OXY USA Inc. - Mesa Verde 17-8 Federal Com #5H

1. Geologic Formations

TVD of target	10600'	Pilot Hole Depth	N/A
MD at TD:	20717'	Deepest Expected fresh water:	942'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	942	
Salado	1028	
Castile	3336	
Lamar/Delaware	4651	Oil/Gas
Bell Canyon*	4666	Water/Oil/Gas
Cherry Canyon*	5518	Oil/Gas
Brushy Canyon*	6935	Oil/Gas
Bone Spring	8503	Oil/Gas
1st Bone Spring	9547	Oil/Gas
2nd Bone Spring	9938	Oil/Gas
3rd Bone Spring	10833	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

						_			Buoyant	Buoyant
	Casing Int	erval	Csg. Size	Weight	(C		SF	OT D	Body SF	Joint SF
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF Burst	Tension	Tension
17.5	0	993	13.375	54.5	J55	BTC	2.19	1.31	2.41	2.59
12.25	0	7500	9.625	47	L80	BTC	1.21	1.43	1.84	1.93
12.25	7500	9955	9.625	47	HPL80	BTC	1.19	1.48	3.54	4.39
8.5	9855	20717	5.5	20	P-110	DQX	1.98	1.20	2.31	2.54

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y

OXY USA Inc. - Mesa Verde 17-8 Federal Com #5H

Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
	·····
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/	H20 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	794	14.8	1.35	6.53	6:50	Class C Cement, Accelerator
Production	1549	10.2	3.05	15.63	15:07	Class C Cement, Retarder
Casing	239	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP	Tool @ 4702' (V	Ve request the c	option to cancel t	he second stage if	cement is circulate	d to surface during the first stage of cement operations)
2nd Stage Production	1146	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
Casing	265	14.8	1.33	6.34	6:31	Class C cement
Production Liner	1757	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	993		50%
Production Casing	0	8955	8955	9955	75%	20%
2nd Stage Production Casing	0	4202	4202	4702	75%	125%
Production Liner	N/A	N/A	9855	20717		15%

<u>Cement Top and Liner Overlap</u>

- Oxy is requesting permission to have minimum fill of cement behind the 5-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 9.625" mainbore in the future.
- Our plan is to use a whipstock for our exit through the mainbore. Based on our future lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve.
- Cement will be brought to the top of this liner hanger
- See attached for additional casing tie-back information

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?		Min. Required WP	Туре		Tested to:		
			Annular	~	70% of working pressure		
10.052 Internet Histo	13-5/8" 5M	514	Blind Ram				
12.25" Intermediate			5101	13-3/8 514		1	250/5000mg
			Double Ra	m 🖌	250/5000psi		
			Other*				

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

On Ex greate accord	ation integrity test will be performed per Onshore Order #2. Apploratory wells or on that portion of any well approved for a 5M BOPE system or r, a pressure integrity test of each casing shoe shall be performed. Will be tested in lance with Onshore Oil and Gas Order #2 III.B.1.i.
	ance is requested for the use of a flexible choke line from the BOP to Choke old. See attached for specs and hydrostatic test chart. Are anchors required by manufacturer?
install 30 day test th are pro- casing	tibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after ation on the surface casing which will cover testing requirements for a maximum of ys. If any seal subject to test pressure is broken the system must be tested. We will e flange connection of the wellhead with a test port that is directly in the flange. We oposing that we will run the wellhead through the rotary prior to cementing surface g as discussed with the BLM on October 8, 2015. tached schematic.

OXY USA Inc. - Mesa Verde 17-8 Federal Com #5H

5. Mud Program

Depth		T		7	
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
0	993	EnerSeal (MMH)	8.4-8.6	40-60	N/C
993	4702	Brine	9.8-10.0	35-45	N/C
4702	9955	EnerSeal (MMH)	8.8-9.6	38-50	N/C
9955	20717	Oil-Based Mud	8.8-9.6	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Oxy proposes to drill out the 13.375" surface casing shoe with a saturated brine system from 993' - 4702', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the Production Casing TD @ 9955'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.				
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs				
	run will be in the Completion Report and submitted to the BLM.				
No	Logs are planned based on well control or offset log information.				
No	Drill stem test? If yes, explain				
No	Coring? If yes, explain				

Addi	tional logs planned	Interval	
No	Resistivity		
No	Density		
No	CBL		
Yes	Mud log	Intermediate Shoe - TD	
No	PEX		

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5292 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	165°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

Total estimated cuttings volume: 2357.2 bbls.

9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Ludwing Franco	Drilling Engineer	713-366-5174	832-523-6392
Tim Barnard	Drilling Engineer Team Lead	713-366-5706	281-740-3084
Amrut Athavale	Drilling Engineer Supervisor	713-350-4747	281-740-4448
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417

OXY USA Inc. Mesa Verde 17-8 Federal Com #5H

Below is a summary that describes the general operational steps to drill and complete this well:

- Drill 17-1/2" hole x 13-3/8" casing for surface section. Cement to surface.
- Drill 12-1/4" hole x 9-5/8" casing for intermediate section. Cement to surface.
- Drill 8-1/2" hole x 5-1/2" liner for production section. Cement to top of liner, 100' inside 9-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 17# P110 DQX tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.

When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

0/31/2017

APD ID: 10400008098

Operator Name: OXY USA INCORPORATED

Well Name: MESA VERDE 17-8 FEDERAL COM

Submission Date: 03/07/2017

Highlighted data reflects the most recent changes

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Well Number: 5H

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3561	942	942	SHALE,DOLOMITE ,ANHYDRITE	USEABLE WATER	No
2	SALADO	1899	1028	1028	SHALE,DOLOMITE ,HALITE,ANHYDRI TE		No
3	CASTILE	-409	3336	3336	ANHYDRITE	OTHER : sait	No
4	LAMAR	-1724	4651	4651	LIMESTONE,SAND STONE,SILTSTON E		No
5	BELL CANYON	-1739	4666	4666	SANDSTONE,SILT STONE	NATURAL GAS,OIL,OTHER : BRINE	No
6	CHERRY CANYON	-2591	5518	5518	SANDSTONE,SILT STONE	NATURAL GAS,OIL,OTHER : BRINE	No
7	BRUSHY CANYON	-4008	6935	6935	LIMESTONE,SAND STONE,SILTSTON E	NATURAL	No
8	BONE SPRING	-5576	8503	8512	LIMESTONE,SAND STONE,SILTSTON E	NATURAL GAS,OIL	No
9	BONE SPRING 1ST	-6620	9547	9573	LIMESTONE,SAND STONE,SILTSTON E		Yes
10	BONE SPRING 2ND	-7011	9938	9966	LIMESTONE,SAND STONE,SILTSTON E		. Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 10600

Equipment: 13-5/8" 5M Annular, Blind Ram, Double Ram

Requesting Variance? YES

Variance request: Request for the use of a flexible choke line from the BOP to Choke Manifold.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 5H

working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system will be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

Choke Diagram Attachment:

MesaVerde17_8FdCom5H_ChkManifold_5M_03-07-2017.pdf

BOP Diagram Attachment:

MesaVerde17_8FdCom5H_FlexHoseCert_03-07-2017.pdf

MesaVerde17_8FdCom5H_BOP_5M13_58__03-07-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	993	0	993	-7039	-8032	993	J-55	54.5	BUTT	2.19	1.31	BUOY	2.59	BUOY	2.41
	PRODUCTI ON	12.2 5	9.625	NEW	API	N	0	7500	0	7500	-7039	- 14539		L-80	47	BUTT	1.21	1.43	BUOY	1.93	BUOY	1.84
	PRODUCTI ON	12.2 5	9.625	NEW	API	N ·	7500	9955	7500	9927	- 14539			HCL -80	47	BUTT	1.19	1.48	BUOY	4.39	BUOY	3.54
4	LINER	8.5	5.5	NEW	API	N	9855	20717	9827	10600	- 16866		10862	P- 110		OTHER - DQX	1.98	1.2	BUOY	2.54	BUOY	2.31

Casing Attachments

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 5H

Casing ID: 1	String Type: SURFACE	
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assum	ptions and Worksheet(s):	
MesaVerde17_8F	dCom5H_CsgCriteria_03-07-2017.pdf	
Casing ID: 2	String Type: PRODUCTION	
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assum	ptions and Worksheet(s):	
MesaVerde17_8F	dCom5H_CsgCriteria_03-07-2017.pdf	
Casing ID: 3	String Type: PRODUCTION	
Inspection Document:		
Spec Document:		
х.		
Tapered String Spec:		
Tapered String Spec:	· · ·	
	ptions and Worksheet(s):	

2

,

Well Name: MESA VERDE 17-8 FEDERAL COM Well Numb

a second seco

• >

Well Number: 5H

18.81

 $(1, 7, \dots, 7)$

2. F. M. C. S. T. M.

									· 1		1. J. S.
Casing Attachme	ents	** *		en sys	a	****		· .		an an an an an Africa, ang an an an	and the second sec
Casing ID:	4	S	String 1	Type: L	INER				- (<u>1</u> 7)		
Inspection D	ocumei	nt:		•							
- ·			·	•							
Spec Docum	ent:	•		5 2							an a
				<i>i</i>							
Tapered Strir	ng Spec	::									
Casing Desig	ın Assu	imptio	ns and	Work	sheet(s	s):			: 4	erser from Africa and	the second second second second
MesaVe	erde17_	8FdCo	m5H_C	CsgCrit	eria_03	3-07-20	∠ 017.pdf			His Carson Mar.	, standard with
MesaVe		l Anno 11 a	1		Ч				df .	n ser and an	
	<u> </u>					<u> </u>		P		مَنْ يَعْدَمُونَ مَنْ يَجْمَعُ اللَّهُ عَنْ يَعْمَدُونَ مَنْ يَعْمَدُونَ مَنْ يَعْمَدُ مَنْ يَعْمَدُونُ مَن 	
· .				· •							
Section	1 0		4								
Section	4-00		L 	<u></u>				1			terre to the second
e		<u> </u>) (xs					be	
т	/Tail	e Tool	Ð	∑ ⊑	ntity(iť		ss%	ent tr	dd ditions and diffices
String Type	Lead/Tail	Stage Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement typ	Addit
SURFACE	Lead		0	993	794	1.35	14.8	1072	50	Class C Cement	Accelerator
<u></u>					<u> </u>			<u> </u>	<u>,</u> ,		
							. ,		•••		, "· · · · · · · · · · · · · · · · · · ·
PRODUCTION	Lead	4702	.0	4202	1146	1.85	12.9	2120	75	Class C Cement	Accelerator, Retarder
PRODUCTION	Tail		4202	4702	265	1.33	14.8	352	125	Class C Cement	
Robberton			4202	47.02	203	1.55	14.0		125	Class C Cement	none
PRODUCTION	Lead		0	8955	1549	3.05	10.2	4724	75	Class C Cement	Retarder
PRODUCTION	Tail		8955	9955	239	1.65	13.2	394	20	Class H Cement	Retarder, Dispersant,
					233			0.04			Salt
INER	Lead		9855		1757	1.63	13.2	2864	15	Class H Cement	Retarder, Low Fluid
		l		7			1	I .	· · ·	おきのためですべる。	Loss Control,

.....

. . .

1

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 5H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CaCl2. Oxy proposes to drill out the 13-3/8" surface casing shoe with a saturated brine system from 993-4702', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the Production Casing TD @ 9955'.

Describe the mud monitoring system utilized: PVT/MD Totco/Visual Monitoring

Circulating Medium Table

	Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gał)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (Ibs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
	0	993	WATER-BASED MUD	8.4	8.6							
	993	4702	OTHER : Brine	9.8	10							
	4702	9955	WATER-BASED MUD	8.8	9.6					x		
~	9955	2071 7	OIL-BASED MUD	8.8	9.6							

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 5H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR from TD to surface (horizontal well - vertical portion of hole). Mud Log from Intermediate Shoe to TD.

List of open and cased hole logs run in the well:

GR,MUDLOG

Coring operation description for the well:

No coring is planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5292

Anticipated Surface Pressure: 2960

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

MesaVerde17_8FdCom5H_H2S1_03-07-2017.pdf MesaVerde17_8FdCom5H_H2S2_03-07-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

MesaVerde17_8FdCom5H_DirectPlan_03-07-2017.pdf MesaVerde17_8FdCom5H_DirectPlot_03-07-2017.pdf

Other proposed operations facets description:

Well will be drilled with a walking/skidding operation. Plan to drill the two well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well.

OXY requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

Cement Top and Liner Overlap -

a. OXY is requesting permission to have minimum fill of cement behind the 5-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 9-5/8" mainbore in the future.

b. Our plan is to use a whipstock for our exit through the mainbore. Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed

Well Name: MESA VERDE 17-8 FEDERAL COM

Well Number: 5H

for the curve.

c. Cement will be brought to the top of this liner hanger.

OXY requests the option to contract a Surface Rig to drill, set surface casing, and cement for this well. If the timing between rigs is such that OXY would not be able to preset surface, the Primary Rig will MIRU and drill the well in its entirety per the APD. See attached for additional spudder rig information.

Other proposed operations facets attachment:

MesaVerde17_8FdCom5H_CsgTieBackDetail_03-07-2017.pdf

MesaVerde17_8FdCom5H_DrillPlan_03-07-2017.pdf

MesaVerde17_8FdCom5H_SpudRigData_07-24-2017.pdf

Other Variance attachment:

5 ¹/₂" 17# P110 DQX Tie-back string specifications:

PERFORMANCE DATA

TMK UP DOX		5.500 in	17.00 lbs/ft	P-110	
Technical Data Sheet					
Tubular Parameters	· · · · · · · · · · · · · · · · · · ·	N-2-02-77. 74. **		······································	
Size	5,500	in	Minimum Yield	110,000	Ç-S
Nominal Weight	17.00	los/ft	Minimum Tenzile	125,000	ps
Grade	P-110		Yield Load	548,000	Ð
PE Weigm	16.87	los/fi	Tensile Load	628,000	lb:
Wali Thickness	0.304	in	Min Internal Vield Pressure	10,650	ps
Nominal ID	4,892	រោ	Collapse Pressure	7,500	ps
Drift Diameter	4.767	in		1 1	
Nom. Fipe Body Area	4.962	in ²			
Connection DD	6.050	ំ ហ			
Connection Parameters	· · · · · · · · · · · · · · · · · · ·				
Connection ID	4.392	51			
Make-Up Loss	4 122	in			Р. С
Critical Section Area	4,952	in-			$\mathcal{J}_{\mathcal{L}}$
Tension Efficiency	100.0	÷.		man for the star	
				and the second	S.,
•	100.0	光			
Compression Efficiency Yield Load In Tension	100.9 546,000	₩. Ibe			
Compression Efficiency	1				
Compression Efficiency Yield Load in Tension	546,000	lba			
Compression Efficiency Yield Load In Tension Min. Intemal Yield Pressure	545,000 10.660	lba psv			
Compression Efficiency Yield Load In Tension Min. Intemal Yield Pressure	545,000 10.660	lba psv			
Compression Efficiency Yield Load In Tension Min. Internal Yield Pressure Collapse Pressure	545,000 10.660	lba psv			
Compression Efficiency Vield Load In Tension Min. Internal Vield Pressure Collapse Pressure Make-Up Torques Min. Make-Up Torque	545,000 10.660 7.500	lba psv psi			
Compression Efficiency Yield Load In Tension Min. Internal Yield Pressure Collapse Pressure Make-Up Torques	545,090 10.660 7.509 9,000	lba psi psi R-lba			

Printed on: July-29-2014

NOTE.

ND/2: The content of this Technical Data Sheet is for general inflormation only and does not guarantee performance or unjay fareas for a particular purpose, which only a competent drifting professional can determine considering the specific installation and operation parameters. Information that is primed or downladed is no longer parameter any TXX IPSCO and might not be the latest miormation. Anyone using the information herein does so at that own risk. To verify that you have the latest TMK IPSCO technical information, please context TMK IPSCO Technical cales toll-free at 1-856-258-2000.

Fluid Technology Quality Document

QUALITY CONTROL CERT. Nº: 746 **INSPECTION AND TEST CERTIFICATE** 002491 Phoenix Beattle Co. PURCHASER: P.O. Nº: 412638 3" Choke and Kill Hose HOSE TYPE: CONTITECH ORDER Nº: D 52777 10,67 m NOMINAL / ACTUAL LENGTH: HOSE SERIAL Nº: 1 p61 T.P. 103,4 MPa Duration: W.P. 68,96 MPa 10000 psi 60 ~ min. 15000 Pressure test with water at "... ambient temperature See attachment. (1 page) 10 Υ 10 mm = Min. 25 MPa 10 mm = 2^{+1} COUPLINGS <u>.</u> Type Serial Nº Quality Heat Nº Contract 3° coupling with 917 913 AISI 4130 **T7998A** 4 1/16° Flange and 26984 AISI 4130 **INFOCHIP INSTALLED** API Spec 16 C Temperature rate:"B" All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. Date: Inspector **Quality Control** 1 3 3 oncilech Rubber Industrial Kft. 04. April. 2008 quality Control Dept. w anc

;:

Coflex Hose Certification

Page: 1/1

		Contile Indus	City ch Hubber trial Kit. ontrol Dept. (1)
			ontrol Dept. A)
			-
	4		1
			•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			anga pengunakan kerenda pengunakan dari dari dari dari dari dari dari dari

.

Coflex Hose Certification

---- PHOENIX Beattie

Form No 100/12 Phoenix Beattie Corp 11535 Britmoore Park Drive Houston, TX 77741 Tel: (832) 327-0148 Fax: (83

Delivery Note

SECK3-HPF3

SC725-200CS

2 x 160mm ID Safety Clamps

4 x 7.75t Shackles

LIFTING & SAFETY EQUIPMENT TO SUIT HPLOCK3-35-F1

.

Z x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD

SAFETY CLAMP 200MM 7.25T C/S GALVANISED

2

3

Customer Order Number 370-369-001	Delivery Note Number 003078 Page 1
Customer / Invoice Address Helmerich & Payne Int'l Drilling CO 1437 South Boulder Tulsa, OK 74119	Delivery / Address Helmerich & Pavne IDC ATTN: JOE STEPHENSON - RIG 370 13609 INDUSTRIAL ROAD HOUSTUN, IX 77015
	and the state of the second of the second
Customer Acc No Phoenix Beattle Contra	ct Manager Phoenix Beattie Reference Date
10.9	

	H01 006330 0	5/23/2008
item No	Beattle Part Number / Description Qty Oty Sent	Qty To Follow
	HP10CK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/16" API SPEC FLANGE E/ End 1: 4.1/16" 10Kps1 API Spec 6A Type 68X Flange End 2: 4.1/16" 10Kps1 API Spec 6A Type 68X Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10.000ps1 Test pressure: 15.000ps1 Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Fire Rating: Not Included	•

Continued...

All goods remain the property of Phoenix Besttie until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

FH-3

n

0

-:2 -

Coflex Hose Certification

Form No 100/12

Phoenix Beattle Corp 11558 Britusone Park Drive Huston, TK 77041 Tel: (822) 227-0141 E-0411 Sellephoenixbeattle.com www.phoenixbeattle.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Addres HELMERICH & PAYNE INT'L D 1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - RJ 13609 Industrial Road Houston, Tx 77015	ig 370		

Customer Acc'No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Date
KO1	JJL	006330	05/23/2008

ltem No	Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	I	0
5	OOCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
6	COCERT-LOAD LOAD TEST CERTIFICATES	1	1	O
	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	1	0
	R	PA	\bigwedge	
l	Phoenix Beattie Inspection Signature :	TURN	WHIEL	······
	Received In Good Condition : Signature	V-P		
	Print Name		N	

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

=:\$== PH (OENIX Bea	ttie	Materia	l Iden	tificatio	on Certifi	cate			
PA No 008	330 Client HE	LMERICH & PA	YNE INT'L DRILLING	C0ent	Ref 37	70-369 - 001			Page	1
Part No	Description	Material Desc	Material Spec	Qty	WO No	Batch No	Test Cert No	Bin No	Drg No	Issue No
HP100034-35-4F1	3" 10K 16C CAK HOSE x 35TL CAL			1	2491	52777/H884		WATER		
SECK3-INF3	LIFTING & SAFETY EDUIPHENT TO SAFETY CLAMP 200MN 7.25T		: :	1		002440		N/STK		
SC725-200CS	SAFETY CLAMP 200HH 7.25T	CARBON STEEL	· · · · · · · · · · · · · · · · · · ·	1	2519 2242	11139		22C 22		
		STUDIE JIEL	<u>.</u>	<u> ·</u>		11117				
·····				†	1	<u> </u>				
				<u> </u>	[ļ				
				<u> </u>	ļ	<u></u>			<u> </u>	·
					<u> </u>					
·	······				<u> </u>	+				
			· · · · · · · · · · · · · · · · · · ·							
	·····		2 2	<u> </u>			}			·····
					<u>}</u>			<u>├</u>		
					+	1		<u> </u>		
				1				[
				1	1	1	1		1	
moda.					ļ		· · · · · · · · · · · · · · · · · · ·	ļ		
			· · · · · · · · · · · · · · · · · · ·		·	+	·			<u> </u>
	•				+			+	<u> </u>	<u> </u>
		+	-	+	+		+		 	{
		<u> </u>					· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u>├</u> ────
·····	<u> </u>	+	[+		1	<u> </u>	·····	
		1		1	†	1	4	1		
	1	1		1	1			1		1

We hereby certify thet these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

FH-S

Coflex Hose Certification

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier: CONTITECH RUBBER INDUSTRIAL KFT.Equipment: 6 pcs. Choke and Kill Hose with installed couplingsType :3" x 10,67 m WP: 10000 psiSupplier File Number: 412638Date of Shipment: April. 2008Customer: Phoenix Beattle Co.Customer P.o.: 002491Referenced Standards

/ Codes / Specifications : API Spec 16 C Serial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed

Position: Q.C. Manager

_ontiTech Rubber Industrial Kft. Quality Control Dept. (1)

Date: 04. April. 2008

.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

o Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

o Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- 1) Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

PERFORMANCE DATA

TMK UP DQX **Technical Data Sheet**

5.500 in

20.00 lbs/ft

Min. Internal Yield Pressure

Minimum Yield

Yield Load

Tensile Load

Minimum Tensile

Collapse Pressure

P-110

110.000

125,000

641,000

729.000

12,600

11,100

psi

psi

lbs

lbs

psi

psi

Tubular Parameters

Size	5.500	in
Nominal Weight	20.00	lbs/ft
Grade	P-110	
PE Weight	19.81	lbs/ft
Wall Thickness	0.361	in
Nominal ID	4.778	in
Drift Diameter	4.653	in
Nom. Pipe Body Area	5.828	in²

Connection Parameters					
Connection OD	6.050	in			
Connection ID	4.778	in			
Make-Up Loss	4.122	in			
Critical Section Area	5.828	in²			
Tension Efficiency	100.0	%			
Compression Efficiency	100.0	%			
Yield Load In Tension	641,000	lbs			
Min. Internal Yield Pressure	12,600	psi			
Collapse Pressure	11,100	psi			

Make-Up Torques					
Min. Make-Up Torque	11,600	ft-lbs			
Opt. Make-Up Torque	12,900	ft-lbs			
Max. Make-Up Torque	14,100	ft-lbs			
Yield Torque	20.600	ft-lbs			

Printed on: July-29-2014

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply timess for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: <u>OXY USA Inc</u>

1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- **3.** A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

