FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

11/02/2017

APD ID: 10400011520

Submission Date: 02/27/2017

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

reflects the most recent changes Show Final Text

Highlighted data

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing
1	UNKNOWN	3361	0	0	OTHER : SURFACE	NONE	No
2	RUSTLER	2567	794	794	ANHYDRITE	NONE	No
3	TOP OF SALT	2212	1149	1149	SALT	NONE	No
4	BASE OF SALT	-1663	5024	5024	SALT	NONE	No
5	DELAWARE	-1918	5279	5279	SANDSTONE	NATURAL GAS,OIL	No
6	BRUSHY CANYON LOWER	-5978	9339	9339	SANDSTONE	NATURAL GAS,OIL	No
7	BONE SPRING LIME	-6188	9549	9549	LIMESTONE	NATURAL GAS,OIL	No
8.	BONE SPRING 1ST	-7083	10444	10444	SANDSTONE	NATURAL GAS,OIL	No
9	BONE SPRING LIME	-7313	10674	10674	LIMESTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-7678	11039	11039	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-8138	11499	11499	LIMESTONE	NATURAL GAS,OIL	No
.12	BONE SPRING 3RD	-8758 ⁻	12119	12119	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-9193	12554	12554	SHALE	NATURAL GAS,OIL	Yes
14	WOLFCAMP	-9393	12754	12754	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

h

Page 1 of 7

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

Pressure Rating (PSI): 10M

Rating Depth: 12654

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Choke Diagram Attachment:

Fighting_Okra_18_19_Fed_3H_10M_BOPE_CHK_20171004085937.pdf

BOP Diagram Attachment:

Fighting_Okra_18_19_Fed_3H_10M_BOPE_CHK_20171004090001.pdf

Pressure Rating (PSI): 5M

Rating Depth: 12617

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Choke Diagram Attachment:

Fighting_Okra_18_19_Fed_3H_5M_BOPE_CK_20171004085752.pdf

BOP Diagram Attachment:

Fighting_Okra_18_19_Fed_3H_5M_BOPE_CK_20171004085808.pdf

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	875	0	875	-9393	- 10243	875	J-55	40.5	STC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	9500	0	9445	-9393	- 20993	9500	P- 110		OTHER - BTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
	INTERMED IATE	8.75	7.625	NEW	API	N	9500	12800	9445	12617			3300	P- 110 ·		OTHER - FLUSHMAX		1.25	BUOY	1.6	BUOY	1.6
1	PRODUCTI ON	6.75	5.5	NEW	API	N	0	22329	0	12654	-9393	- 22127	22329	P- 110		OTHER - VAM SG	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Fighting_Okra_18_19_Fed_3H_Surf_Csg_Ass_20171004091435.pdf

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

sing Attachments Casing ID: 2	String Type:INTERMEDIATE	
Inspection Document:		
Spec Document:		•
Tapered String Spec:		
Casing Design Assum	ptions and Worksheet(s):	
Fighting_Okra_18	3_19_Fed_3H_Int_Csg_Ass_20171004091448.pdf	
Casing ID: 3	String Type: INTERMEDIATE	
Inspection Document		
Spec Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assum	ptions and Worksheet(s):	
Fighting_Okra_18	3_19_Fed_3H_Int_Csg_Ass_20171004091620.pdf	
Casing ID: 4	String Type:PRODUCTION	
Inspection Document		
Spec Document:	<i>,</i>	
Tapered String Spec:		
Casing Design Assum	ptions and Worksheet(s):	
Fighting_Okra_18	3_19_Fed_3H_Prod_Csg_Ass_20171004091658.pdf	

Section 4 - Cement

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
	Lead		0	0	0	0	0	0		SEE DRLG CONTINGENCY ATTACHMENT	N/A

SURFACE	Lead	0	875	529	1.34	14.8	708.8	50	С	1% Calcium Chloride
							6			

INTERMEDIATE	Lead	0	1130 0	890	3.27	9	2911	30	TUNED	TUNED LIGHT
INTERMEDIATE	Tail	1130 0	1280 0	163	1.2	14.5	196	30	Н	Poz (Fly Ash) + 0.5% bwoc HALAD-344 + 0.4% bwoc CFR-3 + 0.2% BWOC HR-601 + 2% bwoc Bentonite
PRODUCTION	Lead	1280 0	2232 9	798	1.33	14.8	1061	25	C	0.125 lbs/sack Poly-E- Flake

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Fittration (cc)	Additional Characteristics
0	875	SPUD MUD	8.33	9.1				2			
875	1280 0	SALT SATURATED	8.6	10				2			
1280 0	2232 9	OIL-BASED MUD	11	13				12			

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GRMWD from TD to from KOP. Cement bond logs will be run in vertical to determine top of cement.

List of open and cased hole logs run in the well:

CALIPER,CBL,DS,GR,MUDLOG

Coring operation description for the well: N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7320

Anticipated Surface Pressure: 4662.18

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Fighting_Okra_18_19_Fed_3H_H2S_Plan_20171004092720.pdf

Well Name: FIGHTING OKRA 18-19 FED

Well Number: 3H

Server Co

22.31

Ber oct

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Fighting_Okra_18_19_Fed_3H_Dir_Plan_20171004093536.pdf

Other proposed operations facets description:

MULTI-BOWL VERBIAGE MULTI-BOWL WELLHEAD CLOSED-LOOP DESIGN PLAN CO-FLEX HOSE DRILLING CONTINGENCY GCP FORM AC REPORT - ATTACHED WITH DRILLING PLAN SPUDDER RIG

Other proposed operations facets attachment:

Fighting_Okra_18_19_Fed_3H_Drlg_Cont_20171004092929.pdf Fighting_Okra_18_19_Fed_3H_MB_Wellhd_20171004093237.pdf Fighting_Okra_18_19_Fed_3H_MB_Verb_20171004093236.pdf Fighting_Okra_18_19_Fed_3H_Cisd_Loop_20171004093303.pdf Fighting_Okra_18_19_Fed_3H_GCP_Form_20171004093516.pdf

Other Variance attachment:

Fighting_Okra_18_19_Fed_3H_Co_flex_20171004093313.pdf Fighting_Okra_18_19_Fed_3H_Spudder_Rig_Info_20171004093609.pdf

Page 7 of 7

Fighting Okra 18-19 Fed 83H

Casing Assumptions and Load Cases

Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Surface Casing Burst Design						
Load Case	External Pressure	Internal Pressure				
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi				
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section				
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point				

Surface Casing Collapse Design							
Load Case	External Pressure	Internal Pressure					
Full Evacuation	Water gradient in cement, mud above TOC	None					
Cementing	Wet cement weight	Water (8.33ppg)					

Surface Casing Tension Design							
Load Case Assumptions							
Overpull	100kips						
Runing in hole	3 ft/s						
Service Loads	N/A						

Fighting Okra 18-19 Fed 83H

Casing Assumptions and Load Cases

Intermediate

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements: All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe?

1.

	Intermediate Casing Burst Design	
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-
	A man and a second a	section plus Test psi
Drill Ahead	Formation Pore Pressure Hereic	Max mud weight of next hole
ا چې وې د . مېر د مې کې د	a a second a	section
Fracture @ Shoe	Formation Pore Pressure	Dry gas

provent and a second se	Intermediate Casing Collapse Design									
Load Case		External Pressure	Internal Pressure							
Full Evacuation	~ 1	Water gradient in cement, mud	None							
		above TOC	an di statu na sana ang sa							
Cementing		Wet cement weight	Water (8.33ppg)							

Intermediate Ca	sing Tension Desigr		
Load Case	Assumptions	7-]
Overpull	100kips	£]
Runing in hole	2 ft/s]
Service Loads	N/A	، دونه . مراجع . مراجع .	

Fighting Okra 18-19 Fed 83H

Casing Assumptions and Load Cases

Production

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

	Production Casing Burst Design	
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid

Production Casing Collapse Design						
Load Case	External Pressure	Internal Pressure				
Full Evacuation	Water gradient in cement, mud above TOC.	None				
Cementing	Wet cement weight	Water (8.33ppg)				

Product	ion Casing Tension Design	
Load Case	Assumptions	
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	. N/A	

					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····				<u> </u>		i i
				24	Continger	ncy Intermediate Cement	<u> </u>			10 A		1.1	Ι.
		1	and the second	· · · ·		icy interinediate cement						•	Γ.,
	a.,	Additional I	nfo for String	3		al String Description		-					1
				·		fiate squeeze cement					· · · ·	1 V - 1	11
	·	Stage Tool	Depth	· · · ·) et		. •		. '	1.1.1.4			
	•			1 A 44 1 1	۶,					10			40
			Lead						· · ·	<u>, ()</u>	1	· ·	ľ
	· ·	Top MD of S	egment	0	Btm MD of Segment	7000	Ce	ment Type		Class C		- 4	
4		l			1		·			· · · · · ·		· ·	1
		Additives	· · ·		Quanity (sks)	1155	Yield	l (cu.ft./sk)	. [1.3 🕖 🦮			с.,
1 A. 1 M.			·· ``	· * · · · ·			ي د بونيا خوه وي		1.	. ,			
		-	ſ	с. — — — — — — — — — — — — — — — — — — —	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		·						1
		~ ~	0.125 lbs/sar	k Poly-E-Flake					· .	•••••	•	1 H T A T	Ľ
		Density (lbs			Volume (cu.ft.)	1502	Per	cent Excess	-	0		14 N.	Į į
1.1	1.16				4-							۰ <u>۱</u>	5
:	2 1		Tail			1	يو د	·	م معطر		22.5	لې د بر او	1.
		Top MD of S	egment	1	Top MD of Segment		Ce	ment Type			•		
•				1 <u>1 1 1</u>	•		· · · ·					· · · · ·	Ľ
		Additives	· · · ·		Quanity (sks)	· ·	Yield	l (cu.ft./sk)	l			• ./	Ł
					1 ·	· · ·		:				• •	
· · ·		Density (lbs	(ani)		Volume (cu.ft.)			cent Excess	1			· ·	1
		Density (ibs	V Barl		Volume (cu.r.)			Lent Excess			لنجنب		
	<u> </u>	· · · ·		t trans							.	i.	1
x +	<u> </u>		· · · · · · · · · · · · · · · · · · ·								<u> </u>		1
•	1 A.				Conting	ency Production Cement	·····	-				1.1.1	1
;				· ;	•						· · ·	· · ·	
<i>i i i i i i i i i i</i>	·	Additional I	nfo for String		Addition	al String Description					۰. ۴		
	· · .							· .	•			,	
		Stage Tool	Depth] [•			
(· · · · · · · · · · · · · · · · · · ·		· ·	÷	•. •	·				
			Lead		1							• ·	
		Top MD of 9	egment	L	Btm MD of Segment		Ce	ement Type	· (-+		
		Additives			Quanity (sks)		Vield	i (cu.ft./sk)	1		·	``	
		Rudicives			Cuality (SKS)		new	2 (CU.1C./ SK)	1				1.
					· ·		· · ·	1.1		÷.,	.		L
											-:)		L
							• •		· · · ·	1 A.		, e ÷	L
	1	Density (lbs	s/gal)		Volume (cu.ft.)		Per	cent Excess	÷ .				L
		· · · ·	<u> </u>	est - 1 - 1						<u>.</u>			L
			Tail		r					, .			L
		Top MD of 5	egment		Top MD of Segment	٤	Ce	ement Type			1	÷ *	L
		Additives			Outpoint (ckc)		Viole	l lou ft lekt					
		Audicives			Quanity (sks)	L		l (cu.ft./sk)	<u> </u>				1
					·		•				t,		1
	l		· · · · ·				· .						Ł
		Density (lbs	/gal)		Volume (cu.ft.)		Per	cent Excess					
	i i			•				e		· .			
			4							• .			-
ŕ	•								·· ·				
									• •		•		
							.*						
• •			· · ·				·· · ·						
				1.5									
2											6		
				· .							*		
					•								
								• •					
					I.					-			
					,								
				-				,					
				•									

n an tartent an 1919 - Cartent Andrew Robert Such de Charles Robert Andrew Robert Andrew

. **.**

.. /

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 3000 (3M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 3M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 3M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 3,000 psi high pressure test. The 3,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the 9-5/8' intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 3M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 3,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Ontinental & CONTITECH

Fluid Technology

ContiTech Beattie Corp. Website: <u>www.contitechbeattie.com</u>

Monday, June 14, 2010

RE: Drilling & Production Hoses Lifting & Safety Equipment

To Helmerich & Payne,

A Continental ContiTech hose assembly can perform as intended and suitable for the application regardless of whether the hose is secured or unsecured in its configuration. As a manufacturer of High Pressure Hose Assemblies for use In Drilling & Production, we do offer the corresponding lifting and safety equipment, this has the added benefit of easing the lifting and handling of each hose assembly whilst affording hose longevity by ensuring correct handling methods and procedures as well as securing the hose in the unlikely event of a failure; but in no way does the lifting and safety equipment affect the performance of the hoses providing the hoses have been handled and installed correctly It is good practice to use lifting & safety equipment but not mandatory

Should you have any questions or require any additional information/clarifications then please do not hesitate to contact us.

ContiTech Beattie is part of the Continental AG Corporation and can offer the full support resources associated with a global organization.

Best regards,

Robin Hodgson Sales Manager ContiTech Beattie Corp

ContiTech Beattle Corp, 11535 Brittmoore Park Drive, Houston, TX 77041 Phone: +1 (832) 327-0141 Fax: +1 (832) 327-0148 www.contitechbeattle.com

R16 212

UALITY DOCUMENT	
	10.45

6

PHOENIX RUBBER

ş

>6728 Szeged, Budapesti út 10. Hungary • H-8701 Szeged, P. O. Box 152 none: (3662) 556-737 • Fax: (3662) 556-738

SALES & MARKETING: H-1092 Budapest, Ráday u. 42-44. Hungary • H-1440 Budapest, P. O. Box 26 Phone: (361) 456-4200 : Fax: (361) 217-2972, 456-4273 • www.taurusemarge.hu

QUAL INSPECTION	ITY CONTR		IFIC/	ATE		CERT. N	lo:	552	
PURCHASER:	Phoenix Beat	tie Co.				P.O. N°'	1519)FA-871	
	170466	HOSE	TYPE:	3"	ID	Cho	oke and Kill	Hose	
HOSE SERIAL Nº	34128	NOMIN	AL / AC	TUAL LE	ENGTH:		11,43 m		
W.P. 68,96 MPa 1	10000 psi	T.P.	103,4	MPa	1500	() psi	Duration:	60	min.
Pressure test with water at ambient temperature	an the part of the product of the second structure of	· ·			,				
•	- •,• * -								
		,						х -	
:	See att	achme	ent. (1	page)	·.				4 · F
					·	•	•		the contraction
$\uparrow 10 \text{ mm} = 10 \text{ Min.}$ $\rightarrow 10 \text{ mm} = 25 \text{ MP}e$		C	OUPLI	NGS		••••••••••• •••••••••••••••••••••••••	<u></u>		. 😋
Туре		Serial N			··· <i>,</i> ····	Quality		Heat N°	
3" coupling with	72	20 : 7	719		A	ISI 4130		C7626	
4 1/16" Flange end					A	ISI 4130		47357	
						:			
				API S Temp	pec 10 peratur	6 C e rate:"l	B"		
All metal parts are flawless									
WE CERTIFY THAT THE ABOVE PRESSURE TESTED AS ABOVE	E HOSE HAS BEEK E WITH SATISFACT	N MANUF	ACTUR	ED IN AC	CORDA	NCE WITH	THE TERMS	of the ordi	ER AND
Date:	Inspector			Qual	ity Cont				
29. April. 2002.				<u> Z</u>	1 Con () In Hose	INIX RUB dustrial Ltd Inspection	I.	in'
Come Charles Announce and Announce							DENIARUB	BER Q.C.	

Devon Energy APD VARIANCE DATA

OPERATOR NAME: Devon Energy

1. SUMMARY OF Variance:

Devon Energy respectfully requests approval for the following additions to the drilling plan:

1. Potential utilization of a spudder rig to pre-set surface casing.

2. Description of Operations

- 1. A spudder rig contractor may move in their rig to drill the surface hole section and pre-set surface casing on this well.
 - a. After drilling the surface hole section, the rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 b. Rig will utilize fresh water based mud to drill surface hole to TD.
- The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 5. Drilling operation will be performed with the big rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The BLM will be contacted / notified 24 hours before the big rig moves back on to the pad with the pre-set surface casing.
- 6. Devon Energy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 7. Once the rig is removed, Devon Energy will secure the wellhead area by placing a guard rail around the cellar area.