Form 3160-3 (March 2012) UNITED STATES DEPARTMENT OF THE I BUREAU OF LAND MAN. APPLICATION FOR PERMIT TO I	AGEMENT	HOBBS FEB 2 8 REENTER	2018	OMB N	APPROVE lo. 1004-013 October 31, 2 or Tribe 1	37 2014		
la. Type of work:	R			7. If Unit or CA Agre	ement, Na	ame and No.		
lb. Type of Well: 🔽 Oil Well 🛄 Gas Well 🛄 Other	. 🔽 Sii	ngle Zone 🔲 Multip	le Zone	8. Lease Name and V PERIDOT 8 FEDE		32080		
2. Name of Operator CONOCOPHILLIPS COMPANY	17817)		9. API Well No. 30-025 -	- 44	4628		
3a. Address 600 N. Dairy Ashford Rd Houston TX 77079	3b. Phone No (281)293-1	. (include area code) 748		10. Field and Pool, or I MALJAMAR / YES	•	(77300)		
4. Location of Well (Report location clearly and in accordance with any At surface SWSE / 615 FSL / 2460 FEL / LAT 32.843608	/ LONG -1	03.788058		11. Sec., T. R. M. or B SEC 8 / T17S / R3.		•		
At proposed prod. zone LOT 4 / 330 FSL / 330 FWL / LAT 3 14. Distance in miles and direction from nearest town or post office*	2.842853 /	LONG -103.81343	1	12. County or Parish		13. State		
1.5 miles 15. Distance from proposed* location to nearest 180 feet property or lease line, ft. (Also to nearest drig, unit line, if any)	16. No. of a 320	cres in lease	17. Spacin 241	LEA ng Unit dedicated to this v	well	NM		
 18. Distance from proposed location* to nearest well, drilling, completed, 700 feet applied for, on this lease, ft. 	19. Propose 5485 feet	i Depth / 13133 feet	20. BLM/	BIA Bond No. on file S0085				
21. Elevations (Show whether DF, KDB, RT, GL. etc.) 4045 feet	22. Approxi 02/01/201	mate date work will star	rt*	23. Estimated duratio	n			
4040.000	24. Atta			21 days		·		
 The following, completed in accordance with the requirements of Onshor Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System I SUPO must be filed with the appropriate Forest Service Office). 		 Bond to cover the latent 20 above). Operator certification 6. Such other site 	he operatio cation	is form: ins unless covered by an formation and/or plans as	U	,		
25. Signature (Electronic Submission)		BLM. (Printed/Typed) n Maunder / Ph: (20	81)206-52	281	Date 01/06/	2017		
Title Senior Coordinator, Regulatory MCBU								
Approved by (Signature) (Electronic Submission)		(Printed/Typed) Layton / Ph: (575)2	234-5959		·Date 02/23/	/2018		
Title Supervisor Multiple Resources	Office HOB							
Application approval does not warrant or certify that the applicant holds conduct operations thereon. Conditions of approval, if any, are attached.	s legal or equi	table title to those righ	ts in the sub	oject lease which would e	entitle the a	applicant to		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cr States any false, fictitious or fraudulent statements or representations as t	ime for any p o any matter v	erson knowingly and within its jurisdiction.	villfully to n	nake to any department of	or agency	of the United		
(Continued on page 2) GCP 02/28/18 APPROV	ED WIT	'H CONDITI	ONS	*(Inst KZ 07/011	/	s on page 2)		
Topprov	al Date:	02/23/2018				- ple		

•

A Dosider

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Approval Date: 02/23/2018

Additional Operator Remarks

Location of Well

SHL: SWSE / 615 FSL / 2460 FEL / TWSP: 17S / RANGE: 32E / SECTION: 8 / LAT: 32.843608 / LONG: -103.788058 (TVD: 0 feet, MD: 0 feet)
PPP: SESW / 405 FSL / 2622 FWL / TWSP: 17S / RANGE: 32E / SECTION: 8 / LAT: 32.843034 / LONG: -103.788706 (TVD: 5460 feet, MD: 5524 feet)
BHL: LOT 4 / 330 FSL / 330 FWL / TWSP: 17S / RANGE: 32E / SECTION: 7 / LAT: 32.842853 / LONG: -103.813431 (TVD: 5485 feet, MD: 13133 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

Approval Date: 02/23/2018

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 02/23/2018

(Form 3160-3, page 4)

. . .

FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Zip: 77079

Application Data Report

APD ID: 10400008917

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Submission Date: 01/06/2017

Well Number: 1H Well Work Type: Drill Highlighted data reflects the most recent changes

02/26/2018

Show Final Text

Well Type: OIL WELL

Section 1 - General		
APD ID: 10400008917	Tie to previous NOS?	Submission Date: 01/06/2017
BLM Office: HOBBS	User: Susan Maunder	Title: Senior Coordinator, Regulatory
Federal/Indian APD: FED	Is the first lease penetrate	MCBU ed for production Federal or Indian? FED
Lease number: NMLC064149	Lease Acres: 320	
Surface access agreement in place	? Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreem	ent:
Agreement number:		
Agreement name:		
Keep application confidential? NO		
Permitting Agent? NO	APD Operator: CONOCO	PHILLIPS COMPANY
Operator letter of designation:	Peridot 8 Fed 1H_JOA Certif Ltr_12- Peridot 8 Fed 1H_Leases w-wellsMa	•

Peridot_8_Fed_SerialRegisterPgs_08-04-2017.pdf

.

Operator Info

Operator Organization Name: CONOCOPHILLIPS COMPANY

Operator Address: 600 N. Dairy Ashford Rd

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (281)293-1748

Operator Internet Address:

Well in Master Development Plan? NOMater Development Plan name:Well in Master SUPO? NOMaster SUPO name:Well in Master Drilling Plan? NOMaster Drilling Plan name:Well Name: PERIDOT 8 FEDERALWell Number: 1HWell API Number:Field/Pool or Exploratory? Field and PoolField Name: MALJAMARPool Name: YESO WEST

Page 1 of 3

Operator Name: CONOCOPHILLIPS (COMPANY
Well Name: PERIDOT 8 FEDERAL	

Well N	lumber:	1H
--------	---------	----

Is the proposed well in an area containing other mineral resources? NONE

Describe other minerals:

Is the proposed well in a Helium produ	uction area? N	Use Existing Well Pad? N	O New surface disturbance?
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Name:	Number: 1H
Well Class: HORIZONTAL	-	PERIDOT 8 FEDERAL Number of Legs:	
Well Work Type: Drill			· .
Well Type: OIL WELL			
Describe Well Type:			
Well sub-Type: INFILL			
Describe sub-type:			
Distance to town: 1.5 Miles	Distance to nea	rest well: 700 FT D	istance to lease line: 180 FT
Reservoir well spacing assigned acres	s Measurement: 2	241 Acres	
Well plat: PERIDOT 8 FED 1H C-102	2 REV 2016-11-09	12-12-2016 pdf	

Well plat: PERIDOT 8 FED 1H C-102 REV 2016-11-09 _12-12-2016.pdf

Peridot 8 Fed 1H_SubSurface_01-06-2017.pdf

Well work start Date: 02/01/2018 Duration: 21 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Aliquot/Lot/Tract Lease Number EW Indicator NS Indicator -ongitude Elevation ease Type EW-Foot Meridian NS-Foot Section _atitude County Range Twsp State 2 Z B Aliquot SHL FSL 246 FEL 17S 32E 32.84360 LEA NEW NEW F NMLC0 404 615 8 0 0 MEXI 64149 Leg 0 SWSE 8 103.7880 MEXI 5 58 CO со #1 NEW F KOP 406 FSL 246 FEL 17S 32E 8 Aliquot 32.84303 LEA NEW NMLC0 -979 503 502 103.7880 MEXI MEXI 64149 0 SWSE 3 Leg 4 4 CO со 63 #1 PPP 405 FSL 262 FWL 17S 32E 8 Aliquot 32.84303 LEA NEW NEW F NMLC0 552 546 -103.7887 MEXI MEXI 29406B 141 SESW 4 2 4 0 Leg 06 CO CO 5 #1

Vertical Datum: NAVD88

Page 2 of 3

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
EXIT	330	FSL	330	FWL	17S	32E	7	Lot	32.84285	-	LEA	NEW	NEW	F	NMLC0	-	131	548
Leg								4	3	103.8134			MEXI		29406B	144	33	5
#1										31		co	co			0		
BHL	330	FSL	330	FWL	17S	32E	7	Lot	32.84285	-	LEA	NEW	NEW	F	NMLC0	-	131	548
Leg								4	3	103.8134		MEXI	MEXI		29406B	144	33	5
#1										31		co	co			0	l	

Susan B. Maunder Sr. Coordinator, Regulatory Phone: (281) 206-5281 ConocoPhillips Company 600 N. Dairy Ashford Road, Off EC3-10-W285 Houston, TX 77079-1175

December 13, 2016

Bureau of Land Management Carlsbad Field Office 620 East Greene Street Carlsbad, New Mexico 88220-6292

RE: Joint Operating Agreement Pending APD – Peridot 8 Federal 1H Section 8, T17S, R32E Lease Numbers – NMLC 064149, NMLC 029406B

Dear Sir or Madam,

ConocoPhillips Company has negotiated a Joint Operating Agreement ("JOA") with COG Operating LLC, evidenced by the enclosed Memorandum of Operating Agreement, which covers approximately 480 acres in Township 17 South, Range 32 East. The JOA, along with an associated settlement letter, provides access to surface operated by the other party. This mutual access will allow more oil and gas resource recovery by maximizing horizontal wellbore formation contact.

Please accept this letter as certification our two companies agree on operating rights within the Peridot 8 Federal area. In regards to Peridot development, COP respectfully requests the BLM to process the referenced APD to afford the maintenance of the lease in a timely manner.

If you have questions regarding this certification, I can be reached at 281-206-5281 or via email at <u>Susan.B.Maunder@conocophillips.com</u>.

Sincerely,

usan B. Maunder

Susan B. Maunder Senior Coordinator, Regulatory ConocoPhillips Company

Peridot Section 7 and 8 Lease Map

Peridot 8 Federal 1H

Click here to s	ee on map	BUREAU (IENT OF THE INTERIOR OF LAND MANAGEMEN SE RECORDATION		Run Time: 04:06 Page 1 of ?	Μ
Run Date:	07/24/201	7 (MASS)	Serial Register Page			
	10781: O	0437;30USC226 kG RENEWAL LEASE - PD IL & GAS IORIZED	To	al Acres 320.000	Serial Number NMLC- 0 064149	
			Serial Nu	mber: NN	LC 0 064149	
Name & Addr	ess				Int Rel	% Intere
CHEVRON USA IN CHEVRON USA IN COG OPERATING CONOCOPHILLIP LINN ENERGY HC MALJAMAR DEV I SABINE OIL & GA SANDRIDGE EXP <u>Mer Twp Rng Se</u> 23 01705 0320E	IC LLC S CO LDINGS LLC PRTNSHP S CORP L & PROD LL	8115 PRESTON RD #400 707 177H ST STE 3600 C 123 ROBERT S KERR AVE	MIDLAND TX 797062964 MIDLAND TX 797062964 MIDLAND TX 797014882 BARTLESVILLE OK 797014882 DALLAS TX 770023092 DALLAS TX 75225 DENVER CO 802023406 OKLAHOMA CITY OK 731026406 OKLAHOMA CITY OK 731026406 OKLAHOMA CITY OK 731026406 CKARLSBAD FIELD OFFICE	OPERATING RIGHTS LESSEE OPERATING RIGHTS OPERATING RIGHTS OPERATING RIGHTS OPERATING RIGHTS OPERATING RIGHTS OPERATING RIGHTS OPERATING RIGHTS CC- 0 064149 unty Mgmt Agent BUREAU OF LA		
Act Date	Code	Action	Serial Nun Action Remar		.C– 0 064149 Jing Offic	
06/08/1934	387	CASE ESTABLISHED FUND CODE	05;145003			
06/08/1934	868	EFFECTIVE DATE				
06/08/1934 09/14/1945	868 553	EFFECTIVE DATE CASE CREATED BY ASGN	OUT OF NMLC029406-B;			
	102	NOTICE SENT-PROD STATUS				
11/20/1950						

06/08/1934	868	EFFECTIVE DATE	
09/14/1945	553	CASE CREATED BY ASGN	OUT OF NMLC029406-B:
11/20/1956	102	NOTICE SENT-PROD STATUS	
11/01/1961	242	LEASE RENEWED	THRU 10/31/71;
11/01/1961	534	RLTY RATE-SLIDING-SCH D	
11/01/1961	668	EFFECTIVE DATE	LAST RENEWAL;
05/01/1967	232	LEASE COMMITTED TO UNIT	NMNM70988X;MALJAMAP.G
05/01/1967	651	HELD BY PROD - ALLOCATED	MALJAMAR GRAYBURG UA
05/01/1967	660	MEMO OF 1ST PROD-ALLOC	MALJAMAR GRAYBURG UA
04/03/1987	963	CASE MICROFILMED/SCANNED	CNUM 102,962 RW
01/05/1988	974	AUTOMATED RECORD VERIF	AR/EC
10/11/1990	974	AUTOMATED RECORD VERIF	65
06/22/1992	932	TRE OPER RGTS FILED	CHEVRON/WISER OIL CO
06/20/1992	933	TRF OPER FGTS APPROVED	EFF 07/01/92;
06/20/1992	974	AUCOMATED RECORD VERIF	SSP/JS
10/01/1992	621	RLTY RED-STRIPPER WELL	2.1%;/1/8910088480
01/15/1993	625	RITY REDUCTION APPV	/1/
03/21/1994	976	AUDOMATED RECORD VERIF	Anti
12/04/1995	932	TRE OPER RGTS FILED	THE WISER/MALJAMAR
03/28/1996	933	TRE OPER RGTS APPROVED	EFF 01/01'96;
03/28/1996	974	AUTOMATED RECORD VERIF	MV/MV
06/01/1996	932	TRF OPER RGTS FILED	CHEVRON/ CONDCO
11/05/199€	933	TRF OPER RGTS APPROVED	EFF 09/01/96;
11/05/1996	974	AUTOMATHID RECORD VERIF	JLV
05/22/1997	932	TRF OPER RGTS FILED	MALJAMAR/WISER OIL
06/25/1997	933	TRE OPER RGTS APPROVED	EFF 06/01/97;
06/25/1997	974	AUTOMATED RECORD VERIF	MV/MV
01/16/2003	817	MERGER RECOGNIZED	CONOCO/CONCCOPHILLIPS

NO WARRANTY IS MADE BY BLM FOR USE OF THE DATA FOR PURPOSES NOT INTENDED BY BLM

https://epmpub.blm.gov/raframework/ihtml/OpenDoc?DocInstanceID=31&DocUUID=000... 7/24/2017

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

02/26/2018

APD ID: 10400008917

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Type: OIL WELL

Submission Date: 01/06/2017

Highlighted data reflects the most recent changes

Well Number: 1H

Well Work Type: Drill

Show Final Text

I Type: OIL WELL

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation		
1	RUSTLER	3242	820	820	DOLOMITE,ANHYDRIT E	NONE	No		
2	SALADO	2265	960	960	SALT,ANHYDRITE	NONE	No		
3	TANSILL	1185	2040	2043	DOLOMITE,ANHYDRIT E	NONE	No		
4	YATES	1050	2175	2178	DOLOMITE,ANHYDRIT E	NATURAL GAS,OIL	No		
5	5 SEVEN RIVERS		SEVEN RIVERS 740		2485	2489	SANDSTONE, ANHYDRI TE	NATURAL GAS,OIL	No
6	QUEEN	115	3110	3116	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No		
7	GRAYBURG	-300	3525	3533	SANDSTONE,DOLOMIT E,ANHYDRITE	OIL	No		
8	SAN ANDRES	-625	3850	3859	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No		
9	GLORIETA	-2150	5375	5404	SANDSTONE, DOLOMIT E, SILTSTONE	NATURAL GAS,OIL	No		
10	PADDOCK	-2235	5460	5524	DOLOMITE, ANHYDRIT E, SILTSTONE	NATURAL GAS,OIL	Yes		

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M

Rating Depth: 13146

Equipment: Rotating Head, Annular Preventer, Pipe/Blind Rams, Kill Lines, Choke Lines, Adapter Spool.

Requesting Variance? YES

Variance request: We request variance to use flexible choke line(s) from the BOP to Choke Manifold. We also request approval to have the option of using a 13" 3M BOP (diagram attached).

Testing Procedure: BOP/BOPE tested by independent company to 250 psi low and the high of 50% working psi, as required by Onshore Order 2. See also attached "Drill Plan".

Choke Diagram Attachment:

Peridot 8 Fed 1H 3M ChokeDiagram 08-01-2017.pdf

Peridot_8_Fed_1H_FlexhoseVarianceData_08-01-2017.pdf

...

ConocoPhillips Company PERIDOT 8 FEDERAL 11H & 1H SECTION 8, T17S, R32E, N.M.P.M. LEA COUNTY, NEW MEXICO

DATE:	SUB SURFACE PLAT AND SITE PLAN	DESCRIPTION:	a at National and a state of the state of th
11/29/2016	SUB SURFACE PLAT AND SITE PLAN		
		· · · · · · · · · · · · · · · · · · ·	
	······································		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
		<u> </u>	
		······	······
			<u> </u>
		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>
			·
			<u>.</u>
	······		
		· · · · · · · · · · · · · · · · · · ·	<u> </u>
		· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	<u></u>	

eneral Nation

> iane Noració

Well Number: 1H

Peridot_8_Fed_1H_3M_ChokeDiagram_08-01-2017.pdf

Peridot_8_Fed_1H_FlexhoseVarianceData_08-01-2017.pdf

BOP Diagram Attachment:

Peridot_8_Fed_1H_BOPDiagrams_08-01-2017.pdf

Peridot_8_Fed_1H_Generic5MWellhead_08-01-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	Z	0	885	0	885	-1440	-2325	885	J-55	54.5	STC	2.89	6.98	DRY	10.7	DRY	17.7
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	2250	0	2250	-1440	-3640	2250	J-55	40	LTC	2.2	3.38	DRY	5.78	DRY	7
1	PRODUCTI ON	8.75	7.0	NEW	API	Y	0	5200	0	5186	-1440	-6626	5200	L-80	29	LTC	2.88	3.35	DRY	3.89	DRY	4.48
1	PRODUCTI ON	8.75	5.5	NEW	API	Y	5200	13146	5186	5600	-6626	-7040	7946	L-80	17	LTC	2.4	2.95	DRY	2.5	DRY	2.94

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_1H_Csg_Worksheetv5_08-05-2017.pdf

Well Number: 1H

Casing Attachments

Casing ID: 2	String Type: INTERMEDIATE
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assum	ptions and Worksheet(s):
Peridot_8_Fed_1H	H_Csg_Worksheetv5_08-05-2017.pdf
Casing ID: 3	String Type:PRODUCTION
Inspection Document:	
Spec Document:	_
Tapered String Spec:	
	H_Csg_Worksheetv5_08-05-2017.pdf
Casing Design Assum	ptions and Worksheet(s):
Peridot_8_Fed_1	H_Csg_Worksheet_08-01-2017.pdf
Casing ID: 4	String Type:PRODUCTION
Inspection Document:	
	· · · · · · · · · · · · · · · · · · ·
Spec Document:	
	· · · · · · · · · · · · · · · · · · ·
Tapered String Spec:	
Peridot_8_Fed_1F	H_Csg_Worksheetv5_08-05-2017.pdf
Casing Design Assum	ptions and Worksheet(s):
Peridot_8_Fed_1F	H_Csg_Worksheetv5_08-05-2017.pdf

Section 4 - Cement

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	585	500	1.68	13.5	840	100	Lead: Class C	4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
SURFACE	Tail		585	885	400	1.35	14.8	540	100	Tail: Class C	0.2% Anti-Foam + 0.1% Lost Circ Control + 2 Ibs/bbl CemNET (losses Control)
INTERMEDIATE	Lead		0	1750	450	2.29	11.5	1031	100	Lead: Class C	10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
INTERMEDIATE	Tail		1750	2250	300	1.29	13.5	387	100	Tail: Class C	1% Extender + 3 lb/sk Extender + 0.2% Anti- Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
PRODUCTION	Lead		1700	5200	650	3.2	11	2080	30	Lead: Class C	6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1

PRODUCTION	Lead	52	00 1314	1900	1.37	14	2603	30	Class C	3lb/sk LCM + 1.5%
			6							Fluid Loss + 0.1% + 1%
										Sodium Metasilicate
										(dry) + 1.5% Fluid Loss
										Control

1

•

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. See attached "Drill Plan" for additional information.

Describe the mud monitoring system utilized: Closed-loop mud system using steel mud containers will be on location. Mud monitoring of any changes in levels (gains or losses) will use Pressure Volume Temperature instrumentation, Pason, Visual Observations. See attached "Drill Plan" for additional information.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	885	WATER-BASED MUD	8.5	9							Please see attached "Drill Plan" for additional information.
885	2250	SALT SATURATED	10	10							Please see attached "Drill Plan" for additional information.
2250	5600	OTHER : Cut Brine	8.6	10							Please see attached "Drill Plan" for additional information.

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Production tests will be conducted multiple times per week, through a test separator, during first months following completion. Thereafter, tests will be less frequently. See attached "Drill Plan" for additional information.

List of open and cased hole logs run in the well:

CNL,GR

Coring operation description for the well:

No coring operation is planned at this time.

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 2815

Anticipated Surface Pressure: 1608.3

Anticipated Bottom Hole Temperature(F): 100

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Peridot 8 Fed 1H_H2S C Plan_01-04-2017.pdf Peridot_8_Fed_1H_RigLayoutPlat_08-02-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Peridot_8_Fed_1H_DirectionalPlan_08-05-2017.pdf Peridot 8 Fed 1H WellBoreSchematic5 08-05-2017.pdf

Other proposed operations facets description:

Option to upgrade casing connection to BTC is requested, in addition to the ability to upgrade our BOP equipment. We request approval of the option to run open hole sleeve in the lateral section according to the attached plan with file title, "Peridot 8 Fed 1H OH Sleeve Option". We request variance to use multi-bowl wellhead. See also attached "Drill Plan".

Other proposed operations facets attachment:

Peridot 8 Fed 1H_Drill Waste Containment_01-04-2017.pdf Peridot_8_Fed_1H_Drill_Planv5_08-05-2017.pdf Peridot_8_Fed_1H_OH_Sleeve_Option_20180103085923.pdf Peridot 8 Fed Gas Capture Plan 20180108105207.pdf

Other Variance attachment:

Peridot_8_Fed_5M_Wellhead_08-05-2017.pdf

Peridot 8 Federal 1H

All Tees must be Targeted

Item Description

- 1 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 2 Manual Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

The 3M Choke Manifold & Valves will be tested to rated working pressure.

Peridot 8 Federal 1H

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the b manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive °G6 fqi705 minutes)

Nom.	ID	No	m OD	v	Veight	Min	Bend Radius	Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	in.	mm.	psi	Mpa
3	76.2	5.11	129.79	14.5	21.46	48	1219.2	5000	34.47
3-1/2	88.9	5.79	147.06	20 14	29.80	54	1371.6	5000	34.47

End Connections

Fittings	Flanges	Hammer Unions	Other
RC4X5055	R35 - 3-1/8 5000# API Type	6B All Union Configurations	LP Threaded (
RC3X5055	R31 - 3-1/8 3000# API Type	6B	Graylock
RC4X5575		C	ustom Ends

MICK

Please remit payment to: 606 - 19 Avenue, Nisku, AB Canade T9E 7W1

0

Industrial Products USA, Ltd.
 Groeley, CO 80631
 Bossler City, LA 71111

 Ph 970-346-3751
 Ph 318-687-5486

 Fax 970-353-3168
 Fax 318-687-5491

 2030E 8th Street, Suite B
 1001 M&O Drive

Sen Anionio, TX 78217 Ph: 210-650-3636 Fax: 210-850-3133 4327 Centergate Street

Midland, TX 79706 Ph: 432-689-0102 Fax: 432-699-4898 2904 SCR 1250 Williston, ND 58801 Ph: 701-572-7035 Fax: 701-572-7030 4970 Hwy 85

Houston, TX 77388 Ph: 281-288-9720 4115 Kie nhop Rd Suite B

BALL TO	CUSTOMER N	Ю.	SALESMAN NO.	SHIP TO CU	STOMER NO.	SALESMA	N NO	
	003054	4	HSE		003054	KSE	PG	1 OF. 1
1997 - 19	÷							· .
-	RINIDAD DR				NIDAD DRILLING			C.013.00
	15015 VICKET HOUSTON, TX	÷ .		RIG	# 435			54013482
1	TUDIUN, IX	11032			רו	13)439-1670	L. OOTO	TO CABER STATUS
					()		OPEN	ORDER
сн	· · · · · · · · · · · · · · · · · · ·			DUD HOX HAC	COIL PC	TOTAL TAX ID	28-0174221	REFERENCE NUMBER
Reliance	Midland							105-013482
NO. DAY YR.	WRITTEN B		DER NO	<u>I</u> I	TERMS		BHIP VIA	C
11/04/16	RWB	11/0	1/16 5709 PO22132		NET 30 DAYS		DELIVERY	RWB
ORDERED	SHIPPED	ORDERED 1	PART NUMBER AND	DESCRIPTION	COOE	LIST		NET AMOUNT
	1			·····SHIPPING DETA				
					•	COMPLETED BY		
			• •	• • • • • • • • • • • • • • • • • • • •				•
					SPECIAL	INSTRUCTIONS	, [,] , ,	
			ATTN: IAN RIGH 435		cusi	OMER CONTACT		
			PARTS] API HOSE)	HYD HOSE [] IND	HOSE [] ORDE	R COMPONENTS		
· · ·			****************		**********	*********		
3	1		KIT MATERIALS	MATERIALS] 		4806.980 E	4806.90
. •	2.00		LAB RKSWAGE	CS for above item (GRADE C & D SW)		·	E	
	1.00	· ·	LAB T-100	TESTING CHARGES		•	E.	
	1.00		PTC P930012	ID TAG 2.5X1.5		J 20	E	1
• •	2		PTC P930022	CABLE TIE SS 20		J 2C		less Negetter
	9	. I	KBD RFG500056	3 1/2"FIREGUAR			E	
	1		RSK 7K-FR35X5KRCD56	FLOATING FLÀNGI	E COUPLING	M 1E	Ð	
	1		RSK 7K-RJ5X5KRCD56	GRADE C/D R35	FLANGE COUPL	M 1E	E	1
	2		API OVERFERRULE96	6" SS OVERFERR		M 2F	E	
	15		HDW 3X116	3" X 1/16" FIB	· · ·	0 10	n (1997) A state of the state	
	1		1 - 3.5" X 8'6" SK F/ TESTED TO 10000 PS1 F		5 FLAED & FLOAT	LNU FLANCE		
	:		HYDRO-TEST AND NACE C		IDED		્ય સં	
			*****	******	• • • • • • • • • • • • • • • • • • • •			····
	1		IF ORDERED TODAY BUY	2PM WE CAN HAVE TH	IS BUILT TOMORRA	DW .		1
	3		IF ORDERED LATER THAN	2 PM IT WILL BE MO	NDAY DELIVERY			
	1				· · · · · · · · · · · · · · · · · · ·	•		
				All	•		· · · ·	
	1	• 1		11/10				-
			Sign:	yfa -				
						.1.	А. А.	
			Print	Name: Edica	15070			4
				11-72-	11		a sa	
			Date:	11-66-	16		· · · · · · · · · · · · · · · · · · ·	a second
				0				
		•	-		÷ 1			
	TESTED BY		1	- IGOODS RECEIVED B	Y (PLEASE PRINT)			4805.98
KED BY I ARGEMENT BY	1 d <u></u>		NET 30 DAYS FROM DATE O Interest of 2% PER MONTH (24)				UB-TOTAL	0.00
KED BY ASSEMD BY	E E E	PER ANN	UM) charged on overdue accounts	9.		τ	AX	0.00
T		1. IDG (ADD)	s of the contract between Reliance			1:25	OTAL	4806.98
	INSPEC. BY		Products Ltd. ("Reliance") and th				しけみしき せっこうや	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
T		Industrial	Products Ltd. ('Reliance') and th are on the reverse of this documer					
T		Industrial						
T		Industrial						
T		Industrial						

Peridot 8 Federal 1H

- Item Description
 - 1 Rotating Head, 11"
 - 2A Fill up Line and Valve
 - 2B Flow Line (10")
 - 2C Shale Shakers and Solids Settling Tank
 - 2D Cuttings Bins for Zero Discharge
 - 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
 - 3 Annular BOP (11", 3M)
 - 4 Double Ram (11", 3M, Blind Ram top x Pipe Ram bottom)
 - 5 Kill Line (2" flexible hose, 3M)
 - 6 Kill Line Valve, Inner (2-1/16", 3M)
 - 7 Kill Line Valve, Outer (2-1/16", 3M)
 - 8 Kill Line Check Valve (2-1/16", 3M)
 - 9 Choke Line (3-1/8" 3M Coflex Line)
 - 10 Choke Line Valve, Inner (3-1/8", 3M)
 - 11 Choke Line Valve, Outer, (3-1/8", Hydraulically operated, 3M)
 - 12 Adapter Flange (11" 5M to 11" 3M)
 - 13 Spacer Spool (11", 5M)
 - 14 Casing Head (11" 5M)
 - 15 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
 - 16 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

- Item Description
 - 1 Rotating Head, 13-5/8"
 - 2A Fill up Line and Valve
 - 2B Flow Line (10")
 - 2C Shale Shakers and Solids Settling Tank
 - 2D Cuttings Bins for Zero Discharge
 - 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
 - 3 Annular BOP (13-5/8", 5M)
 - 4 Double Ram (13-5/8", 5M, Blind Ram top x Pipe Ram bottom)
 - 5 Kill Line (2" flexible hose, 3M)
 - 6 Kill Line Valve, Inner (2-1/16", 5M)
 - 7 Kill Line Valve, Outer (2-1/16", 5M)
 - 8 Kill Line Check Valve (2-1/16", 5M)
 - 9 Choke Line (3-1/8", 3M Coflex Line)
 - 10 Choke Line Valve, Inner (3-1/8", 5M)
 - 11 Choke Line Valve, Outer (3-1/8", Hydraulically operated, 5M)
 - 12 Spacer Spool (13-5/8", 5M)
 - 13 Casing Head (13-5/8" 5M)
 - 14 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
 - 15 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

Peridot 8 Fed 1H

ace,Casing	MD 885	<u>TVD</u> 8851	length ft 885	54.5	2730	1130	853000	514000	8.5			i, cart			•	•
mediate 1 Casing	2250	2250	2250	40	3950	2570	630000	520000						4		• •
luction 1 Casing	5200	5200	5200	29	8160	7020	676000	587000		e de la composición d		• • •			•	
uction 2 Casing	13146	5600	7946	17	7740	6290	397000	338000						. 1	·	
								· 1							· · · ·	1.14
in the second			-		201		• •						~			
		<u>т</u> . – ,	· .						-					}		
Collapse Design (Safety)		- BLM C	riteria ·							<u>Design (Safe</u>		rs – BLM	<u>Criteria</u>	1 .		•
Collapse Design (Salety) Factor:		14 19	te in a		· · ·			:		sign (Safety) Fa	clor: SFb ·	· · · ·			· .	
SFc = Pc / (MW x :052 x Ls)						• • •		· · · · ·		I BHP	, j		1. A.	1 귀하	• •	-
Where Pc is the rated						:				이 이 있 같						-
Pc is the rated MW is mud we	pipe Collap	se Pressuu	e in pounds pe	er square i	nch (psi)	-				• • • Pi is th						er square incr
• Ls is the lengt	sgnt in poun	uspergau	on (ppg)			, , ;		· · ·		BHP is imum Acceptable					<i>si)</i>	
The Minimum Acceptable Collaps					(* - (* -				ine win	mum Acceptable		m (Salety) F	actor SFD =	1.0		
The Minimum Acceptable Collaps	e Design (a	alety) Fact	01 3FC = 1.12	J	•											
ace Casing					-				Surface Ca			· .		· . . ·		-
SFc =	1.130	· · ·	391	·= 2	.89	· ·	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		SFb =		- 1 -	-391	. ;≟ [*]	6.98		
an a	1130		331		.05 		·. ·	1. i.						0.50	يبدأ ومراجع	11. I.
				-		•	· ·	•		te 1 Casing -		-	· +		•	
	2570		1170	. ≐ 2	.20		· .	· .	.SFb =	3950		·1170.	=.	3.38		
				· · · -		-	· .	• -			•			!		
					•.	·			· · · · ·				· ` •		1	· .
uction 1 Casing	-								Production	1 Casing					 10.1 	
SFc =	7020	øi. ™	2434	· = 2	.88		· · ·	· .	SFb =	8160		2434	х÷,	3.35		•
										• •	·				•	
uction 2 Casing		·					• .		Production	2 Casing		1.1	1	.i	1 A. 1	
SFc =		. 1 t. j.	2621	= 2	.40			· · ·	SFb =	7740	1	2621	=	2.95		
		-	· .		•, •		· ·	-		•						
					e		·	• •	* .			•	. *		•	
	· .	·						·				1.				
														C -14-1-		
Pipe Strength Design (Sa Pipe Strength Design (Salety) Fa			LIM Criteria		•		-			Strength Des			<u>S - DLIM</u>	cmena	1 1 1 L	
SFIp = Fp / Wt;	ctor: SHIP		•							ength Design (Si / Wt;	atety) Factor	SF9		1 -		· · ·
Where			1. N						SFy = Fj Where	/ WY1;	1	1 <u>.</u>		ノート		
Fp is the rated	nine Body	Strength in	nounds (ibs)				•		where	 Fjisth 	e rated nine	Inint Strepp	th in nousd	s (lbs)	· · .	
• Wt is the weig	nt of the cas	ina strina i	n nainds (lbs)	÷	· •			· ·		Wist						
The Minimum Acceptable Pipe S					r 1.8 buovant					imum Acceptable					rv or 1.8 buov	ant
		<i>-</i> ,				· · ·			1.0	·						
	<u>.</u> .	• .			· ·		· · · ·			-		• •		· · · . ·		· ·
ace Casing		· · · ·						• •	Surface Ca		·		· .	· · [·	.*	
SFi Dry =	853000			. = 1	7.7	,		· ·	SFi Dry =	514000	1. J	48232.5		10.7		
SFi Bouyant =	853000	'⊊ / (`-	48232.5	x	0,870) = :	20.3	SF	i Bouyant:=	514000	. se . L. (.			0.870) =	12.2
ار به ده ار داری از این از این اور در این از می از این از این از این									1			an a c	• • • •	5 17 P		
mediate 1 Casing					ting and a		• •		Intermedia				1. A.M.	· · · · ·	e transfer	•
SFi Dry =	630000			= 7	:00		:		SFi Dry =			90000	··· = .	5.78		
SFi Bouyant =	630000	1.(90000	X '.	0.847	.).=	8.26	S	i Bouyant =	520000	, <i>I.</i> (90000	· × ·	0.847) -=	6.82
and a start of the second s The second sec						-							المحمد الم			1.1.1
				× .					Dead.		NAR SUTT				· .	
uction 1 Casing	676000	÷.,	150000	_ · .	40		· · ·	· · ·	Production			150900		3 90		· ·
SFi Dry = SFi Bouyant ≈	676000 676000		150800 150800	= . 4		۱ -	5 20		SFiDry≓- Bouwont=	587000	- 1. 	150800		3.89 0.863	}∺=	4.51
Sri Douyani =			10000	• • <u>-</u>	0.863	/	5.20		i Bouyant =	30/000	. / (150800	. ×	1.003	· · · ·	
luction 2 Casing		-6.35		-	· · · · · · · · · · · · · · · · · · ·	- <u>-</u>			Production	2 Casino				1		
	397000		135082		94	· · · · · · ·	i milita di		SFi Dry =	338000	· · ·	135082	· =	2.50		
SELLINV =								 		, 333000	,	100002	-			
SFi Dry =			135082		0.863	`γ ΄ = ⊡`	3.41		i Bouyant =	338000	- E.C	135082	X	0.863) =	2,90

String Section	Depth	Depth		Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid							
Surface Casing	MD 885	 885	length ft 885	54.	5 273	113	85300	0 514000	8.5							
Intermediate 1 Casing	2250	2250	2250	4	_									}		
Production 1 Casing	5200	5200	5200	2										1		
Production 2 Casing	13146	5600	7946	1	7 774	0 629										
<u>Collapse Design (Sat</u>		– BLM	<u>Criteria</u>									ors – BLM Cr	<u>iteria</u>	,		
Collapse Design (Safety) Fa										sign (Safety) Fa	ctor: SFb					
SFc = Pc / (MW x .052 x Ls	•}								SFb = Pi	/ BHP·						
Where Data the	rated pipe Collar								Where			- Durant (bitimira	- lata-nat	; Yield) Pressure in		s square lach (or
	ud weight in pou			per squa	ire inch (psi)									square inch (psi)	i pourios per	square inch (ps
	length of the stri											ign (Salety) Fac	-			
The Minimum Acceptable C	-	-		25					i ne minar	пот Ассертари	e Durst Des	ign (Salety) Fac	101 3FD - 1	1.0		
Surface Casing									Surface Cas	sing						
SFc =	1130	1	391	=	2.89				SFb =	2730	1	391	=	6.98		
Intermediate 1 Casing									Intermediate	e 1 Casing	. ·			,		
SFc =	2570	1	1170	=	2.20				SFb =	3950	1	1170	=	3.38		
Desidentia e 14 October														:		
Production 1 Casing	. 7000	,	0404						Production		,	0404	=	2.25		
SFc =	7020	1	2434	=	2.88				SFb =	8160	1	2434	-	3.35		
Production 2 Casing									Production	2 Casing				r		
SFc =	6290	1	2621	=	2.40				SFb =	7740	1	2621	=	2.95		
Pipe Strength Desig	n (Safety) Fac	ctors – I	BLM Criteri	а					Joint S	trenath Des	ion (Safe	ety) Factors	- BLM C	riteria		
Pipe Strength Design (Safe SFtp ≂ Fp / Wt;				-						ength Design (S				Ì		
Where									Where							
 Fp is the 	rated pipe Body	Strength i	n pounds (lbs)							• Fjistt	ne rated pip	e Joint Strength	in pounds	(lbs)		
. Wt is the	weight of the ca	sing string) in pounds (lbs	s)						• Wtis	the weight c	of the casing stri	ng in poun	ds (ibs)		
The Minimum Acceptable F	Pipe Strength Des	ign (Safei	ly) Factor SFTp	p = 1,6 d	Iry or 1.8 buoy	ant			The Minir	mum Acceptabl	e Joint Stre	ngth Design (Sa	fety) Facto	r SFT) = 1.6 dry o	r 1.8 buoyai	nt
Surface Casing									Surface Cas	ina						
SFi Dry =	853000	1	48232.5	=	17.7				SFi Dry =	514000	1	48232.5	=	10.7		
SFi Bouyant =	853000	<i>'</i> (×	0.870) =	20.3	SE	i Bouya⊓t =	514000	110	48232.5	x	0.870) =	12.2
or Poolyant	000000	• •	40202.0	^ .	0.010	/ -	20.0	0	1 Douyant	014000	· 、	, OLOL.O	~		,	
Intermediate 1 Casing									Intermediate					!		
SFi Dry =	630000	1	90000	Ξ	7.00				SFi Dry =	520000	1	90000	=	5.78		'e ee
SFi Bouyant =	630000	/ (90000	x	0.847) =	8.26	SF	i Bouyant =	520000	/ (90000	×	0.847) =	6.82
														1		
Production 1 Casing									Production	1 Casing						
SFi Dry =	676000	,	150800	-	4.48				SFi Drv =	587000	1	150800	=	3.89		
SFi Bouyant =	676000	<i>'</i> (×	0.863) =	5.20	SF	i Bouyant =	587000	<i>'</i> /(×	0.863) =	4.51
		• ('			,		• •			1		
Production 2 Casing									Production							
SFi Dry =	397000	1	135082	=	2.94			1	SFi Dry =	338000	1	135082	=	2.50		
SFi Bouyant =	397000	/ (135082	x	0.863) =	3.41	SF	i Bouyant =	338000	/ (135082	x	0.863) =	2,90
- 10 T -									. •					1		

Peridot 8 Fed 1H

	Depth MD	Depth TVD	Csg length ft	Wt	MIY	Col	Pip	be Str	Jt Str	Drill Fluid					1		
rface Casing	885	885	<u>lengtn π</u> 885		5 27	30 1	130	853000	514000	8.5						a de la como	
ermediate 1 Casing	2250	2250	2250					630000	520000						·		
oduction 1 Casing	5200	5200	5200					676000	587000		tere e e e			-			
oduction 2 Casing	13146	5600	7946					397000	338000								
	101401	00001		<u> </u>	4 <u></u>			0070001		<u> </u>	•		· .		· ·	•	
							-										
			· ·							• .					j. j.		
Collapse Design (Sal	abu) Eactore	BIM C	ritoria							Burnt	Design (Saf	atul Easta	m - RIM C	ritoria			
		- DLIVI C	riteria		•								IS - DLWIC	riteria			
Collapse Design (Safety) Fa SFc = Pc / (MW x 052 x Ls											rsign (Safety) Fi i / BHP	actor: SPD					
	1			-	•						I/ BHP				. j		
Where		_			• • • •	•		•		Where	•						
• Pc is the				per squa	ire inch (psi)						•		•		- 1	e in pounds per :	square inch (ps
• .MW is m					_				1 A A				e pressure in			54) (4	
	length of the strin		-						· ·	The Min	imum Acceptab	le Burst Des	ign (Safety) Fa	ictor SFb = 1.	.0 , , .		5 -
The Minimum Acceptable C	ollapse Design (S	ialety) Fac	ctor SFc = 1.	125							· • .		· · · ·				
11.		i.								- C - C - C	:*'						
urface Casing					· ·					Surface Ca	sing				1		
SFc =	1130		391	, . =	2.89					SFb =	2730	1	391	=	6.98		
	مة أية روحة المع ^ي رة ا	1997 - A			•• • •	5 Y						• •	14 Mar 1	1. d			
termediate 1 Casing	医膀胱 医副子后的	and get-	• • •	÷.						Intermediat	te 1 Casing	2. 112	- <u>19</u> 56		•		
SFc =	2570	j. .	1170~-	: ÷ =.	2.20					SFb =	3950	1*	1170	·	3.38		•
										1.1					i		
										· · · · ·					i i		
roduction'1 Casing		· · · ·	-							Production	1 Casing				1		
SFc =	-7020	· · · · ·	.2434	*? =	2.88	· ·					8160		2434	· ~=	3.35	· · ·	
5.0.0		,		_						0.0.	0.00-	•		•	·· ,		
roduction 2 Casing										Production	2 Casing				1		
SFc =		,	. 7671		2.40.					SFb =		· 1	2621	·_ ·	2.95		
SFC =	6290	1	2621		2.40				. •	5ru =,	7740	,	2621		2.33	· · ·	
	·			- '													
	· · ·	· * `		- <u>.</u> .	1				· ·		· · ·	• 1	÷	· · ·	• 1	·.	
	•										÷ .		`• .		1		
		· · ·		· · ·	• •	- `.		*						·	!		
Pipe Strength Design		<u>tors – B</u>	BLM Criter	ria							Strength De			<u> – BLM C</u>	riteria	•	
Pipe Strength Design (Safe	ty) Factor: SFtp	· · ·									ength Design (Salety) Facto	r: SFtj				
SFtp = Fp / Wt;		÷.	· · ·							SFų = Fj	7 Wt;	· · ·			1	-	
Where	• <u></u>								`	Where							
	rated pipe Body S				;						 Fjist 						
• Wt is the	weight of the cas	ing string	in pounds (It	bs)							• Wt is	; the weight c	f the casing st	ring in pound	is (lbs)	•	
The Minimum Acceptable P					try or 1.8 but	oyant			· · · ·	The Min	imum Acceptab	le Joint Stre	ngth Design (S	alety) Factor	SFTj = 1.6 d	y or 1.8 buoyant	
				-			•		•	· · · · · ·				-			
			· ·.										· .	•	1		
urface Casing		· . ·		• •						Surface Ca	sing						•
SFi Dry =	853000	1.	48232.5	° ≟	17.7					SFi Dry =	514000	·]	48232.5	=	10.7	•	
SFi Bouvant =			48232.5))	= 20	.3	SE	i Bouyant =			48232.5	· x	0.870) =	12.2
				· ·	0.070	,	20							· .		. 1	
termediate 1 Casing										Intermedia	te 1 Casing					• .	
SFi Dry =	630000	1.	90000		7.00	-				SFi Dry =	520000	· 1	.90000	=.	5.78	:	
on Diy -	630000			- <u>-</u>		, 、	- 0-			i Bouyant =		· ·'·, ,	90000	x	0.847) = .	6.82
CEI Devisionet -	030000	/.(90000	x	0.847)	= 8.2		51	i booyant =/	520000	((90000	×	0.047)	5.02
SFi Bouyant =		· · · · ·	i ing tao s									, . <u></u>		*	· ·		
											•	•		· .	1		
										Production							
roduction 1 Casing					4.48					SFi Dry =		1-	150800	=	3.89		*
roduction 1 Casing SFi Dry =	676000	1	150800	=													
roduction 1 Casing SFi Dry = SFi Bouyant =	676000 676000	· / / (150800 150800	 	0.863))	= '5.2	20	, și	i Bouyant =	587000	/ (150800	x	0.863	·) = ·	4.51
roduction 1 Casing SFi Dry = SFi Bouyant =		/ _/ (_ × ,			= 5.2	20				· . (150800	X	0.863	·) = ·	4.51
roduction 1 Casing SFi Dry = SFi Bouyant =	676000	/ _/_(X)) 	= 5.2	20		- Production		/ (··	150800	X	0.863	`) = `	4.51
roduction 1 Casing SFi Dry = SFi Bouyant = roduction 2 Casing SFi Dry =	676000 397.000	/ _/ (_/		=) () () () () () () () () () () () () ()	= 5.2	20				· / (135082	×	0.863 2.50	·) = ·	4.51
Production 1 Casing SFi Dry = SFi Bouyant = Production 2 Casing	676000 397.000	/ (/	150800 135082		0.863		= 5.2	,		Production	2 Casing	· · · (· · · · · · · · · · · · · · · ·	135082	x = x	;), = ,	4.51 2.90
roduction 1 Casing SFi Dry = SFi Bouyant = roduction 2 Casing SFi Dry =	676000 397.000	/ _/ (150800		0.863 2.94			,		• Production • SFi Dry =	2 Casing 338000		135082	· =	2.50		

Peridot 8 Fed 1H

5

.

	Depth MD	Depth TVD	Csg length ft	Wt	MIY	Col	Pipe Str	JI 30	Drill Fluid					1		
urface Casing	885	885	885	54.5	2730	1130	85300	0 5140	00 8.5							
termediate 1 Casing	2250	2250	2250	40	3950	2570	63000	0 5200	00 10					r i		
roduction 1 Casing	5200	5200	5200	29	8160	7020				· •						
roduction 2 Casing	13146	5600	7946	17	7740	6290	39700	0 3380	00 9					1		
												•				
Collapse Design (Sal	fetu) Eactors	RIM	[•] ritoria						Buret D	esign (Safet	v) Eacto		ritoria	1		
Collapse Design (Safety) Fa		- DLMI	Sillena							ign (Safety) Fac			inena	,		
SFc = Pc / (MW x .052 x Ls									SFb = Pi					1		
Where	,								Where	2		· · ·		1		
 Pc is the 	rated pipe Collar	se Pressi	re in pounds p	er squar	e inch (psi)					 Pils the 	e rated pipe	e Burst (Minim	um Internal	Yield) Pressure	a in pounds p	er square incl
	ud weight in pour									 BHP is 	bottom hol	e pressure in p	ounds per	square inch (p	ii)	
	length of the stri								The Minin	num Acceptable	Burst Desi	gn (Salety) Fa	ctor SFb = '	1.0 i		
The Minimum Acceptable C	Collapse Design (Safety) Fa	ctor SFc = 1.12	25										i		
urface Casing	1120	1	201	~	2.00				Surface Cas		,	201	=	6.09		
SFc =	1130	'	391	=	2.89				SFb =	2730	1	391	=	6.98		
termediate 1 Casing									Intermediate	1 Casino						
SFc =	2570	1	1170	=	2.20				SFb =	3950	1	1170	=	3.38		
Ç, C =	2010	,		-						0000	'		-			
											-			ļ		
roduction 1 Casing									Production	1 Casing				t		
SFc =	7020	1	2434	=	2.88				SÉb =	8160	. 1 .	2434	=	3:35		
oduction 2 Casing									Production	2 Casing				1		
									1100000000							
SFc =	6290	1	2621	= .	2.40				SFb =	7740	1	2621	=	2.95		
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / Wt;	n (Safety) Fac	,			2.40				SFb = Joint S	7740 trength Design (Sa		ty) Factors	_	and an annual sector		
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where	n <u>(Safety) Fac</u> ty) Factor: SFtp	tors – I	BLM Criteria		2.40				SFb = <u>Joint S</u> Joint Stre	7740 trength Desi ngth Design (Sa Wt;	fety) Facto	i ty) Factors r: SFIJ	– BLM C	riteria		
<u>Pipe Strength Design</u> Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the	n <u>(Safety) Fac</u> Ity) Factor: SFtp rated pipe ⁻ Body	strength in	BLM Criteria	<u>a</u>	2.40				SFb = Joint S Joint Stre SFtj = Fj /	7740 trength Desi ngth Design (Sa Wt: • Fj is the	fety) Facto e rated pipe	i <mark>ty) Factors</mark> r: SFij a Joint Strengtl	– BLM C	Criteria		
Pipe Strength Design Pipe Strength Design (Safe SF(p = Fp / Wt; Where • Fp is the • Wt is the	n <u>(Safety) Fac</u> ity) Factor: SFtp rated pipe [:] Body weight of tho ca:	strength in Strength in	BLM Criteria n pounds (lbs) in pounds (lbs	<u>a</u>)					SFb = Joint S Joint Stre SFtj = Fj / Where	7740 trength Design ngth Design (Sa Wt: • Fj is th • Wt is th	fety) Facto e rated pipe ne weight o	r <mark>ty) Factors</mark> r: SFtj e Joint Strengtl f the casing str	– BLM C	(lbs)		
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the	n <u>(Safety) Fac</u> ity) Factor: SFtp rated pipe [:] Body weight of tho ca:	strength in Strength in	BLM Criteria n pounds (lbs) in pounds (lbs	<u>a</u>)		nt			SFb = Joint S Joint Stre SFtj = Fj / Where	7740 trength Desi ngth Design (Sa Wt: • Fj is the	fety) Facto e rated pipe ne weight o	r <mark>ty) Factors</mark> r: SFtj e Joint Strengtl f the casing str	– BLM C	(lbs)	y or 1.8 buoy	anl
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the	n <u>(Safety) Fac</u> ity) Factor: SFtp rated pipe [:] Body weight of tho ca:	strength in Strength in	BLM Criteria n pounds (lbs) in pounds (lbs	<u>a</u>)		nt			SFb = Joint S Joint Stre SFtj = Fj / Where	7740 trength Design ngth Design (Sa Wt: • Fj is th • Wt is th	fety) Facto e rated pipe ne weight o	r <mark>ty) Factors</mark> r: SFtj e Joint Strengtl f the casing str	– BLM C	(lbs)	y or 1.8 buoy	ant
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F	n <u>(Safety) Fac</u> ity) Factor: SFtp rated pipe [:] Body weight of tho ca:	strength in Strength in	BLM Criteria n pounds (lbs) in pounds (lbs	<u>a</u>)		nt			SFb = Joint S Joint Stre SFtj = Fj / Where	7740 trength Desi ngth Design (Sa Wt: Fj is th Wt is th num Acceptable	fety) Facto e rated pipe ne weight o	rt y) Factors r: SFtj s Joint Strengtl f the casing st ngth Design (S.	– BLM C	(lbs) [.] ds (lbs) ¦ r SFTj ≑ 1.6 dr	y or 1.8 buoy	ant
Pipe Strength Design Pipe Strength Design (Sale SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Dry =	n <u>(Safety) Fac</u> ty) Factor: SFtp rated pipe Body weight of the car tipe Strength Des 853000	strength in Strength in sing string ign (Safet /	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5	<u>a</u>)	y or 1.8 buoya 17.7	nt			SFb = Joint S Joint Stre SFij = Fj Where The Minir Surface Cas SFi Dry =	7740 trength Design ngth Design (Sa Wt: Fi is th Wt is th num Acceptable 514000	fety) Facto e rated pipe ne weight o Joint Strer /	r: SFIJ a Joint Strengtl f the casing st ngth Design (S: 48232.5	– BLM C h in pounds ring in poun afety) Facto	(lbs) (lbs) ds (lbs) r SFTj ≑ 1.6 dr 10.7		
Pipe Strength Design Pipe Strength Design (Safe SFip = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F	n <u>(Safety) Fac</u> ty) Factor: SFtp rated pipe Body weight of the car tipe Strength Des 853000	strength in Strength in	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp	<u>a</u>) • = 1,6 dr	y or 1.8 buoya	nt) =	20.3		SFb = Joint S Joint Stre SFij = Fj Where The Minir Surface Cas	7740 trength Desi ngth Design (Sa Wt: • Fj is th • Wt is th num Acceptable ing	fety) Facto e rated pipe ne weight o Joint Strer	r: SFIJ a Joint Strengtl f the casing st ngth Design (S: 48232.5	– BLM C h in pounds ring in poun afety) Facto	(lbs) [.] ds (lbs) ¦ r SFTj ≑ 1.6 dr	y or 1.8 buoy	ant 12.2
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Dry = SFi Bouyant =	n <u>(Safety) Fac</u> ty) Factor: SFtp rated pipe Body weight of the car tipe Strength Des 853000	strength in Strength in sing string ign (Safet /	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5	a_) = 1,6 dr =	y or 1.8 buoya 17.7		20.3		SFb = <u>Joint St</u> SFtj = Fj / Where The Minir Surface Cas SFi Dry = SFi Bouyant =	7740 trength Design ngth Design (Se Wt: Fj is thu Wt is th num Acceptable ing 514000 514000	fety) Facto e rated pipe ne weight o Joint Strer /	r: SFIJ a Joint Strengtl f the casing st ngth Design (S: 48232.5	– BLM C h in pounds ring in poun afety) Facto	(lbs) (lbs) ds (lbs) r SFTj ≑ 1.6 dr 10.7		
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Bouyant = SFi Bouyant =	n <u>(Safety) Fac</u> ty) Factor: SFtp rated pipe Body weight of the ca pipe Strength Des 853000 853000	strength in Strength in sing string ign (Safet /	BLM Criteria n pounds (lbs) in pounds (lbs y) Fector SFTp 48232.5 48232.5	a) = 1,6 dr = x	y or 1.8 buoya 17.7 0.870		20.3		SFb = <u>Joint S</u> Joint Str SFij = Fj / Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate	7740 trength Design ngth Design (Sa Wt: Fj is the Wt is the Num Acceptable 514000 514000 c 514000	fety) Facto e rated pipe ne weight o Joint Strer /	r: SFtj e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5	- BLM C h in pounds ring in poun afety) Facto ' = X	(lbs) ds (lbs) r SFTj ≑ 1.6 dr 10.7 0.870		
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F striace Casing SFi Dry = SFi Bouyant = termediate 1 Casing SFi Dry =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca bipe Strength Des 853000 853000 630000	Strength in Strength in sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000	a_) = 1.6 dr = x =	y or 1.8 buoya 17.7 0.870 7.00) =			SFb = Joint S Joint Stre SFij = Fj Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Dry =	7740 trength Design (Sa Wt: Fi is the Wt is the num Acceptable 514000 514000 1 Casing 520000	fety) Facto e rated pipe we weight o Joint Strer / / / (r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000	- BLM C h in pounds ring in poun afety) Facto ' = X =	(lbs) · · · ds (lbs)! r SFTj = 1.6 dr 10.7 0.870 5.78) =	12.2
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / WI; Where • Fp is the • Wt is the The Minimum Acceptable F rface Casing SFi Bouyant = ermediate 1 Casing	n <u>(Safety) Fac</u> ty) Factor: SFtp rated pipe Body weight of the ca pipe Strength Des 853000 853000	strength in Strength in sing string ign (Safet /	BLM Criteria n pounds (lbs) in pounds (lbs y) Fector SFTp 48232.5 48232.5	a) = 1,6 dr = x	y or 1.8 buoya 17.7 0.870) =	20.3 8.26		SFb = <u>Joint S</u> Joint Str SFij = Fj / Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate	7740 trength Design ngth Design (Sa Wt: Fj is the Wt is the Num Acceptable 514000 514000 c 514000	fety) Facto e rated pipe ne weight o Joint Strer /	r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000	- BLM C h in pounds ring in poun afety) Facto ' = X	(lbs) ds (lbs) r SFTj ≑ 1.6 dr 10.7 0.870		
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F striace Casing SFi Dry = SFi Bouyant = termediate 1 Casing SFi Dry =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca bipe Strength Des 853000 853000 630000	Strength in Strength in sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000	a_) = 1.6 dr = x =	y or 1.8 buoya 17.7 0.870 7.00) =			SFb = Joint S Joint Stre SFij = Fj Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Dry =	7740 trength Design (Sa Wt: Fi is the Wt is the num Acceptable 514000 514000 1 Casing 520000	fety) Facto e rated pipe we weight o Joint Strer / / / (r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000	- BLM C h in pounds ring in poun afety) Facto ' = X =	(lbs) · · · · · · · · · · · · · · · · · · ·) =	12.2
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Bouyant = termediate 1 Casing SFi Dry = SFi Bouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca bipe Strength Des 853000 853000 630000	Strength in Strength in sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000	a_) = 1.6 dr = x =	y or 1.8 buoya 17.7 0.870 7.00) =			SFb = Joint S Joint Stre SFij = Fj Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Dry =	7740 trength Design ngth Design (Sa Wt: Fj is the Wt is the num Acceptable ing 514000 514000 514000 520000 520000	fety) Facto e rated pipe we weight o Joint Strer / / / (r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000	- BLM C h in pounds ring in poun afety) Facto ' = X =	(lbs) · · · · · · · · · · · · · · · · · · ·) =	12.2
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F prface Casing SFi Bouyant = SFi Bouyant = SFi Bouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca bipe Strength Des 853000 853000 630000	Strength in Strength in sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000	a_) = 1.6 dr = x =	y or 1.8 buoya 17.7 0.870 7.00) =			SFb = Joint St Joint Str SFij = Fj / Where The Minir SFi Dry = SFi Bouyant = Intermediate SFi Dry = SFi Bouyant =	7740 trength Design ngth Design (Sa Wt: Fj is the Wt is the num Acceptable ing 514000 514000 514000 520000 520000	fety) Facto e rated pipe we weight o Joint Strer / / / (r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000	- BLM C h in pounds ring in poun afety) Facto ' = X =	(lbs) · · · · · · · · · · · · · · · · · · ·) =	12.2
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F striace Casing SFi Dry = SFi Bouyant = termediate 1 Casing SFi Dry = SFi Bouyant =	n (Safety) Factor: SFtp rated pipe Body weight of the ca bipe Strength Des 853000 853000 630000 630000	Strength in Strength in sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800) = 1,6 dr = X = X	y or 1.8 buoya 17.7 0.870 7.00 0.847) =	8.26		SFb = <u>Joint S</u> Joint Stre SFi J = FJ Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Bouyant = SFi Bouyant = Production	7740 trength Design (Sa Wt: Fj is the Wt is the num Acceptable 514000 510000 510000 510000 510000 510000 510000 510000 510000 5100000 5100000 5100000 510000000 510000000000	fety) Facto e rated pipe we weight o Joint Strer / / / (ty) Factors r: SFIJ a Joint Strengtl f the casing str ngth Design (S. 48232.5 48232.5 90000 90000	- BLM C ing in pounds ring in poun afety) Facto = x = x	(lbs) ds (lbs) r SFTj ≑ 1.6 dr 0.870 5.78 0.847) =	12.2
Pipe Strength Design Pipe Strength Design (Safe SFIp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Bouyant = SFi Bouyant = SFi Bouyant = SFi Bouyant = SFi Bouyant = SFi Bouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca bipe Strength Des 853000 630000 630000 676000	strength in sing string ign (Safet / / (/ / (BLM Criteria n pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800	a_ = 1.6 dr = x x = x	y or 1.8 buoya 17.7 0.870 7.00 0.847 4.48) =) =	8.26		SFb = <u>Joint S</u> Joint Str SFi j = Fj / Where The Minir SFi Dry = SFi Bouyant = Intermediate SFi Dry = SFi Bouyant = Production SFi Dry = SFi Bouyant =	7740 trength Design ngth Design (Sa Wt: Fj is thu Wt is the num Acceptable 514000 514000 514000 520000 520000 1 Casing 587000 587000	fety) Facto e rated pipe weight o Joint Strer / / / / (ty) Factors r: SFtj a Joint Strengtl f the casing str ngth Design (S. 48232.5 48232.5 90000 90000 90000	- BLM C h in pounds ring in poun afety) Facto = x = x = x	(lbs) ds (lbs) r SFTj = 1.6 dr 0.870 5.78 0.847 3.89) =) =	12.2 6.82
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Dry = SFi Bouyant = termediate 1 Casing SFi Dry = SFi Bouyant = roduction 1 Casing SFi Dry = SFi Bouyant = roduction 2 Casing	n (Safety) Factor: SFtp rated pipe Body weight of the ca- bipe Strength Des 853000 630000 630000 630000 676000 676000	strength in sing string ign (Safet / / (/ / (BLM Criteria in pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800 150800	a = 1.6 dr = x = x = x	y or 1.8 buoya 17.7 0.870 7.00 0.847 4.48 0.863) =) =	8.26		SFb = <u>Joint S</u> Joint Str SFij = Fj / Where The Minin Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Dry = SFi Bouyant = Production SFi Dry = SFi Bouyant = Production ;	7740 trength Design (Sa Wt: Fj is the Wt is the num Acceptable 514000 514000 514000 514000 514000 514000 514000 514000 514000 514000 514000 514000 520000 520000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 200	fety) Facto e rated pipe ne weight o Joint Strer / / / / (/ / / / / / / / / / / /	ty) Factors r: SF() 9 Joint Strengtl 1 the casing str ngth Design (S 48232.5 48232.5 90000 90000 90000 150800 150800	- BLM C in pounds ring in poun afety) Facto = x = x = x	(lbs) ds (lbs) r SFTj ≑ 1.6 dr 10.7 0.870 5.78 0.847 3.89 0.863) =) =	- 12.2 6.82
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Wt is the The Minimum Acceptable F urface Casing SFi Bouyant = termediate 1 Casing SFi Bouyant = SFi Bouyant = roduction 1 Casing SFi Dry = SFi Bouyant = roduction 2 Casing SFi Dry = SFi Dry =	n (Safety) Factor: SFtp rated pipe Body weight of the car type Strength Des 853000 630000 630000 676000 676000 397000	Strength in sing string ign (Safet / / (/ / (/ / (BLM Criteria n pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800 150800 135082	a_ = 1.6 dr = x = x = x = x	y or 1.8 buoya 17.7 0.870 7.00 0.847 4.48 0.863 2.94) =) =) =	8.26 5.20		SFb = <u>Joint S</u> Joint Stre SFI = Fj / Where The Minir Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Dry = SFi Bouyant = Production SFi Dry = SFi Bouyant = Production : SFi Dry =	7740 trength Design ngth Design (Sa Wt: F) is the Wt is the num Acceptable 514000 514000 514000 514000 514000 514000 5200000 5200000 520000000000	fety) Facto e rated pipe weight o Joint Strer / (/ (/ (/ (ty) Factors r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000 90000 150800 150800 135082	- BLM C h in pounds ring in poun afety) Factor = x = x = x = x = x	(lbs) ds (lbs) r SFTj = 1.6 dr 0.870 5.78 0.847 3.89 0.863 2.50) =) =) =	- 12.2 6.82 4.51
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F urface Casing SFi Dry = SFi Bouyant = termediate 1 Casing SFi Dry = SFi Bouyant = roduction 1 Casing SFi Dry = SFi Bouyant = roduction 2 Casing	n (Safety) Factor: SFtp rated pipe Body weight of the ca- bipe Strength Des 853000 630000 630000 630000 676000 676000	strength in sing string ign (Safet / / (/ / (BLM Criteria in pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800 150800	a = 1.6 dr = x = x = x	y or 1.8 buoya 17.7 0.870 7.00 0.847 4.48 0.863) =) =) =	8.26		SFb = <u>Joint S</u> Joint Str SFij = Fj / Where The Minin Surface Cas SFi Dry = SFi Bouyant = Intermediate SFi Dry = SFi Bouyant = Production SFi Dry = SFi Bouyant = Production ;	7740 trength Design (Sa Wt: Fj is the Wt is the num Acceptable 514000 514000 514000 514000 514000 514000 514000 514000 514000 514000 514000 514000 520000 520000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 22000 200	fety) Facto e rated pipe ne weight o Joint Strer / / / / (/ / / / / / / / / / / /	ty) Factors r: SFIJ e Joint Strengtl f the casing str ngth Design (S 48232.5 48232.5 90000 90000 150800 150800 135082	- BLM C in pounds ring in poun afety) Facto = x = x = x	(lbs) ds (lbs) r SFTj ≑ 1.6 dr 10.7 0.870 5.78 0.847 3.89 0.863) =) =	- 12.2 6.82

Peridot 8 Fed 1H-Casing Worksheet

ring Section	Depth MD	Depth TVD	Csg Ionath ft		MIY				Drill Fluid			• •				
Inface Casing	885	885	885	54.5	2730		853000	514000	8.5							
ormediate 1 Casing	2000	2000	2000		3950	2570	630000	520000	10							
iduction 1 Casing	5200	5200	5200		8160		676000	587000	9							
duction 2 Casing	13132	5583	7932		7740		397000	338000	9							
		· · · ·														
										•						
Collapse Design (Safety) Collapse Design (Safety) Factor		BLM C	<u>riterin</u>							Safety) Facto		- BLM C	<u>ritorla</u>			
SFc = Pc / (MW x .052 x Ls)									SFb = Pi/Bi		1. 350					
Where									Where	".						
Pc is the rated pir	e Collapse Pr	essure in p	ounds per squ	uare inch (p	6i) -	۰.		, 2 A.		Pi is the rate) pipe Bural (Minimum Inl	emal Yield)	Pressure in pou	nda per square	e inch
 MW is mud weight 			Pg)		•				•	BHP is botton					;	
La is the length of					· •		• •	t the start of the	The Minimum	Acceptable B	urst Design (Salety) Fact	of SFb = 1.()		18
The Minimum Acceptable Collap	se Dosign (Sa	linty) Facto	r SFc = 1,125		· .						1. J.			15 C		
rface Casing	• • • •		· · · · ·						Surface Casi			0.11 p				4
SFc =	1130	1.	391	``= ·`;	2.89	1115		Sec. M.	Surface Casi	2730	· · · ·	391		6.98		
9 , 9 -						11.1		1.1		2,30				4.66		. •
ermediate 1 Casing	1. 1.1.1							· .	Intermediate	1 Casino		1	· ·			÷ '
SFc =	2570	.1	1040	=	2.47			11 A.S.	SFb =	3950	1	1040	· •,	3.80		·
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						· •		Art and		1.1	, é s .			1. A.	
rmediate 2 Casing						•	1. 1. 1.		Intermediate	2 Casing	14.15	$1 \le 9$			1.1	·
SFc =	0	1 I.	0	. •	DIV/01				SFb =	. 0	1	Ο.΄		#DIV/01	· ·	
			· · / ·	· ·			· `	·				· *;				
duction 1 Casing	,i								Production 1							
SFc =	7020	'	2434		2,88				SFb =	8160		2434		3.35		
duction 2 Casing			· ", .	÷, · ·				15.1	Production 2	Casino		5 A. 7	. ¹ .		·	
SFc =	6290	1	2613	=	2.41		. •	1	SFb =	7740	1	2613	= .	2.96		
- 1 K - 1	. S.S.					. '	21						ь -			
		·	· · · .			. 1	• /					- A.,		i ya t		•
	·. ·		· ·	·	1.1			. :		 1 	1 · · ·		(1, j)		1 . J	÷
	· · · · · ·					1			· · · · · ·	·						-1
Pipe Strongth Design (S		tors – Bl	LW Criteria)		· · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 14 -		ingth Desig			- BLM C	<u>ritoria</u>	and the type	
Pipe Strength Design (Safety) Fr SFtp = Fp / Wt;	iciol: SFID ~	1		٠.		. i.		1	SFtj = Fj / Wi	h Dasign (Sala	ly) Factor: SI	•¥ .	, t. 1		1 A 2	
Ship = r p / Wi; -						1		1.1.1	Sing with the with the second	ь с.	[.]	12	5	. 1		
 Fp is the rated pip 	e Body Strend	th in pound	da (ibs)	- i - '	1994 - E					F) is the rates	ionice Joint S	trength in pr	unds (ibe)			•
 Wi is the weight o 						1 g	•	· · · · .	•	Wt is the woi				a - 1	· · ·	
The Minimum Acceptable Pipe S				1.6 dry or	1.8 buoyant	1. P.		N.	The Minimun					SFTj = 1.6 dry or	1.8 buoyani	•
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	<u> </u>	+ [$\epsilon_{j} = 1.1$	•				e	19.		•
							'			,		137	· .			
face Casing	052000	•	40000 5			1	,		Surface Casi				÷ - (rú b	·	•
SFi Dry = SFi Bouyant =	853000 853000	14,	48232.5 48232.5	а, ·	0.870	1 =	20.3	i eri	SFi Dry =	514000 514000	· '., ,	48232.5	·	10.7	N 1 4	- 20
an boyant =	655000	er e C	40232.3		0.010	1.5	20.3	(SFI	Bouyant =	514000		40232.5	, ×,	0,870) =	12.
rmediate 1 Casing		11.0	1.1.1			1		1.0	Intermediate	1 Casino	5 A. 1. A		:		$\sim 10^{10}$	
SFi Dry =	630000	11	80000 -	= 1	7.88		t in a		SFi Dry =	520000	' i .	80000	÷. ≟	6.50	an de	. i .
, SFI Bouyant =	630000	. 11	80000	x - ,	0.847	`) =	9.29	SF	Bouyant =	520000	. 11	80000	x	0,847) =	7.6
		1			, d		5 A					·. • .			1. N. P.	
rmediate 2 Casing	1.00			· ·					Intermediate		· .		-	e de la compañía de l		1.1
SFi Dry =	. 0	· /	0	= 1	DIV/01	N - 1			SFi Dry =	0	1.1	0	.' ⇒	#DIV/01	· · .	
SFi Bouyant =	0	. / (0	x	1.000) = 2	#D1V/01	SFi	Bouyant =	0	Ε.	0	. *	1.000) =	#D
duction 1 Casing	· .				· .			· .	Production 1	Corino			•			
SFi Dry =	676000	1	150800		1.48				SFi Dry =	587000	1	150800	_	3.89		1
SFi Bouyant =	676000	10	150800	x	0,863) =	5.20	SFi	Bouyant =	587000	11	150800	. <u>-</u>	0,863	·) =	4.5
						· .	·				• •		Ŷ	3,003		
· · ·	· · · ·			•					Production 2	Casing	· . '		·			1
duction 2 Casing																3.2
duction 2 Casing SFi Dry =	397000	1	134844	.=	2,94				SFi Dry =	338000	1 .	134844		2,51	¹	· ` ` .
oduction 2 Casing SFi Dry = SFi Bouyant =	397000 397000	1	134844 134844	. = 1 X	2,94 0.863) =	3.41	SFi	SFi Dry = Bouyant =	338000 338000	1.	134844 134844	= x	2.51 0.863),= ,	

String Section	Depth MD	Depth TVD	Csg Jength ft	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid				
Surface Casing	885	885	885	54.5		1130	853000	514000	8.5				
Intermediate 1 Casing	2250	2250	2250	40		2570	630000	520000	10				
Production 1 Casing Production 2 Casing	5200 13146	5200 5600	5200 7946	29		7020	676000 397000	587000 338000	9				
Foundation 2 Gabing	L. 10149	5000	1 1340	<u> </u>	<u> </u>	0230		335000	3				
<u>Collapse Design (</u>		– BLM (<u>Criteria</u>									ors - BLM C	<u>iteria</u> '
Collapse Design (Safet) SFc = Pc / (MW x .052 . Where									Burst Design SFb = Pi / Bł Where		tor: SFb		
 Pc is 	the rated pipe Colla			per squa	re Inch (psi)							pe Burst (Minimu	
	s mud weight in pou the length of the stri											ole pressure in p	
The Minimum Acceptab		-	• •	25					The Minimun	n Acceptable	Burşi De	sign (Safety) Fac	tor 5+0 =
Surface Casing SFo	c≈ 1130	1	391	=	2.89				Surface Casing SFb =	9 2730	,	391	=
Intermediate 1 Casing SFo	2570	1	1170	=	2.20				Intermediate 1 SFb =	Casing 3950	1	1170	=
Production 1 Casing									Production 1 C	asing			
SFo	c = 7020	1	2434	=	2.88				SFb =	8160	1	2434	=
Production 2 Casing									Production 2 C	asing			
Production 2 Casing SFo	c = 6290	1	2621	= .	2.40				Production 2 C SFb =	asing 7740	1	2621	=
	sign (Safety) Fa	·			2.40				SFb =	7740 <u>ngth Des</u> h Design (Sa ;	i gn (Sa l Ifety) Fac	<u>fety) Factors</u> tor: SFIJ	<u>– BLM (</u>
ŠFo <u>Pipe Strength Des</u> Pipe Strength Design (S SFip = Fp / Wt; Where • Fp is	sign (Safety) Fa c Safety) Factor: SFtp the rated pipe Body the weight of the ca	ctors — I Strength i ising string	BLM Criteri n pounds (lbs) 9 in pounds (lbs	<u>ia</u> s)		ı			SFb = Joint Stree Joint Strengt SFtj = Fj / Wi Where	7740 ngth Design (Se Fj is th Wt is th	i gn (Sa l ifety) Fac e raled pi ne weight	(ety) Factors	– BLM C in pounds ng in pound
SFe Pipe Strength Des Pipe Strength Design (S SFlp = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab	sign (Safety) Fa c Safety) Factor: SFtp the rated pipe Body the weight of the ca	ctors — I Strength i ising string	BLM Criteri n pounds (lbs) 9 in pounds (lbs	<u>ia</u> s)		t			SFb = Joint Stree Joint Strengt SFtj = Fj / Wi Where The Minimum	7740 ngth Design (Se h Design (Se F) is th F) is th Acceptable	i gn (Sa l ifety) Fac e raled pi ne weight	fety) Factors tor: SFIj pe Joint Strength of the casing stri	– BLM C in pounds ng in pound
SFe Pipe Strength Des Pipe Strength Design (S SFtp = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab Surface Casing	sign (Safety) Fac Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strength Des	ctors — I Strength i Sign (Safet	BLM Criteri n pounds (lbs) g in pounds (lb; y) Factor SFT ₁	ia s) p = 1.6 d	ry or 1.8 buoyan	ı			SFb = Joint Street Joint Street SFtj = Fj / Wi Where The Minimum Surface Casing	7740 ngth Design (Sa : Fj is th Wit is th Acceptable	i <mark>gn (Sa</mark> Ifety) Fac e rated pi he weight Joint Str	fety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa	– BLM C in pounds ng in poun fety) Facto
SFe Pipe Strength Des Pipe Strength Design (S SFip = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab	tign (Safety) Fac Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strength De r = 853000	ctors — I Strength i ising string	BLM Criteri n pounds (lbs) g in pounds (lb) y) Factor SFT 48232.5	<u>ia</u> s)) =	20.3	SF	SFb = Joint Strengt Joint Strengt SFt = Fj / W Where The Minimum Surface Casing SFi Dry =	7740 ngth Design (Se h Design (Se F) is th F) is th Acceptable	i gn (Sa l ifety) Fac e raled pi ne weight	fety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5	– BLM C in pounds ng in pound
Pipe Strength Des Pipe Strength Design (S Pipe Strength Design (S SFtp = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab Surface Casing SFi Bouyan Intermediate 1 Casing	tign (Safety) Fac Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strength Der r = 853000 t = 853000	Strength i Ising string sign (Safet / / (BLM Criteri n pounds (lbs) g in pounds (lbs) g i	i <u>a</u> s) p = 1.6 d = X	ry or 1.8 buoyan 17.7 0.870		20.3	SF	SFb = Joint Stree Joint Street SFtj = Fj / Wi Where The Minimum Sti Dry = 5 i Bouyant = 5 Intermediate 1	7740 ngth Desi h Design (Sd ; FJ is th Wt is th Acceptable j 14000 j 14000 Casing	i <mark>gn (Sa</mark> lifety) Fac e rated pi he weight Joint Str / / /	Tety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5 (48232.5	<u>– BLM C</u> in pounds ng in poun fety) Facto
SFe <u>Pipe Strength Des</u> Pipe Strength Design (S SFIp = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab Surface Casing SFi Dry SFi Bouyan	tign (Safety) Factor: SFtp Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strangth Des r = 853000 t = 853000 r = 630000	ctors — Strength i sing string sign (Safel	BLM Criteri n pounds (lbs) g in pounds (lb) y) Factor SFT 48232.5	s) p = 1.6 d	ry or 1.8 buoyan 17.7		20.3		SFb = Joint Stree Joint Street SFtj = Fj / W Where The Minimum SFi Dry = 5 Bouyant = 5 Intermediate 1 SFi Dry = 5	7740 ngth Design (Se Fj is th Wit is th Acceptable 14000 14000	i <mark>gn (Sa</mark> Ifety) Fac e rated pi he weight Joint Str /	tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5 (48232.5 90000	<u>– BLM C</u> in pounds ng in poun fety) Facto = X
Pipe Strength Des Pipe Strength Design (S SFtp = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab Surface Casing SFi Bouyan Intermediate 1 Casing SFi Dry SFi Bouyan Production 1 Casing	sign (Safety) Factor: SFtp Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strength Dec r = 853000 t = 630000 t = 630000	Strength i sing string sign (Safet / / (/ / / (BLM Criteri n pounds (lbs) g in pounds (lb: y) Factor SFT 48232.5 48232.5 90000 90000	s) p = 1.6 d = x x	ry or 1.8 buoyan 17.7 0.870 7.00 0.847) =			SFb = Joint Street Joint Street SFtj = Fj / Wi Where The Minimum SFi Dry = 5 Bouyant = 5 Intermediate 1 SFi Dry = 5 Bouyant = 5 Bouyant = 5 Production 1 C	7740 ngth Design (Sa F] is th Wt is ti Acceptable 14000 14000 Casing 20000 20000 20000	i <mark>gn (Sa</mark> lfety) Fac e rated pi he weight Joint Str / / / /	Tety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5 (48232.5 90000 (90000	- BLM C in pounds ng in poun fety) Facto = x = x
SFe Pipe Strength Design (S SFip = Fp / Wt; Where Fp is Wt is The Minimum Acceptab Surface Casing SFi Bouyan Intermediate 1 Casing SFi Bouyan Production 1 Casing SFi Dry SFi Dry	tign (Safety) Factor: SFtp Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strangth Des Y = 853000 t = 853000 t = 630000 t = 630000 t = 676000	strength i sing string sign (Safet / / / / / / /	BLM Criteri n pounds (lbs) g in pounds (lb) y) Factor SFT 48232.5 48232.5 90000 90000 150800	s) s) p = 1.6 d x x x x	ry or 1.8 buoyan 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	SFb = Joint Stree Joint Strengt SFtj = Fj / Wi Where The Minimum Surface Casing SFi Dry = \$ Bouyant = \$ Intermediate 1 SFi Dry = \$ Production 1 C SFi Dry = \$	7740 ngth Design (Se F) is th Wi is th Acceptable 14000 20000 20000 20000 20000 20000	i <mark>gn (Sa</mark> Ifety) Fac e rated pi he weight Joint Str / / / /	Tety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5 (48232.5 (48232.5 (90000 (90000 150800	<u>BLM C</u> in pounds ng in poun fety) Facto = x = x =
SFe Pipe Strength Des Pipe Strength Design (S SFip = Fp / Wt; Where • Fp is • Wt is The Minimum Acceptab Surface Casing SFi Bouyan Intermediate 1 Casing SFi Bouyan Production 1 Casing SFi Bouyan	tign (Safety) Factor: SFtp Safety) Factor: SFtp the rated pipe Body the weight of the ca le Pipe Strangth Des Y = 853000 t = 853000 t = 630000 t = 630000 t = 676000	Strength i sing string sign (Safet / / (/ / / (BLM Criteri n pounds (lbs) g in pounds (lb) y) Factor SFT 48232.5 48232.5 90000 90000 150800	s) p = 1.6 d = x x	ry or 1.8 buoyan 17.7 0.870 7.00 0.847) =		SF	SFb = Joint Stree Joint Strengt SFtj = Fj / Wi Where The Minimum SFi Dry = 5 i Bouyant = 5 Intermediate 1 SFi Dry = 5 i Bouyant = 5 Production 1 C SFi Dry = 5 i Bouyant = 5 SFi Dry = 5 SF	7740 ngth Design (Sa Fj is th Wi is th Acceptable 14000 Casing 20000 20	i <mark>gn (Sa</mark> lfety) Fac e rated pi he weight Joint Str / / / /	Tety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5 (48232.5 (48232.5 (90000 (90000 150800	- BLM C in pounds ng in poun fety) Facto = x = x
SFe Pipe Strength Design (S SFip = Fp / Wt; Where Fp is Wt is The Minimum Acceptab Surface Casing SFi Bouyan Intermediate 1 Casing SFi Bouyan Production 1 Casing SFi Dry SFi Dry	Lign (Safety) Factor: SFtp Safety) Factor: SFtp the rated pipe Body the weight of the ca the weight of the ca the Pipe Strength Der t = 853000 t = 853000 t = 630000 t = 630000 t = 630000 t = 630000 t = 630000	strength i sing string sign (Safet / / / / / / /	BLM Criteri n pounds (lbs) g in pounds (lb) y) Factor SFT 48232.5 48232.5 90000 90000 150800 150800 135082	s) s) p = 1.6 d x x x x	ry or 1.8 buoyan 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	SFb = Joint Stree Joint Strengt SFtj = Fj / Wi Where The Minimum SFi Dry = \$ i Bouyant = \$ Intermediate 1 SFi Dry = \$ i Bouyant = \$ Production 1 C SFi Dry = \$ i Bouyant = \$ Production 2 C SFi Dry = \$	7740 ngth Design (Sa Fj is th Wi is th Acceptable 14000 Casing 20000 20	i <mark>gn (Sa</mark> Ifety) Fac e rated pi he weight Joint Str / / / /	Tety) Factors tor: SFIj pe Joint Strength of the casing stri ength Design (Sa 48232.5 (48232.5 (48232.5 (90000 (90000 150800	<u>BLM C</u> in pounds ng in poun fety) Facto = x = x =

	 Piisth 	e rated pi	pe Burst (Minimu	im Internal	Yield) Pressure in po	unds per square inch (ps
	 BHP is 	bottom h	ole pressura in p	ounds per	square inch (psi)	
The Minin	um Acceptable	a Burst De	sign (Safety) Fac	tor SFb =	.0	
face Cas	ing					
SFb =	2730	/	391	=	6.98	
rmediate	1 Casing					
SFb ≠	3950	1	1170	=	3.38	
duction '	1 Casing				;	
SFb = `	8160	1	2434	=	3.35	

Production 2	Casing				i.
SFb =	7740	1	2621	=	2.95

Joint Strength Design (Safety) Factor: SFIj SFtj = Fj / Wt; Where
Where

weight of the casing string in pounds (lbs)

oint Strength Design (Safety) Factor SFTJ = 1.6 dry or 1.8 buoyant

Surface Cas	ing				1		
SFi Dry =	514000	1	48232.5	=	10.7		
SFi Bouyant =	514000	/ (48232.5	×	0.870) =	12.2
Intermediate	e 1 Casing				İ		
SFi Dry =	520000	1	90000	=	5.78		
SFi Bouyant =	520000	7.(.	90000	×	0.847) =	6.82
					:		
Production	1 Casing				1		
SFi Dry =	587000	1	150800	=	3.89		
SFi Bouyant =	587000	/ (150800	×	0.863) =	4.51
Production	2 Casing						
SFi Dry =	338000	1	135082	=	2.50		
SFi Bouyant =	338000	/ (135082	x	0.863) =	2.90

ConocoPhillips, Peridot 8 Federal 1H

1. Geologic Formations

KB TVD of target	5600'	Pilot hole depth	NA
KB MD at TD:	13146'	Deepest expected fresh water:	820'

Basin

Formation	KB TVD (ft)	Elevation KB (ft) KB=17'	Water/Mineral Bearing/Target Zone	Hazards*
Rustler	820	3242	Fresh Water	
Salado	960	3102	Brackish Water	
Tansill	2040	2022	Salt	
Yates	2175	1887	Salt Water	
Seven Rivers	2480	1577	Oil/Gas	
Queen	3110	952	Oil/Gas	
Grayburg	3525	537	Oil/Gas	
San Andres	3850	212	Oil/Gas	
Glorieta	5375	-1308	Oil/Gas	
Paddock	5460	-1398	Target	
Land Pt / TD	5600	-1538	Target	

2. Casing Program

la di serie denomente la di se la massa	3 strings casing design									
Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Pipe	SF Joint
Size	From	To	Size	(lbs)			Collapse	Burst	Tensile	Tensile
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89
8.75"	5200	13146	5.5"	17	L80	LTC/BTC	2.40	2.95	2.94	2.50
				BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

• Bring cement from 5-1-2" casing shoe to lap inside 9-5/8" casing shoe.

• XO from 7" to 5-1/2" in 8-3/4" OH for minimum of 0.422in clearance per Onshore Oil and Gas Order #2 III.B.

• Notify BLM if an Annulus Casing Packer and Stage Tool with 2-Stage Cement or Remediate with Bradenhead Squeeze will be necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

ConocoPhillips, Peridot 8 Federal 1H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	YES
Does the above casing design meet or exceed BLM's minimum standards? If not provide	YES
justification (loading assumptions, casing design criteria).	
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
L	
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	NO
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	1
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

3. Cementin	ng Program
-------------	------------

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	Vol ft3	500# Comp. Strength	Slurry Description
				3 4.		(hoūrs)	
Surf.	500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
	400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
Inter.	450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
	300	13.5	1.29	4.81	387	7	Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
Prod.	650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1
	1900	14.0	1.37	6.48	2603	7	Tail: Class C + 3lb/sk LCM + 1.5% Fluid Loss + 0.1% + 1% Sodium Metasilicate (dry) + 1.5% Fluid Loss Control

1

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design								
Casing String	TOC Lead	TOC Tail	% Excess					
Surface	0'	585'	>100%					
Intermediate	0'	1750'	>100%					
Production	<1700'	5200'	>30%					

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		Tested to:	
	, 13-5/8"	3M/5M	Annular	x	50% of working pressure	
			Blind Ram		1	
8-3/4"			Pipe Ram		2 000	
			Double Ram	ı x	3,000 psi	
			Other*		· · · · · · · · · · · · · · · · · · ·	

*Specify if additional ram is utilized.

Note: A 13-5/8" BOPE will be utilize in the 8-3/4" hole section depending on availability and Rig Substructure Clearance.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.			
Х	 A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. If yes, specs and hydrostatic test certification will be available in the company man's trailer and on the rig floor. N Are anchors required by manufacturer? 			
X				

5. Mud Program

3 strings casing mud program						
Depth		Туре	Weight (ppg)	Viscosity	Water	PH
From	То				Loss	
0	Surf. shoe	FW Gel	8.5-9.0	28-40	N/C	N.C.
Surf. Shoe	Inter. shoe	Saturated Brine	10.0	28-32	N/C	9-10.5
Inter. shoe	TD	Cut-Brine	8.6-10.0	28-40	N/C	9-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Log	ing, Coring and Testing.
X	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated
	logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Add	litional logs planned	Interval
	Resistivity	
	Density, GR, BHC	
	CBL	
Χ	Mud log	
	PEX	

4 Drilling Plan
ConocoPhillips, Peridot 8 Federal 1H

7. Drilling Conditions

Condition	Specify what type and where?	
BH Pressure at deepest TVD	2815 psi	
Abnormal Temperature	No – 100°	

 Mitigation measure for abnormal conditions - Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

X H2S is present

X H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. NO. Will be pre-setting casing? If yes, describe. NO.

Attachments:

Attachment#1:	Directional Plan
Attachment#2:	Wellbore Casing & Cementing Schematic
Attachment#3:	Wellhead Schematic
Attachment #4:	BOP Schematics
Attachment #5:	Choke Schematic
Attachment #6:	Rig Layout
Attachment #7:	H2S Contingency Plan

ConocoPhillips, Peridot 8 Federal 1H

• (/•••••• • • • • • • • • • • • • • • •	3 strings (casing design													
Hole Size	Casing From	Interval To	Csg. Size	Weight (lbs)	Grade	Conn.	SF Collapse	SF Burst	SF Pipe Tensile	SF Joint Tensile				
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7				
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78				
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89				
8.75"-8.5"	5200	13146	5.5"	20	L80	LTC/BTC	3.37	3.51	2.93	3.30				
	• <u>•</u> •••••••••			BLM Minimum Safety Factor		1.125	1	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet					

2. Casing Program – Openhole Sliding Sleeves Completion Option

- Cement 7" production string thru a stage tool below the XO joint and leave 5-1/2" casing string below the Glorieta formation uncemented with packers & sleeves from landing point to TD.
- Notify BLM if additional unplanned stages of Cement or Remediation with Bradenhead Squeeze becomes necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	NO
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	YES
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
na na provinska politika za provinska politika za provinska politika za provinska politika politika politika po Da na politika politika politika za politika za politika politika politika politika politika politika politika p	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	
	NO
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

ConocoPhillips, Peridot 8 Federal 1H

# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	Vol ft3	500# Comp. Strength (hours)	Slurry Description
500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
300	13.5	1.29	4.81	387	7	Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1
	500 400 450 300	gal 500 13.5 400 14.8 450 11.5 300 13.5	galft3/ sack50013.51.6840014.81.3545011.52.2930013.51.29	galft3/ sackgal/sk50013.51.688.9440014.81.356.3845011.52.2910.7230013.51.294.81	gal ft3/ sack gal/sk 500 13.5 1.68 8.94 840 400 14.8 1.35 6.38 540 450 11.5 2.29 10.72 1031 300 13.5 1.29 4.81 387	gal ft3/ sack gal/sk Comp. Strength (hours) 500 13.5 1.68 8.94 840 7 400 14.8 1.35 6.38 540 7 450 11.5 2.29 10.72 1031 17 300 13.5 1.29 4.81 387 7

3. Cementing Program – Openhole Sliding Sleeves Completion Option

If additional unplanned stages of cementing are necessary, the contingency stage tool will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Stage tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design												
Casing String	TOC Lead	TOC Tail	% Excess									
Surface	0'	585'	>100%									
Intermediate	0'	1750'	>100%									
Production	<1700'	N/A	>30%									

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if available.

Attachments:

Attachment#1: Wellbore Casing & Cementing Schematic

Peridot 8 Federal 1H

1

String Section	Depth	Depth	Csg	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid				
T	MD	TVD	length ft		1 -2								
Surface Casing	885	885	885	54,5			853000	514000					
Intermediate 1 Casing Production 1 Casing	2250		2250 5200	40 29			630000 676000						
Production 2 Casing	13146		7946	29			466000						
g							1		<u></u>				
<u>Collapse Design (Saf</u>		- BLM	<u>Criteria</u>									ors – BLM C	riteria
Collapse Design (Safety) Fa									Burst Design		ctor: SFb		
SFc = Pc / (MW x .052 x Ls) Where)								SFb = Pi / Bi	IP			
	rated pipe Colla	nea Proces	re in nounde i	oot equa	e inch (nsi)				Where	Di le 1	he rated nin	e Burst (Minimu	m internal
	ud weight in pou			nar aquai	e men (pay							ole pressure in p	
	ength of the stri								The Minimun			ign (Safety) Fac	
The Minimum Acceptable C				25									
Surface Casing									Surface Casing				
SFc =	1130	1	391	=	2.89				SFb =	2730	1	391	=
Intermediate 1 Casing									Intermediate 1				
SFc =	2570	/	1170	=	2.20				SFb =	3950	/	1170	=
Production 1 Casing									Production 1 (asina			
SFc =	7020	1	2434	=	2.88				SFb =	8160	1	2434	. =
Production 2 Casing									Production 2 (asing			
SFc =	8830	1	2621	=	3.37				SFb =	9190	/	2621	=
Pipe Strength Design	(Safetv) Fa	ctors – f	BLM Criteri	а					Joint Stre	nath Des	ion (Safe	ety) Factors	– BLM (
Pipe Strength Design (Safet				-					Joint Strengt				
SFtp = Fp / Wt; Where									SFtj = Fj / W Where				
 Fp is the 	rated pipe Body	Strength i	n pounds (lbs)							▶ Fjist	he rated plp	e Joint Strength	i in pounds
	weight of the ca			-							-	of the casing stri	
The Minimum Acceptable Pi	ipe Strength De	sign (Safet	y) Factor SFT	o ≃ 1.6 di	y or 1.8 buoya	int			The Minimur	n Acceptabl	e Joint Stre	ngth Design (Sa	afety) Facto
Surface Casing									Surface Casing	3			
SFi Dry =	853000		48232.5	=	17.7				SFi Dry = 5	514000	1	48232.5	=
SFi Bouyant =	853000	/ (48232.5	x	0.870) =	20.3	SF	Fi Bouyant =	514000	/ (48232.5	x
Intermediate 1 Casing									Intermediate 1				
SFi Dry =	630000		90000	=	7.00					520000	1.	90000	=
SFi Bouyant =	630000	/ (90000	x	0.847) =	8.26	SF	Fi Bouyant = 5	520000	/ (90000	×
Production 1 Casing									Production 1 (asing			
SFi Dry =	676000	1	150800	=	4.48					87000	1	150800	=
SFi Bouyant =	676000			x	0.863) =	5.20	SF		87000	· / (x
Production 2 Casing				•					Production 2 (asing			
SFi Dry =	466000	1	158920	=	2.93				SFi Dry = 🕴	24000	1	158920	=
SFi Bouyant =	466000	/ (158920	х	0.863) =	3.40	SF	i Bouyant = 🕴	24000	/ (158920	x
-		,											

Where						
	 Pilsth 	e rated pi	pe Burst (Minimu	ım Internal	Yield) Pressure in p	ounds per square inch (ps
	 BHP is 	bottom h	ole pressure in p	ounds per	square inch (psi)	
The Minim	um Acceptable	Burst De	sign (Safety) Fac	tor SFb =	1.0	
	·		• • • • •			
rface Casi	ing					
SFb =	2730	1	391	=	6.98	
ermediate	1 Casing					
SFb =	3950	1	1170	=	3.38	

Production 1	Casing				
SFb =	8160	1	2434	=	3.35
Production 2	Casing				
SFb =	9190	1	2621	=	3.51

Joint	Strength	Design	(Safety)	Factors	- BLM	Criteria

is the rated plpe Joint Strength in pounds (lbs)

t is the weight of the casing string in pounds (lbs)

table Joint Strength Design (Safety) Factor SFT) = 1.6 dry or 1.8 buoyant

Surface Casing SFi Dry = 514000 SFi Bouyant = 514000	/ 48232.5 / (48232.5	= 10.7 x 0.870) = 12.2
Intermediate 1 Casing SFi Dry = 520000 SFi Bouyant = 520000	/ 90000 / (90000	= 5.78 x 0.847) = 6.82
Production 1 Casing SFi Dry = 587000 SFi Bouyant = 587000	/ 150800 / (150800	= 3.89 x 0.863) = 4.51
Production 2 Casing SFi Dry = 524000 SFi Bouyant = 524000	/ 158920 / (158920	= 3.30 x 0.863) = 3.82

Gas Capture Plan Peridot 8 Federal Wells

		Peridot 8 Federal Wells-Located in Sec. 8, T17S, R32E														
Well Name:	1H	2H	3H	4H	5H	6н	7H	8H	11H	12H	13H	14H	15H	16H	17H	18H
Well Location:	615' FSL	936' FSL	2080' FSL	2237' FSL	2634' FNL	1586' FNL	1065' FNL	775' FNL	755' FSL	1035' FSL	1240' FSL	2237' FSL	2634' FN	1485' FNI	915' FNL	635' FNL
well Location:	2460' FEL	2501' FEL	2350 FWL	2440' FWI	1907' FW	2635' FEL	2540' FWI	2543' FW	2460' FEL	2600' FEL	2480' FWI	2580' FWI	2022' FW	U2538' FEL	2540' FW	L 2542' FW
Production Facility Name:		Peridot 8 Federal CF1 Tank Battery														
Production Facility Location:		NWNE, Section 8, T17S, R32E														
Anticipated Completion Date:					60-120	days after o	rilling com	pleted; de	pendent up	on comple	tion crew a	vailability				
								· · · · · · · · · · · · · · · · · · ·	· · · ·							
Initial Production Volumes:							<u> </u>	I	1				1			1
Oil (bopd)	570	570	570	570	570	570	570	570	480	480	480	480	480	480	480	48
Gas (mcfd)	620	620	620	620	620	620	620	620	530	530	530	530	530	530	530	53
Water (bwpd)	2300	2300	2300	2300	2300	2300	2300	2300	1900	1900	1900	1900	1900	1900	1900) 190
Date of First Production:		-					<45 days	following	completion	operations	;	• • • • • •				
	•						· · · · ·									
Expected Well Life Expectancy:	125	125	25	125	25	125	100	25	125	lac	105	25	125	125	125	25

• .

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

APD ID: 10400008917

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Peridot_8_Fed_1H_AccessRoadTopoB_08-01-2017.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Peridot_8_Fed_1H_AccessRoadv2_20180103143817.pdf

Feet

New road type: RESOURCE

Length: 5236

Width (ft.): 30

Max slope (%): 2

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 17

New road access erosion control: The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate and with low profile. This access road is on fairly level ground. No additional erosion control is planned.

New road access plan or profile prepared? NO

New road access plan attachment:

Well Number: 1H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Row(s) Exist? NO

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth:

Offsite topsoil source description: Caliche will be from a BLM approved source or third-party commercial location. Material meets BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary.

Onsite topsoil removal process:

Access other construction information: Wider travel surface is needed to accommodate larger rig wheelbase. Road is needed to reach facility near NM Highway 82. Cattle guard to be installed between facility access road and NM Highway 82. Turnouts will be installed using dimensions recommended by BLM, standard for this area. Right of ways will be obtained for highway access and resource road access to include future Peridot wells.

Access miscellaneous information: Length of road includes about 15' for facility access and approximately 382' for Frac Pond access. About 5056' of access road to be shared by other Peridot wells. The approximately 90' of road leading to Peridot 8 Fed 3H and about 88' of road to Peridot 8 Fed 5H well locations will not be constructed until the well location is built. Number of access turnouts: 1 Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: The proposed road to the location is surveyed and staked with stations set along the centerline at specific intervals. The road will be centerline crowned with a 2% crown for appropriate drainage. The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road route will be conserved as appropriate. This access road is on fairly, level ground.

Road Drainage Control Structures (DCS) description: No additional road drainage is needed other than standard BLM requirements for this area and those discussed in the BLM "Gold Book". This access road is on level ground. **Road Drainage Control Structures (DCS) attachment:**

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Peridot_8_Fed_1H_Offset_Well_Map_07-06-2017.pdf

Existing Wells description:

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Peridot 8 Federal CF1 Tank Battery location NWNE, Section 8, T17S, R32E was sited during 6/26/16 onsite. Location is south of NM Highway 82. Dimensions of 400'x 250' are planned to allow for expansion as wells are drilled. A 15' access road is planned and depicted on plat. Preliminary plot plan is attached. **Production Facilities map:**

Peridot 8 Fed CF1 Tank Battery_12-20-2016.pdf

Peridot 8 Fed 1H_Preliminary Plot Plan_01-05-2017.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: CAMP USE, INTERMEDIATE/PRODUCTION Water source type: GW WELL CASING, STIMULATION, SURFACE CASING Describe type:

Source latitude:

Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT, WATER WELL

Source land ownership: FEDERAL

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 165000

Source volume (gal): 6930000

Water source and transportation map:

Peridot 8 Fed 1H_Access Road Topo A_12-20-2016.pdf

Peridot_8_Fed_1H_WaterSourceMap_08-02-2017.pdf

Water source comments: Current water sources include: 1) Rockhouse Ranch; Section 13, T17S, R33E; and 2) Morewest Corporation, New Mexico; Section 16 & 26, T16S, R32E. Water sources specified within this application are current options for purchase. However, additional source(s) in the vicinity may be used depending on availability at the time water is needed. We intend to use different source(s) if necessary.

Est thickness of aquifer:

New water well? NO

New Water Well Info

Well Longitude:

Well datum:

Source volume (acre-feet): 21.26736

Well target aquifer:

Well latitude:

Est. depth to top of aquifer(ft):

Aquifer comments:

Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Aquifer documentation:

Well depth (ft):	Well casing type:
Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Clean caliche will be used to construct well pad, road, and facility pad. Caliche will be from a BLM approved source or third-party commercial location. Material to meet BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary. Trucking of source material will utilize authorized roads as per Access Road Topo A attached.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluid, drill cuttings, and rig water

Amount of waste: 8000 barrels

Waste disposal frequency : Daily

Safe containment description: Drilling fluid and cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Safe containmant attachment:

Peridot 8 Fed 1H Drill Waste Containment_01-04-2017.pdf

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Permitted disposal facility off Hwy 62.

Reserve Pit

Reserve Pit being used? NO

i

Temporary disposal of produced water into reserve pit?

Operator Name:	CONOCOPHILLIPS COMPANY
----------------	------------------------

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Reserve pit volume (cu. yd.)

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: YES

Ancillary Facilities attachment:

Peridot_8_Fed_1H_FracPondPlat_08-17-2017.pdf

Comments: ConocoPhillips Company proposes to build a 600' x 600' frac pond to support our horizontal well completions in the area. It is to be located in the NENW of Section 8, T17S, R32E. Frac pond will contain fresh water. A 382' road will provide access and is depicted on plat. Plats are attached, indicating 8.52 acres to be used. Area will be reclaimed upon completion of unit development according to BLM guidelines at the time.

Section 9 - Well Site Layout

Well Site Layout Diagram:

Peridot_8_Fed_1H_Site_Plan_08-01-2017.pdf Peridot_8_Fed_1H_LocationLayout_08-02-2017.pdf Peridot_8_Fed_1H__ArchBoundary_08-02-2017.pdf **Comments:**

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PERIDOT 8 FEDERAL

Multiple Well Pad Number: 1H

Recontouring attachment:

Drainage/Erosion control construction: Topsoil will be stripped and set along designated side of the wellsite. The next layer of dirt (stockpile) is done with the cut and fill method whereby the highest portion of the wellsite is pushed to lower portion(s) to balance the pad. The access road is done in a similar manner. To the greatest extent practicable, the location is placed so that the least amount of dirt is to be cut and disturbed, and so a good balance can be maintained during project. Topsoil stockpile will have lowest practicable profile to reduce wind erosion. For more detail please see attached Surface Use Plan of Operations.

Drainage/Erosion control reclamation: Upon project completion, if this well is a producer, excess caliche is removed from the interim reclamation portion of pad. Topsoil stockpile is balanced back onto the unused portion of the well pad and recontoured as appropriate. Any drainage ditches will not be blocked with topsoil and/or organic material. Lowering the profile of the topsoil stockpile will reduce wind erosion. Erosion controls will be maintained per BLM guidelines and conditions. For more detail please see attached Surface Use Plan of Operations. Reclamation activities are planned to be accomplished within six months of project completion, contingent upon weather. A site specific "Reclamation Diagram" interim plan is attached. At such time as well is permanently abandoned, ConocoPhillips Company will contact the BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. During final reclamation erosion is to be minimized through lower profile of any soil piles. Please see attached Surface Use Plan of Operations for more information.

Wellpad long term disturbance (acres): 1.59	Wellpad short term disturbance (acres): 1.84
Access road long term disturbance (acres): 3.61	Access road short term disturbance (acres): 0
Pipeline long term disturbance (acres): 1.1932966	Pipeline short term disturbance (acres): 0
Other long term disturbance (acres): 35.97	Other short term disturbance (acres): 1.72
Total long term disturbance: 42.363297	Total short term disturbance: 3.56

Reconstruction method: If this well is a producer site rehabilitation will be completed within six months, weather permitting. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility or, if clean, stored for future use. Topsoil from the stockpile will be spread along areas to be interim reclaimed. Any drainage ditches will not be blocked with topsoil. Under normal weather conditions, the timetable for rehabilitation will allow two to three months to complete any recontouring and top-soiling necessary. At such time as well is permanently abandoned, ConocoPhillips Company will contact BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility. Location soil may be "flipped" with BLM concurrence, clean topsoil spread and re-contoured to blend with surrounding area. This method will be accomplished in accordance to BLM standards set forth by the Authorized Officer.

Topsoil redistribution: Areas planned for interim reclamation will be re-contoured to the extent feasible. Topsoil will be evenly re-spread and re-vegetated over the disturbed area not needed for continuing production operations. At such time as well is abandoned, disturbed areas will be re-contoured to a contour that blends with surrounding landscape. Topsoil will be redistributed evenly over the entire disturbed site to depth of 4-6 inches.

Soil treatment: The topsoil will be stripped and set along the designated perimeter of the wellsite. The next layer of dirt is moved with the cut and fill method whereby the highest point of the wellsite is cut into and then pushed to a lower side in

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

order to balance the well pad. Upon well completion, the soil will be balanced back onto portions of the pad not needed for long-term operations. Erosion will be minimized by maintaining a lower stockpile profile. For additional information, please see attached Surface Use Plan of Operation

Existing Vegetation at the well pad: The project area is located in a region of southeast New Mexico know as the Mescalero Plain. No named tributaries, streams or wetlands are in the near vicinity. Elevation is around 4045'. It is a broad, low relief area characterized by Mescalero sand (eolian) soil. Maljamar and Palomas fine sands occur throughout the area. Soil is well drained and has low water storage potential. This determines vegetation present on location. Vegetation in the project area can be classified as transitional between the Plains-Mesa Sand Scrub and Chihuahuan Desert Scrub plant communities. The area surrounding the location is grazing grassland, which supports grasses and forbs. Frequently observed species include: honey mesquite, shinnery oak, perennial three-awn, sand bluestem, sand dropseed, giant dropseed, prince's plume, threadleaf groundsel, spectacle pod, sunflower, and plains flax. See attached Location Photos for visual example of vegetation existing onsite.

Existing Vegetation at the well pad attachment:

Peridot 8 Fed 1H_LocationPhotos_01-05-2017.pdf

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed type:

Seed name:

Source name:

Seed source:

Source address:

<u>,</u>	
Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL	Well Number: 1H
Source phone:	
Seed cultivar:	
Seed use location:	
PLS pounds per acre:	Proposed seeding season:
Seed Summary	Total pounds/Acre:
Seed Type Pounds/Acre	
Seed reclamation attachment:	
Operator Contact/Responsible Offi	cial Contact Info
First Name: Susan	Last Name: Maunder
Phone: (281)206-5281	Email: Susan.B.Maunder@conocophillips.com
Seedbed prep:	
Seed BMP:	
Seed method:	
Existing invasive species? NO	· ·
Existing invasive species treatment description:	
Existing invasive species treatment attachment:	

Weed treatment plan description: Two Class B noxious weed species, African rue and Malta starthistle are of concern. ConocoPhillips Company will consult with BLM for acceptable weed control methods, if the need arises. Any weed control would follow USEPA and BLM requirements and standards.

Weed treatment plan attachment:

Monitoring plan description: Weeds will be controlled on disturbed areas within the exterior limits of the well pad. Monitoring will be in accordance with Best Management Practices and guidelines established by BLM. **Monitoring plan attachment:**

Success standards: Success standards will utilize BLM approved methods, such as those described in the BLM "Gold Book" and those established by the Authorized Officer.

Pit closure description: No pits will be used, a closed-loop system will be in place.

Pit closure attachment:

Section 11 - Surface Ownership

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Disturbance type: OTHER

Describe: well pad, access road, flow lines, pipelines, power lines

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS,285003 ROW – POWER TRANS,288100 ROW – O&G Pipeline,288101 ROW – O&G Facility Sites,288103 ROW – Salt Water Disposal Pipeline/Facility,FLPMA (Powerline)

ROW Applications

SUPO Additional Information: For multi-well pad we request deferral of interim reclamation requirements until all wells noted on location have been drilled. Gas Sales Line ROW may be used by third-party gas processor, depending on agreements reached. Three key mitigation strategies are to be used for Peridot development; horizontal wells, interim reclamation and participation in conservation agreement. Development of these minerals could have been via vertical wells; approximately 12 wells. After re-evaluation of options, two key actions are planned horizontal wells and multi-well pads where possible. This minimizes surface use, while improving project economics and results in significant surface use reduction. Interim reclamation is a component of our surface use mitigation. COPC intends to maximize interim reclamation to the greatest extent feasible for each location drilled. Current interim reclamation plans are included in survey plat packages for individual wells. COPC is a participant in the Candidate Conservation Agreement. Among mitigation measures are observing timing stipulations for Lesser-Prairie Chickens, as indicated by BLM, at the beginning of each breeding season. Also, well locations have been moved, in consultation with BLM biologists to avoid habitat of interest. **Use a previously conducted onsite?** YES

Well Number: 1H

Well Name: PERIDOT 8 FEDERAL

Previous Onsite information: Onsites conducted 6/28/16 and 10/18/16. Onsite for this well pad was completed 0/18/16. Surface Use Plan of Operation was finalized during onsites with the following attendees: Mr. Ballard, Mr. Wolf, Ms. Brooks, Mr. Wasson, and Ms. Maunder, along with survey crew. Archaeological survey requirements have been met by block survey 2151, well pad survey 2262, and gas line and SWD line survey 2276. Well location is off-lease, so subsurface plat is also included. Please review this application with Peridot 8 Federal 11H, 3H, 13H, 5H, 15H, 7H and 17H well applications.

Other SUPO Attachment

.____

Peridot 8 Fed 1H_OilFlowLine_01-06-2017.pdf Peridot_8_Fed_1H_DevelopmentImage_08-01-2017.pdf Peridot_8_Fed_1H_FracPondPlat_08-17-2017.pdf Peridot_8_Fed_Gas_Sales_Line_08-17-2017.pdf Peridot_8_Fed_1H_Reclamation_Plat_20180103110441.pdf Peridot_8_Fed_1H_SWD_Buried_Pipeline_20180103110622.pdf Peridot_8_Fed_1H_SWD_FlowLineToElvis_20180103144050.pdf Peridot_8_Fed_1H_SUPOviaAccess_20180108104941.pdf Peridot_8_Fed_1H_SUPOviaAccess_20180108104941.pdf Peridot_8_Fed_1H_SUPOviaAccess_20180108104941.pdf Peridot_8_Fed_1H_Surf_SummaryComments_20180108104954.pdf Peridot_8_Fed_1H_BuriedGasLinetoDCP_20180108105009.pdf

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: ES0085

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

02/26/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Injection well type: EXISTING Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? YES UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location: OFFLEASE

PWD surface owner: BLM

Injection PWD discharge volume (bbl/day):

Injection well mineral owner: FED

PWD disturbance (acres):

PWD disturbance (acres):

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

02/26/2018

GAS PIPELINE RIGHT-OF-WAY DESCRIPTION ON BLM LANDS IN SEC. 9 A 30' WIDE PERMANENT RIGHT-OF-WAY 15' ON EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE WITH A 10' WIDE TEMPORARY RIGHT-OF-WAY ON THE RIGHT SIDE OF SAID PERMANENT RIGHT-OF-WAY FOR A TOTAL WIDTH OF 40' DURING CONSTRUCTION. BEGINNING AT A POINT ON THE WEST LINE OF THE NW 1/4 SW 1/4 OF SECTION 9, T175, R32E, N.M.P.M., WHICH BEARS S00'0B'37"E 17.99' FROM THE WEST 1/4 CORNER OF SAID SECTION 9, THENCE N84'13'50"E 29.38'; THENCE S89'56'13"E SUU 08 3/ E 17.99 FROM THE WEST 1/4 CURNER OF SAID SECTION 9, THENCE N8413/507E 29.38; THENCE S89'56'13"E 301.54'; THENCE S01'44'41"E 788.81'; THENCE S89'30'59"E 162.10'; THENCE S01'09'10"W 178.94'; THENCE N85'57'24"W 17.06' TO A POINT IN THE NW 1/4 SW 1/4 OF SAID SECTION 9, WHICH BEARS S26'47'32"E 1101.08' FROM THE WEST 1/4 CORNER OF SAID SECTION 9. THE SIDE LINES OF SAID DESCRIBED RIGHT-OF-WAY BEING SHORTENED OR ELONGATED TO MEET THE GRANTOR'S PROPERTY LINES. BASIS OF BEARINGS IS A TRANSVERSE MERCATOR PROJECTION WITH A CENTRAL MERIDIAN OF W103'53'00". PERMANENT RIGHT-OF-WAY CONTAINS 1.018 ACRES MORE OR LESS. TEMPORARY RIGHT-OF-WAY CONTAINS 0.339 ACRES MORE OR LESS. Existing Buried DCP Midstream Gas Pipe 11.77 END OF PROPOSED GAS[~] PIPELINE RIGHT-OF-WAY (At Existing Pipeline Riser) Detail "B" No Scal CERTIFICATE THIS IS TO CERTIFY THAT THIS EASEMENT PLAT AND THE ACTUAL SURVEY ON THE CROUND UPON WHICH GROUND UPON WHICH IT RFORMED BY M IS BASED WE OR UNDER MY DIRECT S NSIBLE FOR LE. REL N THIS SUI THE MINIM NEW MEXI CT TO THE BES 01 - 04SS IONAL SUR Sheet 2 of 2 FILE: 62464-B2 REV: 2 01-04-18 L.K. (PIPELINE RE-ROUTE) NOTES: Basis of Bearings is a Transverse Mercator Projection with a Central Meridian of W103*53'00" **ConocoPhillips** Company PERIDOT GAS PIPELINE SECTION 9, T17S, R32E, N.M.P.M. LEA COUNTY, NEW MEXICO SURVEYED BY J.A.V., R.D. 02-02-17 SCALE **UELS, LLC** B.D.H. DRAWN BY 02-07-1 Corporate Office * 85 South 200 East Vernal, UT 84078 * (435) 789-1017 N/A GAS PIPELINE R-O-W

https://epmpub.blm.gov/raframework/ihtml/OpenDoc?DocInstanceID=29&DocUUID=000... 7/24/2017