	Carle	sbad Fie OCD LM	Îci a			
Form 3160-3 (June 2015) UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA APPLICATION FOR PERMIT TO DR		DCD Ho	bbs	FORM OMB N Expires: Ja	APPROVEI o. 1004-013 inuary 31, 20	7
UNITED STATES DEPARTMENT OF THE IN	TERIOR)BE 6 2019		5. Lease Serial No.		
BUREAU OF LAND MANA	GEMENT	T JAN 10	ED	NMNM115426		<u> </u>
BUREAU OF LAND MANA APPLICATION FOR PERMIT TO DR 1a. Type of work:	RILL OR I	REENTEREN		6. If Indian, Allotee	or Tribe Na	me
la. Type of work: 🖌 DRILL	ENTER	her		7. If Unit or CA Agi	reement, Nar	me and No.
1b. Type of Well: Image: Oil Well Gas Well Oth	er			8. Lease Name and	Well No.	<u> </u>
Ic. Type of Completion: Hydraulic Fracturing Sing	gle Zone	Multiple Zone		DR IRELAND FED	ERAL 323	1267)
2. Name of Operator MATADOR PRODUCTION COMPANY (22,893)	-)	· · · ·		9. API-Well No.	und.	<u></u>
3a. Address	972)371-52	Io. <i>(include area code)</i> 200	\sum	10. Field and Pool, of BONESPRING / A	1	1
4. Location of Well (Report location clearly and in accordance wi			\frown	11. Sec., T. R. M. of SEC 197, T235,/ R		
At surface SESE / 570 FSL / 1219 FEL / LAT 32.284438 At proposed prod. zone NWNE / 240 FNL / 2311 FEL / LA		(EC07	SEC 193 1233/ K	SOE / INIVIP	
14. Distance in miles and direction from nearest town or post office		1227 LONG - 103 40	2007	12. County or Parisl	n 1.	3. State
15 Distance from proposed#	16. No of ac		17 6 000	LEA ig,Unit dedicated to t		M
location to nearest 570 feet	279.45		17. Spacn 160.09	ig,∪nit dedicated to t.	nis well	
to nearest well drilling completed	19. Propose 11450 feet.	$\langle \cdot \rangle \leq 1$		BIA Bond No. in file IB001079		
	22 Approxi 12/01/2018 24. Attac		art*	23. Estimated durati 25 days	on	
The following, completed in accordance with the requirements of C			and the L	Iudraulia Fracturina r	ula par 43 C	
(as applicable)		\rightarrow		ryuraune Fracturing r	ule per 45 C	FK 5102.5-5
1. Well plat certified by a registered surveyor.		4. Bond to cover the Item 20 above).	operation	s unless covered by ar	n existing bo	nd on file (see
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 		5. Operator certificat		mation and/or plans as	may be requ	uested by the
25. Signature		(Printed/Typed)			Date	
(Electronic Submission) Title	Lara T	Thompson / Ph: (505	0)254-11 ⁻		03/30/201	<u> </u>
Assistant Project Manager					Data	
Approved by (Signature) (Electronic Submission)		(Printed/Typed) Layton / Ph: (575)23	84-5959		Date 09/10/201	8
Title Assistant Field Manager Lands & Minerals	Office CARL	SBAD				
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.			ose rights	in the subject lease w	hich would o	entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma					any departm	ent or agency
of the United States any false, fictitious or fraudulent statements or						
6cPRec 1/23/19		TH CONDITI	ONS	KZ1-	ry [19	ule
	RD WI	IH WWW		,		Tar
(Continued on page 2)				*(In:	structions	on page 2) Side
approv	al Date	: 09/10/2018				0,

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

AUTHORITY: 30 U.S.C. 181 et seq., 25 U(\$.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

1. SHL: SESE / 570 FSL / 1219 FEL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2844381 / LONG: -103.4021301 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 330 FSL / 2311 FEL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2837583 / LONG: -103.4051877 (TVD: 11450 feet, MD: 11864 feet) BHL: NWNE / 240 FNL / 2311 FEL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2967122 / LONG: -103.405687 (TVD: -11450 feet, MD: 16284 feet)

BLM Point of Contact

Name: Judith Yeager Title: Legal Instruments Examiner Phone: 5752345936 Email: jyeager@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Matador Production Company
LEASE NO.:	NMNM-115426
WELL NAME & NO.:	Dr. Ireland Federal 133H
SURFACE HOLE FOOTAGE:	0570' FSL & 1219' FEL
BOTTOM HOLE FOOTAGE	0240' FNL & 2311' FEL
LOCATION:	Section 19, T. 23 S., R 35 E., NMPM
COUNTY:	County, New Mexico

Submit sundry to add "COM" to the name.

Submit NMOCD Gas Capture Plan Via sundry notice

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

• If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

□ Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 3933612

Page 1 of 7

- 1. Although there are no measured amounts of Hydrogen Sulfide reported, it is always a potential hazard. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval – an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef Possible water flows in the Salado. Possible lost circulation in the Red Beds, Rustler, Yates, Capitan Reef and Delaware. Abnormal pressures may be encountered when penetrating the 3rd Bone Spring Sandstone and all subsequent formations.

- 1. The 13-3/8 inch surface casing shall be set at approximately 1420 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Special Capitan Reef requirements:

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - □ Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string and at least 50 feet above the Capitan Reef. Operator shall provide method of verification.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. **PRESSURE CONTROL**

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
- 4. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

If multibowl options is utilized:

- 5. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 6. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - c. The results of the test shall be reported to the appropriate BLM office.

- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 082318

Page 7 of 7

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Matador Production Company
LEASE NO.:	NMNM115426
WELL NAME & NO.:	Dr Ireland Federal 133H
SURFACE HOLE FOOTAGE:	570'/S & 1219'/E
BOTTOM HOLE FOOTAGE	240'/N & 2311'/E
LOCATION:	Section 19, T.23 S., R.35 E., NMPM
COUNTY:	Lea County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Range
Watershed
Wildlife
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
☐ Interim Reclamation
Final Abandonment & Reclamation

Page 1 of 11

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 11

V. SPECIAL REQUIREMENT(S)

- The entirety of the well pads would be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pads. Topsoil should not be used to construct the berm. No water flow from the uphill side(s) of the pads should be allowed to enter the well pads. The berm should be maintained through the life of the wells and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pads or facilities during the life of the project would be quickly corrected and proper measures would be taken to prevent future erosion.

Measures to minimize or eliminate impacts to wildlife are described in COAs (BLM 1997:Appendix 2)

for closed loop systems. Special mitigation includes the following:

- For portions of the project being constructed during the nesting season (March 1–August 31), the operator could conduct pre-construction nest surveys up to 2 weeks prior of vegetation removal and avoidance buffers around any occupied nest could be established (distances to be specified by the BLM) to ensure compliance with the MBTA.
- Similarly, unoccupied raptor nests would be removed by Matador, in consultation with a biologist, outside the breeding season. The BLM may require pre-construction surveys of potential burrowing owl burrows to identify occupied colonies and establish avoidance buffer, (distance to be specified by the BLM) until the young have fledged. The BLM may require a biological monitor during construction near occupied burrows. To lessen the likelihood of burrow occupation, Matador would work with a biologist to collapse suitable burrows outside the migratory bird breeding season (March-August).
- NMDGF trenching guidelines (NMDGF 2003) would be followed in order to prevent accidental Texas homed lizard mortality caused by entrapment.
- The operator would instruct personnel working on the construction of the project to avoid intentionally harassing all animals.

Livestock Watering Requirement

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

Page 4 of 11

Approval Date: 09/10/2018

ę

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 5 of 11

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Page 6 of 11

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 7 of 11

Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

Page 8 of 11

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 9 of 11

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory

Page 10 of 11

revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species

	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Matador Production Company
LEASE NO.:	NMNM115426
WELL NAME & NO.:	Dr Ireland Federal 133H
SURFACE HOLE FOOTAGE:	570'/S & 1219'/E
BOTTOM HOLE FOOTAGE	240'/N & 2311'/E
LOCATION:	Section 19, T.23 S., R.35 E., NMPM
COUNTY:	Lea County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Range
Watershed
Wildlife
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 11

V. SPECIAL REQUIREMENT(S)

- The entirety of the well pads would be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pads. Topsoil should not be used to construct the berm. No water flow from the uphill side(s) of the pads should be allowed to enter the well pads. The berm should be maintained through the life of the wells and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pads or facilities during the life of the project would be quickly corrected and proper measures would be taken to prevent future erosion.

Measures to minimize or eliminate impacts to wildlife are described in COAs (BLM 1997:Appendix 2)

for closed loop systems. Special mitigation includes the following:

- For portions of the project being constructed during the nesting season (March 1–August 31), the operator could conduct pre-construction nest surveys up to 2 weeks prior of vegetation removal and avoidance buffers around any occupied nest could be established (distances to be specified by the BLM) to ensure compliance with the MBTA.
- Similarly, unoccupied raptor nests would be removed by Matador, in consultation with a biologist, outside the breeding season. The BLM may require pre-construction surveys of potential burrowing owl burrows to identify occupied colonies and establish avoidance buffer, (distance to be specified by the BLM) until the young have fledged. The BLM may require a biological monitor during construction near occupied burrows. To lessen the likelihood of burrow occupation, Matador would work with a biologist to collapse suitable burrows outside the migratory bird breeding season (March-August).
- NMDGF trenching guidelines (NMDGF 2003) would be followed in order to prevent accidental Texas horned lizard mortality caused by entrapment.
- The operator would instruct personnel working on the construction of the project to avoid intentionally harassing all animals.

Livestock Watering Requirement

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

Page 4 of 11

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 5 of 11

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Page 6 of 11

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 7 of 11

Page 8 of 11

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 9 of 11

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory

Page 10 of 11

revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	
<u>lb/ac</u>	re
Plains lovegrass (Eragrostis intermedia) 0.5	
Sand dropseed (Sporobolus cryptandrus) 1.0	
Sideoats grama (Bouteloua curtipendula) 5.0	
Plains bristlegrass (Setaria macrostachya) 2.0	

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Lara Thompson

Title: Assistant Project Manager

Street Address: 5647 Jefferson Street NE

City: Albuquerque

Signed on: 03/26/2018

Zip: 87109

Phone: (505)254-1115

Email address: Lara.Thompson@swca.com

State: NM

State:

Field Representative

Representative Name:

Street Address:

City:

Phone:

Email address:

Zip:

FMSS

Well Type: OIL WELL

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

1.1

APD ID: 10400028407 Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FEDERAL

Submission Date: 03/30/2018

Well Number: 133H

Well Work Type: Drill

Niehitelatzeit Vizika Niehitelatzeit Vizika Kierinti ehenrijeze

Show Final Text

Section 1 - General		
APD ID: 10400028407	Tie to previous NOS?	Submission Date: 03/30/2018
BLM Office: CARLSBAD	User: Lara Thompson	Title: Assistant Project Manager
Federal/Indian APD: FED	Is the first lease penetrate	ed for production Federal or Indian? FED
Lease number: NMNM115426	Lease Acres: 279.45	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreem	ent:
Agreement number:		
Agreement name:		
Keep application confidential? YES		
Permitting Agent? YES	APD Operator: MATADOR	R PRODUCTION COMPANY
Operator letter of designation:		

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Operator PO Box:

Operator City: Dallas State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO	
-------------------------------------	--

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: DR IRELAND FEDERAL

Field/Pool or Exploratory? Field and Pool

Mater Development Plan name: Master SUPO name:

Zip: 75240

Master Drilling Plan name:

Well Number: 133H Field Name: BONESPRING Well API Number:

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Well Number: 133H

Dece	riho o	ther m	linor	ale																
											• •• •									~
is the	e prop	osed	well i	n a H	elium	prod	luctio	n area?	N	Use E	xisting \	Nell Pa		r	lew:	surta	ce d	isturt	ance	37
Type of Well Pad: MULTIPLE WELL									Multiple Well Pad Name: DR Num IRELAND FEDERAL							ŀ				
Well	Class	: HOR	IZON	TAL							er of Le									
Well	Work	Туре:	Drill																	
Well	Type:	OIL W	/ELL																	
Desc	ribe V	Vell Ty	pe:																	
Well	sub-T	ype: A	PPR	AISAI	-															
Desc	ribe s	ub-typ	e:																	
Dista	nce to	o town	:				Dist	tance to	o nea	rest v	/ell: 30 F	T	Dist	ance	to le	ease l	line:	570 F	т	
Rese	rvoir	well sp	bacin	g ass	igne	d acre	es Mea	asurem	ent: '	160.09	Acres									
Well	plat:	BO	_DR_	IREL	AND_	FED_	COM	_SLOT_	<u>3_</u> Sl	JRFA	CE_PAD	_SITE_I	REV1_	S_20	1803	2213	2303	.PDF		
		CD	_DR_	IREL	AND_	FED_		_SLOT_	<u>3_</u> Sl	JRFA	CE_PAD	_PRO_I	REV1_	S_20 ⁻	1803	2213	2304	.PDF		
		1Mi	le_Ra	adius_	_Map_	_2018	03221	32402.0	2.docx											
		Drir	eland	dFede	ral13	3H_Si	gned_	PoolCo	de_2	le_20180628110232.pdf										
Well	work	start C)ate:	12/01	/2018	1				Durat	on: 25 D	DAYS								
	Sec	tion	3 - V	Vell	Loca	atior	n Tal	ble												
Surve	әу Тур	e: RE	CTA	NGUL	AR															
Desc	ribe S	urvey	Туре):																
Datur	n: NA	D83							١	Vertic	al Datun	n: NAVE	88							
Surve	ey nur	nber:																		
					r			#							Τ					Γ

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL	570	FSL	121	FEL	23S	35E	19	Aliquot	32.28443		LEA	NEW	NEW	F	NMNM	338	0	0
Leg			9					SESE	81	103.4021		MEXI	MEXI		115426	7		
#1										301		co	co					
KOP	570	FSL	121	FEL	23S	35E	19	Aliquot	32.28443	-	LEA	NEW	NEW	F	NMNM	188	150	150
Leg			9					SESE	81	103.4021		MEXI	MEXI		115426	7	0	0
#1										301		co	со					

٦
Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	330	FSL	231 1	FEL	235	35E	19	Aliquot SWSE	32.28375 83	- 103.4051 877	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 115426	- 806 3	118 64	114 50
EXIT Leg #1	330	FNL	231 1	FEL	23S	35E		Aliquot NWNE	32.29646 48	- 103.4056 784	LEA		NEW MEXI CO	F	NMNM 113422	- 806 3	161 94	114 50
BHL Leg #1	240	FNL	231 1	FEL	23S	35E	19	Aliquot NWNE	32.29671 22	- 103.4056 87	LEA		NEW MEXI CO	F	NMNM 113422	- 806 3	162 84	114 50

SISURVEYMATADOR_RESOURCESIDR_IRELAND_FED_COM_133H/FINAL_PRODUCTS/LO_DR_IRELAND_FED_COM_133H_REV1.DWG 10/30/2017 2:33:40 PM ocasion

VICINITY MAP

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TINE OF SURVEY, AND DATA PROVIDE DB WATADOR PRODUCTION COMPANY, THIS CERTIFICATION IS MADE AND LINITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.

SISURVEYMATADOR_RESOURCESIDR_IRELAND_FED_COM_133H/FINAL_PRODUCTSILO_DR_IRELAND_FED_COM_133H_REV1.DWG 10/30/2017 2:33:41 PAI coaston

LOYALTY INNOVATION LEGACY

1400 EVERMAN PARKWAY, SIe. 197 • FT. WORTH, TEXAS 76140 <u>TELEPHONE:</u> (817) 744-7512 • FAX (817) 744-7548 2903 NORTH BIG SPRING • NIDLAND, TEXAS 79705 TELEPHONE: (422) 682-1633 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

SECTION 19, TOWNSHIP 23-S, RANGE 35-E, N.M.P.M. LEA COUNTY, NEW MEXICO

DETAIL VIEW SCALE: 1" = 100'

ORIGINAL DOCUMENT SIZE: 8.5" X 11" SISURVEYMATADOR_RESOURCESOR_RELAND_FED_COM_133H/FINAL_PRODUCTSILO_DR_IRELAND_FED_COM_133H_REV1.DWG 10/30/2017 2:33:42 PM ccaston

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400028407

Drilling Plan Data Report

Submission Date: 03/30/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

Well Type: OIL WELL

Well Work Type: Drill

09/10/2018

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	-	• • •		Producing
· ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3387	1396	1396		USEABLE WATER	No
2	SALADO	1616	1771	1771		NONE	No
3	BASE OF SALT	-656	4043	4043		NONE	No
4	BELL CANYON	-2155	5542	5542	······	NATURAL GAS,OIL	No
5	BRUSHY CANYON	-4105	7492	7492	<u> </u>	NATURAL GAS,OIL	No
6	BONE SPRING LIME	-5414	8801	8801		NATURAL GAS,OIL	No
7	BONE SPRING 1ST	-6135	9522	9522		NATURAL GAS, OIL	No
8	BONE SPRING 2ND	-6626	10015	10015		NATURAL GAS,OIL	No
9	BONE SPRING 2ND	-6997	10384	10384		NATURAL GAS,OIL	No
10	BONE SPRING 3RD	-7326	10715	10720		NATURAL GAS,OIL	No
11	WOLFCAMP	-8266	11653	11653		OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 2M

Rating Depth: 15000

Equipment: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

Requesting Variance? YES

Variance request: The operator requests a variance to have the option of running a speed head for setting the intermediate strings. In the case of running a speed head with landing mandrel for 9-5/8" casing, a minimum of a 5M BOPE system will be installed after surface casing is set. Matador Resources requests a variance to drill this well using a co-flex line between the

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. **Testing Procedure:** After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 1000 psi high. After setting intermediate casing, a minimum of a 5M system will be installed and tested to 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 3000 psi high.

Choke Diagram Attachment:

Choke_Manifold_20180326151916.pdf

BOP Diagram Attachment:

BOP_297_001_20180326151928.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	850	0	850			850	J-55		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5400	0	5400			5400	J-55			1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	PRODUCTI ON	8.75	5.5		NON API	N	4400	16284	4400	11450			11884	P- 110				1.12 5	BUOY	1.8	BUOY	1.8

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_5.500_20_20180213122618.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_3_string_20180306141748.pdf

Casing Attachments

Casing ID:	2	String Type: INTERMEDIATE
------------	---	---------------------------

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_3_string_20180213122944.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_5.500_20_20180306141010.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_3_string_20180213122951.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	850	210	1.82	12.8	382	100	Class C	Bentonite + 2% CaCL2 + 3% NaCl + LCM
SURFACE	Tail		0	850	720	1.38	14.8	994	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	5400	1170	2.13	12.6	2492. 1	100	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		0	5400	620	1.38	14.8	856	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		4400	1528 3	660	2.35	11.5	1551	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		4400	1528 3	1500	1.39	13.2	2085	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

Describe the mud monitoring system utilized: The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1. Mud Logging Program: 2 man unit from 5400 – TD.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	850	SPUD MUD	8.3	8.3							
0	5385	SALT SATURATED	10	10							
4388	1050 0	OTHER : FW/ Cut Brine	9	9							

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

See page 3 of Drilling Plan attached in Other Facets, Section 8.

List of open and cased hole logs run in the well:

CBL,GR,MUDLOG

Coring operation description for the well:

No DSTs or cores are planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5500

Anticipated Surface Pressure: 2981

Anticipated Bottom Hole Temperature(F): 175

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Matador_Hydrogen_Sulfide_Drilling_Leslie__024_20180214143236.docx

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Dr._Ireland_Fed_Com__133H___Well_Plan_v1_20180326152413.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

3_string_Speed_Head_20180326152508.pdf 297Co_Flex_Certs_Dr._Ireland_Fed_Com__133H_20180326152511.pdf Close_Loop_System_20180326152512.docx Dr._Ireland_Fed_Com__133H_Geoprog_V1_20180326152512.xlsx Dr._Ireland_Fed_Com__133H_MTDR_Drlg_Plan_20180326152513.docx

Other Variance attachment:

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

42			PIPE BODY	' DATA		
			GEOME	rry		
	Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
	Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
	Plain End Weight	19.83 lbs/ft				
			PERFORM	ANCE		
	Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
	Collapse	12100 psi				
		TEI	NARISXP® BTC CO	NNECTION D	АТА	
			GEOME	ſRY	•	
	Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
	Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
<u>z</u>			PERFORM	ANCE		
	Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 Ibs	Internal Pressure Capacity ^(<u>1</u>)	12630 psi
	Structural		Structural	641 × 1000	Structural	
	Compression	100 %	Compression	lbs	Bending ^(<u>2</u>)	92 °/100 ft
	Efficiency		Strength			
	External Pressure	12100 psi	:			
4992) 1	Capacity			,	2)	
			STIMATED MAKE-U			
	Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
		<u> </u>	OPERATIONAL LI	MIT TORQUES	; T	
	Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		
			BLANKING DI	AENSIONS		
			Blanking Dir	nensions		

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P.

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread

compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

			PIPE BODY	DATA		
			GEOMET	RY		
	Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
	Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
ĺ	Plain End Weight	19.83 lbs/ft				
			PERFORM	ANCE		
	Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
	Collapse	12100 psi				
		TE	NARISXP® BTC CO	NNECTION D	ATA	
			GEOMET	RY	· · · · ·	
	Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
	Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
			PERFORM	ANCE	•	
	Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 Ibs	Internal Pressure Capacity ^(<u>1</u>)	12630 psi
	Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 Ibs	Structural Bending ^(<u>2</u>)	92 °/100 ft
	External Pressure Capacity	12100 psi				
		8	STIMATED MAKE-U	IP TORQUES	3)	
	Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
			OPERATIONAL LIP	IT TORQUES		
	Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		
			BLANKING DIN	ENSIONS		
			Blanking Din	nensions		

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P1

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

.

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Hydrogen Sulfide Drilling

Operations Plan

Matador Resources

1 H2S safety instructions to the following:

- Characteristics of H2S
- Physical effects and hazards
- Principal and operation of H2S detectors, warning system and briefing areas
- Evacuation procedures, routes and first aid
- Proper use of safety equipment & life support systems
- Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30min pressure demand air packs

2 H2S Detection and Alarm Systems:

- H2S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure / cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may be placed as deemed necessary
- An audio alarm system will be installed on the derrick floor and in the doghouse

3 Windsocks and / Wind Streamers:

- Windsocks at mud pit area should be high enough to be visible
- Windsock on the rig floor and / top of doghouse should be high enough to be visible

4 Condition Flags and Signs:

- Warning sign on access road to location
- Flags to be displayed on sign at entrance to location
 - o Green Flag Normal Safe Operation Condition
 - o Yellow Flag Potential Pressure and Danger
 - Red Flag Danger (H2S present in dangerous concentrations) Only H2S trained personnel admitted on location

5 Well Control Equipment:

• See Exhibit E-1

6 <u>Communication:</u>

• While working under masks chalkboards will be used for communications

- Hand signals will be used where chalk board is inappropriate
- Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drilling Stem Testing:

• No DST cores are planned at this time

8 Drilling contractor supervisor will be required to be familiar with the effects H2S has on tubulars good and other mechanical equipment

9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary

11 Emergency Contacts

• See exhibit E-6

Matador Resources

Lea County, New Mexico (NAD 27) Dr. Ireland Fed Com #133H

Wellbore #1

Plan: Design #1

Standard Planning Report

24 January, 2018

MS Directional

Planning Report

		Man and the off of the									
Database: Company:		Conroe dor Resource	s		Local Co TVD Ref	o-ordinate Re erence:	eference:	Well #133H RKB=29' @ 34	16.00usft (Pa	atterson 297)	
Project:		County, New I	•	27)	MD Refe	erence:		RKB=29' @ 34	16.00usft (Pa	atterson 297)	
lite:		eland Fed Co	m			eference:		Grid			
Veli:	#133				Survey (Calculation N	lethod:	Minimum Curv	ature		
Velibore:		ore #1									
esign:	Desig]n #1 									
Project	Lea C	ounty, New M	lexico (NAD	27)				an a		·	
Map System: Geo Datum: Map Zone:	NAD 19	te Plane 1927 927 (NADCON exico East 30	ONUS)	tion)	System D	atum:	N	lean Sea Level			
Nell	#133H			· · · ·			-	······································			
Vell Position	+N/-S	468,400.8	32 usft N	lorthing:	¹	468,400.82	usft La	titude:	- 17	32° 17' 3.5	27 N
	+E/-W	787,925.8	32 usft E	asting:		787,925.82	usft Lo	ngitude:		103° 24' 5.96	61 V
Position Unco	ertainty	0.0)0 usft 🛛 🛛	Veilhead Elev	ation:		Gr	ound Level:		3,387.00	usf
Nellbore	Wellb	ore #1				- , 		· · ·		····	
Wagnetics	Мо	del Name	Samp	le Date	Declina		•	Angle	Field Si (n	•	
					(°)			°) 60.12		47.979	6-1988 -
Audit Notes:	Desigi	BGGM2017 n #1	Pha	1/11/2018	PROTOTYPE	6.89	On Depth:				
Audit Notes: Version:	· · · · · · · · ·	n #1	2 11 12	se: F	PROTOTYPE +N/-S (usft) 0.00	Tie +E (ut	On Depth: /-W sft) 00	Dire	0.00 ection (°) 9.44	· · · · · · · · · · · · · · · · · · ·	
Design Audit Notes: Version: Vertical Secti Plan Survey	on:	Da	Pha epth From ((usft) 0.00	se: F	+N/-S (usft)	Tie +E (ut	/-W sft)	Dire	ection (°)	· · · · · · · · · · · · · · · · · · ·	
Audit Notes: Version:	on: Tool Progran rom Dept	n #1 Da n Date h To	Pha epth From ((usft)	se: F TVD)	+N/-S (usft)	Tie +E (ut	/-W sft)	Dire	ection (°)		
Audit Notes: /ersion: /ertical Secti Plan Survey Depth Fr (usft)	on: Tool Progran rom Dept (us	n #1 Da n Date h To	Pha epth From ((usft) 0.00 1/24/2018 y (Weilbore)	se: F TVD)	+N/-S (usft) 0.00	: Tie +E (us 0.	/-W sft) 00	Dire	ection (°)		
Audit Notes: Version: Vertical Secti Plan Survey Depth Fr (usft)	on: Tool Program rom Dept (us 0.00 16,28	n #1 De n Date h To ift) Surve	Pha epth From ((usft) 0.00 1/24/2018 y (Weilbore)	se: F TVD)	+N/-S (usft) 0.00 Tool Name MVVD	: Tie +E (us 0.	/-W sft) 00	Dire	ection (°)		
Vertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured	on: Tool Program rom Dept (us 0.00 16,28	n #1 De n Date h To ift) Surve	Pha epth From ((usft) 0.00 1/24/2018 y (Weilbore)	se: F TVD)	+N/-S (usft) 0.00 Tool Name MVVD	: Tie +E (us 0.	/-W sft) 00 Remarks Build Rate	Dire	ection (°)	Target	
Vertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured Depth	ion: Tool Program rom Dept (us 0.00 16,28 s Inclination	n #1 Date h To ft) Survey 34.19 Design	Pha epth From ((usft) 0.00 1/24/2018 y (Weilbore) #1 (VVeilbor #1 (VVeilbor Vertical Depth	se: F TVD) e #1) +N/-S	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI +E/-W	Tie +E (us 0. D - Standard	/-W sft) 00 Remarks Build Rate	Dire 35 Turn Rate (°/100usft)	ection (°) 59.44 TFO		
Audit Notes: /ersion: /ertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured Depth (usft)	ion: Tool Program rom Dept (us 0.00 16,28 s Inclination (°) 0.00	n #1 Date h To ift) Survey 34.19 Design Azimuth (°)	Pha epth From ((usft) 0.00 1/24/2018 y (Wellbore) #1 (Wellbore) #1 (Wellbore) Wertical Depth (usft)	se: F TVD) e #1) +N/-S (usft)	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI +E/-W (usft)	Dogleg Rate (°/100usft)	/-W sft) 00 Remarks Build Rate (°/100usft)	Dire 35 Turn Rate (°/100usft)	ection (°) 9.44 TFO (°)		
Audit Notes: /ersion: /ertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured Depth (usft) 0.00	ion: Tool Program rom Dept (us 0.00 16,28 s Inclination (°) 0.00	n #1 Date h To ift) Survey 34.19 Design Azimuth (°) 0.00	Pha epth From ((usft) 0.00 1/24/2018 y (Welibore) #1 (VVelibor #1 (VVelibor Depth (usft) 0.00	se: F TVD) 	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI +E/-W (usft) 0.00	Tie +E (ut) 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00	/-W sft) 00 Remarks Build Rate (°/100usft) 0.00	Dire 35 Turn Rate (°/100usft) 0.00 0.00	ection (°) 9.44 TFO (°) 0.00		
Vertical Secti Vertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured Depth (usft) 0.00 1,500.00	lon: Tool Program rom Dept (us 0.00 16,28 s Inclination (°) 0.00 0.00 8.50	n #1 Date h To ift) Survey 34.19 Design Azimuth (°) 0.00 0.00	Pha epth From ((usft) 0.00 1/24/2018 y (Welibore) #1 (VVelibor #1 (VVelibor Depth (usft) 0.00 1,500.00	se: F TVD) e #1) +N/-S (usft) 0.00 0.00	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI +E/-W (usft) 0.00 0.00	Dogleg Rate (°/100usft) 0.00 0.00	/-W sft) 00 Remarks Build Rate (°/100usft) 0.00 0.00	Dire 35 Turn Rate (°/100usft) 0.00 0.00 0.00	ection (°) 9.44 TFO (°) 0.00 0.00		
Audit Notes: /ersion: /ertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured Depth (usft) 0.00 1,500.00 2,349.51	Ion: Tool Program rom Dept (us 0.00 16,28 s Inclination (°) 0.00 0.00 8.50	n #1 Date h To ft) Survey 34.19 Design Azimuth (°) 0.00 0.00 243.71	Pha epth From ((usft) 0.00 1/24/2018 y (Wellbore) #1 (VVellbor #1 (VVellbor b#1 (VVellbor Uepth (usft) 0.00 1,500.00 2,346.40	se: F TVD) 	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI OWSG MWI (usft) 0.00 0.00 -56.36	Dogleg Rate (°/100usft) 0.00 0.00 1.00	/-W sft) 00 Remarks Build Rate (°/100usft) 0.00 0.00 1.00	Dire 35 Turn Rate (°/100usft)) 0.00 0.00 0.00 0.00	TFO (°) 9.44 TFO (°) 0.00 0.00 243.71 0.00 180.00		
Audit Notes: /ersion: /ertical Secti Plan Survey Depth Fr (usft) 1 (Plan Sections Measured Depth (usft) 0.00 1,500.00 2,349.51 9,843.10	lon: Tool Program rom Dept (us 0.00 16,28 s Inclination (°) 0.00 0.00 8.50 8.50 8.50	n #1 Date h To ft) Survey 34.19 Design Azimuth (°) 0.00 0.00 243.71 243.71	Pha epth From ((usft) 0.00 1/24/2018 y (Wellbore) #1 (V/ellbor #1 (V/ellbor bepth (usft) 0.00 1,500.00 2,346.40 9,757.78	se: F TVD) +N/-S (usft) 0.00 0.00 -27.84 -518.14 -536.70 -536.70	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI OWSG MWI +E/-W (usft) 0.00 0.00 -56.36 -1,048.84	Dogleg Rate (*/100usft) 0.00 0.00 1.00 0.00 1.50 0.00	/-W sft) 00 Remarks Build Rate (°/100usft) 0.00 0.00 1.00 0.00	Dire 35 Turn Rate (*/100usft)) 0.00 0.00 0.00 0.00 0.00	ection (°) 9.44 TFO (°) 0.00 0.00 243.71 0.00 180.00 0.00		
Audit Notes: Version: Vertical Sections Plan Survey Depth Fr (usft) 1 Plan Sections Measured Depth (usft) 0.00 1,500.00 2,349.51 9,843.10 10,409.44	lon: Tool Program rom Dept (us 0.00 16,28 s Inclination (°) 0.00 0.00 8.50 8.50 0.00	n #1 Date h To ft) Survey 64.19 Design Azimuth (°) 0.00 0.00 243.71 243.71 0.00	Pha epth From ((usft) 0.00 1/24/2018 y (Welibore) #1 (V/elibor #1 (V/elibor 0.00 1,500.00 2,346.40 9,757.78 10,322.04	se: F TVD) +N/-S (usft) 0.00 0.00 -27.84 -518.14 -536.70	+N/-S (usft) 0.00 Tool Name MWD OWSG MWI OWSG MWI 0.00 0.00 -56.36 -1,048.84 -1,086.42	Dogleg Rate (°/100usft) 0.00 0.00 1.00 0.00 1.50	/-W sft) 00 Remarks Build Rate (°/100usft) 0.00 0.00 1.00 0.00 -1.50	Dire 35 Turn Rate (*/100usft)) 0.00 0.00 0.00 0.00 0.00 0.00	TFO (°) 9.44 TFO (°) 0.00 0.00 243.71 0.00 180.00		

MS Directional

Planning Report

EDM Conroe Local Co-ordinate Reference: Well#133H Database: Company: Matador Resources **TVD Reference:** RKB=29' @ 3416.00usft (Patterson 297) Lea County, New Mexico (NAD 27) Project: MD Reference: RKB=29' @ 3416.00usft (Patterson 297) Dr. Ireland Fed Com North Reference: Grid #133H **Survey Calculation Method:** Minimum Curvature Wellbore #1 Wellbore: Design #1 Design: a _ 'an -

Planned Survey

. . . .

Site:

Well:

Measured Vertical Vertical Dogleg Build Turn Depth Section Rate Rate Rate Depth Inclination Azimuth +N/-S +E/-W (usft) (usft) (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (°) (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 200.00 0.00 0.00 0.00 0.00 200.00 0.00 0.00 0.00 0.00 300.00 0.00 300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 400.00 0.00 0.00 0.00 0.00 0.00 400.00 0.00 0.00 0.00 0.00 0.00 500.00 0.00 0.00 0.00 0.00 0.00 0.00 500.00 0.00 0.00 0.00 0.00 0.00 600.00 0.00 0.00 600.00 0.00 700.00 0.00 0.00 700.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 800.00 0.00 0.00 800.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 900.00 0.00 0.00 900.00 0.00 0.00 0.00 0.00 1.000.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000.00 1,100.00 0.00 0.00 1,100.00 0.00 0.00 0.00 0.00 0.00 0.00 1,200.00 0.00 0.00 0.00 0.00 0.00 0.00 1,200.00 0.00 0.00 1,300.00 1,300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,400.00 0.00 0.00 1.400.00 0.00 0.00 0.00 0.00 0.00 0.00 1,500.00 0.00 0.00 1,500.00 0.00 0.00 0.00 0.00 0.00 0.00 Begin 1.00°/100' Build 1,600.00 243.71 1.599.99 -0.39 -0.78 -0.38 1.00 1.00 0.00 1.00 243.71 -1.55 -1.52 1.00 1.00 0.00 1.700.00 2.00 1.699.96 -3.13 1,800.00 1,799.86 3.00 243.71 -3.48 -7.04 -3.41 1.00 1.00 0.00 243.71 1.899.68 -6.18 -12.51 -6.06 1.00 1.00 1,900.00 4.00 0.00 1.00 1.00 2,000.00 5.00 243.71 1,999.37 -9.66 -19.55 -9.47 0.00 2.100.00 6.00 243.71 2.098.90 -13.90 -28.14 -13.63 1.00 1.00 0.00 2,198.26 243.71 -18.92 -38.29 -18.54 1.00 1.00 0.00 2,200.00 7.00 2,300.00 8.00 243.71 2,297.40 -24.70 -49.99 -24.21 1.00 1.00 0.00 2.349.50 8.50 243.71 2,346.40 -27.84 -56.36 -27.29 1.00 1.00 0.00 Begin 8.50° Tangent -30.53 0.00 0.00 2,400.00 8.50 243.71 2,396.34 -31.15 -63.05 0.00 8 50 243 71 2 495 24 -37.69 -76 29 -36 94 0.00 0.00 0.00 2 500 00 243.71 2,594,14 -44.23 2,600.00 8.50 -89.54 -43.35 0.00 0.00 0.00 2,693.05 2,700.00 243.71 -50.77 -102.78 -49.77 0.00 0.00 0.00 8.50 2.800.00 8.50 243.71 2,791.95 -57.32 -116.02 -56.18 0.00 0.00 0.00 2,900.00 8.50 243.71 2,890.85 -63.86 -129.27 -62.59 0.00 0.00 0.00 2,989.75 0.00 0.00 3,000.00 8.50 243.71 -70.40 -142.51 -69.01 0.00 3,100.00 8.50 243.71 3,088.66 -76.95 -155.76 -75.42 0.00 0.00 0.00 3,200.00 8.50 243.71 3,187.56 -83.49 -169.00 -81.83 0.00 0.00 0.00 -90.03 -88.25 0.00 0.00 3,300.00 8.50 243.71 3,286.46 -182.25 0.00 0.00 0.00 3,400.00 8.50 243.71 3,385.37 -96.57 -195.49 -94.66 0.00 3,500.00 8.50 3,484.27 -103.12 -208.74 -101.07 0.00 0.00 243.71 0.00 3.600.00 8.50 243.71 3.583.17 -109.66 -221.98 -107.49 0.00 0.00 0.00 3.700.00 8.50 243.71 3.682.07 -116.20 -235.22-113.90 0.00 0.00 0.00 3,800.00 8.50 243.71 3,780.98 -122.75 -248.47 -120.31 0.00 0.00 0.00 8.50 0.00 0.00 3,900.00 243.71 3,879.88 -129.29 -261.71 -126.72 0.00 4.000.00 8.50 243.71 3.978.78 -135.83 -274.96 -133.14 0.00 0.00 0.00 0.00 4,100.00 8.50 243.71 4,077.69 -142.37 -288.20-139.55 0.00 0.00 4,200.00 8.50 243.71 4,176.59 -148.92 -301.45 -145.96 0.00 0.00 0.00 4.300.00 8.50 243.71 4,275.49 -155.46 -314.69-152.380.00 0.00 0.00 4.400.00 8.50 243.71 4.374.39 -162.00 -327.94 -158.79 0.00 0.00 0.00 4,500.00 8.50 243.71 4,473.30 -168.55 -341.18 -165.20 0.00 0.00 0.00 4,600.00 8.50 243.71 4,572.20 -175.09 -354.42 0.00 0.00 -171.62 0.00 4,700.00 8.50 243.71 4.671.10 -181.63 -367.67 -178.030.00 0.00 0.00 4,800.00 8.50 243.71 4,770.01 -188.17 -380.91 -184.44 0.00 0.00 0.00 8.50 4,868.91 -190.86 0.00 0.00 0.00 4,900.00 243.71 -194.72-394.16 4,967.81 -407.40 5,000.00 8.50 243.71 -201.26 -197.27 0.00 0.00 0.00

MS Directional

Planning Report

EDM Conroe Database: Local Co-ordinate Reference: Well #133H Company: Matador Resources TVD Reference: RKB=29' @ 3416.00usft (Patterson 297) Project: Lea County, New Mexico (NAD 27) MD Reference: RKB=29' @ 3416.00usft (Patterson 297) Site: Dr. Ireland Fed Com North Reference: Grid Well: #133H Survey Calculation Method: Minimum Curvature Wellbore: Wellbore #1 Design: Design #1 · · ·

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Verticai Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
 5,100.00	8.50	243.71	5,066.71	-207.80	-420.65	-203.68	0.00	0.00	0.00
5,200.00	8.50	243.71	5,165.62	-214.35	-433.89	-210.09	0.00	0.00	0.00
5,300.00	8.50	243.71	5,264.52	-220.89	-447.14	-216.51	0.00	0.00	0.00
5,400.00	8.50	243.71	5,363.42	-227.43	-460.38	-222.92	0.00	0.00	0.00
5,500.00	8.50	243.71	5,462.33	-233.97	-473.62	-229.33	0.00	0.00	0.00
5,600.00	8.50	243.71	5,561.23	-240.52	-486.87	-235.75	0.00	0.00	0.00
5,700.00	8.50	243.71	5,660.13	-247.06	-500.11	-242.16	0.00	0.00	0.00
5,800.00	8.50	243.71	5,759.03	-253.60	-513.36	-248.57	0.00	0.00	0.00
5,900.00	8.50	243.71	5,857.94	-260.15	-526.60	-254.99	0.00	0.00	0.00
6,000.00	8.50	243.71	5,956.84	-266.69	-539.85	-261.40	0.00	0.00	0.00
6,100.00	8.50	243.71	6,055.74	-273.23	-553.09	-267.81	0.00	0.00	0.00
6,200.00	8.50	243.71	6,154.65	-279.77	-566.34	-274.23	0.00	0.00	0.00
6,300.00	8.50	243.71	6,253.55	-286.32	-579.58	-280.64	0.00	0.00	0.00
6,400.00	8.50	243.71	6,352.45	-292.86	-592.82	-287.05	0.00	0.00	0.00
6,500.00	8.50	243.71	6,451.35	-299.40	-606.07	-293.47	0.00	0.00	0.00
6,600.00	8.50	243.71	6,550.26	-305.95	-619.31	-299.88	0.00	0.00	0.00
6,700.00	8.50	243.71	6,649.16	-312.49	-632.56	-306.29	0.00	0.00	0.00
6,800.00	8.50	243.71	6,748.06	-319.03	-645.80	-312.70	0.00	0.00	0.00
6,900.00	8.50	243.71	6,846.97	-325.57	-659.05	-319.12	0.00	0.00	0.00
7,000.00	8.50	243.71	6,945.87	-332.12	-672.29	-325.53	0.00	0.00	0.00
7,100.00	8.50	243.71	7,044.77	-338.66	-685.54	-331.94	0.00	0.00	0.00
7,200.00	8.50	243.71	7,143.67	-345.20	-698.78	-338.36	0.00	0.00	0.00
7,300.00	8.50	243.71	7,242.58	-351.75	-712.02	-344.77	0.00	0.00	0.00
7,400.00	8.50	243.71	7,341.48	-358.29	-725.27	-351.18	0.00	0.00	0.00
7,500.00	8.50	243.71	7,440.38	-364.83	-738.51	-357.60	0.00	0.00	0.00
7,600.00	8.50	243.71	7,539.29	-371.37	-751.76	-364.01	0.00	0.00	0.00
7,700.00	8.50	243.71	7,638.19	-377.92	-765.00	-370.42	0.00	0.00	0.00
7,800.00	8.50	243.71	7,737.09	-384.46	-778.25	-376.84	0.00	0.00	0.00
7,900.00	8.50	243.71	7,835.99	-391.00	-791.49	-383.25	0.00	0.00	0.00
8,000.00	8.50	243.71	7,934.90	-397.55	-804.73	-389.66	0.00	0.00	0.00
8,100.00	8.50	243.71	8,033.80	-404.09	-817.98	-396.07	0.00	0.00	0.00
8,200.00	8.50	243.71	8,132.70	-410.63	-831.22	-402.49	0.00	0.00	0.00
8,300.00	8.50	243.71	8,231.61	-417.17	-844.47	-408.90	0.00	0.00	0.00
8,400.00	8.50	243.71	8,330.51	-423.72	-857.71	-415.31	0.00	0.00	0.00
8,500.00	8.50	243.71	8,429.41	-430.26	-870.96	-421.73	0.00	0.00	0.00
8,600.00	8.50	243.71	8,528.31	-436.80	-884.20	-428.14	0.00	0.00	0.00
8,700.00	8.50	243.71	8,627.22	-443.35	-897.45	-434.55	0.00	0.00	0.00
8,800.00	8.50	243.71	8,726.12	-449.89	-910.69	-440.97	0.00	0.00	0.00
8,900.00	8.50	243.71	8,825.02	-456.43	-923.93	-447.38	0.00	0.00	0.00
9,000.00	8.50	243.71	8,923.93	-462.97	-937.18	-453.79	0.00	0.00	0.00
9,100.00	8.50	243.71	9,022.83	-469.52	-950.42	-460.21	0.00	0.00	0.00
9,200.00	8.50	243.71	9,121.73	-476.06	-963.67	-466.62	0.00	0.00	0.00
9,300.00	8.50	243.71	9,220.63	-482.60	-976.91	-473.03	0.00	0.00	0.00
9,400.00	8.50	243.71	9,319.54	-489.15	-990.16	-479.44	0.00	0.00	0.00
9,500.00	8.50	243.71	9,418.44	-495.69	-1,003.40	-485.86	0.00	0.00	0.00
9,600.00	8.50	243.71	9,517.34	-502.23	-1,016.65	-492.27	0.00	0.00	0.00
9,700.00	8.50	243.71	9,616.25	-508.77	-1,029.89	-498.68	0.00	0.00	0.00
9,800.00	8.50	243.71	9,715.15	-515.32	-1,043.13	-505.10	0.00	0.00	0.00
9,843.10	8.50	243.71	9,757.78	-518.14	-1,048.84	-507.86	0.00	0.00	0.00
•	°/100' Drop					_			
9,900.00	7.64	243.71	9,814.11	-521.67	-1,056.00	-511.33	1.50	-1.50	0.00
10,000.00	6.14	243.71	9,913.39	-526.99	-1,066.76	-516.54	1.50	-1.50	0.00
10,100.00	4.64	243.71	10,012.94	-531.15	-1,075.18	-520.62	1.50	-1.50	0.00
 10,200.00	3.14	243.71	10,112.71	-534.16	-1,081.27	-523.56	1.50	-1.50	0.00

Planned Survey

MS Directional

Planning Report

المقدي من في من من الحالية في الانت التركية الاستانية الانتريم مثل المنات التركية التركيم بالتركية المادين الت الانت المسالم من التركيب التركيب المادين المسيطين المادين مواجهين و الانتركيب وموجود المادين التركيب التركيب و وسيعتر ب Database: EDM Conroe Local Co-ordinate Reference: Well#133H Matador Resources Company: TVD Reference: RKB=29' @ 3416.00usft (Patterson 297) Project: Lea County, New Mexico (NAD 27) RKB=29' @ 3416.00usft (Patterson 297) **MD Reference:** Dr. Ireland Fed Com Site: North Reference: Grid **Survey Calculation Method:** Well: #133H Minimum Curvature Wellbore #1 Wellbore: Design: Design #1

Dogleg Vertical Build Turn Measured Vertical Depth Depth +N/-S +E/-W Section Rate Rate Rate Inclination Azimuth (usft) (°/100usft) (°/100usft) (°/100usft) (usft) (usft) (usft) (usft) (°) (°) 10,212.62 -536.00 -1,085.01 -525.37 0.00 10,300.00 1.64 243.71 1.50 -1.5010,322.04 -536.70 -1,086.42 -526.05 1.50 -1.50 0.00 0.00 0.00 10.409.44 **Begin Vertical Hold** -526.05 0.00 0.00 0.00 10,500,00 0.00 0.00 10,412.60 -536.70 -1,086.4210,512.60 -536.70 -1,086.42 -526.05 0.00 0.00 0.00 10,600.00 0.00 0.00 0.00 0.00 10.612.60 -536.70 -1,086.42 -526.05 0.00 0.00 0.00 10.700.00 0.00 0.00 0.00 -536.70 -1.086.42 -526.05 0.00 0.00 10 800 00 10.712.60 0.00 10,900.00 0.00 0.00 10,812.60 -536.70 -1.086.42-526.05 0.00 0.00 0.00 10,877.04 -536.70 -1,086.42 -526.05 0.00 0.00 0.00 10.964.44 0.00 Begin 10.00°/100' Build 11,000.00 359.44 10.912.58 -535.60 -1.086.43 -524.95 10.00 10.00 0.00 3.56 11,050.00 8.56 359.44 10,962.29 -530.32 -1.086.48-519.68 10.00 10.00 0.00 10.00 0.00 11,100.00 13.56 359.44 11.011.34 -520.74 -1.086.57 -510.09 10.00 11,150.00 18.56 359.44 11,059.38 -506.91 -1,086.71 -496.27 10.00 10.00 0.00 11,200.00 23.56 359.44 11,106.02 -488.96 -1,086.88 -478.31 10.00 10.00 0.00 11,250.00 28.56 359.44 11,150.93 -467.00 -1.087.10 -456 35 10.00 10.00 0.00 11,300.00 33.56 359.44 11,193.75 -441.22 -1,087.35-430.57 10.00 10.00 0.00 10.00 10.00 0.00 38.56 359.44 11,234.16 -411.80 -1.087.64 -401.15 11,350.00 43.56 359.44 11,271.85 -378.97 -1,087.96 -368.32 10.00 10.00 0.00 11,400.00 11,306.53 -342.98 -332.33 10.00 10.00 0.00 48.56 359.44 -1.088.3111.450.00 11,337.95 -1,088.69 53.56 10.00 10.00 0.00 11,500.00 359.44 -304.11-293.4511,550.00 359.44 11,365.86 -262.64 -1,089.09 -251.99 10.00 10.00 0.00 58.56 -208.25 10.00 10.00 0.00 11,600.00 63.56 359.44 11,390.05 -218.91 -1,089.52 11.650.00 68.56 359.44 11.410.34 -173.23 -1.089.97 -162.56 10.00 10.00 0.00 73.56 359.44 11,426.56 -125.95 -1.090.43 -115.29 10.00 10.00 0.00 11,700.00 11,750.00 78.56 359.44 11,438.61 -77.44 -1,090.90 -66.78 10.00 10.00 0.00 359.44 -17.40 10.00 10.00 11,800.00 83.56 11,446.38 -28.07 -1,091.390.00 11.850.00 88.56 359.44 11,449.82 21.80 -1,091.8732.47 10.00 10.00 0.00 11,864.44 90.00 359.44 11,450.00 36.23 -1,092.02 46.90 10.00 10.00 0.00 Begin 90.00° Lateral 11,900.00 90.00 11 450 00 -1.092.36 82 46 0.00 0.00 0.00 359 44 71.79 12,000.00 90.00 359.44 11,450.00 171.79 -1,093.34 182.46 0.00 0.00 0.00 359.44 11,450.00 -1,094.32 282.46 0.00 0.00 12,100.00 90.00 271.78 0.00 0.00 0.00 0.00 12,200.00 90.00 359.44 11,450.00 371.78 -1.095.30 382.46 12,300.00 90.00 359.44 11,450.00 471.77 -1,096.27 482.46 0.00 0.00 0.00 12,400.00 90.00 359 44 11,450,00 571.77 -1.097.25582 46 0.00 0.00 0.00 12,500.00 90.00 359.44 11,450.00 671.76 -1,098.23 682.46 0.00 0.00 0.00 359.44 0.00 0.00 12,600.00 90.00 11,450.00 771.76 -1,099.20 782.46 0.00 12,700.00 90.00 359.44 11,450.00 871.75 -1,100.18 882.46 0.00 0.00 0.00 11,450.00 90.00 359.44 971.75 -1.101.16 982.46 0.00 0.00 0.00 12,800,00 12,900.00 90.00 359.44 11,450.00 1,071.74 -1,102.141,082.46 0.00 0.00 0.00 13,000.00 90.00 359.44 11,450.00 1,171.74 -1,103.11 1,182.46 0.00 0.00 0.00 11,450.00 1,271.73 13,100.00 90.00 359.44 -1,104.09 1,282.46 0.00 0.00 0.00 1,382.46 0.00 0.00 90.00 11.450.00 1,371.73 0.00 13,200.00 359.44 -1.1050713,300.00 90.00 359.44 11,450.00 1,471.72 -1,106.05 1,482.46 0.00 0.00 0.00 13.400.00 90.00 359.44 11.450.00 1.571.72 -1.107.021.582.46 0.00 0.00 0.00 13,500.00 90.00 359.44 11.450.00 1,671.72 -1.108.001.682.46 0.00 0.00 0.00 13,600.00 359.44 11,450.00 1,771.71 -1,108.98 1,782.46 0.00 90.00 0.00 0.00 13,700.00 90.00 359.44 11.450.00 1.871.71 -1.109.961.882.46 0.00 0.00 0.00 13,800.00 90.00 359.44 11,450.00 1.971.70 1,982.46 0.00 0.00 -1.110.930.00 11,450.00 13,900.00 90.00 359.44 2,071.70 -1.111.912,082.46 0.00 0.00 0.00 14,000.00 359.44 11,450.00 2,171.69 -1,112.892,182.46 0.00 0.00 90.00 0.00 359.44 11,450.00 2.271.69 0.00 14.100.00 90.00 -1.113.872.282.46 0.00 0.00

MS Directional

Planning Report

. Health Statum .* Database: EDM Conroe Local Co-ordinate Reference: Well #133H Matador Resources Company: TVD Reference: RKB=29' @ 3416.00usft (Patterson 297) Project: Lea County, New Mexico (NAD 27) RKB=29' @ 3416.00usft (Patterson 297) MD Reference: Site: Dr. Ireland Fed Com North Reference: Grid Well: #133H Survey Calculation Method: Minimum Curvature Wellbore: Wellbore #1 Design: Design #1

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,200.00	90.00	359.44	11,450.00	2,371.68	-1,114.84	2,382.46	0.00	0.00	0.00
14,300.00	90.00	359.44	11,450.00	2,471.68	-1,115.82	2,482.46	0.00	0.00	0.00
14,400.00	90.00	359.44	11,450.00	2,571.67	-1,116.80	2,582.46	0.00	0.00	0.00
14,500.00	90.00	359.44	11,450.00	2,671.67	-1,117.77	2,682.46	0.00	0.00	0.00
14,600.00	90.00	359.44	11,450.00	2,771.66	-1,118.75	2,782.46	0.00	0.00	0.00
14,700.00	90.00	359.44	11,450.00	2,871.66	-1,119.73	2,882.46	0.00	0.00	0.00
14,800.00	90.00	359.44	11,450.00	2,971.65	-1,120.71	2,982.46	0.00	0.00	0.00
14,900.00	90.00	359.44	11,450.00	3,071.65	-1,121.68	3,082.46	0.00	0.00	0.00
15,000.00	90.00	359.44	11,450.00	3,171.64	-1,122.66	3,182.46	0.00	0.00	0.00
15,100.00	90.00	359.44	11,450.00	3,271.64	-1,123.64	3,282.46	0.00	0.00	0.00
15,200.00	90.00	359.44	11,450.00	3,371.63	-1,124.62	3,382.46	0.00	0.00	0.00
15,300.00	90.00	359.44	11,450.00	3,471.63	-1,125.59	3,482.46	0.00	0.00	0.00
15,400.00	90.00	359.44	11,450.00	3,571.62	-1,126.57	3,582.46	0.00	0.00	0.00
15,500.00	90.00	359.44	11,450.00	3,671.62	-1,127.55	3,682.46	0.00	0.00	0.00
15,600.00	90.00	359.44	11,450.00	3,771.61	-1,128.53	3,782.46	0.00	0.00	0.00
15,700.00	90.00	359.44	11,450.00	3,871.61	-1,129.50	3,882.46	0.00	0.00	0.00
15,800.00	90.00	359.44	11,450.00	3,971.61	-1,130.48	3,982.46	0.00	0.00	0.00
15,900.00	90.00	359.44	11,450.00	4,071.60	-1,131.46	4,082.46	0.00	0.00	0.00
16,000.00	90.00	359.44	11,450.00	4,171.60	-1,132.44	4,182.46	0.00	0.00	0.00
16,100.00	90.00	359.44	11,450.00	4,271.59	-1,133.41	4,282.46	0.00	0.00	0.00
16,200.00	90.00	359.44	11,450.00	4,371.59	-1,134.39	4,382.46	0.00	0.00	0.00
16,284.19	90.00	359.44	11,450.00	4,455.77	-1,135.21	4,466.65	0.00	0.00	0.00
PBHL									

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL - Dr. Ireland Fe - plan hits target o - Point		0.00	11,450.00	4,455.77	-1,135.21	472,856.59	786,790.61	32° 17' 47.714 N	103° 24' 18.735 W
Last Perforation - Dr. - plan hits target c - Point		0.00	11,450.00	4,365.78	-1,134.34	472,766.60	786,791.48	32° 17' 46.824 N	103° 24' 18.733 W
First Perforation - Dr. - plan misses targ	0.00 et center by		11,450.00 It 11595.90	-256.75 usft MD (113	-1,089.38 88.21 TVD,	468,144.08 -222.57 N, -1089.4	786,836.44 19 E)	32° 17' 1.080 N	103° 24' 18.676 W

- Point

Casing Points

Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter ('')	Hole Diameter ('')	;
 850.00	850.00	13 3/8"		13-3/8	17-1/2	
5,400.00	5,363.42	9 5/8"		9-5/8	12-1/4	
16,284.19	11,450.00	5 1/2"		5-1/2	6	

MS Directional Planning Report

Database: EDM Conroe Local Co-ordinate Reference: Well #133H Matador Resources Company: RKB=29' @ 3416.00usft (Patterson 297) • TVD Reference: **Project:** Lea County, New Mexico (NAD 27) RKB=29' @ 3416.00usft (Patterson 297) **MD Reference:** North Reference: Site: Dr. Ireland Fed Com Grid Well: #133H Survey Calculation Method: Minimum Curvature Wellbore: Wellbore #1 Design: Design #1

Formations

Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)	
1,396.67	1,396.67	Z (Rustler)		0.00	359.44	
1,771.20	1,771.10	Top Salt: Z (Salado)		0.00	359.44	
4,065.71	4,043.77	Base Salt: Z (G30:CS14-CSB)		0.00	359.44	
5,581.33	5,542.76	Z(G26: Bell Canyon)		0.00	359.44	
7,552.91	7,492.71	Z (G7: Brushy Cyn.)		0.00	359.44	
8,876.03	8,801.32	Z(G4: BSGL (CS9))		0.00	359.44	
9,605.39	9,522.67	Z(L5.3: FBSC)		0.00	359.44	
9,926.93	9,840.82	Z (L5.1: FBSG)		0.00	359.44	
10,075.71	9,988.74	Z (L4.3: SBSC)		0.00	359.44	
10,471.82	10,384.42	Z (L4.1: SBSG)		0.00	359.44	
10,808.31	10,720.91	Z (L3.3: TBSC)		0.00	359.44	
11,585.52	11,383.44	Z (L3.1: TBSG)		0.00	359.44	

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
1,500.00	1,500.00	0.00	0.00	Begin 1.00°/100' Build
2,349.50	2,346.40	-27.84	-56.36	Begin 8.50° Tangent
9,843,10	9,757.78	-518.14	-1,048.84	Begin 1.50°/100' Drop
10,409,44	10,322.04	-536.70	-1,086.42	Begin Vertical Hold
10,964,44	10.877.04	-536.70	-1,086.42	Begin 10.00°/100' Build
11.864.44	11.450.00	36.23	-1.092.02	Begin 90.00° Lateral
16,284.19	11,450.00	4,455.77	-1,135.21	PBHL

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #133H Matador Resources Company

Customer: Patterson

Internal Hydrostatic Test Graph

Pick Ticket #: 284918

December 8, 2014

Comments: Hose assembly pressure tested with water at ambient temperature.

(

Tested By;

Approved By:

ĺ

& Spec	est Hose cialty, Inc. Atic Test Certificate Hose Specifi <i>Hose Assembly Type</i> <i>Certification</i> <i>Hose Grade</i> <i>Hose Working Pressure</i>	Cations Choke & Kill API 7K MUD
& Spec al Hydrosto ation ATTERSON B&E MY WHITE 2/8/2014	cialty, Inc. The second state of the second s	Choke & Kill API 7K
al Hydrosto ation ATTERSON B&E MY WHITE 2/8/2014	Hose Assembly Type Certification Hose Grade	Choke & Kill API 7K
ATTERSON B&E MY WHITE 2/8/2014 KC	Hose Specifi Hose Assembly Type Certification Hose Grade	Choke & Kill API 7K
ATTERSON B&E MY WHITE 2/8/2014 KC	Hose Assembly Type Certification Hose Grade	Choke & Kill API 7K
MY WHITE 2/8/2014 KC	Certification Hose Grade	API 7K
2/8/2014 KC	Hose Grade	
KC		MUD
	Hose Working Pressure	
36404		10000
	Hose Lot # and Date Code	10490-01/13
60471	Hose I.D. (Inches)	3"
87918-2	Hose O.D. (Inches)	5.30"
0'	Armor (yes/no)	YES
Fit	tings	
	End B	
3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
1996	Stem (Heat #)	91996
F3.0	Ferrule (Part and Revision #)	RF3.0
7DA5631	Ferrule (Heat #)	37DA5631
1/16 10K	Connection (Part #)	4 1/16 10K
	Connection (Heat #)	
	CONTRECLION (Neat #)	er sedekes konstanse sen te etter hus f
5.3	7 Dies Used	5.37
	(a) Contraction (Contraction of the Contraction of the Contraction (Contraction)	5.37
	7 Dies Used	5.37 with ambient water
	, Fit 996 3.0 2DA5631	Armor (yes/no) Fittings End B 3.0X64WB Stem (Part and Revision #) 996 Stem (Heat #) 3.0 Ferrule (Part and Revision #) DA5631 Ferrule (Heat #) 1/16 10K Connection (Part #)

-

-

.

.

			est Hose ialty, Inc.	
	-	Certificate d	of Conformity	
Customer: PAT	TERSON B	&E	Customer P.O.# 260471	
Sales Order # 236	404		Date Assembled: 12/8/2014	
		Specif	ications	
Hose Assembly	Туре:	Choke & Kill		
Assembly Serie	al #	287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working Press	sure (psi)	10000	Test Pressure (psi)	15000
to the requirements o Supplier: Midwest Hose & Spec 3312 S I-35 Service Rc	of the purch cialty, Inc. d		or the referenced purchase order at industry standards.	to be true according
to the requirements of Supplier: Midwest Hose & Spec	of the purch cialty, Inc. d			to be true according

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #133H Matador Resources Company ((December 9, 2014 **Internal Hydrostatic Test Graph** Customer: Patterson Pick Ticket #: 284918 Midwest Hose & Specialty, Inc. **Verification Hose Specifications** Hose Type ^{Ck} I.D. Type of Fitting 4-1/16 10K **Coupling Method** Length 20' Swage Final O.D. <u>O.D.</u> Die Size 3" Working Pressure 10000 PSi 5.37" Hose Serial # 10490 5.40" 4.77 **Burst Pressure** Hose Assembly Serial # 284918-1 Standard Safety Multiplier Applie **Pressure Test** 16000 16000 14000 17000 10050 PSI 8000 6000 4000 2000 ٥ 2.51 2.53 2.53 2.54 AN 2:50 2.55 44 56 AM **Time in Minutes** Peak Pressure 15893 PSI Test Pressure Time Held at Test Pressure Actual Burst Pressure 15000 PSI 15 2/4 Minutes

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By: A

·--- ,

۰.,

۰.

		est Hose cialty, Inc.	
Inte	*	atic Test Certificate	
General Info		Hose Specil	***************************************
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative		Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	окс	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"
Hose Assembly Length	20'	Armor (yes/no)	YES
	Fit	tings	
End A		End I	3
Stem (Port and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heot #)	A141420	Stem (Heot #)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)	V3579	Connection (Heat #)	V3579
Dies Used	5.3	7 Dies Used	5.37
	Hydrostatic Te	st Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	l with ambient water
Test Pressure Hold Time (minutes	15 1/2	temperat	ture.
Date Tested	Teste	d By	Approved By
12/9/2014	Glip		Jan Alana

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #133H Matador Resources Company

. . .

2

.

3.4	
	idwest Hose Specialty, Inc.
Certificat	e of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
Spe	cifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-1	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
to the requirements of the purchase order and cu Supplier: Midwest Hose & Specialty, Inc.	ed for the referenced purchase order to be true accordir prrent industry standards.
to the requirements of the purchase order and cu Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	
to the requirements of the purchase order and cu Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	
to the requirements of the purchase order and cu Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #133H Matador Resources Company

(

(

í

• •

Midwest Hose & Specialty, Inc. Internal Hydrostatic Test Certificate General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API TK Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 236404 Hose I.D. (inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (inches) 5.23" Hose Assembly Length 70' Arrmor (yes/no) YES Fittings End A End B Sterm (Part and Revision #) R3.0X64WB Sterm (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revisin #) 37DA5631				
Internal Hydrostatic Test Certificate General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length To' Arrmor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Stem (Heat #) A7DA5631 Ferrule (Part and Revision #) R3.0X64WB Stem (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Heat #) Connection (Heat #) 1/16 10K Connection (Heat #)				
General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Connection (Part #) 37DA5631 Forrule (Heat #) <		& Spec	cialty, Inc.	
General Information Hose Specifications Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R13.0 Ferrule (Part and Revision #) R13.0 Stem (Part and Revision #) R141420 Stem (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Part #) 37DA5631 Ferrule (Heat #) 41/16 10K	Inter	rnal Hydrosta	ntic Test Certificate	
Customer PATTERSON B&E Hose Assembly Type Choke & Kill MWH Sales Representative AMY WHITE Certification API 7K Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R141420 Stem (Heat #) A141420 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Part #) 41/16 10K Connection (Heat #) 37DA5631 Connection (Heat #) 37DA5631 Dies Used 5.37 Dies Used				cations
Date Assembled 12/8/2014 Hose Grade MUD Location Assembled OKC Hose Working Pressure 100000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R1.041420 Ferrule (Part and Revision #) R1.041420 Stem (Heat #) 37DA5631 Connection (Part #) 41/16.10K Connection (Part #) 41/16.10K Connection (Part #) 6.37 Dies Used 5.37 <t< td=""><td>Customer</td><td>PATTERSON B&E</td><td></td><td></td></t<>	Customer	PATTERSON B&E		
Location Assembled OKC Hose Working Pressure 10000 Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) RF3.0 Ferrule (Part and Revision #) Stem (Heat #) A141420 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Connection (Part #) 41/16 10K Connection (Heat #) 5.37 Dies Used 5.37 Dies Used 5.37	MWH Sales Representative	AMY WHITE	Certification	API 7K
Sales Order # 236404 Hose Lot # and Date Code 10490-01/13 Customer Purchase Order # 260471 Hose I.D. (inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End A Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) Attaut and Revision #) Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R141420 Stem (Part and Revision #) R5.0 Stem (Part and Revision #) R5.0 Firtings Connection (Part #) A141420 Stem (Heat #) Stem (Heat #) Stem (Heat #) Stem (Heat #) Stem colspan="2">Connection (Part #)	Date Assembled	12/8/2014	Hose Grade	MUD
Customer Purchase Order # 260471 Hose I.D. (Inches) 3" Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Ferrule (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Ferrule (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Ferrule (Part and Revision #) R13.0X64WB Ferrule (Part and Revision #) R141420 Ferrule (Part and Revision #) R141420 Ferrule (Heat #) 37DA5631 Connection (Part #) 41/16 10K Connection (Part #) 41/16 10K Connection (Heat #) 37DA5631 Dies Used 5.37 Dies Used 41/16 10K Connection (Heat #) 16 3	Location Assembled	ОКС	Hose Working Pressure	10000
Assembly Serial # (Pick Ticket #) 287918-3 Hose O.D. (Inches) 5.23" Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R141420 Stem (Heat #) A141420 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Connection (Part #) 41/16 10K Connection (Part #) 41/16 10K Connection (Heat #) 37DA5631 Dies Used 5.37 Dies Used 5.37 Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient wate Test Pressure Hold Time (minutes) <td>Sales Order #</td> <td>236404</td> <td>Hose Lot # and Date Code</td> <td>10490-01/13</td>	Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Hose Assembly Length 70' Armor (yes/no) YES Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Connection (Part #) 41/16.10K Connection (Part #) 41/16.10K Connection (Heat #) 5.37 Dies Used Used 5.37 Dies Used Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient wate Test Pressure Hold Time (minutes) 16 3/4 <td>Customer Purchase Order #</td> <td>260471</td> <td>Hose I.D. (Inches)</td> <td>3"</td>	Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Fittings End A End B Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Stem (Heat #) A141420 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Part #) 4 1/16 10K Connection (Part #) 4 1/16 10K Connection (Part #) Connection (Heat #) 37DA5631 Dies Used 5.37 Dies Used 4 1/16 10K Test Pressure (psi) 15,000 Hose assembly was tested with ambient water Test Pressure Hold Time (minutes) 16 3/4 temperature. 16 3/4	Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (inches)	5.23"
End AEnd BStem (Part and Revision #)R3.0X64WBStem (Part and Revision #)R3.0X64WBStem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)4 1/16 10KConnection (Part #)4 1/16 10KConnection (Part #)5.37Dies UsedImage: Connection (Heat #)Dies Used5.37Dies UsedImage: Connection (Heat #)Test Pressure (psi)15,000Hose assembly was tested with ambient wate temperature.	Hose Assembly Length	70'	Armor (yes/no)	YES
Stem (Part and Revision #) R3.0X64WB Stem (Part and Revision #) R3.0X64WB Stem (Heat #) A141420 Stem (Heat #) A141420 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Part and Revision #) RF3.0 Ferrule (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Part #) 4 1/16 10K Connection (Part #) 4 1/16 10K Connection (Heat #) Connection (Heat #) 10 000 000000000000000000000000000000000000		Fit	tings	
Stem (Heat #)A141420Stem (Heat #)A141420Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)4 1/16 10KConnection (Part #)4 1/16 10KConnection (Heat #)Connection (Heat #)37DA5631Dies Used5.37Dies Used1Hydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient wate temperature.	End A		End B	
Ferrule (Part and Revision #)RF3.0Ferrule (Part and Revision #)RF3.0Ferrule (Heat #)37DA5631Ferrule (Heat #)37DA5631Connection (Part #)41/1610KConnection (Part #)41/1610KConnection (Heat #)Connection (Heat #)5.37Dies UsedDies Used5.37Dies UsedHydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient wate temperature.	Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Ferrule (Heat #) 37DA5631 Ferrule (Heat #) 37DA5631 Connection (Part #) 4 1/16 10K Connection (Part #) 4 1/16 10K Connection (Heat #) Connection (Heat #) 4 1/16 10K 6 000000000000000000000000000000000000	Stem (Heat #)	A141420	Stem (Heot #)	A141420
Connection (Part #)4 1/16 10KConnection (Part #)4 1/16 10KConnection (Heat #)Connection (Heat #)Dies UsedDies UsedDies Used5.37Dies UsedDies UsedHydrostatic Test RequirementsTest Pressure (psi)15,000Hose assembly was tested with ambient wate temperature.Test Pressure Hold Time (minutes)16 3/4temperature.	Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Connection (Heat #) Connection (Heat #) Dies Used 5.37 Dies Used Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient wate Test Pressure Hold Time (minutes) 16 3/4 temperature.	Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Dies Used 5.37 Dies Used Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient wate Test Pressure Hold Time (minutes) 16 3/4 temperature.	Connection (Port #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Hydrostatic Test Requirements Test Pressure (psi) 15,000 Hose assembly was tested with ambient wate Test Pressure Hold Time (minutes) 16 3/4 temperature.	Connection (Heat #)		Connection (Heat #)	
Test Pressure (psi)15,000Hose assembly was tested with ambient wate temperature.Test Pressure Hold Time (minutes)16 3/4temperature.	Dies Used	5.3	7 Dies Used	5.37
Test Pressure Hold Time (minutes) 16 3/4 temperature.		Hydrostatic Te	st Requirements	
	Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water
	Test Pressure Hold Time (minutes)	16 3/4	temperatu	ıre.
Date Tested Tested By Approved By		Teste	d By A	7 7 5
12/9/2014 The Alama	12/3/2014	1616	See 4	2an Alama

.

. . .

	idwest Hose
Q2 3	novialty Inc
	pecialty, Inc.
	customer P.O.# 260471
Customer: PATTERSON B&E	
	Date Assembled: 12/8/2014
Hose Assembly Type: Choke & Kill	cifications
Assembly Serial # 287918-3	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
the requirements of the purchase order and cu oplier:	ed for the referenced purchase order to be true according rrent industry standards.
dwest Hose & Specialty, Inc. 12 S I-35 Service Rd	
lahoma City, OK 73129 mments:	

Closed-Loop System

Operating and Maintenance Plan:

During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluids and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees.

Closure Plan:

During drilling operations, third party service companies will haul off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location.

	MATAD	OR PRODUC
General		
	Operator	MRC
	Lease	Dr. Ireland
	Well Name	Dr. Ireland Fed
	PTD (MT + ∆TVD from SHL - BHL)	
	Formation at TD	TBSG
Location		
	SHL	X/Y
Market State (1997)		Lat/Long
	PP/FTP	X/Y
		Lat/Long
	BHL	X/Y
		Lat/Long
Rig/KB		
Elevation - GL	3387	
Elevation - KB	3416	£
Prognosis		ļ
Formation Name	SSTVD*	TVD
Z (Rustler)	2019.33	13
Top Salt: Z (Salado)	1644.9	17
Base Salt: Z (G30:CS14-CSB)	-627.77	40
Z(G26: Bell Canyon)		55
Z (G7: Brushy Cyn.)	-4076.71	74
Z(G4: BSGL (CS9))	-5385.32	
Z(L5.3: FBSC)		
Z (L5.1: FBSG)		984
Z (L4.3: SBSC)		
Z (L4.1: SBSG)		
Z (L3.3: TBSC)		
Z (L3.1: TBSG)		<u> </u>
Z (L2: WFMP A)	1	116
Z (X Sand (T))		116
Z (X Sand (B))		117
Z (Y Sand (T))		1170
Z (Y Sand (B))		117
Z (WFMP A Fat)	<u> </u>	
Droliminon, Toracting	* values derived from Petre	
Preliminary Targeting		
•		1

Top Target	11435	
Mid Target (@ 0 VS)	11450	
Bottom Target	11465	<u> </u>
Reservoir Characteristics		
	Rock Type	Sand
an Canton	Gross Thickness	30
	Est. res. Temp	(* elemente) - te e sense con angementen (en
	Est. res. pressure	
Well Design		
1st intermediate casing	4000	
2nd intermediate casing	60-70 degrees	
Evaluation		
Mud logs	Yes	ļ
MWD logs	Yes	
Prepared by:	Dan Brugioni	
Approved by:		
and a contract of a second	an and the second s	
	ł	I

TION Co. FEDERAL APD	VELL PROGNOSIS
om #133H	
Permit Depth (TVD)	
787926	468401
700000	
786836	468144
706701	472957
786791	472857
	VS AZM
······································	VS
	Openator VATES PETROLEUM CORPORATION UM 30025330000000 TO (TVDSS): 10832 0 ft GR0 TVD
Example Type Log>	0.00 g-AP, 150.00 [1:00 e+8 00] (said: wm s said: [said: wm s s
Bearing/Hazards	7072.2
Water/Salt/Washout	7966
Salt/Washout	8166 5
Barren	63. L Brushy Cyn 🗗
Hydrocarbon/Loss Circ	
Hydrocarbon/Loss Circ	G4 BSGL (CS9) G1 (G39) G2 (G4 BSGL (CS9) G4 (G4 BSGL (CS9) G4 (G4 BSGL (CS9) G4 (G4 BSGL (CS9) G4 (G4 G50) G4 (G4
Hydrocarbon	L62. L Avalor Shale
Hydrocarbon	
Hydrocarbon Hydrocarbon	L5.3: FBSC (7- 15.1: FBSC (7-
Hydrocarbon	FBSG Upper
Hydrocarbon	
Hydrocarbon	
Hydrocarbon	L4 1: SBSG C -]-
Hydrocarbon	L 1: SBSC C-1- L3 3: TBSC C
Hydrocarbon	
Hydrocarbon	
Hydrocarbon	L WFMPA10 X Sand (f) ← 22 WFMP X Sand (f) ← 22 WFMP
Hydrocarbon	Y Sand (1) C V Sand (1) V Sand (2) V Sand (2
l	

180.55	
4466.63	
2 SAN SIMON UNIT 1 (SSTVD)	
CORPORATION UMI: 30023330000000 Spuid date 047/301995 BHILD FE,REC NPHI TO Seal Data and example control of DB0 state 0 300 of data and 1000	
Contraction (1997) (19	J
на 1 SBSG	
CONTRACTOR OF A PARTY	

ATOR CERTIFICATION to vignation and another the set of complex background kinds, and that the approximate induring the background kinds around an other the set of complex background kinds around at the second at the set of the set				
The Lemma is the a spin half. The set of the learner of the neuron of the set overset or is a underlarg pulsion approximation is a singularly or entered by the discuss.				
to a valuatory policy aproved or a computery				
Date		<u>.</u>	(
			1	
				
ZEYOR CERTIFICATION				
y that the well location shown on this				
d from field notes of actual surveys				
p the best of my being.				
and the part of				
Lovi Le / Soor / -				
and our formance and any				
and the second				
VAL aloud -				
DV_1331(_6EV; (0W3 10:56-20:7.2.15:30) PM constra				
ver. 1				

Drilling Operations Plan Dr. Ireland Fed Com #133H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM Surface Location: 570' FSL & 1219' FEL, Sec. 19 Bottom Hole Location: 240' FNL & 2311' FEL, Sec. 19 Elevation Above Sea Level: 3387'

Geologic Name of Surface Formation: Third Bone Spring

Type of Well: Horizontal well, No Pilot Hole, Drilled with conventional rotary tools

Proposed Drilling Depth: 16,284' MD / 11,450' TVD

Estimated Tops of Geological Markers w/ Mineral Bearing Formation:

	Est	
Formation Name	Тор	Bearing
Rustler	1396	Water
Salado	1771	Barren
Base of Salt	4043	Barren
Bell Canyon	5542	Hydrocarbo n
Brushy Canyon	7492	Hydrocarbo n
Bone Spring Lime	8801	Hydrocarbo n
First Bone Spring Carb	9522	Hydrocarbo n
First Bone Spring Sand	9840	Hydrocarbo n
Second Bone Spring Carb	9988	Hydrocarbo n
Second Bone Spring Sand	10384	Hydrocarbo n
Third Bone Spring Carb	10720	Hydrocarbo n
Third Bone Spring Sand	11383	Hydrocarbo n
Wolfcamp A	11653	Hydrocarbo n

OSE Ground Water Estimated Depth: 280'

Casing Program

Name	Hole Size	Casing Size	Wt/Grad e	Thread Collar	Setting Depth	Top Cement
Surface	17-1/2"	13-3/8" (new)	54.5# J- 55	BTC	850	Surface
Intermediat e	12-1/4"	9-5/8" (new)	40# J-55	BTC	5400	Surface

Drilling Operations Plan Dr. Ireland Fed Com #133H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM Production 8-3/4" 5-1/2" (new) 20# P-110 BTC/TXP 16284 4400

Minimum Safety Factors:	Burst: 1.125	Collapse: 1.125	Tension 1.8
-------------------------	--------------	-----------------	-------------

Cementing Program

Name	Туре	Sacks	Yield	Weight	Blend
					Class C + Bentonite + 2% CaCL2 + 3%
Surface	Lead	210	1.82	12.8	NaCl + LCM
	Tail	720	1.38	14.8	Class C + 5% NaCl + LCM
TOC =	0'	100% Excess		SS	Centralizers per Onshore Order 2.III.B.1f
Intermediat					Class C + Bentonite + 1% CaCL2 + 8%
е	Lead	1170	2.13	12.6	NaCl + LCM
	Tail	620	1.38	14.8	Class C + 5% NaCl + LCM
		2 on btm jt, 1 on 2nd jt, 1 every 4th jt to			
TOC =	0'	1(00% Exce	SS	surface
					TXI + Fluid Loss + Dispersant + Retarder +
Production	Lead	760	2.35	11.5	LCM
					TXI + Fluid Loss + Dispersant + Retarder +
	Tail	1500	1.39	13.2	LCM
					2 on btm jt, 1 on 2nd jt, 1 every other jt to
TOC = 44	400'	3	35% Excess		top of tail cement (500' above TOC)

Pressure Control Equipment:

See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 1000 psi high. After setting intermediate casing, a minimum of a 5M system will be installed and tested to 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high.

The operator requests a variance to have the option of running a speed head for setting the intermediate strings. In the case of running a speed head with landing mandrel for 9-5/8" casing, a minimum of a 5M BOPE system will be installed after surface casing is set. BOP test

Drilling Operations Plan Dr. Ireland Fed Com #133H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. A diagram of the speed head is attached.

Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

Proposed Mud System:

Name	Hole Size	Mud Weight	Visc	Fluid Loss	Type Mud
Surface	17-1/2"	8.30	28	NC	FW Spud Mud
Intermediat e	12-1/4"	10.00	30-32	NC	Brine Water
Production	8-3/4"	9.00	30-32	NC	FW/Cut Brine

All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program subject to change due to hole conditions.

The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1.

Testing, Logging & Coring Program:

- Mud Logging Program: 2 man unit from 5400 TD
- Electric Logging Program: No electric logs are planned at this time. GR will be collected through the MWD tools from Inter. Csg to TD
- No DSTs or cores are planned at this time
- CBL w/ CCL from as far as gravity will let it fall to TOC

Potential Hazards:

No abnormal pressures or temperatures are expected. In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H_2S from the surface to the Bone Spring formations to meet the BLM's minimum requirements for the submission of an " H_2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. Since we have an H_2S safety package on all wells, attached is an " H_2S Drilling Operations Plan". Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used

Estimated BHP: 5500 Estimated BHT: 175°

Construction and Drilling:

Drilling Operations Plan Dr. Ireland Fed Com #133H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

.

Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 25 days. If production casing is run an additional 30 days will be required to complete and construct surface facilities

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

Show Final Text

APD ID: 10400028407

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Submission Date: 03/30/2018

Well Number: 133H Well Work Type: Drill

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_34_S_20180214143930.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_33_S_20180214143929.PDF Project_Area_APD_Layout_20180226_20180226113553.jpg EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_36_S_20180214143932.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_24_S_20180214143927.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_25_S_20180214143928.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_19_S_20180214155448.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_19_S_20180214155448.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_35_S_20180214143930.PDF EXISTING ROAD PURPOSE: ACCESS,FLUID TRANSPORT Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES Existing Road Improvement Description: Caliche cap Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Project_Area_APD_Layout_20180226_20180226113622.jpg

New road type: LOCAL

Length: 523

Width (ft.): 30

Max slope (%): 0 Max grade (%): 1

Feet

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

Operator Name: MATADOR PRODUCTION COMPANY **Well Name:** DR IRELAND FEDERAL

Well Number: 133H

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: No drainages present

Road Drainage Control Structures (DCS) description: Ditches on either side of road

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Existing_Well_Map_Slot_3_20180326152915.JPG

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

Production Facilities map:

Location_Layout_20180326153020.pdf 44924p01_Facility_Layout_S3_20180329_20180329162832.jpg

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL, Water source type: RECYCLED INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING **Describe type:** Source longitude: Source latitude: Source datum: Water source permit type: PRIVATE CONTRACT Source land ownership: PRIVATE Water source transport method: TRUCKING Source transportation land ownership: PRIVATE Water source volume (barrels): 180000 Source volume (acre-feet): 23.200758 Source volume (gal): 7560000 Water source and transportation map: Dr._Ireland_Water_Information_20180213161731.jpg Water source comments: New water well? NO **New Water Well Info** Well latitude: Well Longitude: Well datum: Well target aquifer: Est. depth to top of aquifer(ft): Est thickness of aquifer: Aquifer comments: Aquifer documentation:

Well casing type:

Drill material:

Grout depth:

Used casing source:

Casing top depth (ft.):

Well casing inside diameter (in.):

Well depth (ft):

Well casing outside diameter (in.):

New water well casing?

Drilling method:

Grout material:

Casing length (ft.):

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche from BLM approved source.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY **Disposal type description:**

Disposal location description: Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FEDERAL

Well Number: 133H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

44924p01_Facility_Layout_S2_20180308_20180309091540.jpg Location_Layout_20180326153147.pdf Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: DR IRELAND FEDERAL

Multiple Well Pad Number: 4

Recontouring attachment:

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 5.72	Well pad interim reclamation (acres): 1.58	Well pad long term disturbance (acres): 4.14
Road proposed disturbance (acres): 0	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance (acres): 0	Powerline interim reclamation (acres): 0	Powerline long term disturbance (acres): 0
Pipeline proposed disturbance (acres): 0	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance (acres): 0
Other proposed disturbance (acres): (Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 5.72	Total interim reclamation: 1.58	Total long term disturbance: 4.14

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the last well on the pad.

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 133H

Disturbed areas will be contoured to match pre-construction grades. Once the last well is plugged, then the rest of the pad will be similarly reclaimed within 6 months of plugging.

Topsoil redistribution: Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. **Soil treatment:** None planned.

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

Seed source:

Source address:

Operator Name: MATADOR PRO			
Well Name: DR IRELAND FEDERAL		Well Number: 133H	
PLS pounds per acre: Seed Summary		Proposed seeding season:	
		Total pounds/Acre:	
Seed Type	Pounds/Acre		
eed reclamation attachment:			
Operator Contact/Res	sponsible Offic	ial Contact Info	
First Name:		Last Name:	
Phone:		Email:	
eedbed prep:			
eed BMP:			
eed method:			
xisting invasive species? NO			
xisting invasive species treatm	nent description:		
xisting invasive species treatm	nent attachment:		
leed treatment plan description	n: To BLM standards		
veed treatment plan attachmen	t:		
Ionitoring plan description: To	BLM standards		
Ionitoring plan attachment:			
uccess standards: To BLM sati	sfaction		
it closure description: No pit			
it closure attachment:			
Section 11 - Surface O	wnership		
visturbance type: WELL PAD	· · · · · · · · · · · · · · · · · · ·		

Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: **Operator Name: MATADOR PRODUCTION COMPANY** Well Name: DR IRELAND FEDERAL

Well Number: 133H

NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP, STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: CARLSBAD, NM

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

Describe:

Operator Name: MATADOR PRODUCTION COMPANY		
Well Name: DR IRELAND FEDERAL	Well Number: 133H	
BOR Local Office:		
COE Local Office:		
DOD Local Office:		
NPS Local Office:		
State Local Office:		
Military Local Office:		
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	

Section 12 - Other Information

Right of Way needed? NO

ROW Type(s):

Use APD as ROW?

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: Onsite conducted for four slots and water tank with Vance Wolf on 10/5/2017.

Other SUPO Attachment

Rig Diagram

Rig Diagram

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

09/10/2018

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

 Produced Water Disposal (PWD) Location:

 PWD surface owner:
 PW

 Surface discharge PWD discharge volume (bbl/day):
 PW

 Surface Discharge NPDES Permit?
 Surface Discharge NPDES Permit attachment:

 Surface Discharge site facilities information:
 Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbi/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report