SUNDRY NOTICES AND REPO	AGEMENT Carlsbad Field	FORM APPROVED OMB NO. 1004-0137 Contractions: January 31, 2018 5. Lease Schal No. NMNM118726 6. If Indian, Allottee or Tribe Name
Do not use this form for proposals to abandoned well. Use form 3160-3 (AF	D) for such proposals	
SUBMIT IN TRIPLICATE - Other ins	tructions on page 2	Unit or CA/Agreement, Name and/or No.
 Type of Well Gas Well Other 	50N 1 9 2017	8. Well Name and No. ANTIETAM 9 FED COM 701H
2. Name of Operator Contact: EOG RESOURCES, INC. √ E-Mail: stan_wag	STAN WAGNER ner@eogresources.com	9. API Well No. 30-025-43477
3a. Address ATTN: STAN WAGNER P.O. BOX 2267 MIDLAND, TX 79702	3b. Phone No. (include area code) Ph: 432-686-3689	 Field and Pool or Exploratory Area WC-025 S253309A UPPER WC
4. Location of Well (Footage, Sec., T., R., M., or Survey Descriptio	n)	11. County or Parish, State
Sec 9 T2ର୍ଝିS R33E Mer NMP NWNW 59FNL 348FWL		LEA COUNTY, NM

12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA

TYPE OF SUBMISSION		TYPE OF	ACTION	
Notice of Intent	Acidize	Deepen	Production (Start/Resume)	□ Water Shut-Off
-	Alter Casing	Hydraulic Fracturing	Reclamation	U Well Integrity
Subsequent Report	Casing Repair	New Construction	Recomplete	Other
Final Abandonment Notice	Change Plans	Plug and Abandon	Temporarily Abandon	Change to Original A PD
	Convert to Injection	Plug Back	□ Water Disposal	

13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be performed or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has determined that the site is ready for final inspection.

EOG Resources requests an amendment to our approved APD for this well to reflect the addition of a DV tool to the intermediate casing string.

Detailed information attached.

SEE ATTACHED FOR CONDITIONS OF APPROVAL

14. I hereby certify that t	he foregoing is true and correct. Electronic Submission #377830 verifie For EOG RESOURCES, Committed to AFMSS for processing by	d by the INC., se DEBOF	BL ent t RAH	V Well o the H MCKI	Information System lobbs NNEY on 06/05/2017 ()		
Name (Printed/Typed)	STAN WAGNER	Title	RE	GUL	ATORY ANALYST		
Signature	(Electronic Submission)	Date	06	/02/20	APPROVED		
	THIS SPACE FOR FEDERA	LOR	ST	ATE C	OFFICE USE		
Approved By Mu	stefa_Heque	Title		P	ETROLEUM ENGINEER		Date 06/06/2017
certify that the applicant hol	ny, are attached. Approval of this notice does not warrant or lds legal or equitable title to those rights in the subject lease licant to conduct operations thereon.	Office		BU	REAU OF LAND MANAGEMEN	NT	
	1 and Title 43 U.S.C. Section 1212, make it a crime for any pe or fraudulent statements or representations as to any matter w				willfully to make to any department	t or agend	cy of the United
(Instructions on page 2) *	* OPERATOR-SUBMITTED ** OPERATOR-	SUBM	ITT	ED **	OPERATOR-SUBMITTE	ED **	De

EOG RESOURCES, INC. ANTIETAM 9 FED COM NO. 701H

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
14.75"	0 - 1,190'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 - 4,900'	7.625"	29.7#	HCP-110	LTC	1.125	1.25	1.60
9.875"	4,900' - 8,000'	7.625"	29.7#	P-110HC	MO-FXL	1.125	1.25	1.60
8.75"	8,000` - 11,900`	7.625"	29.7#	P-110HC	MO-FXL	1.125	1.25	1.60
6.75"	0' - 11,400'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	11,400'-19,860'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4 ^{**} 1,190 [*]	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8 ^{**} 11,900 [*] DV Tool w	479	11.8	2.37	13.56	Stage 2 Lead: Class C + 4% MPA-5 + 15 pps BA-90 + 1% BA- 10A + 5% A-10 + 1% ASA-301 + 3% SMS + 2.5% R-21 + 0.005 pps Static Free + 0.005 gpd FP-6L (TOC @ Surface)
ECP @ 5.000	157	15.6	1.20	5.71	Stage 2 Tail: Class H + 1% EC-1 + 015% ASA-301 + 0.2% SMS + 0.85% CD-32 + 0.85% BA-10A + 0.25% R-21 + 0.005 gps FP-6L
	528	11.8	2.37	13.56	Stage 1 Lead: Class C + 4% MPA-5 + 15 pps BA-90 + 1% BA- 10A + 5% A-10 + 1% ASA-301 + 3% SMS + 2.5% R-21 + 0.005 pps Static Free + 0.005 gpd FP-6L
	529	15.6	1.20	5.71	Stage 1 Tail: Class H + 1% EC-1 + 015% ASA-301 + 0.2% SMS + 0.85% CD-32 + 0.85% BA-10A + 0.25% R-21 + 0.005 gps FP-6L
5-1/2 ^{**} 19,860 [*]	850	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11.400')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:	EOG Resources, Inc.
LEASE NO.:	NMNM118726
WELL NAME & NO.:	701H-Antietam 9 Fed Com
SURFACE HOLE FOOTAGE:	59'/N & 348'/W
BOTTOM HOLE FOOTAGE	2410'/N & 330'/W
LOCATION:	Section 9, T.25 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico

All previous COAs still apply except the following:

A. CASING

1. The minimum required fill of cement behind the 7 5/8 inch intermediate is:

Operator has proposed DV tool at depth of 5000', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool:
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation or approved top of cement on the next stage.
- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate to the surface:
 - i. The appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - ii. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

iii. If cement falls back, remedial cementing will be done prior to drilling out that string.

MHH 06052017

.

Metal One Corp.	MO-FXL		Date	3-Nov-1	6		
Metal One		0	Date	0-1107-1			
	Connection Data	a Sheet	Rev.	0			
	Geometry Pipe Body	Imperia	<u>I</u>	<u>S.I.</u>			
	Grade	P110HC *1		P110HC *1			
	Pipe OD (D)	7 5/8	in	193.68	mm		
MO-FXL	Weight	29.70	lb/ft	44.25	kg/m		
	Actual weight	29.04	COLUMN T SOL	43.26	kg/m		
*	Wall Thickness (t)	0.375	in	9.53	mm		
	Pipe ID (d)	6.875	in	174.63	mm		
	Pipe body cross section	8.537	in ²	5,508	mm ²		
	Drift Dia.	6.750	in	171.45	mm		
	Difft Dia.	0.750		171.45			
	Connection						
	Box OD (W)	7.625	in	193.68	mm		
\uparrow	PIN ID	6.875	in	174.63	mm		
N.	Make up Loss	4.219	in	107.16	mm		
Box	Box Critical Area	5.714	_ in ²	3686	mm ²		
critical	Joint load efficiency	70	%	70	%		
area	Thread Taper	1	/ 10 (1	.2" per ft)			
Exercise Statements							
up	Number of Threads Performance Derformance	(on Dine Dedu	5	TPI			
up	()	for Pipe Body		TPI 4,747	kN		
up loss D	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1	1,067 10,760	5 kips psi	<mark>4,747</mark> 74.21	kN MPa		
up	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	1,067 10,760 7,360	kips psi psi	4,747 74.21 50.76	MPa MPa		
poss D	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12	kips psi psi LD Stree Pressu 5~140ks	4,747 74.21 50.76 ngth of Pipe body	MPa MPa		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio	kips psi psi LD Strei Pressu 5~140ks n	4,747 74.21 50.76 ngth of Pipe body re of Pipe body si)	MPa MPa		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips	kips psi LD Strei Pressu 5~140ks n (70%	4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.)	MPa MPa		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips	kips psi psi LD Stree Pressu 5~140ks n (70%	4,747 74.21 50.76 ngth of Pipe body re of Pipe body si)	MPa MPa		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips	kips psi psi Pressu 5~140ks n (70% (70% (80%	4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.)	MPa MPa dy		
up loss D Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips	kips psi psi Pressu 5~140ks n (70% (70% (80% 100% (4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	MPa MPa dy		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips	kips psi psi Pressu 5~140ks n (70% (70% (80% 100% (4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy		
up loss D Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips	kips psi psi Pressu 5~140ks n (70% (70% (80% 100% (4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi	kips psi psi LD Strei Pressu 5~140ks n (70% (80% 100% (4	4,747 74.21 50.76 ngth of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy		
Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg./100ft) Recommended Torque Min.	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi	kips psi LD Strei Pressu 5~140ks n (70% (70% (80% 100% (4 ft-lb	4,747 74.21 50.76 ngth of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of M.I.Y.P.) of Collapse St	MPa MPa dy trength		
up loss D Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi 8,610 psi 15,500 17,200	kips psi psi D Stree Pressu 5~140ks 140ks	4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000 23,300	MPa MPa dy trength		
up loss D Pin critical	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	1,067 10,760 7,360 ied Minimum YIE um Internal Yield P110HC (YS=12 for Connectio 747 kips 8,610 psi 8,610 psi 15,500 17,200 18,900 23,600	kips psi psi LD Stree Pressu 5~140ks n (70% (70% (80% 100% o 4 ft-lb ft-lb ft-lb ft-lb	4,747 74.21 50.76 ngth of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000 23,300 25,600 32,000	MPa MPa dy trength N-m N-m N-m		