· ·						1/2
HOBBS OCD						18
Form 3160-3 FEB 0 6 2018				OMB No	APPROVED 0. 1004-0137 tober 31, 2014	
RECEIVER MENT OF THE	INTERIOR			5. Lease Serial No. NMNM63763		
BUREAU OF LAND MAN APPLICATION FOR PERMIT TO				6. If Indian, Allotee	or Tribe Name	
la. Type of work: DRILL REENT	ER			7 If Unit or CA Agree	ment, Name and No.]
lb. Type of Well: 🗹 Oil Well 🔲 Gas Well 💭 Other	Sir Sir	ngle Zone 🔲 Multij	ole Zone	8. Lease Name and W MJ FED COM 231H		
2. Name of Operator MATADOR PRODUCTION COMPANY	(2.28)	937)		9. API Well No.	-44434	
3a. Address 5400 LBJ Freeway, Suite 1500 Dallas TX 7524		(include area code) 200		10. Field and Pool, or E TONTO / WOLCAM		
4. Location of Well (Report location clearly and in accordance with an				11. Sec., T. R. M. or Bil	k and Survey or Area	
At surface NWNW / 188 FNL / 629 FWL / LAT 32.65245 At proposed prod. zone SWSW / 240 FSL / 330 FWL / LAT				SEC 23 / T19S / R3	3E / NMP	
14. Distance in miles and direction from nearest town or post office*	1 32.0391171	LONG - 103.04 132	·	12. County or Parish	13. State	
21 miles				LEA	NM	÷
 15 Distance from proposed* location to nearest 188 feet property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of a 520	cres in lease	17. Spaci 160	ng Unit dedicated to this w	eli	
 Distance from proposed location* to nearest well, drilling, completed, 30 feet applied for, on this lease, ft. 	19. Proposed	i Depth t / 16543 feet		BIA Bond No. on file MB001079		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3651 feet	22. Approxir 10/01/201	nate date work will sta 7	<u> </u> n*	23. Estimated duration 90 days		
	24. Attac	hments				
The following, completed in accordance with the requirements of Onsho	ore Oil and Gas	Order No.1, must be a	ttached to th	nis form:		
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 	Lands, the	Item 20 above). 5. Operator certific	ation	ons unless covered by an e formation and/or plans as a		
25. Signature (Electronic Submission)		(Printed/Typed) Wood / Ph: (505)4	66-8120	1	Date 08/07/2017	
Title				_		
Approved by (Signature) (Electronic Submission)		(Printed/Typed) Layton / Ph: (575)2	234-5959		- Date 01/31/2018	· · ·
Title Supervisor Multiple Resources	Office	SBAD	•	.		
Application approval does not warrant or certify that the applicant hold conduct operations thereon. Conditions of approval, if any, are attached.	1		ts in the su	bject lease which would en	title the applicant to	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a c States any false, fictitious or fraudulent statements or representations as	rime for any pe to any matter w	erson knowingly and vithin its jurisdiction.	villfully to 1	make to any department or	agency of the United	
(Continued on page 2)			1	*(Instr	uctions on page 2)	
			INS	KZ,	16	y
	and with	H CONVIL	Wite	ant	6118	101
ADDRO		H CONDITI		0 1		bind
All		01/31/2018			X	DEGIDE
					*	

<u> </u>ł

.

INSTRUCTIONS

1 ...

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: NWNW / 188 FNL / 629 FWL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.65245 / LONG: -103.64031 (TVD: 0 feet, MD: 0 feet)
 PPP: SWNW / 1320 FNL / 330 FWL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.64934 / LONG: -103.64129 (TVD: 11790 feet, MD: 12557 feet)
 PPP: NWNW / 188 FNL / 629 FWL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.65245 / LONG: -103.64031 (TVD: 0 feet, MD: 0 feet)
 BHL: SWSW / 240 FSL / 330 FWL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.63911 / LONG: -103.64132 (TVD: 11790 feet, MD: 16543 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

Approval Date: 01/31/2018

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 01/31/2018

(Form 3160-3, page 4)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

()))) ()))) ()))) ()))

NAME: Brian Wood

Title: President

Street Address: 37 Verano Loop

City: Santa Fe

Phone: (505)466-8120

Email address: afmss@permitswest.com

State: NM

State:

Field Representative

Representative Name:

Street Address:

City:

Phone:

Email address:

Signed on: 08/07/2017

tification Data Report

Zip: 87508

Zip:

VAFMSS

U.S. Dep	partment	ofthe	Interior
BUREAU	OF LAND	MANA	GEMENT

Application Data Report

APD ID: 10400018728

Submission Date: 08/07/2017

Zip: 75240

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: MJ FED COM

Well Type: OIL WELL

Well Number: 231H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Secti	ion 1 - General		
APD ID: 1040	00018728	Tie to previous NOS?	Submission Date: 08/07/2017
BLM Office: CAR	RLSBAD	User: Brian Wood	Title: President
Federal/Indian A	PD: FED	Is the first lease penetra	ated for production Federal or Indian? FED
Lease number: N	IMNM63763	Lease Acres: 520	
Surface access a	agreement in place?	Allotted?	Reservation:
Agreement in pla	ace? NO	Federal or Indian agree	ment:
Agreement numb	ber:		
Agreement name	ə:		
Keep application	confidential? NO		· .
Permitting Agent	17 YES	APD Operator: MATADO	OR PRODUCTION COMPANY
Operator letter o	f designation:		

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Operator PO Box:

Operator City: Dallas State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan r	name:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name	:
Well Name: MJ FED COM	Well Number: 231H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: TONTO	Pool Name: WOLCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER, POTASH

Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FED COM

Well Number: 231H

Describe other minerals: Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance? Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: MJ Number: SLOT 1 FED COM Well Class: HORIZONTAL Number of Legs: 1 Well Work Type: Drill-Well Type: OIL WELL Describe Well Type: Well sub-Type: INFILL Describe sub-type: Distance to town: 21 Miles Distance to nearest well: 30 FT Distance to lease line: 188 FT Reservoir well spacing assigned acres Measurement: 160 Acres MJ_231H_Piat_08-07-2017.pdf Well plat: Well work start Date: 10/01/2017 Duration: 90 DAYS **Section 3 - Well Location Table**

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 18329

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD
SHL Leg #1	188	FNL	629	FWL	19S	33E	23	Aliquot NWN W	32.65245	- 103.6403 1	LEA	1	NEW MEXI CO	F	NMNM 63763	365 1	0	0
KOP Leg #1	188	FNL	629	FWL	19S	33E	23	Aliquot NWN W	32.65245	- 103.6403 1	LEA		NEW MEXI CO	F	NMNM 63763	- 758 5	112 50	112 36
PPP Leg #1	188	FNL	629	FWL	19S	33E	23	Aliquot NWN W	32.65245	- 103.6403 1	LEA		NEW MEXI CO	F	NMNM 63763	365 1	0	0

Well Name: MJ FED COM

Well Number: 231H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type		Elevation	UM .	TVD
PPP Leg #1	132 0	FNL	330	FWL	19S	33E	23	Aliquot SWN W	32.64934	- 103.6412 9	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 123521	- 813 9	125 57	117 90
EXIT Leg #1	240	FSL	330	FWL	19S	33E	23	Aliquot SWS W	32.63911	- 103.6413 2	LEA	NEW MEXI CO		F	NMNM 123521	- 813 9	165 43	117 90
BHL Leg #1	240	FSL	330	FWL	19S	33E	23	Aljiquot SWS W	32.63911	- 103.6413 2	LEA	NEW MEXI CO		F	NMNM 123521	- 813 9	165 43	117 90

Dana 3 of 3

	obbs ocd		
VAFMSS	FEB 06 2018	Difilling Plan	Data Report
U.S. Department of the Interior BUREAU OF LAND MANAGEMENT	RECEIVED		02/01/2018
APD ID: 10400018728		Submission Date: 08/07/2017	Highlighted data
Operator Name: MATADOR PR	ODUCTION COMPANY	· .	reflects the most recent changes
Well Name: MJ FED COM		Well Number: 231H	Show Final Text
Well Type: OIL WELL		Well Work Type: Drill	

.

Section 1 - Geologic Formations

Formation	_		True Vertical				Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1		3651	.0	0	OTHER : Quaternary	USEABLE WATER	No
2	RUSTLER ANHYDRITE	2201	1450	1453		NONE	No
3	TOP SALT	2086	1565	1568		NONE	No
4	BASE OF SALT	501	3150	3159	·	NONE	No
5	YATES	321	3330	3340	GYPSUM	NONE	No
6	SEVEN RIVERS	-59	3710	3721	DOLOMITE	NONE	No
7	QUEEN	-624	4275	4288	SANDSTONE	NONE	No
8	GRAYBURG	-1124	4775	4789	SANDSTONE	NONE	No
9	DELAWARE	-1859	5510	5524	SANDSTONE	NATURAL GAS,CO2,OIL	No
10	BRUSHY CANYON	-2459	6110	6124	SANDSTONE	NATURAL GAS,CO2,OIL	No
11	BONE SPRING LIME	-4294 ·	7945	7959		NATURAL GAS,CO2,OIL	No
12	BONE SPRING 1ST	-5529	9180	9194	SANDSTONE	NATURAL GAS,CO2,OIL	No
13	BONE SPRING 2ND	-6054	9705	9719	SANDSTONE	NATURAL GAS,CO2,OIL	No
14	BONE SPRING 3RD	-7149	10800	10814	SANDSTONE	NATURAL GAS,CO2,OIL	No
15	WOLFCAMP	-7929	11580	11625	SANDSTONE	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering.

.---

- Compressed Natural Gas On lease
 - o Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines.
- NGL Removal On lease
 - NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

Well Name: MJ FED COM

Well Number: 231H

Pressure Rating (PSI): 5M

Rating Depth: 12000

Equipment: A 12,000' 5000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Requesting Variance? YES

Variance request: Matador is requesting a variance to use a speed head. Speed head diameter range is 13.375" x 9.625" x 7.625" x 5.5". Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Testing Procedure: Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After surface casing is set and the BOP is nippled up, then BOP pressure tests will be made to 250 psi low and 2000 psi high. Intermediate 1 pressure tests will be made to 250 psi low and 2000 psi high. Intermediate 1 pressure tests will be made to 250 psi low and 3000 psi high. Intermediate 2 pressure tests will be made to 250 psi low and 250 psi low and 2500 psi high on the intermediate 1 and 2 casing. In the case of running a speed head with landing mandrel for 9.625" and 7" casing, after surface casing is set, BOP test pressures will be 250 psi low and 3000 psi high. Wellhead seals will be tested to 5000 psi once the 9.625" casing has been landed and cemented. BOP will then be lifted to install the C-section of the wellhead. BOP will then be nippled back up and pressure tested to 250 psi low and 7500 psi high. Annular will be tested to 250 psi low and 2500 psi low and 7500 psi high. Annular will be tested to 250 psi low and 2500 psi low and 3000 psi high. Wellhead seals will be tested to 5000 psi once the 9.625" casing has been landed and cemented. BOP will then be lifted to install the C-section of the wellhead. BOP will then be nippled back up and pressure tested to 250 psi low and 7500 psi high. Annular will be tested to 250 psi low and 2500 psi low and 7500 psi high. Annular will be tested to 250 psi low and 2500 psi high.

Choke Diagram Attachment:

MJ_231H_Choke_20171023141828.pdf

BOP Diagram Attachment:

MJ_231H_BOP_08-07-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	20	13.375	NEW	API	N	0	1475	0	1472	3651		1475	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4900	0	4886	3651		4900	Р- 110	ſ	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5000	0	4986	3651		5000	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	11080	0	11066	3651		11080	Р- 110	20	OTHER - Tenaris XP		1.12 5	DRY	1.8	DRY	1.8
5	INTERMED IATE	8.75	7.625	NEW	API	Y 	4900	11180	4886	11166			6280	P- 110		OTHER - VAM HTF- NR	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Well Name: MJ FED COM

Well Number: 231H

\sim				· ·																		
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
		8.75	7.0	NEW	API	Y .	11180	12050	11162	11784			870	Р- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	11080	16543	11066	11790			5463	P- 110			-	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1 String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Surface_08-07-2017.docx

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing_Design_Assumptions_Intermediate_08-07-2017.docx

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-07-2017.docx

Well Name: MJ FED COM

Well Number: 231H

Casing Attachments

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-07-2017.docx

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5_Inch_Casing_Spec_08-07-2017.pdf

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Production_08-07-2017.docx

Casing ID: 5 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing_Design_Assumptions_Intermediate_08-07-2017.docx Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-07-2017.docx

Well Name: MJ FED COM

Well Number: 231H

Casing Attachments

Casing ID: 6

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing_Design_Assumptions_Intermediate_08-07-2017.docx

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-07-2017.docx

Casing ID: 7

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.5_Inch_Casing_Spec_08-07-2017.pdf

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Production_08-07-2017.docx

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1475	1619	1.75	13.5	2833	100	Class C	3% NaCI + LCM
SURFACE	Tail		0	1475	524	1.38	14.8	723	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4900	841	2.36	11.5	1984	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4900	226	1.38	13.2	311	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5000	1169	1.81	13.5	2115	100	Class C	Bentonite + 1% CaCl2 + 8% NaCl + LCM

Pana 5 of 8

Well Name: MJ FED COM

Well Number: 231H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5000	454	1.38	14.8	626	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		[`] O	1108 0	412	1.38	15.8	568	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Tail		0	1108 0	412	1.38	15.8	568	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4900	1118 0	841	• 2.36	11.5	1984	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4900	1118 0	226	1.38	13.2	311	35	тхі	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1118 0	1205 0	841	2.36	11.5	1984	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1118 0	1205 0	226	1.38	13.2	311	35	тхі	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1108 0	1654 3	412	1.38	15.8	568.	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Tail		1108 0	1654 3	412	1.38	15.8	568	10	Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Circulating Medium Table

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

Depth om Depth	Type	Weight (Ibs/gal)	ity (lbs/cu ft)	Strength (lbs/100 sqft)		sity (CP)	ity (ppm)	tion (cc)	onal Characteristic
Top Del Bottom	Mud Ty	Min Weig Max Weig	Density	Gel Stren	Ha	Viscosity	Salinity	Filtration	Additional

Well Name: MJ FED COM

Well Number: 231H

	Sth		s/gal)	bs/gal)	(lbs/cu ft)	lbs/100 sqft)		(CP)		c)	aracteristics
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs	Gel Strength (Ibs/100	Hd	Viscosity (C	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1475	WATER-BASED MUD	8.3	8.3							
1475	5000	SALT SATURATED	10	10			-				
5000	1205 0	OTHER : Fresh water & cut brine	9	9					•		
1205 0	1654 3	OIL-BASED MUD	12.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 1475' to TD.

No electric log is planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR,OTH

Other log type(s):

CCL

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8253

Anticipated Surface Pressure: 5659.2

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Well Name: MJ FED COM

Well Number: 231H

Hydrogen sulfide drilling operations plan:

MJ_231H_H2S_Plan_08-07-2017.pdf .

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

MJ_231H_Horizontal_Drill_Plan_08-07-2017.pdf

Other proposed operations facets description:

Deficiency letter dated 10/20/17 requested:

1) Revised Choke Diagram - see attached;

2) 7 5/8 in VAM and 5.5 in Tenaris XP casing specs - see revised Speedhead Specs attachment;

3) DV tool depth and stage cementing information - see Other Variance attachment.

Other proposed operations facets attachment:

MJ_231H_General_Drill_Plan_08-07-2017.pdf

MJ_231H_Speedhead_Specs_20171023141849.pdf

Other Variance attachment:

MJ_231H_DV_Tool_Variance_Request_20171023141901.pdf

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400018728

Submission Date: 08/07/2017

SUPO Data Report

Highlighted data reflects the most

recent changes

Show Final Text

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: MJ FED COM

Well Type: OIL WELL

Well Number: 231H

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

MJ_231H_Road_Map_08-07-2017.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

RO₩ ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

MJ_231H_Road_Map_08-07-2017.pdf

New road type: LOCAL

Length: 383

Max slope (%): 0

Width (ft.): 30 Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Will crown and ditch road

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Matador requests the option to run a DV tool with annular packer as contingency in the intermediate 1 section on 9-5/8" casing if lost circulation is encountered. If losses occur the DV tool with packer will be placed at least 100' above loss zone to give the option to pump cement as either a single stage or two stage.

Matador DV Tool Specifications

Example:

Assuming DV tool set at 4500' MD but if the setting depth changes, cement volumes will be adjusted proportionately.

Stage 1:

Lead	1262 '	1.81	13.5	Class C + Bentonite + 1% CaCL2 + 8% NaCl + LCM		
Tail	490	1.38	14.8	Class C + 5% NaCl + LCM		
	100% excess, TOC = 0' MD					

Stage 2:

Lead	1324	1.81	13.5	Class C + Bentonite + 1% CaCL2 + 8% NaCl + LCM				
	100% excess, TOC = 0' MD							

Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FED COM

Well Number: 231H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Will crown and ditch road; no drainage crossed

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

MJ_231H_Well_Map_08-07-2017.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Production Facilities map:

MJ_231H_Production_Diagram_08-07-2017.PDF

Section 5 - Location and Types of Water Supply

Water Source Table

Operator Name: MATADOR PRODUC	TION COMPANY	
Well Name: MJ FED COM	Well Numb	er: 231H
Water source use type: DUST CON CASING Describe type:	TROL, STIMULATION, SURFACE	Water source type: GW WELL
Source latitude:		Source longitude:
Source datum:		
Water source permit type: PRIVATI	ECONTRACT	
Source land ownership: PRIVATE	· .	
Water source transport method: TF	RUCKING	
Source transportation land owners	hip: PRIVATE	
Water source volume (barrels): 200	000	Source volume (acre-feet): 2.577862
Source volume (gal): 840000		
Nator course and transportation man		
Vater source and transportation map		
AJ_231H_Water_Source_Map_08-07-2	o i <i>r</i> .pai	
Vater source comments:		
lew water well? NO		
New Water Well Ir	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:	- · ·	•
Est. depth to top of aquifer(ft):	Est thickness of a	quifer:
Aquifer comments:		
Aquifer documentation:		
Vell depth (ft):	Well casing type:	
Vell casing outside diameter (in.):	Well casing inside d	iameter (in.):
lew water well casing?	Used casing source:	
Drilling method:	Drill material:	
Grout material:	Grout depth:	
asing length (ft.):	Casing top depth (ft.):
Vell Production type:	Completion Method:	
Vater well additional information:		
state appropriation permit:	,	
Additional information attachment:		

Well Name: MJ FED COM

Well Number: 231H

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled south of the pad. V-door will face north. Closed loop drilling system will be used. Caliche will be hauled from existing caliche pits on private land. Caviness pit is in SWNE 9-18s-33e. Berry pit is in SENE 35-20s-34e. **Construction Materials source location attachment:**

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 1000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY Disposal type description:

Disposal location description: Halfway NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

Cuttings area width (ft.) Cuttings area volume (cu. yd.)

Well Name: MJ FED COM

Well Number: 231H

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

MJ 231H Well Site Layout 08-07-2017.PDF

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: MJ FED COM Multiple Well Pad Number: SLOT 1

Recontouring attachment:

Drainage/Erosion control construction: Will crown and ditch road and caliche pad

Drainage/Erosion control reclamation: Harrowed on the contour

Wellpad long term disturbance (acres): 3.41	Wellpad short term disturbance (acres): 3.65		
Access road long term disturbance (acres): 0.26	Access road short term disturbance (acres): 0.26		
Pipeline long term disturbance (acres): 0	Pipeline short term disturbance (acres): 0		
Other long term disturbance (acres): 0	Other short term disturbance (acres): 0		
Total long term disturbance: 3.67	Total short term disturbance: 3.91		

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 24% (0.87 acre) by removing caliche and reclaiming the southwest corner (100' x 380'). This will leave 2.78 acres for the production equipment (e.g., tank battery, heater-treaters, flare/CBU), pump jacks, and tractortrailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the well is plugged, then the rest of the pad and 383' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FED COM

Well Number: 231H

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO Non native seed description: Seedling transplant description: Will seedlings be transplanted for this project?

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? Seed harvest description: Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed source:

Source address:

Total pounds/Acre:

Proposed seeding season:

Seed Su	ummary
Seed Type	Pounds/Acre

Well Name: MJ FED COM

Well Number: 231H

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Phone:

Email:

Last Name:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office:

Well Name: MJ FED COM

Well Number: 231H

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO ROW Type(s): Use APD as ROW?

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Well Name: MJ FED COM

Well Number: 231H

Previous Onsite information: On site inspection was held with Vance Wolf (BLM) on April 20, 2017. Lone Mountain will inspect and file an archaeology report.

Other SUPO Attachment

MJ_231H_General_SUPO_08-07-2017.pdf

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

]<u>8</u>]____

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Info	mation	Hose Specifications	
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K/FSL Level 2
Date Assembled	3/10/2015	Hose Grade	MUD
Location Assembled	OKC	Hose Working Pressure	10000
Sales Order #	245805	Hose Lot # and Date Code	11839-11/14
Customer Purchase Order #	270590	Hose I.D. (Inches)	2"
Assembly Seriol # (Pick Ticket #)	296283	Hose O.D. (Incres)	3.99"
Hose Assembly Length	50'	Armor (yes/no)	YES
		ttings	

End A		End B	
Stem (Part and Revision #)	R2.0X32M1502	Stem (Part and Revision #)	RF2.0 32F1502
Stem (Heat #)	14104546	Sterri (Heat #)	A144853
Ferrule (Part and Revision #)	RF2.0 10K	Ferrule (Part and Revision #)	RF2.0 10K
Ferrule (Heot #)	41044	Ferrule (Heat #)	41044
Connection . Flange Hammer Union Part	<u></u>	Connection (Part #)	
Connection (Heat #)		Connection (Heat #)	
Nut (Part #)	2" 1502 H2S	Nut (Port #)	
Nut (Heat#)		Nut (Hear #)	
Dies Üsed	S7MM	Dies Used	97MM
	Hydrostatic Te	est requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water
Test Pressure Hold Time (minutes)	17 3/4	temperature.	

Date Tested By Approved By 3/10/2015 Man Dan Have

្ស៊ីដូរផ	Why
N &	lidwest Hose Specialty, Inc.
	ate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 270590
Sales Order # 245805	Date Assembled: 3/10/2015
S	pecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 295283	Hose Lot # and Date Code 11839-11/14
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
We hereby certify that the above material suppl to the requirements of the purchase order and c	ied for the referenced purchase order to be true according urrent industry standards.
Supplier: Midwest Hose & Specialty, Inc.	
3312 S I-35 Service Rd Oklahoma City, OK 73129	
Comments:	
Approved By	Date 3/19/2015
For Down	3/19/2015

er for - well do ungever de montpolision e
Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Info	mátion	Hose Spec	ifications
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K/FSL Level 2
Date Assembled	12/23/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	237566	Hose Lot # and Date Code	11784-10/14
Customer Purchase Order #	261581	Hose I.D. (Inches)	2"
Assembly Serial # (Pick Ticket #)	286159	Hose O.D. (inches)	4.00"
Hose Assembly Length	50'	Armor (yes/no)	YES
	Fi	ttings	

End A End B

Stem (Part and Revision #)	R2.0X32M1502	Stem (Port and Revision #)	R2.0X32M1502
Stem (Heat #)	M14104546	Stem (Heat #)	M14101226
Ferrule (Part and Revision #)	RF2.0 10K	Ferrule (Part and Revision #)	RF2.0 10K
Ferrule (Heot #)	41044	Ferrule (Heat #)	41044
Connection . Flange Hammer Union Part	2"1502	Connection (Port #)	
Connection (Heat #)	2866	Connection (Heat #)	
Nut (Part #)		Nut (Part #)	
Nut (Heat #)		Nut (Heat #)	
Dies Used	97MM	Dies Used	97MM
	Hydrostatic Te	est Requirements	and the second sec
Test Pressure (psi)	15,000	Hose assembly was teste	d with ambient water
Test Pressure Hold Time (minutes)	15 1/4	temperature.	

Date Tested Tested By Approved By 12/24/2014 By Hill Have

	(idwest Hose Specialty, Inc.
Centific	ate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 261581
Sales Order # 237566	Date Assembled: 12/23/2014
S	pecifications
Hose Assembly Type: Choke & Kill	n na har an
Assembly Serial # 286159	Hose Lot # and Date Code 11784-10/14
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
We hereby certify that the above material suppl to the requirements of the purchase order and c	lied for the referenced purchase order to be true according
; ; 2	
Supplier:	
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	
Okláhoma City, OK 73129	
Comments:	<u></u>
и 	
Approved By	Dăte
	12/29/2014
La Dilama	

- Maie

Matador Resources Company

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Infor	nation	These Spec	ficenions
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K/FSL Level 2
Date Assembled	3/10/2015	Hose Grade	MUD
Location Assembled	OKC	Hose Working Pressure	10000
Sales Order #	245805	Hose Lot # and Date Code	11839-11/14
Customer Purchase Order #	270590	Hose I.D. (Inches)	2°
Assembly Serial # (Pick Ticket #)	296283	Hose O.D. (Inches)	3.99"
Hose Assembly Length	50'	Armor (yes/no)	YES
		nings, service de	
End A		End	B
Stem (Part and Revision #)	R2.0X32M1502	Stem (Port and Revision #)	RF2.0 32F1502
Stem (Heat #)	14104546	Stem (Heat #)	A144853
Ferrule (Part and Revision #)	RF2.0 10X	Ferrule (Port and Revision #)	RF2.0 10X
Ferrule (Heat #)	41044	Ferrule (Heat #)	41044
Connection . Range Hammer Union Part	2	Connection (Part #)	
Connection (Heat #)	·	Connection (Heat #)	
Nut (Port #)	2" 1502 H2S	Nut (Port#)	
Nut (Heat #)		NUT (Heat #)	
Dies Used	97MM	Dies Used	97MM
	Hydrostatic T	se Requirements	
Test Pressure (psi)	15,000	Hose assembly was teste	والمراجبين التواجب فالتقاد والمتكر والمتكر فالمتحد والمتحد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد
Test Pressure Hold Time (minutes)	17 3/4	tempera	sture.

Date Tested	Tested By	Approved By
3/10/2015	B. D.	Fran Allows

MHSI-008 Rev. 0.0 Proprietary

123 --

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF₁=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF₀=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

.

Tensile: DF_t=1.8

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

Tensile: DF_t=1.8

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

Tensile: DF_t=1.8

Connection Type: DWC/C-IS PLUS Cas standard	• Size(O.D.): sing 5-1/2 in	Weight (Wall): 20.00 lb/ft (0.361 in)	Grade: VST P110 EC
•			
	Material		7VoV Z
VST P110 EC	Grade		Line Vin
125,000	Minimum Yield Strength (psi)		Lammand USA
135,000	Minimum Ultimate Strength (p	DSI)	VAM USA
	Pipe Dimensions		4424 W. Sam Houston Pkwy. Suite 150 Houston, TX 77041
5.500	Nominal Pipe Body O.D. (in)		Phone: 713-479-3200
4.778	Nominal Pipe Body I.D.(in)		Fax: 713-479-3234 E-mail: <u>VAMUSAsales@vam-usa.com</u>
0.361	Nominal Wall Thickness (in)		
20.00	Nominal Weight (lbs/ft)		
19.83	Plain End Weight (lbs/ft)		
	2	· ·	
5.828	Nominal Pipe Body Area (sq	(1)	
	Pipe Body Performance Pro	perties	
729,000	Minimum Pipe Body Yield Str		
12,090	Minimum Collapse Pressure		
14,360	Minimum Internal Yield Press		
13,100	Hydrostatic Test Pressure (ps		
	Connection Dimensions		
6.300	Connection O.D. (in)	· .	
4.778	Connection I.D. (in)		
4.653	Connection Drift Diameter (in)	The last of the second se
.4.13	Make-up Loss (in)	· .	
5.828	Critical Area (sq in)		
100.0	Joint Efficiency (%)		
100.0	Joint Enciency (70)		
	Connection Performance P	ronarties	1
729,000	Joint Strength (lbs)	lopendes	
26,040	Reference String Length (ft)	1.4 Design Eactor	
728,000	API Joint Strength (lbs)	1.4 Design i actor	
729,000	Compression Rating (lbs)		
12,090	API Collapse Pressure Rating		
14,360	API Internal Pressure Resista		
104.2	Maximum Uniaxial Bend Rati		
104.2		ng lachtees inn it	
	Appoximated Field End Tor	que Values	
16,600	Minimum Final Torque (ft-lbs)		
19,100	Maximum Final Torque (ft-lbs		in the second
21,600	Connection Yield Torque (ft-lt	•	

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

4/14/2015

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- All standard DWC/C connections are interchangeable for a give pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torgue is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

4/14/2015

For the latest performance data, always visit our website: www.tenaris.com

December 31 2015

Connection: TenarisXP® BTC **Casing/Tubing:** CAS **Coupling Option:** REGULAR Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
		, ,		<u> </u>	
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 lbs	Structural Bending ⁽²⁾	127 °/ 100 ft
External Pressure Capacity	11620 psi				
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs
Operating Torque	10500 ft-lbs	Yield Torque	12200 ft-lbs	T	

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
- (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing
 will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

Tensile: DF_t=1.8

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

Tensile: DF_t=1.8

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

Tensile: DFt=1.8

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

Tensile: DF_t=1.8

i .

Production Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

Production Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

Issued on: 12 Janv. 2017 by T. DELBOSCO

VRCC 16-1177 Rev02 for Houston Field Service

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

V = M = C + T = C +**Connection Data Sheet**

OD.	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPERVIES			
Nominal OD	7.625 in.		
Nominal ID	6.875 in.		
Nominal Cross Section Area	8.541 sqin.		
Grade Type	Enhanced API		
Min. Yield Strength	125 ksi		
Max. Yield Strength	140 ksi		
Min. Ultimate Tensile Strength	135 ksi		
Tensile Yield Strength	1 068 klb		
Internal Yield Pressure	10 760 psi		
Collapse pressure	7 360 psi		

CONNECTION PERFORMANCES		
Tensile Yield Strength	619 klb	
Compression Resistance	778 kib	
Compression with Sealability	372 klb	
Internal Yield Pressure	10 760 psi	
External Pressure Resistance	7 360 psi	
Max. Bending	44 º/100ft	
Max. Bending with Sealability	17 °/100ft	

CONNECTION PROPERTIES				
Connection Type	Premium Integral Flush			
Connection OD (nom)	7.701 in.			
Connection ID (nom)	6.782 in.			
Make-Up Loss	4.657 in.			
Critical Cross Section	4.971 sqin.			
Tension Efficiency	58 % of pipe			
Compression Efficiency	72.7 % of pipe			
Compression Efficiency with Sealability	34.8 % of pipe			
Internal Pressure Efficiency	100 % of pipe			
External Pressure Efficiency	100 % of pipe			

TORQUE VALUES				
Min. Make-up torque	9 600 ft.lb			
Opti. Make-up torque	11 300 ft.lb			
Max. Make-up torque	13 000 ft.lb			
Max. Torque with Sealability	58 500 ft.lb			
Max, Torsional Value	73 000 ft.lb			

VAM[•] HTF^{**} (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance
Other Connection Data Sheets are available at www.vamservices.com
Value
Val

Vallourec Group

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P110-IC

Page 1 of 2

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Connection: TenarisXP[™] BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		GEOMET	RY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
· ·		PERFORM	ANCE	L	
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
	TEI	NARISXP [™] BTC CO GEOMET		ATA	
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
· · ·		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural		Structural	ral 641 x 1000 Structur	Structural	
Compression Efficiency	100 %	Compression Strength	lbs	Bending ⁽²⁾	92 °/100 fi
External Pressure Capacity	12100 psi				

Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
	<u></u>	OPERATIONAL I	LIMIT TORQUES	•	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		1

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P110-IC

Page 2 of 2

BLANKING DIMENSIONS

Blanking Dimensions

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

For the latest performance data, always visit our website: www.tenaris.com

December 31 2015

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

22.6

Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in,	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 In.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure	14100 psi
				Capacity ⁽¹⁾	·
Structural		Structural Compression Strength	479 x 1000 lbs	Structural	127 °/10 0 ft
Compression Efficiency	100 %			Bending ⁽²⁾	
External Pressure					
Capacity	11620 psi				
			·····	l	
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs

Blanking Dimensions

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.

TELEPHONE: (432) 682-1653 OF (600) 767-1653 - FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM