1. Geologic Formations

TVD of target	12000'	Pilot Hole Depth	14127'
MD at TD:	21929'	Deepest Expected fresh water:	875'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	875	
Salado	1200	
Lamar/Delaware	4713	Oil/Gas
Bell Canyon	4757	Water/Oil/Gas
Cherry Canyon	5508	Oil/Gas
Brushy Canyon	6898	Oil/Gas
Bone Spring	8593	Oil/Gas
1st Bone Spring	9672	Oil/Gas
2nd Bone Spring	9839	Oil/Gas
3rd Bone Spring	10692	Oil/Gas
Wolfcamp (Lateral)	11905	Oil/Gas
Penn	12297	Oil/Gas
Strawn (Pilot)	13976	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

									Buoyant	Buoyant
Hale Char (ta)	Casing Interval		Csg. Size	Csg. Size Weight				CE D.	Body SF	Joint SF
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF Burst	Tension	Tension
17.5	0	926	13.375	54.5	J55	BTC	4.83	1.34	2.46	2.63
12.25	0	7500	9.625	43.5	HCL-80	BTC	1.22	1.58	2.05	2.15
12.25	7500	11305	9.625	47	HCL-80	BTC	1.29	1.85	3.83	4.16
8.5	11205	21926	5.5	20	P-110	DQX	2.10	1.20	2.26	2.48

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *OXY requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y

Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Le constituire a constituire de la 111 D0	A SPECIER
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	597	14.2	1.68	6.53	6:50	Class C Cement, Accelerator
Production	696	10.2	3.05	15.63	15:07	Pozzolan Cement, Retarder
Casing	239	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP Tool @	4764' (We requ	est the option to	cancel the seco	ond stage if ceme	ent is circulated to a	surface during the first stage of cement operations)
2nd Steen	1171	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
2nd Stage	207	14.8	1.33	6.34	6:31	Class C Cement
Production Liner	1734	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	926	N/A	50%
Production Casing	4664	10305	10305	11305	20%	20%
2nd Stage Prodution Casing	0	4264	4264	4764	75%	75%
Production Liner	N/A	N/A	11205	21926	N/A	15%

Cement Top and Liner Overlap

- a. Oxy is requesting permission to have minimum fill of cement behind the 5-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 9.625" mainbore in the future
- b. Our plan is to use a whipstock for our exit through the mainbore. Based on our future lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve.
- c. Cement will be brought to the top of this liner hanger.

Plug top	Plug Bottom	% Excess	No. Sacks	COURSE BAR	Yld ft3/sack	Water gal/sk	
13,527' MD	14,127' MD	10	252	15	1.032	4.13	NeoCem TM
12,957' MD	13,527' MD	10	252	15	1.032	4.13	NeoCem TM
12,357' MD	12,957' MD	10	252	15	1.032	4.13	NeoCem TM
11,757' MD	12,357' MD	10	252	15	1.032	4.13	NeoCem TM
11,157' MD	11,757' MD	10	270	17.5	0.952	3.51	Class H Cement, Retarder

Pilot hole depth: 14127' KOP: 11405'

Note: The first through fifth plugs are designed to be 600' in length to isolate the high pressure zones in the Pilot Hole from the KOP. The sixth plug is designed to be 600' in length and 248' above KOP to provide a strong foundation to sidetrack at the KOP.

4. Pressure Control Equipment

BOP installed and tested before drilling which	Size?	Min. Required WP	Туре	1	Tested to:	
		2M	Annular	1	70% of working pressure	
13.5" 1st	12 6/0**		Blind Ram	~		
Intermediate	13-5/8**	214	Upper Pipe Ram		250/2 000 mi	
		2M	Double Ram	1	- 250/2.000 psi	
			Lower Pipe Ram			
	ble 13-5/8"	5M	Annular	1	70% of working pressure	
9.875" 2nd			Blind Ram	1		
Intermediate Hole		5M	Upper Pipe Ram Double Ram	1	250/5,000 psi	
			Lower Pipe Ram	1		
		10M	Annular	~	70% of working pressure	
6.75" Pilot Hole	1.2 6/01		Blind Ram	1		
	13-5/8"	10M	Upper Pipe Ram	1	250/10 000	
		TUM	Double Ram		- 250/10,000 psi	
			Lower Pipe Ram	1		

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached schematics.

5. Mud Program

Pilot

Depth		Tune	Weight (nng)	Viscolty	Wednesd
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
0	926	Water-Based Mud	8.4-8.6	40-60	N/C
926	4764	Brine	9.8-10.0	35-45	N/C
4764	11305	Water-Based Mud	8.8-9.6	38-50	N/C
11305	14127	Water-Based Mud	10.0-13.0	38-50	N/C
Lateral					
D	epth	Ture	Wetch4 ()	N/less liter	Weter Las
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
11305	21926	Oil-Based Mud	8.8-9.6	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

OXY proposes to drill out the 13-3/8" surface casing shoe with a saturated brine system from 926-4764', which is the base of the salt system. At this point we will swap fluid systems to a fully saturated brine direct emulsion system. We will drill with this system to the production casing TD @ 11305'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logs	Planned	Interval
Yes	Triple Combo	Triple Combo with Spectral Gamma, Dipole Sonic, CMR
		Int CSG – TD
Yes	Mud Log	Surface Casing Shoe - TD

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	9550 psi (Pilot) 3350 psi (Lateral)
Abnormal Temperature	No
BH Temperature at deepest TVD	176°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

Total estimated cuttings volume: 2943.3 bbls.

9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Philippe Haffner	Drilling Engineer	713-985-6379	832-767-9047
Diego Tellez	Drilling Engineer Supervisor	713-350-4602	713-303-4932
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417

OXY USA WTP LP Mesa Verde 17-8 Federal Com 14H

Below is a summary that describes the general operational steps to drill and complete the well.

- Drill 17-1/2" hole x 13-3/8" casing for surface section. Cement to surface.
- Drill 12-1/4" hole x 9-5/8" casing for intermediate section. Cement to surface.
- Drill 8-1/2" hole x 5-1/2" liner for production section. Cement to top of liner, 100' inside 9-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 20# P110 DQX tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.

When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

5 ¹/₂" 20# P110 DQX Tie-back string specifications:

PERFORMANCE DATA

TMK UP DQX Technical Data Sheet

• •

5 500 in

Nor potence rield Pressure Collapse Pressure

Minimum Ced

1601(030 Tensile Load

20 00 lbs/ft P-110

05

No man la gran	F 600	<u>(</u>)
st Tole	20120 2014-0	tis tr
ਿੰਦੇ ਸਿੰਘ ਗੁਆ	19.45	tos fr
And Thekness	0.351	10 M F.
Tommal (C) Dolt Diameter	4 778	n
NOM PREEC AND	4.653	0
	1 828	·**) -

Connection Parameters

- Contection II (4 000	n
conection (L.	4 7 18	(m)
Make Strange	4.122	15
NGCA CHUMAN ALEA Thomas Alea	4 41 8	- E.
Tensor EHNS eng	100.0	
Constession Elforação	100.0	
eli. Jazir Tenya Na	F41 300	bs
in rieman e imressore	12.580	2151
0 (B1.50 P) 655100	1 1 100	2. 41

Make-Up Torques

Min Make Jr Torque	and a second sec		
	11 600	4 125	
Set Makes in Transie	1.7 19 00		
Mar Makerer Trippe		ft frig	
	54 116	true 5	
energia Turris e	17620	68. 3	
		$\frac{d^2}{dt} = \int_{-\infty}^{\infty} \partial_t d^2 d^2$	

Printert on July-29-2014

10M Choke Panel

- 1. Choke Manifold Valve
- 2. Choke Manifold Valve
- 3. Choke Manifold Valve
- 4. Choke Manifold Valve
- 5. Choke Manifold Valve
- 6. Choke Manifold Valve
- 7. Choke Manifold Valve
- 8. PC Power Choke
- 9. Choke Manifold Valve
- 10. Choke Manifold Valve
- 11. Choke Manifold Valve
- 12. LMC Lower Manual Choke
- 13. UMC Upper manual choke
- 15. Choke Manifold Valve
- 16. Choke Manifold Valve
- 17. Choke Manifold Valve
- 18. Choke Manifold Valve
- 21. Vertical Choke Manifold Valve

*All Valves 3" minimum

.

۰.

10M BOP Stack

· · ·

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: OXY USA Inc

1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

