =	350	ft	Top of	Prod Tail	Cement =	400	0 #									
Surface Casing Collapse Safety Factor:																
Full Evacuation Diff Pressure =	1411	x	0.052	x	8,55	1. mil = 11	627									
Cementing Diff Lift Pressure =	[(1061	x	0.052	x	13.6) + (350	x	0.052	x	14.8) -	612] =	408
Collapse Safety Factor =	1370	1	627	=	2.18											
Production Casing Collapse Safety Factor:																
1/3 Evacuation Diff Pressure =	[[7157	x	0.052	x	8.55) - (7157	1	3	x	0.052	x	8.34)] =	2147
Cementing Diff Lift Pressure =	Ĩ	3157	×	0.052	x	11.8) + (4000	x	0.052	x	14.2) .	3104	1 =	1787
Collapse Safety Factor =	6290	1	2147	=	2.93											

Tensial Strength - ConocoPhillips Required Load Cases

The maximum axial (tension) load occurs if casing were to get stuck and pulled on to try to get it unstuck.

n tensami para becurs n tasang vere is ger statuk me pareci en to ry vi gen a unauck. Maximum Allowable Axial Load for Pipe Yield = API Pipe Yield Strength Rating / Corporate Minimum Axial Design Factor Maximum Allowable Axial Load for Joint = API Joint Strength Rating / Corporate Minimum Axial Design Factor Maximum Allowable Hook Load (Limited to 75% of Rig Max Load) = Maximum Allowable Axial Load

Maximum Allowable Overpull Margin = Maximum Allowable Hook Load - Bouyant WI of the String

Tensial Safety Factor = API Pipe Yield 'OR' API Joint Strength 'OR' Rig Max Load Rating / (Bouyani Wt of String + Minimum Overpul Required)
Rig Max Load (300,000 bs) x 75% = 225000 bs
S0000 bs

Surface Casing Tensial Strength Safety Factor:							
Air Wt =	33864						
Bouyant Wt =	33864	x	0.870	=	29469		
Max. Allowable Axial Load (Pipe Yield) =	381000	1	1.40	=	272143		
Max. Allowable Axial Load (Joint) =	244000	1	1.40	=	174286		
Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	174286						
Max. Allowable Overpull Margin =	174286	- (33864	x	0.870) =	144816
Tensial Safety Factor =	244000	11	29469	+	50000) =	3.07
Production Casing Tensial Strength Safety Factor:		RT S				Res Starts	
Air Wt =	121669						
Bouyant Wt =	121669	x	0.847	=	103094		
Max. Allowable Axial Load (Pipe Yield) =	397000	1	1.40	=	283571		
Max. Allowable Axial Load (Joint) =	338000	1	1.40	=	241429		
Max. Allowable Hook Load (Limited to 75% of Rig Max Load) =	225000		Part Store				
Max. Allowable Overpull Margin =	225000	- (121669	x	0.847) =	121906
Tensial Safety Factor =	300000	11	103094	+	50000) =	1.96
		NEW PLACE					

Compression Strength - ConocoPhillips Required Load Cases

The maximum axial (compression) load for the well is where the surface casing is landed on the conductor

The mountain scale (compression) and not over a vince vince vince classry a minute vince measurement with a support of a plate or landing ring. The surface casing is also calculated to ber 60% of the load but not limited. Any other axial loads such as a snubbing unit or other would need to be added to the load. Compression Safety Factor = API Axial Joint Strength Rating 'OR' API Axial Pipe Yield Rating / Maximum Predicted Load Wellhead Load = <u>30000</u> lbs

	Surf Casing Wt (Bouyant) =	(33864	x	0.870) =	29469						
	Prod Casing Wt (Bouyant) =	(121669	x	0.847) =	103094						
	Tubing Wt (Air Wt) =	7157	x	6.5	=	46521							
	Tubing Fluid Wt =	7157	x	0.052	x	6.55	x	0.7854	x	2.441	^2 =	11408	
	Load on Conductor =	3000	+	29469	+	103094	+	46520.5	+	11408	=	193491	
	Conductor Compression Safety Factor =	432966	1	193491	=	2.24							
	Load on Surface Casing =	193491	x	60%	=	116095							
and the second sec	Surface Casing Compression Safety Factor =	244000		116095	=	2.10							
SEMU #185	and the second		(D	ate: 1	0/15	(2013)							

3. Proposed cementing program:

16" or 13-3/8" Conductor:

Cement to surface with rathole mix, ready mix or Class C Neat cement. (Note: The gravel used in the cement is not to exceed 3/8" diameter) TOC at surface.

8-5/8" Surface Casing Cementing Program:

The intention for the cementing program for the Surface Casing is to:

- Place the Tail Slurry from the casing shoe to 300' above the casing shoe,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	Class C	Surface	1016' – 1061'	13.6	450	765	2% Extender 2% CaCl ₂ 0.125 lb/sx LCM if needed 0.2% Defoamer Excess =75% based on gauge hole volume	1.70
Tail	Class C	1016' – 1061'	1366' – 1411'	14.8	230	308	1% CaCl2 Excess = 100% based on gauge hole volume	1.34

Displacement: Fresh Water.

Note: In accordance with the Pecos District Conditions of Approval, we will Wait on Cement (WOC) for a period of not less than 18 hrs after placement or until at least 500 psi compressive strength has been reached in both the Lead Slurry and Tail Slurry cements on the Surface Casing, whichever is greater.

5-1/2" Production Casing Cementing Program – Single Stage Cementing Option:

The intention for the cementing program for the Production Casing – Single Stage Cementing Option is to:

- Place the Tail Slurry from the casing shoe to above the top of the Paddock,
- Bring the Lead Slurry to surface.

Spacer: 20 bbls Fresh Water

52	Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/C	Surface	4000'	11.8	600	1560	10% Bentonite 8 Ibs/sx Salt 0.4% Fluid loss additive 0.125% LCM if needed Excess = 115 % or more if needed based on gauge hole volume	2.6
Tail	50:50 Poz/H	4000'	7112' – 7157'	14.2	450	612	+ 5 % NaCl + 0.2% Defoamer + 5 lb/sx Extender + 0.125 lb/sx LCM if needed + 0.3% Fluid Loss Excess = 50 % or more if needed based on gauge hole volume	1.33 ~ 1.36

Displacement: Fresh Water with approximately 250 ppm gluteraldehyde biocide.

5-1/2" Production Casing Cementing Program – Two-Stage Cementing w/ Comingle Option:

ConocoPhillips Company respectfully requests the options to our cementing program. The intention for the cementing program for the Production Casing – Two-Stage Cementing Option is to:

- Provide a contingency plan for using a Stage Tool and Annulus Casing Packer(s) to isolate losses or waterflow
 if either of these events occurs while drilling the well.
- Place the Stage 1 Cement from the casing shoe to the stage tool,
- Bring Stage 2 Cement from the stage tool to surface.

Spacer: 20 bbls Fresh Water

Stag	ge 1 - Slurry		tervals t MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead	50:50 Poz/H	4000'	7112' – 7157'	14.2	450	612	+ 5 % NaCl + 0.2% Defoamer + 5 lb/sx Extender + 0.125 lb/sx LCM if needed + 0.3% Fluid Loss Excess = 30 % or more if needed based on gauge hole volume	1.33 ~ 1.36

Stage 2	2 - Slurry		rvals MD	Weight ppg	Sx	Vol Cuft	Additives	Yield ft ³ /sx
Lead 50	50:50 Poz/C	Surface	Stage Tool ~ 4000'	11.8	600	1560	+ 10 % Extender + 5 % NaCl + 0.2 % Defoamer + 5 lb/sx LCM/Extender + 0.125 lb/sx Lost Circulation Control Agent + 0.5 % Fluid Loss Excess = 50 % or more if needed based on gauge hole volume	2.6

Displacement: Fresh Water

Proposal for Option to Adjust Production Casing Cement Volumes:

The production casing cement volumes for the proposed single stage and two-stage option presented above are estimates based on gauge hole. We will adjust these volumes based on the caliper log data for each well and our trends for amount of cement returns to surface. Also, if no caliper log is available for any particular well, we would propose an option to possibly increase the production casing cement volume to account for any uncertainty in regard to the hole volume.

4. Pressure Control Equipment:

A <u>11" 3M</u> system will be installed, used, maintained, and tested accordingly as described in Onshore Oil and Gas Order No. 2.

Our BOP equipment will be:

- o Rotating Head
- o Annular BOP, 11" 3M
- o Blind Ram, 11" 3M
- o Pipe Ram, 11" 3M

After nippling up, and every 30 days thereafter or whenever any seal subject to test pressure is broken followed by related repairs, blowout preventors will be pressure tested. BOP will be inspected and operated at least daily to insure good working order. All pressure and operating tests will be done by an independent service company and recorded on the daily drilling reports. BOP will be tested using a test plug to isolate BOP stack from casing. BOP test will include a low pressure test from 250 to 300 psi for a minimum of 10 minutes or until requirements of test are met, whichever is longer. Ram type preventers and associated equipment will be tested to the approved stack working pressure of 3000 psi isolated by test plug. Annular type preventers will be tested to 50 percent of rated working pressure, and therefore will be tested to 1500 psi. Pressure will be held for at least 10 minutes or until provisions of test are met, whichever is longer. Valve on casing head below test plug will be open during testing of BOP stack. BOP will comply with all provisions of Onshore Oil and Gas Order No. 2 as specified. **See Attached BOPE Schematic.** A variance is respectfully requested to allow for the use of flexible hose. The variance request is included as a separate enclosure with attachments.

5. Proposed Mud System:

DEPTH	TYPE	Density ppg	FV sec/qt	API Fluid Loss cc/30 min	рН	Vol bbl
0 – Surface Casing Point	Fresh Water or Fresh Water Native Mud in Steel Pits	8.5 - 9.0	28 – 40	N.C.	N.C.	150 – 300
Surface Casing Point to TD	Brine (Saturated NaCl ₂) in Steel Pits	10	29	N.C.	10 – 11	300 - 1000
Conversion to Mud at TD	Brine Based Mud (NaCl ₂) in Steel Pits	10	33 – 40	5 – 10	10 – 11	0 - 1000

The mud systems that are proposed for use are as follows:

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14.

In the event that the well is flowing from a waterflow, then we would discharge excess drilling fluids from the steel mud pits through a fas-line into steel frac tanks at an offset location for containment. Depending on the rate of waterflow, excess fluids will be hauled to an approved disposal facility, or if in suitable condition, may be reused on the next well.

No reserve pit will be built.

Proposal for Option to Not Mud Up at TD:

FW, Brine, and Mud volume presented above are estimates based on gauge 12-1/4" or 7-7/8" holes. We will adjust these volume based on hole conditions. We do not plan to keep any weighting material at the wellsite. Also, we propose an option to not mud up leaving only brine in the hole if we have good hole stability.

6. Logging, Coring, and Testing Program:

- a. No drill stem tests will be done
- b. Remote gas monitoring planned for the production hole section (optional).
- c. No whole cores are planned
- d. The open hole electrical logging program is planned to be as follows:
 - Total Depth to 2350' MD: (Spectral Gamma Ray, PE, Resistivity (laterologs), Bulk Density, and Sonic
 - Total Depth to surface Casing Shoe: Caliper
 - Total Depth to surface, Total Gamma Ray and Neutron
 - Total Depth to 2350' MD ; Mud Log (optional)
 - Total Depth to 2350' MD ; Dielectric Scanner (optional)
 - Formation pressure data (XPT) on electric line if needed (optional)
 - Rotary Sidewall Cores on electric line if needed (optional)
 - FMI (Formation MicroImager) if needed (optional)
 - UBI (Ultrasonic Borehole Imager) if needed (optional)
- e. Cement Bond Log (optional).

7. Abnormal Pressures and Temperatures:

- No abnormal pressures are expected to be encountered.
- Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.
 - The bottom hole pressure is expected to be 8.5 ppg gradient.
 - o The expected Bottom Hole Temperature is 113 degrees F.
- The estimated H₂S concentrations and ROE calculations for the gas in the zones to be penetrated are presented in the table below for the various producing horizons in this area:

FORMATION / ZONE	H2S (PPM)	Gas Rate (MCFD)	ROE 100 PPM	ROE 500 PPM
Seven Rivers	6	50 - 100 MCFD	0	0
Grayburg / San Andres	18360	20 - 50 MCFD	95	43
Glorieta	41000	0 – 6 MCFD	41	19
Blinebry / Tubb / Drinkard	6535	200 - 220 MCFD	126	57

ConocoPhillips will comply with the provisions of Oil and Gas Order # 6, Hydrogen Sulfide Operations. Also, ConocoPhillips will provide an H2S Contingency Plan (please see copy attached) and will keep this plan updated and posted at the wellsite during the drilling operation.

8. Anticipated starting date and duration of operations:

Well pad and road constructions will begin as soon as all agency approvals are obtained. Anticipated date to drill these wells begin in 2014 after receiving approval of the APD.

Attachments:

- Attachment # 1 Two-stage Cementing Schematic
- Attachment # 2...... BOP and Choke Manifold Schematic 3M System
- Attachment # 3 Diagram of Choke Manifold Equipment

Contact Information:

Proposed 15 October 2013 by: James Chen Drilling Engineer, ConocoPhillips Company Phone (832) 486-2184 Cell (832) 768-1647

Attachment # 1

Two-Stage Cementing (Alternative for Severe Loss Zone) Provide contingency plan for using two-stage cementing for the production casing cement job if severe losses occurs during the drilling operations. See APD Drill Plan Section 3. Proposed cementing program.

SEMU #185

Attachment # 3

We will test each valve to 3000 psi from the upstream side.

Submitted by: James Chen Drilling Engineer, Mid-Continent Business Unit, ConocoPhillips Company Date: 21-March-2013