Forfn 3160-5 (June 2015)	UNITED STATES		OCD H	lobbs		APPROVED 0. 1004-0137
	EPARTMENT OF THE INT SUREAU OF LAND MANAGI		000		Expires: Jan 5. Lease Serial No.	nuary 31, 2018
SUNDRY	NOTICES AND REPOR	TS ON WE	LLS enter an		NMNM02965A	
abandoned we	is form for proposals to di III. Use form 3160-3 (APD)	for such p	roposals BB	SOUL	6. If Indian, Allottee or	
SUBMIT IN	TRIPLICATE - Other instru	ictions on p	Dage 2	6 2017	7. If Unit or CA/Agree	ment, Name and/or No.
 Type of Well Oil Well Gas Well Of 			DEC	EIVE	8. Well Name and No. PEPPER RIDGE 1	5 A3CN FED COM 1H
2. Name of Operator MEWBOURNE OIL COMPAN		ACKIE LATH	IAN		9. API Well No. 30-025-43160-00	0-X1
3a. Address P O BOX 5270 HOBBS, NM 88241		3b. Phone No. Ph: 575-393	(include area code) 3-5905		10. Field and Pool or E RED HILLS-BON	NE SPRING, NORTH
4. Location of Well (Footage, Sec.,	T., R., M., or Survey Description)				11. County or Parish, S	
Sec 15 T26S R33E NENW 1	85FNL 2250FWL	/			LEA COUNTY, N	MM
12. CHECK THE A	PPROPRIATE BOX(ES) T	O INDICAT	TE NATURE O	F NOTICE,	REPORT, OR OTH	ER DATA
TYPE OF SUBMISSION			TYPE OF	ACTION		
Notice of Intent	Acidize	Deep	en	Product	ion (Start/Resume)	□ Water Shut-Off
_	□ Alter Casing	🗖 Hydi	aulic Fracturing	Reclam	ation	U Well Integrity
Subsequent Report	Casing Repair		Construction	Recom		Other Change to Original A
Final Abandonment Notice	 Change Plans Convert to Injection 	Plug Plug	and Abandon	□ Tempor	rarily Abandon	PD
Mewbourne Oil Company has following changes: 1 - Change name to Salado I 2 - Change BHL to 330' FNL Please see attachments for u	Draw 10 A3NC Fed Com #4 & 2250' FWL, Sec 10 T26S	H R33E	PROP-10	3197		OVAL
	Electronic Submission #36	RNE OIL COL	PANY. sent to the	ne Hobbs n 03/03/2017		
			_			
Signature (Electronic	Submission) THIS SPACE FOF				SE	
	THIS SPACE FOR	K FEDERA	LUKSTATE	OFFICE	5E	
Approved By ZOTA STEVENS	uitable title to those rights in the su		TitlePETROLE	UM ENGIN	EER	Date 10/02/2017
which would entitle the applicant to cond Title 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent	uct operations thereon.	ime for any pe	Office Hobbs	willfully to m	ake to any department or	agency of the United
Instructions on page 2)						19-
** BLM REV	ISED ** BLM REVISED	** BLM RE	VISED ** BLN	I REVISEI	D ** BLM REVISE)** 1 2
						K

1. Geologic Formations

5			RECEIVED,
TVD of target	10004'	Pilot hole depth	NA
MD at TD:	14900'	Deepest expected fresh water:	125'

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface		
Rustler	920	Water	
Top Salt	1289		
Castile	3188		
Base Salt	4738		
Lamar	4974	Oil/Gas	
Bell Canyon	5016	Oil/Gas	
Cherry Canyon	6090	Oil/Gas	
Manzanita Marker	6288		
Brushy Canyon	7678	Oil/Gas	
Bone Spring	9128	Target Zone	
1 st Bone Spring Sand			
2 nd Bone Spring Sand			
3rd Bone Spring Sand			
Abo			
Wolfcamp		Will Not Penetrate	
Devonian			
Fusselman			
Ellenburger			
Granite Wash			

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	990'	13.375"	48	H40	STC	1.50	3.36	6.78	11.38
12.25"	0'	3453'	9.625"	36	J55	LTC	1.13	1.96	2.49	4.54
12.25"	3453'	4393'	9.625"	40	J55	LTC	1.13	1.73	8.98	16.75
12.25"	4393'	4900'	9.625"	40	N80	LTC	1.21	2.26	36.35	45.18
8.75"	0'	10335'	7"	26	HCP110	LTC	1.59	2.03	2.37	3.09
6.125"	9431'	14900'	4.5"	13.5	P110	LTC	2.05	2.39	5.25	6.56
				BL	M Minimu	m Safety	1.125	1	1.6 Dry	1.6 Dry
						Factor			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	IN
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H ₂ 0 gal/ sk	500# Comp. Strength (hours)	Slurry Description
Surf.	530	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
Inter.	820	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
Prod. Stg 1	145	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer + Extender
0.8	400	15.6	1.18	5.2	10	Tail: Class H + Retarder + Fluid Loss + Defoamer
					ECP/DV T	'ool @ 6288'
Prod. Stg 2	85	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer + Extender
	100	14.8	1.34	6.3	8	Tail: Class C + Retarder
Liner	230	11.2	2.97	17	16	Class C + Salt + Gel + Fluid Loss + Retarder + Dispersant + Defoamer + Anti-Settling Agent

A copy of cement test will be available on location at time of cement job providing pump times, compressive strengths, etc.

Casing String	TOC	% Excess
Surface	0'	100%
Intermediate	0'	25%
Production	4700'	25%
Liner	9431'	25%

4. Pressure Control Equipment

Variance: None

BOP installed and tested before drilling which hole?	Size?	System Rated WP	J	Гуре		Tested to:
			Aı	nnular	X	2500#
			Blin	nd Ram	X	
12-1/4"	13-5/8"	5M	Pip	e Ram	X	5000#
			Dou	ble Ram		5000#
			Other*			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to ChokeManifold. See attached for specs and hydrostatic test chart.NAre anchors required by manufacturer?
Y	 A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. Provide description here: See attached schematic.

5. Mud Program

Depth		Туре	Weight (ppg)	Viscosity	Water Loss	
From	То					
0'	990'	Spud Mud	8.6-8.8	28-34	N/C	
990'	4900'	Brine	10.0	28-34	N/C	
4900'	9431'	Cut Brine	8.6-9.7	28-34	N/C	
9431'	14900'	OBM	8.6-10.0	30-40	<10cc	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	Pason/PVT/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.					
X	Will run GR/CNL from KOP (9431') to surface (horizontal well - vertical portion of					
	hole). Stated logs run will be in the Completion Report and submitted to the BLM.					
	No Logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain					
	Coring? If yes, explain					

Add	litional logs planned	Interval
X	Gamma Ray	9431' (KOP) to TD
	Density	
	CBL	
	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5202 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

	H2S is present	
**	TTOO D1	5

X H2S Plan attached

8. Water & Waste Volumes

Fresh Water Required: 3325 bbl

Waste Water: 3325 bbl Waste Solids: 2325 bbl

9. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments

____ Directional Plan Other, describe

Mewbourne Oil Company

Lea County, New Mexico Salado Draw 10 A3NC Fed Com #4H Sec 15, T26S, R33E SL: 185' FNL & 2250' FWL, Sec 15 BHL: 330' FNL & 2250' FWL, Sec 10

Plan: Design #1

Standard Planning Report

01 March, 2017

Database: Company: Project:	Hobbs Mewbourne Oil Company Lea County, New Mexico			Local Co-ordinate Refe TVD Reference: MD Reference:	ft (Original W	A3NC Fed Com #4H (Original Well Elev) (Original Well Elev)		
Site:		Draw 10 A3NC Fed	Com #4H	North Reference:		Grid		
Well:		, T26S, R33E	0	Survey Calculation Met	hod:	Minimum Curvature	e	
Wellbore:		30' FNL & 2250' FW	L, Sec 10					
Design:	Design	#1		"行动的现在分词的现在分词	的 是我的意思。			
Project	Lea Cou	inty, New Mexico						
Map System: Geo Datum:		Plane 1927 (Exact s 7 (NADCON CONUS		System Datum:	Me	an Sea Level		
Map Zone:	New Mexi	ico East 3001						
Site	Salado I	Draw 10 A3NC Fed	Com #4H	$= k \exp \left(- \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} $	-0		13. 9	
Site Position:			Northing:	382,809.00 usft	Latitude:			32° 3' 0.375
From:	Мар		Easting:	739,293.00 usft	Latitude: Longitude:			103° 33' 39,590
Position Uncertain		0.0 usft	Slot Radius:	13-3/16 "	Grid Converg	ence:		0.4
Well	Sec 15,	T26S, R33E	alahan na karangan sara					and a state of the
Well Position	+N/-S	0.0 usf	Northing:	382,809.00)usft lati	tude:		32° 3' 0.375
Went Position	+E/-W	0.0 usf	5	739,293.00		gitude:		103° 33' 39.590
	. []	0.0 451	Luoung.	100,200.00	LOI	grade.		100 00 00.000
Position Uncertain Wellbore	A State of the second second	0.0 usf 30' FNL & 2250' FW	The second beauty of a second	ion: 3,329.0) usft Gro	und Level:	8 a. 6 2	3,302.0 u
	BHL: 3	30' FNL & 2250' FW	L, Sec 10 Sample Date	Declination (°)) usft Gro Dip A (°	ingle ')	Field St (n1	rength [)
Wellbore	BHL: 3	30' FNL & 2250' FW	L, Sec 10	Declination	Dip A	ngle		rength
Wellbore	BHL: 3	30' FNL & 2250' FW del Name IGRF2010	L, Sec 10 Sample Date	Declination (°)	Dip A	ingle ')		rength [)
Wellbore Magnetics	BHL: 33	30' FNL & 2250' FW del Name IGRF2010	L, Sec 10 Sample Date	Declination (°)	Dip A	ingle ')		rength [)
Wellbore Magnetics Design	BHL: 33	30' FNL & 2250' FW del Name IGRF2010	L, Sec 10 Sample Date 2/17/2017	Declination (°) 6.87	Dip A	ingle ')	(n1	rength [)
Wellbore Magnetics Design Audit Notes:	BHL: 33	30' FNL & 2250' FW del Name IGRF2010 #1 Depth	L, Sec 10 Sample Date 2/17/2017	Declination (°) 6.87 2ROTOTYPE Tit +N/-S +1	Dip A (°	ingle) 59.88	(n1 0 tion	rength [)
Wellbore Magnetics Design Audit Notes: Version:	BHL: 33	30' FNL & 2250' FW del Name IGRF2010 #1 Depth	L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD)	Declination (°) 6.87 PROTOTYPE Tit +N/-S +1 (usft) (u	Dip A (° e On Depth: E/-W	ungle) 59.88 0. Direct	(n1	rength [)
Wellbore Magnetics Design Audit Notes: Version:	BHL: 33	30' FNL & 2250' FW del Name IGRF2010 #1 Depth	L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD) usft)	Declination (°) 6.87 PROTOTYPE Tit +N/-S +1 (usft) (u	Dip A (° e On Depth: E/-W isft)	ungle) 59,88 0. Direct (*)	(n1	rength [)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	BHL: 33	30' FNL & 2250' FW del Name IGRF2010 #1 Depth (L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD) usft) 0.0	Declination (°) 6.87 PROTOTYPE Tit +N/-S +1 (usft) (u	Dip A (° e On Depth: E/-W isft)	ungle) 59,88 0. Direct (*)	(n1	rength [)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	BHL: 33	30' FNL & 2250' FW del Name IGRF2010 #1 Depth (L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD) usft) 0.0 ical pth +N/-S	Declination (°) 6.87 PROTOTYPE Tit +N/-S +1 (usft) (u 0.0 0	Dip A (* e On Depth: E/-W isft) 0.0 Build	ngle) 59.88 0. Direc: (°) 359. Turn	(n1 0 tion 62	rength [)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inc	BHL: 33	30' FNL & 2250' FW del Name IGRF2010 #1 Depth (Vert Azimuth De	L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD) usft) 0.0 ical pth +N/-S	Declination (°) 6.87 PROTOTYPE The +N/-S +1 (usft) (u 0.0 + E/-W Dogleg Rate 0	Dip A (* e On Depth: E/-W isft) 0.0 Build Rate	ngle) 59.88 0. Direc: (°) 359. Turn Rate	(n1 0 tion) 62 TFO	rength r) 47,946
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ind (usft)	BHL: 33 Mot Design #	30' FNL & 2250' FW del Name IGRF2010 #1 Depth (() Vert Azimuth De(() 0.00	L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD) usft) 0.0 ical pth +N/-S sft) (usft)	Declination (°) 6.87 PROTOTYPE Tid +N/-S +1 (usft) (u 0.0 0 +E/-W Rate (vsft) (usft) ('100usft)	Dip A (* e On Depth: E/-W isft) 0.0 Build Rate (*/100usft)	ngle) 59.88 0. Direct (°) 359. Turn Rate (°/100usft)	(n1 0 tion 62 TFO (°) 0.00	rength r) 47,946
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ind (usft) 0.0	BHL: 33 Mot Design # clination (*) 0.00	30' FNL & 2250' FW del Name IGRF2010 #1 Depth (() Vert Azimuth De(() 0,00 0,00 5	L, Sec 10 Sample Date 2/17/2017 Phase: F From (TVD) usft) 0.0 ical pth +N/-S ift) (usft) 0.0 0.0	Declination (°) 6.87 PROTOTYPE Tid +N/-S +1 (usft) (u 0.0 0 +E/-W Rate ("/100usft) (usft) 0.0	Dip A (* e On Depth: E/-W isft) 0.0 Build Rate (*/100usft) 0.00	ngle) 59.88 0. Direct (*) 359. Turn Rate (*/100usft) 0.00	(n1 0 tion 62 TFO (°) 0.00	rength () 47,946

•

.

Database:	Hobbs
Company:	Mewbourne Oil Company
Project:	Lea County, New Mexico
Site:	Salado Draw 10 A3NC Fed Com #4H
Well:	Sec 15, T26S, R33E
Wellbore:	BHL: 330' FNL & 2250' FWL, Sec 10
Design:	Design #1

Planned Survey

.

	Local Co-ordinate Reference
11	TVD Reference:
	MD Reference:
	North Reference:
	Survey Calculation Method:

Site Salado Draw 10 A3NC Fed Com #4H WELL @ 3329.0usft (Original Well Elev) WELL @ 3329.0usft (Original Well Elev) Grid Minimum Curvature

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	L & 2250' FWL, Se								
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500,0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	· 0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00							0.00
3,100.0 3,200.0	0.00	0.00	3,100.0 3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
		0.00		0.0				0.00	0.00
3,300.0 3,400.0	0.00	0.00	3,300.0 3,400.0	0.0	0.0 0.0	0.0	0.00 0.00	0.00	0.00 0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,800.0	0.0			0.00	0.00	0.00
					0.0	0.0			
4,800.0	0.00	0.00	4,800.0 4,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00			0.0	0.0	0.0	0.00	0.00	0.00
5,000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00

COMPASS 5000.1 Build 72

Database:	Hobbs
Company:	Mewbourne Oil Company
Project:	Lea County, New Mexico
Site:	Salado Draw 10 A3NC Fed Com #4H
Well:	Sec 15, T26S, R33E
Wellbore:	BHL: 330' FNL & 2250' FWL, Sec 10
Design:	Design #1

Planned Survey

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Salado Draw 10 A3NC Fed Com #4H WELL @ 3329.0usft (Original Well Elev) WELL @ 3329.0usft (Original Well Elev) Grid Minimum Curvature

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
5,300.0	0.00	0.00	5,300.0	0.0	0.0	0.0	0.00	0.00	0.00
5,400.0	0.00	0.00	5,400.0	0.0	0.0	0.0	0.00	0.00	0.00
5,500.0	0.00	0.00	5,500.0	0.0	0.0 0.0	0.0	0.00	0.00	0.00 0.00
5,600.0	0.00	0.00	5,600.0 5,700.0	0.0	0.0	0.0	0.00	0.00	0.00
5,700.0 5,800.0	0.00	0.00	5,800.0	0.0	0.0	0.0	0.00	0.00	0.00
5,900.0	0.00	0.00	5,900.0	0.0	0.0	0.0	0.00	0.00	0.00
6,000.0	0.00	0.00	6,000.0	0.0	0.0	0.0	0.00	0.00	0.00
6,100.0	0.00	0.00	6;100.0 6,200.0	0.0 0.0	0.0 0.0	0.0	0.00	0.00	0.00
6,200.0 6,300.0	0.00	0.00	6,300.0	0.0	0.0	0.0	0.00	0.00	0.00
6,400.0	0.00	0.00	6,400.0	0.0	0.0	0.0	0.00	0.00	0.00
6,500.0	0.00	0.00	6,500.0	0.0	0.0	0.0	0.00	0.00	0.00
6,600.0	0.00	0.00	6,600.0	0.0	0.0	0.0	0.00	0.00	0.00
6,700.0	0.00	0.00	6,700.0	0.0	0.0	0.0	0.00	0.00	0.00
6,800.0 6,900.0	0.00 0.00	0.00	6,800.0 6,900.0	0.0 0.0	0.0	0.0	0.00	0.00	0.00
7,000.0	0.00	0.00	7,000.0	0.0	0.0	0.0	0.00	0.00	0.00
7,100.0	0.00	0.00	7,100.0	0.0	0.0	0.0	0.00	0.00	0.00
7,200.0	0.00	0.00	7,200.0	0.0	0.0	0.0	0.00	0.00	0.00
7,300.0	0.00	0.00	7,300.0	0.0	0.0	0.0	0.00	0.00	0.00
7,400.0	0.00	0.00	7,400.0	0.0	0.0	0.0	0.00	0.00	0.00
7,500.0	0.00	0.00	7,500.0	0.0	0.0	0.0	0.00	0.00	0.00
7,600.0	0.00	0.00	7,600.0	0.0	0.0	0.0	0.00	0.00	0.00
7,700.0	0.00	0.00	7,700.0	0.0	0.0	0.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,800.0	0.0	0.0	0.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,900.0	0.0	0.0	0.0	0.00	0.00	0.00
8,000.0	0.00	0.00	8,000.0	0.0	0.0	0.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,100.0	0.0	0.0	0.0	0.00	0.00	0.00
8,200.0	0.00	0.00	8,200.0	0.0	0.0	0.0	0.00	0.00	0.00
8,300.0	0.00	0.00	8,300.0	0.0	0.0	0.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,400.0	0.0	0.0	0.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,500.0	0.0	0.0	0.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,600.0	0.0	0.0	0.0	0.00	0.00	0.00
8,700.0	0.00	0.00	8,700.0	0.0	0.0	0.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,800.0	0.0	0.0	0.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,900.0	0.0	0.0	0.0	0.00	0.00	0.00
9,000.0	0.00	0.00	9,000.0	0.0	0.0	0.0	0.00	0.00	0.00
9,100.0	0.00	0.00	9,100.0	0.0	0.0	0.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,200.0	0.0	0.0	0.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,300.0	0.0	0.0	0.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,400.0	0.0	0.0	0.0	0.00	0.00	0.00
9,431.0	0.00	0.00	9,431.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP @ 9431	r'								
9,500.0	6.90	359.62	9,499.8	4.1	0.0	4.1	10.00	10.00	0.00
9,600.0	16.90	359.62	9,597.6	24.7	-0.2	24.7	10.00	10.00	0.00
9,700.0	26.90	359.62	9,690.2	62.0	-0.4	62.0	10.00	10.00	0.00
9,800.0	36.90	359.62	9,775.0	114.7	-0.8	114.7	10.00	10.00	0.00
9,900.0	46.90	359,62	9,849.4	181.4	-1.2	181.4	10.00	10.00	0.00
10,000.0	56.89	359.62	9,911.0	260.0	-1.7	260.0	10.00	10.00	0.00
10,100.0	66.89	359.62	9,958.0	348.1	-2.3	348.1	10.00	10,00	0.00
10,200.0	76.89	359.62	9,989.1	443.0	-2.9	443.1	10.00	10.00	0.00
10,273.0	84.20	359,62	10,001.1	515.0	-3.4	515.0	10.00	1.0.00	0.00
FTP: 330' FS	SL & 2250' FWL,	Sec 10							
									the second s

COMPASS 5000.1 Build 72

Hobbs Mewbourne Oil Company Lea County. New Mexico Salado Draw 10 A3NC Fed Com #4H Sec 15, T26S, R33E BHL: 330' FNL & 2250' FWL, Sec 10 Design #1

Database:

Company:

Project:

Wellbore:

Planned Survey

Design:

Site:

Well:

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Salado Draw 10 A3NC Fed Com #4H WELL @ 3329.0usft (Original Well Elev) WELL @ 3329.0usft (Original Well Elev) Grid Minimum Curvature

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,300.0	86.89	359.62	10,003.2	541.9	-3.6	541.9	10.00	10.00	A DESCRIPTION OF COMPLEX OF COMPL
10,334.2	90.31	359.62	10,004.0	576.1	-3.8	576.1	10.00	10.00 10.00	0.0
	& 2250' FWL, S		10,004.0	570.1	-5.0	570.1	10.00	10.00	0.0
10,400.0	90.31	359.62	10,003.6	641.9	-4.3	641.0	0.00	0.00	0.0
10,500.0	90.31	359.62	10,003.0	741.9	-4.3	641.9	0.00	0.00	0.0
10,600.0	90.31	359.62	10,003.1	841.9	-4.9	741.9 841.9	0.00	0.00	0.0
10,700.0	90.31	359.62	10,002.0	941.9	-6.2	941.9	0.00	0.00	0.0
10,800.0	90.31	359.62	10,001.4	1,041.9	-6.9	1,041.9	0.00	0.00	0.0
10,900.0	90.31	359.62	10,000.9	1,141.9	-7.6	1,141.9	0.00	0.00	0.0
11,000.0	90.31	359.62	10,000.3	1,241.9	-8.2	1,241.9	0.00	0.00	0.0
11,100.0	90.31	359.62	9,999.8	1,341.9	-8.9	1,341.9	0.00	0.00	0.0
11,200.0	90,31	359.62	9,999.2	1,441.9	-9.6	1,441.9	0.00	0.00	0.0
11,300.0	90.31	359.62	9,998.7	1,541.9	-10.2	1,541.9	0.00	0.00	0.0
11,400.0	90.31	359.62	9,998.2	1,641.9	-10.9	1,641.9	0.00	0.00	0.0
11,500.0	90,31	359,62	9,997.6	1,741.9	-11.5	1,741.9	0.00	0.00	0.0
11,600.0	90.31	359.62	9,997.1	1,841.9	-12.2	1,841.9	0.00	0.00	0.0
11,700.0	90.31	359.62	9,996.5	1,941.8	-12.9	1,941.9	0.00	0.00	0.0
11,800.0	90.31	359.62	9,996.0	2,041.8	-13.5	2,041.9	0.00	0.00	0.0
11,900.0	90.31	359.62	9,995.4	2,141.8	-14.2	2,141.9	0.00	0.00	0.0
12,000.0	90.31	359.62	9,994.9	2,241.8	-14.9	2,241.9	0.00	0.00	0.0
12,100.0	90.31	359.62	9,994.3	2,341.8	-15.5	2,341.9	0.00	0.00	0.0
12,200.0	90.31	359.62	9,993.8	2,441.8	-16.2	2,441.9	0.00	0.00	0.0
12,300.0	90.31	359.62	9,993.2	2,541.8	-16.8	2,541.9	0.00	0.00	0.0
12,400.0	90.31	359.62	9,992.7	2,641.8	-17.5	2,641.9	0.00	0.00	0.0
12,500.0	90.31	359.62	9,992.1	2,741.8	-18.2	2,741.9	0.00	0.00	0.0
12,600.0	90.31	359,62	9,991.6	2,841.8	-18.8	2,841.9	0.00	0.00	0.0
12,700.0	90.31	359.62	9,991.0	2,941.8	-19.5	2,941.9	0.00	0.00	0.0
12,800.0	90.31	359.62	9,990.5	3,041.8	-20.2	3,041.9	0.00	0.00	0.0
12,900.0	90.31	359.62	9,989.9	3,141.8	-20.8	3,141.9	0.00	0.00	0.0
13,000.0	90.31	359.62	9,989.4	3,241.8	-21.5	3,241.9	0.00	0.00	0.0
13,100.0	90.31	359.62	9,988.8	3,341.8	-22.1	3,341.9	0.00	0.00	0.0
13,200.0	90.31	359.62	9,988.3	3,441.8	-22.8	3,441.9	0.00	0.00	0.0
13,300.0	90.31	359.62	9,987.7	3,541.8	-23.5	3,541.9	0.00	0.00	0.0
13,400.0	90.31	359.62	9,987.2	3,641.8	-24.1	3,641.9	0.00	0.00	0.0
13,500.0	90.31	359.62	9,986.6	3,741.8	-24.8	3,741.9	0.00	0.00	0.0
13,600.0	90.31	359.62	9,986.1	3,841.8	-25.5	3,841.9	0.00	0.00	0.0
13,700.0	90.31	359.62	9,985.5	3,941.8	-26.1	3,941.9	0.00	0.00	0.0
13,800.0	90.31	359.62	9,985.0	4,041.8	-26.8	4,041.9	0.00	0.00	0.0
13,900.0	90.31	359.62	9,984.4	4,141.8	-27.4	4,141.9	0.00	0.00	0.0
14,000.0	90.31	359.62	9,983.9	4,241.8	-28.1	4,241.9	0.00	0.00	0.0
14,100.0	90.31	359.62	9,983.3	4,341.8	-28.8	4,341.9	0.00	0.00	0.0
14,200.0	90.31	359.62	9,982.8	4,441.8	-29.4	4,441.9	0.00	0.00	0.0
14,300.0	90.31	359.62	9,982.2	4,541.8	-30.1	4,541.9	0.00	0.00	0.0
14,400.0	90.31	359.62	9,981.7	4,641.7	-30.8	4,641.9	0.00	0.00	0.0
14,500.0	90.31	359.62	9,981.1	4,741.7	-31.4	4,741.8	0.00	0.00	0.0
14,600.0	90.31	359.62	9,980.6	4,841.7	-32.1	4,841.8	0.00	0.00	0.0
14,700.0	90.31	359.62	9,980.0	4,941.7	-32.7	4,941.8	0.00	0.00	0.0
14,800.0	90.31	359.62	9,979.5	5,041.7	-33.4	5,041.8	0.00	0.00	0.0

BHL: 330' FNL & 2250' FWL, Sec 10

COMPASS 5000.1 Build 72

Database: Company: Project: Site: Well: Wellbore: Design:	Hobbs Mewbourne Oil Company Lea County, New Mexico Salado Draw 10 A3NC Fed Com #4H Sec 15, T26S, R33E BHL: 330' FNL & 2250' FWL, Sec 10 Design #1				TVD Refere MD Referen North Refer	ice:	Site Salado Draw 10 A3NC Fed Com #4H WELL @ 3329.0usft (Original Well Elev) WELL @ 3329.0usft (Original Well Elev) Grid Minimum Curvature		
Design Targets		Matta tak	Berti Matt				n Hill And	4.11.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SL: 185' FNL & 2250' F - plan hits target ce - Point		0.00	0.0	0.0	0.0	382,809.00	739,293.00	32° 3' 0,375 N	103° 33' 39.590 W
KOP @ 9431' - plan hits target ce - Point	0.00 enter	0.00	9,431.0	0.0	0.0	382,809.00	739,293.00	32° 3 [°] 0.375 N	103° 33' 39,590 W
BHL: 330' FNL & 2250' - plan hits target ce - Point		0.00	9,979.0	5,132.0	-34.0	387,941.00	739,259.00	32° 3' 51.162 N	103° 33' 39.558 W
FTP: 330' FSL & 2250' - plan hits target ce - Point		0.00	10,001.1	515.0	-3.4	383,324.00	739,289.58	32° 3' 5.471 N	103° 33' 39.587 W
LP: 391' FSL & 2250' F - plan hits target ce - Point		0.01	10,004.0	576.1	-3.8	383,385.10	739,289.20	32° 3' 6.076 N	103° 33' 39.586 W

.

• ,

the second s

and the second second

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mewbourne Oil Company
LEASE NO.:	NMNM-02965A
WELL NAME & NO.:	SALADO DRAW 10 A3CN Fed Com 4H
SURFACE HOLE FOOTAGE:	0185' FNL & 2250' FWL
BOTTOM HOLE FOOTAGE	0330' FNL & 2250' FWL; Sec. 10
LOCATION:	Section 15, T. 26 S., R 33 E., NMPM
COUNTY:	Lea County, New Mexico

Generate

H2S	C Yes	No	
Potash	• None	C Secretary	⊂ R-111-P
Cave/Karst Potential	C Low	Medium	← High
Variance	C None	Flex Hose	€ Other
Wellhead	Conventional	Multibowl	C Both
Other	□ □ 4 String Area	Capitan Reef	Γ WIPP

A. Hydrogen Sulfide

 Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **990** feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

```
Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 24% - Additional cement may be required.
```

- In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 7 inch production casing is: Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
 - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
 - Second stage above DV tool:Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Excess calculates to -69% Additional cement may be required.
 b.
- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:

Cement should tie-back 100' into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS 100217

.

Page 7 of 7

263315C APD16-517 SALADO DRAW 10 A3NC FED COM 4H 30015 NMNM02965A Mewbourne 12-55_09.29.2017

13 3/8	surface	-	17 1/2	inch hole.	la!t	Design I			FACE
Segment	#/ft	Grade	10	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	48.00	н	40	ST&C	6.78	1.7	0.68	990	47,520
"B"			770	Tail Cast	daaa u af	aine ha afa	Track	0	0
	mud, 30min Sfc			Tail Cmt	does not	circ to sfc.	Totals:	990	47,520
Hole	of Proposed to Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Decid	Min Dis
			•		-	100 million (1997)	MASP	Req'd	
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt		BOPE	Hole-Cpl
17 1/2	0.6946	730	1392	742	87	8.80	1467	2M	1.56
rst Frac Grad	dient(s) for Seg	gment(s) A,	B=,b All>	0.70, OK.			antan 10 dagan 10 sadar 1		
95/8	casing ins	side the	13 3/8			Design I	Factors	INTER	MEDIATE
egment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weigh
"A"	36.00	J	55	LT&C	2.49	1.13	0.7	3,453	124,30
"B"	40.00	J	55	LT&C	8.98	1.13	0.79	940	37,60
"C"	40.00	N	80	LT&C	36.34	1.21	1.14	507	20,28
"D"								0	0
w/8 4#/g	mud, 30min Sfc	Csg Test psig:					Totals:	4,900	182,18
	ement volum			ieve a top of	0	ft from su		990	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cp
12 1/4	0.3132	1020	2006	1616	24	10.00	2833	3M	0.81
	dient(s) for Se	gment(s): A,	B, C, D = 1.0	2, 0.9, c, d					
> 0.70, OK.							10000 p. 10000 pr. 10000 -		a of some of some
aar o gaace or aanter o	e alba al sense a intra s	- 100 P 100 P 200							
7	casing in:	side the	9 5/8			Design Fa	ctors	PROD	UCTION
	casing in: #/ft	side the Grade	9 5/8	Coupling	Joint	Design Fa	ctors Burst	PROD Length	
		Grade	9 5/8 110	Coupling LT&C	Joint 2.67				Weigh
egment	#/ft	Grade	110			Collapse	Burst	Length	Weigh 245,20
egment "A" "B"	#/ft 26.00	Grade HCP HCP	110 110	LT&C	2.67	Collapse 1.64 1.42	Burst 1.98 1.98 Totals:	Length 9,431 904 10,335	Weigh 245,20 23,50 268,71
egment "A" "B" w/8.4#/g	#/ft 26.00 26.00	Grade HCP HCP	110 110	LT&C	2.67	Collapse 1.64 1.42	Burst 1.98 1.98	Length 9,431 904 10,335	Weigh 245,20 23,50 268,71
"A" " B" w/8.4#/g B	#/ft 26.00 26.00 mud, 30min Sfo would be:	Grade HCP HCP Csg Test psig:	110 110	LT&C	2.67 5.38	Collapse 1.64 1.42	Burst 1.98 1.98 Totals:	Length 9,431 904 10,335	Weigh 245,20 23,50 268,71 ellbore.
"A" "B" w/8.4#/g B No Pile	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plar	Grade HCP HCP Csg Test psig:	110 110 2,075 МТD 10335	LT&C LT&C Max VTD 9979	2.67 5.38 48.64	Collapse 1.64 1.42 1.55	Burst 1.98 1.98 Totals: if it were a	Length 9,431 904 10,335 vertical we	Weigh 245,20 23,50 268,71 ellbore. MEOC
"A" "B" w/8.4#/g B No Pile	#/ft 26.00 26.00 mud, 30min Sfo would be:	Grade HCP HCP Csg Test psig:	110 110 2,075 МТD 10335	LT&C LT&C Max VTD 9979	2.67 5.38 48.64 Csg VD	Collapse 1.64 1.42 1.55 Curve KOP	Burst 1.98 1.98 Totals: if it were a Dogleg° 90	Length 9,431 904 10,335 vertical we Severity ^o	Weigh 245,20 23,50 268,71 ellbore. MEOC
"A" "B" w/8.4#/g B No Pile	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plar	Grade HCP HCP Csg Test psig:	110 110 2,075 МТD 10335	LT&C LT&C Max VTD 9979	2.67 5.38 48.64 Csg VD 9979	Collapse 1.64 1.42 1.55 Curve KOP 9431	Burst 1.98 1.98 Totals: if it were a Dogleg° 90	Length 9,431 904 10,335 vertical we Severity ^o 10	Weigh 245,20 23,50 268,71 ellbore. MEOC 10334 overlap.
egment "A" "B" w/8.4#/g B No Pil- The c	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plan cement volum	Grade HCP HCP Cog Test psig: anned e(s) are inte	110 110 2,075 MTD 10335 ended to ach	LT&C LT&C Max VTD 9979 sieve a top of	2.67 5.38 48.64 Csg VD 9979 0	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a	Length 9,431 904 10,335 vertical we Severity° 10 4900	Weigh 245,20 23,50 268,71 ellbore. MEOC 10334 overlap. Min Dis
"A" "B" w/8.4#/g B No Pill The c Hole	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plan cement volum Annular	Grade HCP HCP Csg Test psig: nned e(s) are inte 1 Stage	110 110 2,075 MTD 10335 ended to ach 1 Stage	LT&C LT&C Max VTD 9979 sieve a top of Min	2.67 5.38 48.64 Csg VD 9979 0 1 Stage	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling	Burst 1.98 1.98 Totals: if it were a Dogleg ^o 90 rface or a Calc	Length 9,431 904 10,335 vertical we Severity ^a 10 4900 Req'd	Weigh 245,20 23,50 268,71 ellbore. MEOC 1033 overlap. Min Dis
egment "A" "B" w/8.4#/g B No Pil- The c Hole Size 8 3/4	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plan cement volum Annular Volume	Grade HCP HCP c Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook `>	110 110 2,075 10335 anded to ach 1 Stage CuFt Cmt 0	LT&C LT&C Max VTD 9979 sieve a top of Min Cu Ft	2.67 5.38 48.64 Csg VD 9979 0 1 Stage	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u>	Length 9,431 904 10,335 vertical we Severity ^a 10 4900 Req'd BOPE 3M Σ CuFt	Weigh 245,20 23,50 268,71 ellbore. MEOC 1033 overlap. Min Dis Hole-Cp 0.55
"A" "B" w/8.4#/g B No Pil- The c Hole Size 8 3/4 Settin	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plar cement volum Annular Volume 0.1503	Grade HCP HCP c Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook `>	110 110 2,075 10335 anded to ach 1 Stage CuFt Cmt 0	LT&C LT&C Max VTD 9979 sieve a top of Min Cu Ft	2.67 5.38 48.64 Csg VD 9979 0 1 Stage	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989	Length 9,431 904 10,335 vertical we Severity ^o 10 4900 Req'd BOPE 3M	Weigh 245,20 23,50 268,71 ellbore. MEOC 1033 overlap. Min Dis Hole-Cp 0.55
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plan cement volum Annular Volume 0.1503 ng Depths for s cmt by stage:	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26	110 110 2,075 mtD 10335 mded to ach 1 Stage CuFt Cmt 0 6288 -69	LT&C LT&C Max VTD 9979 sieve a top of Min Cu Ft	2.67 5.38 48.64 Csg VD 9979 0 1 Stage	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ΣCuFt 1094	Weigh 245,20 23,50 268,71 ellbore. МЕОС 10334 overlap. Min Dis Hole-Cp 0.55 <u>Σ%ехсе</u> -33
egment "A" "B" w/8.4#/g B No Pil- The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plar cement volum Annular Volume 0.1503 mg Depths for s cmt by stage:	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26	110 110 2,075 10335 anded to ach 1 Stage CuFt Cmt 0 6288	LT&C LT&C 9979 Nieve a top of Min Cu Ft 1632	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ΣCuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10334 overlap. Min Dis Hole-Cp 0.55 <u>5%exce</u> -33
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plar cement volum Annular Volume 0.1503 ng Depths for s cmt by stage: Liner w, #/ft	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431	LT&C LT&C 9979 nieve a top of Min Cu Ft 1632 Coupling	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 <u>Design</u> Collapse	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730 Factors Burst	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M Σ CuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 <u>Σ%ехсе</u> -33
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A"	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plar cement volum Annular Volume 0.1503 ng Depths for s cmt by stage: Liner w, #/ft 13.50	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26 /top @ Grade P	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110	LT&C LT&C 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 <u>Design</u> Collapse 1.86	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730 Factors Burst 2.39	Length 9,431 904 10,335 vertical wo Severity° 10 4900 Req'd BOPE 3M Σ CuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 <u>Σ%ехсе</u> -33
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plar cement volum Annular Volume 0.1503 ng Depths for s cmt by stage: Liner w, #/ft	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26 /top @ Grade P	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431	LT&C LT&C 9979 nieve a top of Min Cu Ft 1632 Coupling	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 <u>Design</u> Collapse	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730 Factors Burst	Length 9,431 904 10,335 vertical we Severity ^o 10 4900 Req'd BOPE 3M Σ CuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 <u>Σ%ехсе</u> -33
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g	#/ft 26.00 26.00 would be: ot Hole Plan cement volum Annular Volume 0.1503 mg Depths for c cmt by stage: Liner w, #/ft 13.50 13.50 s mud, 30min Sfc	Grade HCP HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26 /top @ Grade P P Csg Test psig:	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195	LT&C LT&C 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 <u>Design</u> Collapse 1.86 2.06	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730 Factors Burst 2.39 2.39 Totals:	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M Σ CuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 ∑%excer -33 NER Weigh 12,19 61,64 73,83
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g	#/ft 26.00 26.00 would be: ot Hole Plan cement volum Annular Volume 0.1503 mg Depths for c cmt by stage: Liner w, #/ft 13.50 13.50	Grade HCP HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26 /top @ Grade P P Csg Test psig:	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195	LT&C LT&C 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 <u>Design</u> Collapse 1.86 2.06	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730 Factors Burst 2.39 2.39	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M Σ CuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 ∑%excer -33 NER Weigh 12,19 61,64 73,83
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g A e	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plan cement volum Annular Volume 0.1503 ng Depths for cmt by stage: Liner w, #/ft 13.50 13.50 mud, 30min Sfd cgment Desig	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26 /top @ Grade P P Csg Test psig: gn Factors	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195	LT&C LT&C Max VTD 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C LT&C LT&C	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76 4.58 Csg VD	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 Design Collapse 1.86 2.06 Curve KOP	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>Sum of sx</u> 730 Factors Burst 2.39 2.39 Totals: if it were a v Dogleg°	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M Σ CuFt 1094	Weigh 245,20 23,50 268,71 ellbore. MEOC 10334 overlap. Min Dis Hole-Cp 0.55 ∑%exce -33 NER Weigl 12,19 61,64 73,83 bore. MEOC
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g A e	#/ft 26.00 26.00 would be: ot Hole Plan cement volum Annular Volume 0.1503 mg Depths for c cmt by stage: Liner w, #/ft 13.50 13.50 s mud, 30min Sfc	Grade HCP HCP Csg Test psig: anned e(s) are inte 1 Stage Cmt Sx Iook ↘ D V Tool(s): 26 /top @ Grade P P Csg Test psig: gn Factors	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195 would be:	LT&C LT&C Max VTD 9979 hieve a top of Min Cu Ft 1632 Coupling LT&C LT&C	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76 4.58	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 <u>Design</u> Collapse 1.86 2.06 2.06	Burst 1.98 1.98 Totals: if it were a Dogleg° 90 rface or a Calc MASP 2989 <u>sum of sx</u> 730 Factors Burst 2.39 2.39 Totals: if it were a v	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ∑ CuFt 1094 Length 903 4,566 5,469 vertical well	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 ∑%exces -33 NER Weight 12,19 61,64 73,83 bore. MEOC
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settin % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g A e No Pill	#/ft 26.00 26.00 mud, 30min Sfd would be: ot Hole Plan cement volum Annular Volume 0.1503 ng Depths for cmt by stage: Liner w, #/ft 13.50 13.50 mud, 30min Sfd cgment Desig	Grade HCP HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx Iook > D V Tool(s): 26 /top @ Grade P P Csg Test psig: gn Factors	110 110 2,075 MTD 10335 Inded to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195 would be: MTD 14900	LT&C LT&C Max VTD 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C LT&C Max VTD 9979	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76 4.58 Csg VD	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 Design Collapse 1.86 2.06 Curve KOP	Burst 1.98 1.98 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2989 <u>Sum of sx</u> 730 Factors Burst 2.39 2.39 Totals: if it were a v Dogleg ^o 90	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ∑ CuFt 1094 LL Length 903 4,566 5,469 rertical well Severity°	Weigh 245,20 23,50 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 ∑%exces -33 NER Weight 12,19 61,64 73,83 bore. MEOC
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g A e No Pill	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plan cement volum Annular Volume 0.1503 mg Depths for c cmt by stage: Liner w, #/ft 13.50 13.50 mud, 30min Sfo cgment Desig ot Hole Plan	Grade HCP HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx Iook > D V Tool(s): 26 /top @ Grade P P Csg Test psig: gn Factors	110 110 2,075 MTD 10335 Inded to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195 would be: MTD 14900	LT&C LT&C Max VTD 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C LT&C Max VTD 9979	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76 4.58 Csg VD 9979	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 Design Collapse 1.86 2.06 Curve KOP 9431	Burst 1.98 1.98 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2989 <u>Sum of sx</u> 730 Factors Burst 2.39 2.39 Totals: if it were a v Dogleg ^o 90	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ∑ CuFt 1094 LL Length 903 4,566 5,469 vertical well Severity° 10	Weigh 245,20 23,500 268,71 ellbore. MEOC 10332 overlap. Min Dis Hole-Cp 0.55 ∑%exces -33 NER Weight 12,19 61,64 73,83 bore. MEOC 10334 overlap.
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g A e No Pill The c Hole	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plan cement volum Annular Volume 0.1503 mg Depths for cmt by stage: Liner w, #/ft 13.50 13.50 mud, 30min Sfo cgment Desig ot Hole Plan	Grade HCP HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx look > D V Tool(s): 26 /top @ Grade P P Csg Test psig: gn Factors anned e(s) are inter	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195 would be: MTD 14900 ended to ach 1 Stage	LT&C LT&C Max VTD 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C LT&C Max VTD 9979 nieve a top of	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76 4.58 Csg VD 9979 9431	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 Design Collapse 1.86 2.06 Curve KOP 9431 ft from su	Burst 1.98 1.98 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2989 <u>Sum of sx</u> 730 Factors Burst 2.39 2.39 Totals: if it were a v Dogleg ^o 90 value or a	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ∑ CuFt 1094 LI Length 903 4,566 5,469 rertical well Severity° 10 904	Weigh 245,20 23,504 268,71 ellbore. MEOC 10334 overlap. Min Dis Hole-Cp 0.55 ∑%exces -33 NER Weigh 12,19° 61,64° 73,833 bore. MEOC 10324
egment "A" "B" w/8.4#/g B No Pill The c Hole Size 8 3/4 Settir % excess Tail cmt 4 1/2 egment "A" "B" w/8.4#/g A e No Pill The c	#/ft 26.00 26.00 mud, 30min Sfo would be: ot Hole Plan ement volum Annular Volume 0.1503 mg Depths for cmt by stage: Liner w, #/ft 13.50 13.50 mud, 30min Sfo egment Desig ot Hole Plan ement volum Annular	Grade HCP HCP Csg Test psig: anned e(s) are inter 1 Stage Cmt Sx look \solution D V Tool(s): 26 /top @ Grade P P Csg Test psig: gn Factors anned e(s) are inter 1 Stage	110 110 2,075 MTD 10335 ended to ach 1 Stage CuFt Cmt 0 6288 -69 9431 110 110 2,195 would be: MTD 14900 ended to ach	LT&C LT&C Max VTD 9979 nieve a top of Min Cu Ft 1632 Coupling LT&C LT&C Max VTD 9979 nieve a top of Min	2.67 5.38 48.64 Csg VD 9979 0 1 Stage % Excess Joint 3.15 2.76 4.58 Csg VD 9979 9431 1 Stage	Collapse 1.64 1.42 1.55 Curve KOP 9431 ft from su Drilling Mud Wt 9.70 Design Collapse 1.86 2.06 Curve KOP 9431 ft from su Drilling Mud Vt	Burst 1.98 1.98 Totals: if it were a Dogleg ^o 90 rface or a Calc MASP 2989 <u>Sum of sx</u> 730 Factors Burst 2.39 2.39 Totals: if it were a v Dogleg ^o 90 v 10 10 10 10 10 10 10 10 10 10	Length 9,431 904 10,335 vertical we Severity° 10 4900 Req'd BOPE 3M ∑ CuFt 1094 LI Length 903 4,566 5,469 rertical well Severity° 10 904 Req'd	Weigh 245,20 23,504 268,71 ellbore. MEOC 10334 overlap. Min Dis Hole-Cp 0.55 ∑%exces -33 NER Weigh 12,19° 61,64° 73,832 bore. MEOC 10334 overlap. Min Dis

Carlsbad Field Office

÷