Form 3160-3 (June 2015)			Q	FORM API OMB No. 1 Expires: Janua	004-0137					
(June 2015) UNITED STATES DEPARTMENT OF THE I BUREAU OF LAND MAN APPLICATION FOR PERMIT TO D	5. Lease Serial No. NMNM137804									
APPLICATION FOR PERMIT TO D	RILLOR	ALENTER 1 6	10.0	If Indian, Allotee or	Tribe Name					
1a. Type of work: I DRILL	EENTER	REENTER 1 0	,El	7. If Unit or CA Agreement, Name and No.						
1b. Type of Well: 🚺 Oil Well 🛄 Gas Well 🔲 O	8. Lease Name and Well No.									
Ic. Type of Completion: Hydraulic Fracturing 🖌 Si	ingle Zone	Multiple Zone		PIMENTO FED COM 26 36 03						
	121H (324377)									
2. Name of Operator AMEREDEV OPERATING LLC (372224)				9. API Well No. 70-025-45818						
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin TX	10. Field and Pool, or Exploratory JAL-1 WOLFCAMP WEBT 98234									
4. Location of Well (Report location clearly and in accordance v	with any State	requirements.*)		11. Sec., T. R. M. or Bl	•					
At surface LOT D / 230 FNL / 230 FWL / LAT 32.07894	SEC 3 / T26S / R36E	/ NMP								
At proposed prod. zone LOT M / 50 FSL / 200 FWL / LA	T 32.050686	1 / LONG -103.260	9062							
 Distance in miles and direction from nearest town or post offi miles 	ice*			12. County or Parish LEA	13. State NM					
15. Distance from proposed* 230 feet location to nearest property or lease line, ft.	16. No of ac 160	cres in lease	17. Spaci 640	ng Unit dedicated to this	well					
(Also to nearest drig. unit line, if any) 18. Distance from proposed location*	19. Propose	d Depth	20. BLM	/BIA Bond No. in file						
to nearest well, drilling, completed, 8501 feet applied for, on this lease, ft.		/ 22916 fèet		/B001478						
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2991 feet	22. Approxi 03/01/2020	mate date work will	start*	23. Estimated duration, 90 days						
	24. Attac	hments								
The following, completed in accordance with the requirements of as applicable)	f Onshore Oil	and Gas Order No. 1	, and the H	Hydraulic Fracturing rule	per 43 CFR 3162.3-3					
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th Item 20 above).	e operatior	is unless covered by an ex	isting bond on file (see					
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office	 Operator certification. Such other site specific information and/or plans as may be requested by the BLM. 									
25. Signature (Electronic Submission)		Name (Printed/Typed) Christie Hanna / Ph: (737)300-4723			Date 08/02/2018					
Title Senior Engineering Technician										
Approved by <i>(Signature)</i> (Electronic Submission)		(Printed/Typed) Layton / Ph: (575)2	Da 03	ite 3/21/2019						
Title Assistant Field Manager Lands & Minerals	Office			I						
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.										
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of	nake it a crime or representati	for any person know	wingly and within its	willfully to make to any jurisdiction.	department or agency					
GCP Rec 04/16/19				Ke	1.6/19					
		ru condit	IONS	046	10 17					

(Continued on page 2)

pproval Date: 03/21/2019

APPR

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 03/21/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: LOT D / 230 FNL / 230 FWL / TWSP: 26S / RANGE: 36E / SECTION: 3 / LAT: 32.0789486 / LONG: -103.2608167 (TVD: 0 feet, MD: 0 feet)
 PPP: NWSW / 2642 FNL / 223 FWL / TWSP: 26S / RANGE: 36E / SECTION: 10 / LAT: 32.0723208 / LONG: -103.2615561 (TVD: 12050 feet, MD: 15045 feet)
 BHL: LOT M / 50 FSL / 200 FWL / TWSP: 26S / RANGE: 36E / SECTION: 10 / LAT: 32.0506861 / LONG: -103.2609062 (TVD: 12050 feet, MD: 22916 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Ameredev Operating, LLC
LEASE NO.:	NMNM-137804
WELL NAME & NO.:	Pimento Fed Com 26 36 03 121H
SURFACE HOLE FOOTAGE:	0230' FNL & 0230' FWL
BOTTOM HOLE FOOTAGE	0050' FSL & 0200' FWL Sec. 10, T. 26 S., R 36 E.
LOCATION:	Section 03, T. 26 S., R 36 E., NMPM
COUNTY:	County, New Mexico

<u>Operator to submit sundry for 4 string contingency casing</u> design option after receiving approved permit.

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240,

Page 1 of 9

(575) 3933612

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.

3. Alternative when using skid/walking rig

The operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other wells.

- 4. Option Setting surface casing with Surface Rig
 - a. Notify the BLM when removing the Surface Services Rig.
 - b. Notify the BLM when moving in the H&P Flex Rig. Rig to be moved in within 60 days of notification that Surface Rig has left the location. Failure to notify or have rig on location within 60 days will result in an Incident of Non-Compliance.
 - c. Once the H&P Flex Rig is on location, it shall not be removed from over the hole without prior approval unless the production casing has been run and cemented or the well has been properly plugged. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
 - d. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as H&P Flex Rig is rigged up on well. CIT for the surface casing shall be performed and results recorded on subsequent sundry – pressure to be 1200 psi.
- 5. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.

6. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef

Possible water flows in the Castile, Salado, and Capitan Reef.

Page 3 of 9

Possible lost circulation in the Rustler, Red Beds, and Delaware. Abnormal pressures may be encountered within the 3rd Bone Spring and Wolfcamp Formations.

- 1. The 13-3/8 inch surface casing shall be set at approximately 1888 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Special Capitan Reef requirements:

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following in addition to switching to their four string contingency design:

Page 4 of 9

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

9-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed DV tool at depth of 5013', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

a. First stage to DV tool:____

- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage. Excess calculates to 9% - Additional cement may be required
- b. Second stage above DV tool:
- □ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required through the curve and a minimum of one every other joint.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - ☐ Cement should tie-back at least **50 feet above the Capitan Reef** (Top of Capitan Reef estimated at 3734'). Operator shall provide method of verification.
- 4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. **PRESSURE CONTROL**

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

Page 6 of 9

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
- e. Operator shall perform the 9-5/8" and 7-5/8" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
- f. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

10M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall

have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- f. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the **Wolfcamp** formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

D. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the **Wolfcamp** formation, and shall be used until production casing is run and cemented.

E. **DRILL STEM TEST**

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

F. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

Page 8 of 9

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 031519

Page 9 of 9

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	AMEREDEV OPERATING LLC.
LEASE NO.:	NMNM137804
WELL NAME & NO.:	121H- PIMENTO FED COM 263603
SURFACE HOLE FOOTAGE:	230'/N & 230'/W
BOTTOM HOLE FOOTAGE	200'/S & 380'/W
LOCATION:	Section. 3.,T26S.,R.36E., NMP
COUNTY:	LEA County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

□ General Provisions

□ Permit Expiration

□ Archaeology, Paleontology, and Historical Sites

□ Noxious Weeds

□ Special Requirements

Hydrology

□ Construction

Notification

Topsoil

Closed Loop System

Federal Mineral Material Pits

Well Pads

Roads

□ Road Section Diagram

□ Production (Post Drilling)

Well Structures & Facilities

Pipelines

Electric Lines

□ Interim Reclamation

□ Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

П. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult

with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

v. SPECIAL REQUIREMENT(S)

Hydrology:

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ¹/₂ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Electric Lines: Any water erosion that may occur due to the construction of overhead electric line and during the life of the power line will be quickly corrected and proper measures will be taken to prevent future erosion.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. **TOPSOIL**

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the .

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which

creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, leadoff ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. **PIPELINES**

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way.

This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

5. All construction and maintenance activity will be confined to the authorized right-of-way.

6. The pipeline will be buried with a minimum cover of <u>36</u> inches between the top of the pipe and ground level.

7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:

- Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed **20** feet. The trench is included in this area. (Blading is defined as the complete removal of brush and ground vegetation.)
- Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
- The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (*Compressing can be caused by vehicle tires, placement of equipment, etc.*)

8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately $_______6____$ inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.

9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
(X) seed mixture 2	() seed mixture 4
() seed mixture 2/LPC	() Aplomado Falcon Mixture

13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2.

14. The pipeline will be identified by signs at the point of origin and completion of the right-ofway and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.

15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

18. <u>Escape Ramps</u> - The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

- a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
- b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The

holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 2, for Sandy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed

will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per <u>acre are to be doubled.</u> The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	I <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

VAFMSS

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 02/01/2019

Operator Certification Data Report

03/25/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

State:

City: Austin

.

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: Street Address: City: Phone: Email address:

Zip:

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400031733

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Type: OIL WELL

Well Number: 121H Well Work Type: Drill

Tie to previous NOS? 10400024490

Federal or Indian agreement:

Submission Date: 08/02/2018

Is the first lease penetrated for production Federal or Indian? FED

Reservation:

Zip: 78735

Submission Date: 08/02/2018

Title: Senior Engineering Technician

Section 1 - General

APD ID: 10400031733

BLM Office: CARLSBAD Federal/Indian APD: FED

Lease number: NMNM137804

Surface access agreement in place?

Agreement in place? NO

Agreement number:

Agreement name:

Keep application confidential? NO

Operator letter of designation:

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

User: Christie Hanna

Lease Acres: 160

Allotted?

. .

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Operator City: Austin State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: PIMENTO FED COM 26 36 03

Field/Pool or Exploratory? Field and Pool

Master SUPO name: Master Drilling Plan name: Well Number: 121H

Field Name: JAL

Mater Development Plan name:

Well API Number:

Pool Name: WOLFCAMP WEST

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Page 1 of 3

Operator Name: AMEREDEV OPERATING LLC **Well Name:** PIMENTO FED COM 26 36 03

Well Number: 121H

Describe oth	er minerals:								
Is the proposed well in a Helium production area? N			Use Existing Well Pad?	NO	New surface disturbance?				
Type of Well Pad: MULTIPLE WELL Well Class: HORIZONTAL			Multiple Well Pad Name	Number: 121H					
			PIMENTO Number of Legs: 1						
Well Work Ty	/pe: Drill								
Well Type: O									
Describe We	II Туре:								
Well sub-Typ	be: INFILL								
Describe sub	o-type:		· ·						
Distance to t	own: 5 Miles	Distance to nea	arest well: 8501 FT	Distanc	e to lease line: 230 FT				
Reservoir we	ell spacing assigned acres	Measurement:	640 Acres						
Well plat:	Pimento_Fed_Com_26_36_	_03_121HGa	Gas_Capture_Plan_20180628151427.pdf						
	PIMENTO_FED_COM_26_36_03_121HBLM_LEASE_MAP_20190131144704.pdf								
	PIMENTO_FED_COM_26_36_03_121HC_102_REV_SIG_20190131144706.pdf								
	PIMENTO_FED_COM_26_	36_03_121H	EXH_2AB_20190131144708.pdf						
	PIMENTO_FED_COM_26_	36_03_121H	VICINITY_MAP_20190131144708.pdf						
Well work sta	art Date: 03/01/2020		Duration: 90 DAYS						

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 19642

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	Ш	TVD	
SHL	230	FNL	230	FWL	26S	36E	3	Lot	32.07894	-	LEA	NEW	NEW	F	NMNM	299	0	Ó	
Leg								D	86	103.2608		MEXI	MEXI		137804	1	•		
#1							•			167		CO	co						
Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
KOP Leg #1	349	FSL	273	FEL	25S	36E	33	Aliquot SESE	32.08055 36	- 103.2624 228	LEA		NEW MEXI CO	F	NMNM 136233	- 857 9	116 09	115 70
PPP Leg #1	264 2	FNL	223	FWL	26S	36E	10	Aliquot NWS W	32.07232 08	- 103.2615 561	LEA		NEW MEXI CO	F	NMNM 136234	- 905 9	150 45	120 50
EXIT Leg #1	50	FSL	200	FWL	26S	36E	10	Lot M	32.05068 61	- 103.2609 062	LEA		NEW MEXI CO	F	FEE	- 905 9	229 16	120 50
BHL Leg #1	50	FSL	200	FWL	26S	36E	10	Lot M	32.05068 61	- 103.2609 062	LEA		NEW MEXI CO	F	FEE	- 905 9	229 16	120 50

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Sec. 1

APD ID: 10400031733

Submission Date: 08/02/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Show Final Text

مير و روند م

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical				Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1	RUSTLER	1254	1763	1763	ANHYDRITE	NONE	No
2	SALADO	-731	1985	1985	SALT	NONE	No
3	TANSILL	-2008	3262	3262	LIMESTONE	NONE	No
4	CAPITAN REEF	-2551	3805	3805	LIMESTONE	USEABLE WATER	No
5	LAMAR	-3709	4963	4963	LIMESTONE	NONE	No
6	BELL CANYON	-3905	5159	5159	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-5450	6704	6704	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-6434	7688	7688	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-8046	9300	9300	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-8631	9885	9885	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-9291	10545	10545	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-9886	11140	11140	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-10067	11321	11321	SHALE	NATURAL GAS,OIL	No
14	WOLFCAMP	-10471	11725	11725	SHALE	NATURAL GAS,OIL	Yes
						,	

Section 2 - Blowout Prevention

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Pressure Rating (PSI): 10M Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. **Requesting Variance?** YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See Attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190131155215.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190131155237.pdf

5M_BOP_System_20190131155237.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190131155238.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190131155256.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1888	0	1888	2991		1888	J-55		OTHER - BTC	4.86	0.52	DRY	8.89	DRY	8.29
_	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10670	0	10670			10670	HCL -80		OTHER - BTC	1.29	1.08	DRY	2.19	DRY	2.2
	PRODUCTI ON	8.5	5.5	NEW	API	N	0	22916	0	12050			22916	OTH ER		OTHER - BTC	1.51	1.64	DRY	2.72	DRY	3.02

Casing Attachments

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_54.50_J55_SEAH_20190131155501.pdf

PIMENTO_FED_COM_26_36_03_121H___WELLBORE_DIAGRAM_AND_CDA_20190131155513.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

PIMENTO_FED_COM_26_36_03_121H___WELLBORE_DIAGRAM_AND_CDA_20190131155655.pdf

9625_40_SeAH80HC_4100_Collapse_20190131155734.pdf

Casing ID: 3

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

PIMENTO_FED_COM_26_36_03_121H___WELLBORE_DIAGRAM_AND_CDA_20190131160235.pdf

5.50_20_USS_P110_HC_BTC_API_20190207144858.pdf

Operator Name: AMEREDEV OPERATING LLC Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1502	965	1.76	13.5	1697. 63	50	Class C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake
SURFACE	Tail		1502	1888	200	1.34	14.8	268	100	Class C	Salt
INTERMEDIATE	Lead		0	4163	686	2.47	11.9	1694. 94	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		4163	5013	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	5013	5013	9414	1531	2.47	11.9	3780. 79	25	Class H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-settling Expansion Additive
INTERMEDIATE	Tail		9414	1067 0	300	1.24	14.5	371.1	25	Class H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		0	2291 6	4893	1.34	14.2	6556. 57	25	Class H	Salt, Bentonite, Fluid Loss, Dispersant, Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Closed.

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1888	WATER-BASED MUD	8.4	8.6							
1888	1067 0	OTHER : Diesel Brine Emulsion	8.5	9.4							
1067 0	1205 0	OIL-BASED MUD	10.5	14							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2349

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180628162029.pdf

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Pim121_DR_20190201083711.pdf

Pim121_LLR_20190201083712.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190201083741.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190201083758.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20180628162114.pdf Requested_Exceptions___3_String_Revised_01312019_20190201083832.pdf

·

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
 - 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting in While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

AMEREDEV

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

<u>13-3/8" 54.50# .380 J-55</u>

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE		1130	psi
Internal Yields Pressure			
PE	•	2730	psi
STC	· · · · · · · · · · · · · · · · · · ·	2730	PSI
BTC		2730	psi
Yield Strength, Pipe Body		853	1000 lbs
Joint Strength, STC		514	1000 lbs
Joint Strength, BTC		909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Wellbore Schematic

Well:	Pimento Fed Com 26-36-03 111H	Co. Well ID:	xxxxx
SHL:	Sec. 03 26S-36E 230' FNL & 230' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 10 26S-36E 50' FSL & 200' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,991'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,050'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,916'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cement	Mud Weight
17.5"		Rustler	1,763'		1,165 Sacks TOC 0'	8.4-8.6 ppg WBM
		13.375" 54.5# J-55 BTC	1,888'	<u> </u>		<u> </u>
		Salado	1,985'			
	1	Tansill	3,262'			
		Capitan Reef	3,805'		s	
	•	Lamar	4,963'		886 Sacks TOC 0'	50% Excess ie Emulsion
		DV Tool	5,013'		88 C 1	ne E
12.25"		Bell Canyon	5,159'	.:		50% Excess 8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	6,704'	:		og Die
		Bone Spring Lime	7,688'			9.4 pl
		First Bone Spring	9,300'			8.5 -
		Second Bone Spring	9,885'		cks	ess
		Third Bone Spring Upper	10,545'		1,723 Sacks TOC 0'	50% Excess
	N	9.625" 40# L-80HC BTC	10,670'		1,7 T0	20 C
8.5"		Third Bone Spring	11,140'			
0.5		Wolfcamp A	11,321'			OBM
12° Build @	·.	Wolfcamp B	11,725'		•	ccess 10.5 - 14 ppg OBM
11,609' MD	L	· · · · · · · · · · · · · · · · · · ·			S	2-1 2-1
thru		0# P-110CYHP BTC mp B 12050 TVD // 22916 MD	22,916'		4,893 Sacks TOC 0'	25% Excess
					4,893 S TOC 0'	%927

Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,888'	13.375	54.5	J-55	BTC				
Intermediate	12.25	10,670'	9.625	40	HCL-80	BTC				
Prod Segment A	8.5	11,609'	5.5	20	CYHP-110	BTC				
Prod Segment B	8.5	22,916'	5.5	20	CYHP-110	BTC				

Casing Design and Safety Factor Check

	Chec	k Surface (Casing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.375	853	915	4,100	2,730					
Safety Factors									
1.56 8.29 8.89 4.86 0.52									
Check Intermediate Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
Safety Factors									
2.31	2.20	2.19	1.29	1.08					
	Check Pro	od Casing,	Segment A						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
1.36	3.02	2.72	1.51	1.64					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
Safety Factors									
1.36	82.54	74.26	1.46	1.64					

<u>9.625" 40#</u>

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter Wall		9.625 0.395	in. in.
Inside Diameter		8.835	in.
Drift		 8.750	in.
Weight, T&C	-	 40.000	lbs./ft.
Weight, PE		 38.970	lbs./ft.

<u>.395"</u>

Performance Properties

Collapse		·: · ·	4100	psi
Internal Yield	Pressure at M	linimum Yield		
	PE		5750	psi
	LTC		5750	psi
	втс	·	5750	psi
· · · ·	: · · · · · · · · · · · · · · · · · · ·			:
Yield Strength	, Pipe Body		916	1000 lbs.
Joint Strength	.* •			
	LTC	:	717	1000 lbs.
•	BTC	:	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U.S. Steel Tubular Products

Product Information

5.5 in. 20 lb/ft (0.361 in. wall) P-110 HC Casing STAR SEAL - CDC™

Grade(s)	P-110 HC		
MECHANICAL PROPERTIES			
	Yield Strength		
	Minimum	110	ksi
:	Maximum	140	ksi
	Tensile Strength		
	Minimum	125	ksi
PIPE PROPERTIES			
Dimensions, Nominal	Pipe Outside Diameter	5.500	in.
	Wall	0.361	in.
	Pipe Inside Diameter	4.778	in.
	Pipe Drift		
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Weight, T&C	20.00	lbs/ft
	Weight, Plain End	19.83	lbs/ft
	Pipe Cross Sectional Area	5.828	sq. in.
			•
Performance Properties	Minimum Pipe Body Yield Strength	641	1,000 lbs
	Minimum Collapse Pressure	12,200	psi
	Minimum Internal Yield Pressure	12,640	psi
CONNECTION PROPERTIES			
Dimensions, Nominal	Connection Outside Diameter	6.050	in.
	Connection Inside Diameter	4.778	in.
	Connection Drift		
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Makeup Loss	4.63	in.
	Critical Area	5.828	in.
	Joint Efficiency	100	%
			, -
Performance Properties	Joint Strength	667	1,000 lbs
	Compression Rating	400	1,000 lbs
	API Collapse Pressure Rating	12,200	psi
	API Internal Pressure Resistance	12,360	psi
	Maximum Uniaxial Bend Rating	57.2	deg/100 f
Recommended Torque Values	Minimum Shoulder Torque	5,000	ft-lbs
necommence rorque values	Maximum Shoulder Torque	5,000 7,500	ft-lbs
		7,500	11-10-5
	Connection Yield Torque	16,100	ft-lbs

* STAR SEAL - CDC (Casing Drilling Connection) is a Modified API Buttress threaded and coupled connection designed for field proven in drilling with casing applications. Star Seal is a registered trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore, be used or relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

600 Pitts

U.S. Steel Tubular Products, Inc. 600 Grant Street Pittsburgh, PA 15219

6/9/2009

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - b. Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- **b.** Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. <u>H₂S Detection and Alarm Systems:</u>

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- **b.** An audio alarm will be installed on the derrick floor and in the top doghouse.

4. <u>Protective Equipment for Essential Personnel:</u>

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.
- b. <u>Auxiliary Rescue Equipment:</u>
 - i. Stretcher
 - ii. 2 OSHA full body harnesses
 - iii. 100 ft. 5/8" OSHA approved rope
 - iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

AMEREDEV

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. Drill Stem Testing: No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799									
Key Personnel:									
Name	Title	Office	Mobile						
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810						
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996						
Blake Estrada	Construction Foreman		432-385-5831						

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

JUN/PIM JUN/PIM #1S Pimento 121H

Wellbore #1

Plan: Design #1

Standard Planning Report

14 January, 2019

Planning Report

Database: Company: Project:	EDM5000 Ameredev Operati JUN/PIM	ng, LLC.		Local Co-ordi TVD Reference MD Reference	••	Well Pimento KB @ 3018.0 KB @ 3018.0	usft		
Site:	JUN/PIM #1S			North Referen	ice:	Grid			
Well:	Pimento 121H			Survey Calcu	lation Method:	¹ Minimum Cur	vature		
Wellbore:	Wellbore #1								
Design:	Design #1)		, ,	<u> </u>		
Project	JUN/PIM								
Map System:	US State Plane 1983			System Datum	:	Mean Sea Leve	el		
Geo Datam.	North American Datu			•					
Map Zone:	New Mexico Eastern	Zone					<u> . </u>	<u></u>	
Site	JUN/PIM #1S						-		
Site Position:			Northing:	-	.55 usft Latitud				44.214 N
From:	Lat/Long		Easting:	873,588	•			103° 15' 3	8.243 W
Position Uncertainty:		0.0 usft	Slot Radius:	1	3-3/16 " Grid Co	onvergence:			0.57 *
Well	Pimento 121H		-					······	
Well Position	+N/-S	-0.5 usft	Northing:	3	94,110.03 usft	Latitude:		32° 4' 4	44.215 N
	+E/-W -	-60.0 usft	Easting:	8	73,528.19 usft	Longitude:		103° 15' 3	8.940 W
Position Uncertainty		0.0 usft	Wellhead Elev	vation:		Ground Level:		2,9	91.0 usft
Wellbore	Wellbore #1				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Magnetics	Model Name		Sample Date	Declination (°)		Dip Angle (°)		Field Strength (nT)	
	IGRF201	15	1/11/2019		6.63	59.96		47,725.90533641	
Design	Design #1					به و المعروف مرد ال			
Audit Notes:	.			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Version:			Phase:	PROTOTYPE	Tie On Dep	th:	0.0		
Vertical Section:		Depth Fro	• •	+N/-S	+E/-W	1	Direction		-
		(us		(usft)	(usft)		(°)		
		0.	0	0.0	0.0		179.59		
Plan Survey Tool Pro	gram Dat	e 1/14/20)19						
Depth From (usft)	Depth To (usft) Surve	ey (Wellbo	re)	Tool Name	Rema	arks			
1 0.0	22,915.7 Desig	n #1 (Well	bore #1)	MWD					· · · · · ·
			" ''						
				OWSG MWD - Sta	indard				

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Pimento 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3018.0usft
Project:	JUN/PIM	MD Reference:	KB @ 3018.0usft
Site:	JUN/PIM #1S	North Reference:	Grid
Well:	Pimento 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Design #1		

Plan Sections

Measured Depth (usft)	Incilnation (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	319.00	2,299.5	11.8	-10.3	2.00	2.00	0.00	319.00	
6,724.8	6.00	319.00	6,700.0	360.9	-313.7	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	372.8	-324.0	2.00	-2.00	0.00	180.00	
8,525.3	0.00	0.00	8,500.0	372.8	-324.0	0.00	0.00	0.00	0.00	
8,825.3	6.00	319.00	8,799.5	384.6	-334.3	2.00	2.00	0.00	319.00	
11,138.6	6.00	319.00	11,100.0	567.1	-493.0	0.00	0.00	0.00	0.00	
11,438.6	0.00	0.00	11,399.5	578.9	-503.3	2.00	-2.00	0.00	180.00	
11,609.1	0.00	0.00	11,570.0	578.9	-503.3	0.00	0.00	0.00	0.00	
12,353.0	89.26	135.73	12,047.4	241.4	-174.2	12.00	12.00	0.00	135.73	
12,363.5	89.26	135.73	12,047.5	233.9	-166.9	0.00	0.00	0.00	0.00	
12,727.5	90.00	179.41	12,050.0	-94.5	-31.3	12.00	0.20	12.00	89.23	Pim121 FTP2
22,915.7	90.00	179.41	12,050.0	-10,282.2	74.2	0.00	0.00	0.00	0.00	Pim121 BHL

---- 1

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Pimento 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3018.0usft
Project:	JUN/PIM	MD Reference:	KB @ 3018.0usft
Site:	JUN/PIM #1S	North Reference:	Grid
Well:	Pimento 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Weilbore #1		
Design:	Design #1		

Planned Survey

	Measured Depth	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	(usft)	(°)	(°)	(usn)	(usft)	(usft)		(7100usit)		
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
	600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
	900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,100.0	2.00	319.00	2,100.0	1.3	-1.1	-1.3	2.00	2.00	0.00
	2,200.0	4.00	319.00	2,199.8	5.3	-4.6	-5.3	2.00	2.00	0.00
	2,300.0	6.00	319.00	2,299.5	11.8	-10.3	-11.9	2.00	2.00	0.00
1	2,400.0	6.00	319.00	2,398.9	19.7	-17.2	-19.9	0.00	0.00	0.00
	2,500.0	6.00	319.00	2,498.4	27.6	-24.0	-27.8	0.00	0.00	0.00
	2,600.0	6.00	319.00	2,597.8	35.5	-30.9	-35.7	0.00	0.00	0.00
	2,700.0	6.00	319.00	2,697.3	43.4	-37.7	-43.7	0.00	0.00	0.00
	2,800.0	6.00 6.00	319.00	2,796.7	51.3 59.2	-44.6	-51.6 -59.5	0.00	0.00 0.00	0.00 0.00
	2,900.0		319.00	2,896.2		-51.4		0.00		
	3,000.0	6.00	319.00	2,995.6	67.1	-58.3	-67.5	0.00	0.00	0.00
	3,100.0	6.00	319.00	3,095.1	75.0	-65.2	-75.4	0.00	0.00	0.00
	3,200.0	6.00	319.00	3,194.5	82.8	-72.0	-83.4	0.00	0.00	0.00
	3,300.0	6.00	319.00	3,294.0	90.7	-78.9	-91.3	0.00	0.00	0.00
	3,400.0	6.00	319.00	3,393.4	98.6	-85.7	-99.2	0.00	0.00	0.00
	3,500.0	6.00	319.00	3,492.9	106.5	-92.6	-107.2	0.00	0.00	0.00
	3,600.0	6.00	319.00	3,592.3	114.4	-99.4	-115.1	0.00	0.00	0.00
1	3,700.0	6.00	319.00	3,691.8	122.3	-106.3	-123.1	0.00	0.00	0.00
1	3,800.0	6.00	319.00	3,791.2	130.2	-113.2	-131.0	0.00	0.00	0.00
	3,900.0	6.00	319.00	3,890.7	138.1	-120.0	-138.9	0.00	0.00	0.00
	4,000.0	6.00	319.00	3,990.1	146.0	-126.9	-146.9	0.00	0.00	0.00
	4,100.0	6.00	319.00	4,089.6	153.8	-133.7	-154.8	0.00	0.00	0.00
	4,200.0	6.00	319.00	4,189.0	161.7	-140.6	-162.7	0.00	0.00	0.00
	4,300.0	6.00	319.00	4,288.5	169.6	-147.4	-170.7	0.00	0.00	0.00
1	4,400.0	6.00	319.00	4,387.9	177.5	-154.3	-178.6	0.00	0.00	0.00
1	4,500.0	6.00	319.00	4,487.4	185.4	-161.2	-186.6	0.00	0.00	0.00
	4,600.0	6.00	319.00	4,586.9	193.3	-168.0	-194.5	0.00	0.00	0.00
	4,700.0	6.00	319.00	4,686.3	201.2	-174.9	-202.4	0.00	0.00	0.00
	4,800.0	6.00	319.00	4,785.8	209.1	-181.7	-210.4	0.00	0.00	0.00
1	4,900.0	6.00	319.00	4,885.2	217.0	-188.6	-218.3	0.00	0.00	0.00
	5,000.0	6.00	319.00	4,984.7	224.8	-195.5	-226.2	0.00	0.00	0.00
1	5,100.0	6.00	319.00	5,084.1	232.7	-202.3	-234.2	0.00	0.00	0.00
1	5,200.0	6.00	319.00	5,183.6	240.6	-209.2	-242.1	0.00	0.00	0.00
	5,300.0	6.00	319.00	5,283.0	248.5	-216.0	-250.1	0.00	0.00	0.00
L	0,000.0	0.00	010.00	0,200.0	240.0	210.0	200.1	0.00	0.00	

COMPASS 5000.15 Build 90

l

Planning Report

<u>,</u>			
Database:	EDM5000	Local Co-ordinate Reference:	Well Pimento 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3018.0usft
Project:	JUN/PIM	MD Reference:	KB @ 3018.0usft
Site:	JUN/PIM #1S	North Reference:	Grid
Well:	Pimento 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Bulid Rate (°/100usft)	Turn Rate (°/100usft)	
-	5,400.0	6.00	319.00	5,382.5	256.4	-222.9	-258.0	0.00	0.00	0.00	
	5,500.0	6.00	319.00	5,481.9	264.3	-229.7	-265.9	0.00	0.00	0.00	
	5,600.0	6.00	319.00	5,581.4	272.2	-236.6	-273.9	0.00	0.00	0.00	
	5,700.0	6.00	319.00	5,680.8	280.1	-243.5	-281.8	0.00	0.00	0.00	
	5,800.0	6.00	319.00	5,780.3	288.0	-250.3	-289.8	0.00	0.00	0.00	
	5,900.0	6.00	319.00	5,879.7	295.8	-257.2	-297.7	0.00	0.00	0.00	
	6,000.0	6.00	319.00	5,979.2	303.7	-264.0	-305.6	0.00	0.00	0.00	
	6,100.0	6.00	319.00	6,078.6	311.6	-270.9	-313.6	0.00	0.00	0.00	
	6,200.0	6.00	319.00	6,178.1	319.5	-277.7	-321.5	0.00	0.00	0.00	
	6,300.0	6.00	319.00	6,277.5	327.4	-284.6	-329.4	0.00	0.00	0.00	
	6,400.0	6.00	319.00	6,377.0	335.3	-291.5	-337.4	0.00	0.00	0.00	
	6,500.0	6.00	319.00	6,476.4	343.2	-298.3	-345.3	0.00	0.00	0.00	
	6,600.0	6.00	319.00	6,575.9	351.1	-305.2	-353.3	0.00	0.00	0.00	
	6,700.0	6.00	319.00	6,675.3	359.0	-312.0	-361.2	0.00	0.00	0.00	
	6,724.8	6.00	319.00	6,700.0	360.9	-313.7	-363.2	0.00	0.00	0.00	
	6,800.0	4.50	319.00	6,774.9	366.1	-318.2	-368.4	2.00	-2.00	0.00	
	6,900.0	2.50	319.00	6,874.7	370.7	-322.2	-373.0	2.00	-2.00	0.00	
	7,000.0	0.50	319.00	6,974.7	372.7	-324.0	-375.0	2.00	-2.00	0.00	[
1	7,024.8	0.00	0.00	6,999.5	372.8	-324.0	-375.1	2.00	-2.00	0.00	
	7,100.0	0.00	0.00	7,074.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,200.0	0.00	0.00	7,174.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,300.0	0.00	0.00	7,274.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,400.0	0.00	0.00	7,374.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,500.0	0.00	0.00	7,474.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,600.0	0.00	0.00	7,574.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,700.0	0.00	0.00	7,674.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,800.0	0.00	0.00	7,774.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	7,900.0	0.00	0.00	7,874.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	8,000.0	0.00	0.00	7,974.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	8,100.0	0.00	0.00	8,074.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	8,200.0	0.00	0.00	8,174.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	8,300.0	0.00	0.00	8,274.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	8,400.0	0.00	0.00	8,374.7	372.8	-324.0	-375.1	0.00	0.00	0.00	
	8,500.0	0.00	0.00	8,474.7	372.8	-324.0	-375.1	0.00	0.00	0.00	l l
	8,525.3	0.00	0.00	8,500.0	372.8	-324.0	-375.1	0.00	0.00	0.00	- 1
	8,600.0	1.49	319.00	8,574.7	373.5	-324.7	-375.8	2.00	2.00	0.00	
	8,700.0	3.49	319.00	8.674.6	376.8	-327.5	-379.1	2.00	2.00	0.00	
	8,800.0	5.49	319.00	8,774.2	382.7	-332.7	-385.1	2.00	2.00	0.00	
	8,825.3	6.00	319.00	8,799.5	384.6	-334.3	-387.0	2.00	2.00	0.00	
	8,900.0	6.00	319.00	8,873.7	390.5	-339.4	-392.9	0.00	0.00	0.00	l
	9,000.0	6.00	319.00	8,973.2	398.4	-346.3	-400.9	0.00	0.00	0.00	
	9,100.0	6.00	319.00	9,072.6	406.3	-353.2	-408.8	0.00	0.00	0.00	
	9,200.0	6.00	319.00	9,172.1	414.2	-360.0	-416.7	0.00	0.00	0.00	
	9,300.0	6.00	319.00	9,271.5	422.0	-366.9	-424.7	0.00	0.00	0.00	
	9,400.0	6.00	319.00	9,371.0	429.9	-373.7	-432.6	0.00	0.00	0.00	
	9,500.0	6.00	319.00	9,470.4	437.8	-380.6	-440.6	0.00	0.00	0.00	
	9,600.0	6.00	319.00	9,569.9	445.7	-387.4	-448.5	0.00	0.00	0.00	1
	9,700.0	6.00	319.00	9,669.3	453.6	-394.3	-456.4	0.00	0.00	0.00	
	9,800.0	6.00	319.00	9,768.8	461.5	-401.2	-464.4	0.00	0.00	0.00	
	9,900.0	6.00	319.00	9,868.2	469.4	-408.0	-472.3	0.00	0.00	0.00	
	10,000.0	6.00	319.00	9,967.7	477.3	-414.9	-480.2	0.00	0.00	0.00	
	10,100.0	6.00	319.00	10,067.1	485.2	-421.7	-488.2	0.00	0.00	0.00	
	10,200.0	6.00	319.00	10,166.6	493.0	-428.6	-496.1	0.00	0.00	0.00	
	10,300.0	6.00	319.00	10,266.0	500.9	-435.5	-504.1	0.00	0.00	0.00	
											-

COMPASS 5000.15 Build 90

· 1

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Pimento 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3018.0usft
Project:	JUN/PIM	MD Reference:	KB @ 3018.0usft
Site:	JUN/PIM #1S	North Reference:	Grid
Well:	Pimento 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400.0	6.00	319.00	10,365.5	508.8	-442.3	-512.0	0.00	0.00	0.00
10,500.0	6.00	319.00	10,464.9	516.7	-449.2	-519.9	0.00	0.00	0.00
10,600.0	6.00	319.00	10,564.4	524.6	-456.0	-527.9	0.00	0.00	0.00
10,700.0	6.00	319.00	10,663.8	532.5	-462.9	-535.8	0.00	0.00	0.00
10,800.0	6.00	319.00	10,763.3	540.4	-469.7	-543.8	0.00	0.00	0.00
10,900.0	6.00	319.00	10,862.8	548.3	-476.6	-551.7	0.00	0.00	0.00
11,000.0	6.00	319.00	10,962.2	556.2	-483.5	-559.6	0.00	0.00	0.00
11,100.0	6.00	319.00	11,061.7	564.0	-490.3	-567.6	0.00	0.00	0.00
11,138.6	6.00	319.00	11,100.0	567.1	-493.0	-570.6	0.00	0.00	0.00
11,200.0	4.77	319.00	11,161.2	571.4	-496.7	-575.0	2.00	-2.00	0.00
11,300.0	2.77	319.00	11,261.0	576.4	-501.1	-580.0	2.00	-2.00	0.00
11,400.0	0.77	319.00	11,360.9	578.7	-503.1	-582.3	2.00	-2.00	0.00
11,438.6	0.00	0.00	11,399.5	578.9	-503.3	-582.5	2.00	-2.00	0.00
11,500.0	0.00	0.00	11,460.9	578.9	-503.3	-582.5	0.00	0.00	0.00
11,509.1	0.00	0.00	11,470.0	578.9	-503.3	-582.5	0.00	0.00	0.00
Sec 34 11,600.0	0.00	0.00	11,560.9	578.9	-503.3	-582.5	0.00	0.00	0.00
11,609.1	0.00	0.00	11,560.9	578.9	-503.3	-582.5	0.00	0.00	0.00
Pim121 KOP	0.00	0.00	11,370.0	510.9	-505.3	-302.3	0.00	0.00	0.00
11,700.0	10.91	135.73	11,660.3	572.8	-497.2	-576.3	12.00	12.00	0.00
11,800.0	22.91	135.73	11,755.9	552.0	-477.0	-555.4	12.00	12.00	0.00
11,900.0	34.91	135.73	11,843.2	517.4	-443.3	-520.6	12.00	12.00	0.00
12,000.0	46.91	135.73	11,918.7	470.6	-397.7	-473.5	12.00	12.00	0.00
12,100.0	58.91	135.73	11,978.9	413.6	-342.1	-416.1	12.00	12.00	0.00
12,200.0	70.91	135.73	12,021.2	348.9	-279.0	-350.9	12.00	12.00	0.00
12,300.0	82.91	135.73	12,043.8	279.3	-273.0	-280.8	12.00	12.00	0.00
12,353.0	89.26	135.73	12,043.0	241.4	-174.2	-200.0	12.00	12.00	0.00
12,363.5	89.26	135.73	12,047.5	233.9	-166.9	-242.7	0.00	0.00	0.00
12,303.5	89.33	140.11	12,048.0	206.8	-142.4	-207.8	12.00	0.00	12.00
12,500.0	89.51	152.11	12,049.0	124.0	-86.8	-124.6	12.00	0.19	12.00
12,515.4	89.54	153.96	12,049.1	110.2	-79.8	-110.8	12.00	0.20	12.00
Pim121 FTP	00.04	100.00	12,040.1	110.2	10.0		12.00	0.20	12.00
12,600.0	89.72	164.11	12,049.7	31.3	-49.6	-31.7	12.00	0.21	12.00
				-67.0	-49.0	-31.7		0.21	
12,700.0 12,727,5	89.94 90.00	176.11 179.41	12,050.0 12,050.0	-67.0 -94.5			12.00	0.22	12.00 12.00
12,727.5 Pim121 FTP2		1/8.41	12,050.0	-54.3	-31.3	94.2	12.00	0.22	12.00
12,800.0	90.00	179.41	12,050.0	-167.0	-30.6	166.7	0.00	0.00	0.00
12,900.0	90.00	179.41	12,050.0	-267.0	-29.6	266.7	0.00	0.00	0.00
13,000.0	90.00	179.41	12,050.0	-367.0	-28.5	366.7	0.00	0.00	0.00
13,100.0	90.00	179.41	12,050.0	-466.9	-27.5	466.7	0.00	0.00	0.00
13,200.0	90.00	179.41	12,050.0	-566.9	-26.4	566.7	0.00	0.00	0.00
13,300.0	90.00	179.41	12,050.0	-666.9	-25.4	666.7	0.00	0.00	0.00
13,400.0	90.00	179.41	12,050.0	-766.9	-24.4	766.7	0.00	0.00	0.00
13,500.0	90.00	179.41	12,050.0	-866.9	-23.3	866.7	0.00	0.00	0.00
13,600.0	90.00	179.41	12,050.0	-966.9	-22.3	966.7	0.00	0.00	0.00
13,700.0	90.00	179.41	12,050.0	-1,066.9	-21.3	1,066.7	0.00	0.00	0.00
13,800.0	90.00	179.41	12,050.0	-1,166.9	-20.2	1,166.7	0.00	0.00	0.00
13,900.0	90.00	179.41	12,050.0	-1,266.9	-19.2	1,266.7	0.00	0.00	0.00
14,000.0	90.00	179.41	12,050.0	-1,366.9	-18.2	1,366.7	0.00	0.00	0.00
14,100.0	90.00	179.41	12,050.0	-1,466.9	-17.1	1,466.7	0.00	0.00	0.00
14,200.0	90.00	179.41	12,050.0	-1,566.9	-16.1	1,566.7	0.00	0.00	0.00
14,300.0	90.00	179.41	12,050.0	-1,666.9 -1,766.9	-15.0	1,666.7	0.00	0.00	0.00
14,400.0	90.00	179.41	12,050.0		-14.0	1,766.7	0.00	0.00	0.00

COMPASS 5000.15 Build 90

1

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Pimento 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3018.0usft
Project:	JUN/PIM	MD Reference:	KB @ 3018.0usft
Site:	JUN/PIM #1S	North Reference:	Grid
Well:	Pimento 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

	easured			Vertical			Vertical	Dogleg	Build	Turn
i i	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	14,500.0	90.00	179.41	12,050.0	-1,866.9	-13.0	1,866.7	0.00	0.00	0.00
	14,600.0	90.00	179.41	12,050.0	-1,966.9	-11.9	1,966.7	0.00	0.00	0.00
	14,700.0	90.00	179.41	12,050.0	-2,066.9	-10. 9	2,066.7	0.00	0.00	0.00
	14,800.0	90.00	179.41	12,050.0	-2,166.9	-9.9	2,166.7	0.00	0.00	0.00
	14,900.0	90.00	179.41	12,050.0	-2,266.8	-8.8	2,266.7	0.00	0.00	0.00
	15,000.0	90.00	179.41	12,050.0	-2,366.8	-7.8	2,366.7	0.00	0.00	0.00
	15,044.6	90.00	179.41	12,050.0	-2,411.4	-7.3	2,411.3	0.00	0.00	0.00
Р	imento Into	NMNM 136234								
	15,100.0	90.00	179.41	12,050.0	-2,466.8	-6.8	2,466.7	0.00	0.00	0.00
	15,200.0	90.00	179.41	12,050.0	-2,566.8	-5.7	2,566.7	0.00	0.00	0.00
	15,300.0	90.00	179.41	12,050.0	-2,666.8	-4.7	2,666.7	0.00	0.00	0.00
	15,400.0	90.00	179.41	12,050.0	-2,766.8	-3.7	2,766.7	0.00	0.00	0.00
	15,500.0	90.00	179.41	12,050.0	-2,866.8	-2.6	2,866.7	0.00	0.00	0.00
	15,600.0	90.00	179.41	12,050.0	-2,966.8	-1.6	2,966.7	0.00	0.00	0.00
	15,700.0	90.00	179.41	12,050.0	-3,066.8	-0.5	3,066.7	0.00	0.00	0.00
	15,800.0	90.00	179.41	12,050.0	-3,166.8	0.5	3,166.7	0.00	0.00	0.00
		90.00		12,050.0				0.00	0.00	0.00
	15,900.0		179.41		-3,266.8	1.5	3,266.7			
	16,000.0	90.00	179.41	12,050.0	-3,366.8	2.6	3,366.7	0.00	0.00	0.00
	16,100.0	90.00	179.41	12,050.0	-3,466.8	3.6	3,466.7	0.00	0.00	0.00
	16,200.0	90.00	179.41	12,050.0	-3,566.8	4.6	3,566.7	0.00	0.00	0.00
	16,300.0	90.00	179.41	12,050.0	-3,666.8	5.7	3,666.7	0.00	0.00	0.00
	16,400.0	90.00	179.41	12,050.0	-3,766.8	6.7	3,766.7	0.00	0.00	0.00
	16,500.0	90.00	179.41	12,050.0	-3,866.8	7.7	3,866.7	0.00	0.00	0.00
	16,600.0	90.00	179.41	12,050.0	-3,966.8	8.8	3,966.7	0.00	0.00	0.00
	16,700.0	90.00	179.41	12,050.0	-4,066.8	9.8	4,066.7	0.00	0.00	0.00
	16,800.0	90.00	179.41	12,050.0	-4,166.7	10.8	4,166.7	0.00	0.00	0.00
	16,900.0	90.00	179.41	12,050.0	-4,266.7	11.9	4,266.7	0.00	0.00	0.00
	17,000.0	90.00	179.41	12,050.0	-4,366.7	12.9	4,366.7	0.00	0.00	0.00
	17,100.0	90.00	179.41	12,050.0	-4,466.7	14.0	4,466.7	0.00	0.00	0.00
	17,200.0	90.00	179.41	12,050.0	-4,566.7	15.0	4,566.7	0.00	0.00	0.00
	17,300.0	90.00	179.41	12,050.0	-4,666.7	16.0	4,666.7	0.00	0.00	0.00
	17,400.0	90.00	179.41	12,050.0	-4,766.7	17.1	4,766.7	0.00	0.00	0.00
	17,500.0	90.00	179.41	12,050.0	-4,866.7	18.1	4,866.7	0.00	0.00	0.00
	17,600.0	90.00	179.41	12,050.0	-4,966.7	19.1	4,966.7	0.00	0.00	0.00
•	17,684.7	90.00	179.41	12,050.0	-5,051.4	20.0	5,051.4	0.00	0.00	0.00
5	ec 03	~~~~~	470.44	40.050.0	5 000 7		5 000 7	0.00	0.00	0.00
	17,700.0	90.00	179.41	12,050.0	-5,066.7	20.2	5,066.7	0.00	0.00	0.00
	17,800.0	90.00	179.41	12,050.0	-5,166.7	21.2	5,166.7	0.00	0.00	0.00
	17,900.0	90.00	179.41	12,050.0	-5,266.7	22.2	5,266.7	0.00	0.00	0.00
	18,000.0	90.00	179.41	12,050.0	-5,366.7	23.3	5,366.7	0.00	0.00	0.00
	18,100.0	90.00	179.41	12,050.0	-5,466.7	24.3	5,466.7	0.00	0.00	0.00
	18,200.0	90.00	179.41	12,050.0	-5,566.7	25.3	5,566.7	0.00	0.00	0.00
	18,300.0	90.00	179.41	12,050.0	-5,666.7	26.4	5,666.7	0.00	0.00	0.00
	18,400.0	90.00	179.41	12,050.0	-5,766.7	27.4	5,766.7	0.00	0.00	0.00
	18,500.0	90.00	179.41	12,050.0	-5,866.7	28.5	5,866.7	0.00	0.00	0.00
	18,600.0	90.00	179.41	12,050.0	-5,966.7	29.5	5,966.7	0.00	0.00	0.00
	18,700.0	90.00	179.41	12,050.0	-6,066.6	30.5	6,066.7	0.00	0.00	0.00
	18,800.0	90.00	179.41	12,050.0	-6,166.6	31.6	6,166.7	0.00	0.00	0.00
	18,900.0	90.00	179.41	12,050.0	-6,266.6	32.6	6,266.7	0.00	0.00	0.00
	19,000.0	90.00	179.41	12,050.0	-6,366.6	33.6	6,366.7	0.00	0.00	0.00
	19,100.0	90.00	179.41	12,050.0	-6,466.6	34.7	6,466.7	0.00	0.00	0.00
	19,200.0	90.00	179.41	12,050.0	-6,566.6	35.7	6,566.7	0.00	0.00	0.00
	19,300.0	90.00	179.41	12,050.0	-6,666.6	36.7	6,666.7	0.00	0.00	0.00
	19,400.0	90.00	179.41	12,050.0	-6,766.6	37.8	6,766.7	0.00	0.00	0.00

1/14/2019 9:19:34AM

COMPASS 5000.15 Build 90

- ---

1

Planning Report

5-15-22-33			
Database:	EDM5000	Local Co-ordinate Reference:	Well Pimento 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3018.0usft
Project:	JUN/PIM	MD Reference:	KB @ 3018.0usft
Site:	JUN/PIM #1S	North Reference:	Grid .
Well:	Pimento 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,500.0	90.00	179.41	12,050.0	-6,866.6	38.8	6,866.7	0.00	0.00	0.0
19,600.0	90.00	179.41	12,050.0	-6,966.6	39.9	6,966.7	0.00	0.00	0.0
19,700.0	90.00	179.41	12,050.0	-7,066.6	40.9	7,066.7	0.00	0.00	0.0
19,800.0	90.00	179.41	12,050.0	-7,166.6	41.9	7,166.7	0.00	0.00	0.0
19,900.0	90.00	179.41	12,050.0	-7,266.6	43.0	7,266.7	0.00	0.00	0.0
20,000.0	90.00	179.41	12,050.0	-7,366.6	44.0	7,366.7	0.00	0.00	0.0
20,100.0	90.00	179.41	12,050.0	-7,466.6	45.0	7,466.7	0.00	0.00	0.0
20,200.0	90.00	179.41	12,050.0	-7,566.6	46.1	7,566.7	0.00	0.00	0.0
20,300.0	90.00	179.41	12,050.0	-7,666.6	47.1	7,666.7	0.00	0.00	0.0
20,400.0	90.00	179.41	12,050.0	-7,766.6	48.1	7,766.7	0.00	0.00	0.0
20,500.0	90.00	179.41	12,050.0	-7,866.5	49.2	7,866.7	0.00	0.00	0.0
20,600.0	90.00	179.41	12,050.0	-7,966.5	50.2	7,966.7	0.00	0.00	0.0
20,700.0	90.00	179.41	12,050.0	-8,066.5	51.2	8,066.7	0.00	0.00	0.0
20,800.0	90.00	179.41	12,050.0	-8,166.5	52.3	8,166.7	0.00	0.00	0.0
20,900.0	90.00	179.41	12,050.0	-8,266.5	53.3	8,266.7	0.00	0.00	0.0
21,000.0	90.00	179.41	12,050.0	-8,366.5	54.4	8,366.7	0.00	0.00	0.0
21,100.0	90.00	179.41	12,050.0	-8,466.5	55.4	8,466.7	0.00	0.00	0.0
21,200.0	90.00	179.41	12,050.0	-8,566.5	56.4	8,566.7	0.00	0.00	0.0
21,300.0	90.00	179.41	12,050.0	-8,666.5	57.5	8,666.7	0.00	0.00	0.0
21,400.0	90.00	179.41	12,050.0	-8,766.5	58.5	8,766.7	0.00	0.00	0.0
21,500.0	90.00	179.41	12,050.0	-8,866.5	59.5	8,866.7	0.00	0.00	0.0
21,600.0	90.00	179.41	12,050.0	-8,966.5	60.6	8,966.7	0.00	0.00	0.0
21,700.0	90.00	179.41	12,050.0	-9,066.5	61.6	9,066.7	0.00	0.00	0.0
21,800.0	90.00	179.41	12,050.0	-9,166.5	62.6	9,166.7	0.00	0.00	0.0
21,900.0	90.00	179.41	12,050.0	-9,266.5	63.7	9,266.7	0.00	0.00	0.0
22,000.0	90.00	179.41	12,050.0	-9,366.5	64.7	9,366.7	0.00	0.00	0.0
22,100.0	90.00	179.41	12,050.0	-9,466.5	65.7	9,466.7	0.00	0.00	0.0
22,200.0	90.00	179.41	12,050.0	-9,566.5	66.8	9,566.7	0.00	0.00	0.0
22,300.0	90.00	179.41	12,050.0	-9,666.5	67.8	9,666.7	0.00	0.00	0.0
22,400.0	90.00	179.41	12,050.0	-9,766.4	68.9	9,766.7	0.00	0.00	0.0
22,500.0	90.00	179.41	12,050.0	-9,866.4	69.9	9,866.7	0.00	0.00	0.0
22,600.0	90.00	179.41	12,050.0	-9,966.4	70.9	9,966.7	0.00	0.00	0.0
22,700.0	90.00	179.41	12,050.0	-10,066.4	72.0	10,066.7	0.00	0.00	0.0
22,800.0	90.00	179.41	12,050.0	-10,166.4	73.0	10,166.7	0.00	0.00	0.0
22,865.8	90.00	179.41	12,050.0	-10,232.2	73.7	10,232.4	0.00	0.00	0.0
Pim121 LTP									
22,900.0	90.00	179.41	12,050.0	-10,266.4	74.0	10,266.7	0.00	0.00	0.0
22,915.7	90.00	179.41	12,050.0	-10,282.2	74.2	10,282.4	0.00	0.00	0.0
Sec 10 - Pim	121 BHI								

1

Planning Report

Database: Company: Project: Site: Well: Well: Wellbore: Design:	EDM5000 Ameredev Op JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	i	•		TVD Referen MD Referen North Refe	nce:	Well Pimer KB @ 3010 KB @ 3010 Grid Minimum (
Design Targets					· · · ·				
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Sec 03 - plan misses targe	0.00 et center by 613	0.00 2usft at 176	11,470.0 84,7usft MD	-5,053.5 (12050.0 TVI	-179.0 0, -5051.4 N, (389,056.56 20.0 E)	873,349.16	32° 3' 54.231 N	103° 15' 41.604 W
- Polygon	•			•		•			
Point 1			11,470.0	0.0	0.0	389,056.56	873,349.16		
Point 2			11,470.0	5,281.2	-53.3	394,337.76	873,295.86		
Point 3			11,470.0	5,330.6	5,227.9	394,387.16	878,577.06		
Point 4			11,470.0	47.9	5,279.4	389,104.46	878,628.56		
Sec 10	0.00	0.00	11,470.0	-10.334.2	-125.0	383,775.85	873,403.15	32° 3' 1.975 N	103° 15' 41.586 W
 plan misses targe Polygon 				•			0/0,400.10	52 5 1.575 N	100 10 41.000 10
Point 1			11,470.0	0.0	0.0	383,775.85	873,403.15		
Point 2			11,470.0	5,280.7	-54.0	389,056.55	873,349.15		
Point 3			11,470.0	5,328.6	5,225.4	389,104.45	878,628.55		
Point 4			11,470.0	49.3	5,280.9	383,825.15	878,684.05		
Sec 34 - plan misses targe	0.00	0.00	11,470.0	227.8	-232.4	394,337.79	873,295.83	32° 4' 46.491 N	103° 15' 41.614 W
- Polygon Point 1	a center by 445	JUSILALITS		0.0	0.0		873,295.83		
			11,470.0		-53.8	394,337.79	•		
Point 2 Point 3			11,470.0	5,278.0		399,615.79	873,242.03		
Point 3 Point 4			11,470.0 11,470.0	5,326.9 49.4	5,230.6 5,281.3	399,664.69 394,387.19	878,526.43 878,577.13		
FOILL 4			11,470.0	45.4	5,201.5	394,307.18	0/0,5/7.15		•
Pim121 KOP - plan hits target ce - Point	0.00 enter	0.00	11,570.0	578.9	-503.3	394,688.96	873,024.93	32° 4' 49.993 N	103° 15' 44.722 W
Pimento Into NMNM 13	e 0.00	0.00	11.720.0	-2.413.5	-205.1	391.696.55	873,323.08	32° 4' 20.355 N	103° 15' 41.602 W
 plan misses targe Polygon 			•	•		· · ·	010,020.00	02 4 20.000 11	
Point 1			11,720.0	0.0	0.0	391,696.55	873,323.08		
Point 2			11,720.0	50.2	5,279.9	391,746.75	878,602.98		
Pim121 FTP	0.00	0.00	12 050 0	129.7	-31,3	204 220 74	973 406 95	32° 4' 45,501 N	103° 15' 39.289 W
- plan misses targe - Point			12,050.0 5.4usft MD (394,239.71 8 E)	873,496.85	32° 4° 45.501 N	103. 15 39.269 W
Pim121 LTP - plan misses targe - Point	0.00 t center by 0.2u		12,050.0 .8usft MD (1	-10,232.2 2050.0 TVD, -	73.9 10232.2 N, 73	383,877.84 3.7 E)	873,602.11	32° 3' 2.965 N	103° 15' 39.263 W
Pim121 BHL - - plan misses targe - Point	0.00 et center by 0.3u		12,050.0 .8usft MD (1	-10,282.2 2050.0 TVD, -	74.5 10282.2 N, 74	383,827.86 4.2 E)	873,602.64	32° 3' 2.470 N	103° 15' 39.262 W
Pim121 FTP2 - plan hits target ce - Point	0.00 enter	0.01	12,050.0	-94.5	-31.3	394,015.55	873,496.85	32° 4' 43.283 N	103° 15' 39.315 W

COMPASS 5000.15 Build 90

AMEREDEV

Ameredev Operating, LLC.

JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Footages

14 January, 2019

Lease Penetration Section Line Footages

Company: Projact: Site: Well: Walbora: Destyn:	Ameredev Operati JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	ng, LLC.				TVD Refer MD Refer North Ref	nce Iculation Mathod:	Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvature EDM5000	
Project	JUN/P	PIM							
Map System: Geo Datum: Map Zone:	US State Plane North Americar New Mexico Ea	Datum 1983				System I	Datum:	Mean Sea Level	
Site	JUN/P	PIM #1S							
Site Position: From: Position Uncertai	Lat/Long	0.0 usft		Northi Eastin Slot R		394,110.55 us 873,588.15 us 13-3/16 "			32° 4' 44.214 N 103° 15' 38.243 W 0.57 °
Wall	Pimen	ito 121H			<u> </u>				
Well Position Position Uncertai	+N/-S +E/-W nty	0.0 usft 0.0 usft 0.0 usft		Northing Easting: Wellhead	: Elevation:	394,110.03 usft 873,528.19 usft usft		Latitude: Longitude: Ground Level:	32° 4' 44.215 N 103° 15' 38.940 W 2,991.0 usft
Wellboro	Wellbo	ore #1					· · · · · · · · · · · · · · · · · · ·	······································	
Magnelles	Model Ne IG	1079 Sa RF2015	mple Dete 1/11/2019	Deeffmetton (°)	D	pAngle (P) 59.96	同記』 Strength (元切) 47,725.90533641		
Design Audit Notes: Version:	Desig		hase: F	PROTOTYPE	Tie On Depth:	0.0			
Varileel Section:		Cepth From (USI)		0(1)4S (115fi)	\$£4:00 (UEŪ)	Direction (P)			
Survey Toel Prog	mm Date	0.0		0.0	0.0	179.59			
From (USA)	retur To (LEGI)	Survey (Wellbore)		Tool Ne	609	Description			
	0.0 22,915.8	Design #1 (Wellbo	re #1)	MWD		OWSG MWD - Standard	l		

-- -- -- -- --

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Ope JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	rating, LLC	<u>.</u>				Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	e:	Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvature EDM5000	
lanned Surve MD	₽y inc		Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	V. Sec	DLeg	Build	Turn
(usft)	(°)		(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	0.0	0.00	0.00	0.0	-230.5	230.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	100.0	-230.5	230.0	0.0	0.00	0.00	0.00
	200.0	0.00	0.00	200.0	-230.5	230.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	300.0	-230.5	230.0	0.0	0.00	0.00	0.00
4	400.0	0.00	0.00	400.0	-230.5	230.0	0.0	0.00	0.00	0.00
ę	500.0	0.00	0.00	500.0	-230.5	230.0	0.0	0.00	0.00	0.00
	600.0	0.00	0.00	600.0	-230.5	230.0	0.0	0.00	0.00	0.00
7	700.0	0.00	0.00	700.0	-230.5	230.0	0.0	0.00	0.00	0.00
l.	800.0	0.00	0.00	800.0	-230.5	230.0	0.0	0.00	0.00	0.00
1	900.0	0.00	0.00	900.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,0	000.0	0.00	0.00	1,000.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,*	100.0	0.00	0.00	1,100.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,3	200.0	0.00	0.00	1,200.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,:	300.0	0.00	0.00	1,300.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,4	400.0	0.00	0.00	1,400.0	-230.5	230.0	0.0	0.00	0.00	0.00
1.9	500.0	0.00	0.00	1,500.0	-230.5	230.0	0.0	0.00	0.00	0.00
-	600.0	0.00	0.00	1,600.0	-230.5	230.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	1,700.0	-230.5	230.0	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	1,800.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,9	900.0	0.00	0.00	1,900.0	-230.5	230.0	0.0	0.00	0.00	0.00
21	000.0	0.00	0.00	2,000.0	-230.5	230.0	0.0	0.00	0.00	0.00
	100.0	2.00	319.00	2,100.0	-229.2	228.9	-1.3	2.00	2.00	0.00
	200.0	4.00	319.00	2,199.8	-225.3	225.5	-5.3	2.00	2.00	0.00
	300.0	6.00	319.00	2,299.5	-218.7	219.7	-11.9	2.00	2.00	0.00
	400.0	6.00	319.00	2,398.9	-210.8	212.9	-19.9	0.00	0.00	0.00
2,	500.0	6.00	319.00	2,498.4	-202.9	206.0	-27.8	0.00	0.00	0.00
	600.0	6.00	319.00	2,597.8	-195.0	199.2	-35.7	0.00	0.00	0.00

_

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Opera JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	ting, LLC.					Local Co-ordina TVD Reference: MD Reference: North Referencc Survey Calculat Database:	e:	Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvature EDM5000	
Planned Surve	y Inc	۵7	i (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	V. Sec	DLeg	Build	Turn
(usft)	(*)	~~	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
2,7	00.0	6.00	319.00	2,697.3	-187.1	192.3	-43.7	0.00	0.00	0.00
2,8	00.0	6.00	319.00	2,796.7	-179.2	185.4	-51.6	0.00	0.00	0.00
2,9	00.0	6.00	319.00	2,896.2	-171.3	178.6	-59.5	0.00	0.00	0.00
3.0	00.0	6.00	319.00	2,995.6	-163.5	171.7	-67.5	0.00	0.00	0.00
		6.00	319.00	3,095.1	-155.6	164.9	-75.4	0.00	0.00	0.00
		6.00	319.00	3,194.5	-147.7	158.0	-83.4	0.00	0.00	0.00
3,3	00.0	6.00	319.00	3,294.0	-139.8	151.2	-91.3	0.00	0.00	0.00
3,4	00.0	6.00	319.00	3,393.4	-131.9	144.3	-99.2	0.00	0.00	0.00
3,5	600.0	6.00	319.00	3,492.9	-124.0	137.4	-107.2	0.00	0.00	0.00
3,6	600.0	6.00	319.00	3,592.3	-116.1	130.6	-115.1	0.00	0.00	0.00
3,7	00.0	6.00	319.00	3,691.8	-108.2	123.7	-123.1	0.00	0.00	0.00
3,8	800.0	6.00	319.00	3,791.2	-100.3	116.9	-131.0	0.00	0.00	0.00
3,9	00.0	6.00	319.00	3,890.7	-92.5	110.0	-138.9	0.00	0.00	0.00
4,0	00.0	6.00	319.00	3,990.1	-84.6	103.2	-146.9	0.00	0.00	0.00
4,1	00.0	6.00	319.00	4,089.6	-76.7	96.3	-154.8	0.00	0.00	0.00
4,2	200.0	6.00	319.00	4,189.0	-68.8	89.4	-162.7	0.00	0.00	0.00
4,3	00.0	6.00	319.00	4,288.5	-60.9	82.6	-170.7	0.00	0.00	0.00
4,4	00.0	6.00	319.00	4,387.9	-53.0	75.7	-178.6	0.00	0.00	0.00
4,5	600.0	6.00	319.00	4,487.4	-45.1	68.9	-186.6	0.00	0.00	0.00
4,6	600.0	6.00	319.00	4,586.9	-37.2	62.0	-194.5	0.00	0.00	0.00
4,7	00.0	6.00	319.00	4,686.3	-29.3	55.2	-202.4	0.00	0.00	0.00
4,8	800.0	6.00	319.00	4,785.8	-21.5	48.3	-210.4	0.00	0.00	0.00
4,9	0.00	6.00	319.00	4,885.2	-13.6	41.4	-218.3	0.00	0.00	0.00
5,0	00.0	6.00	319.00	4,984.7	-5.7	34.6	-226.2	0.00	0.00	0.00
5,1	00.0	6.00	319.00	5,084.1	2.2	27.7	-234.2	0.00	0.00	0.00
5,2	200.0	6.00	319.00	5,183.6	10.1	20.9	-242.1	0.00	0.00	0.00
5,3	00.0	6.00	319.00	5,283.0	18.0	14.0	-250.1	0.00	0.00	0.00

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design: Planned Surve	Ameredev O JUN/PIM JUN/PIM #1 Pimento 121 Wellbore #1 Design #1	S	.C.	<u> </u>	· · · · · · · · · · · · · · · · ·		Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcular Database:	e:	Well Pimento 121 KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatu EDM5000	
MD (usft)	≠y Inc (°)		Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
	400.0	6.00	319.00	5,382.5	25.9	7.1	-258.0	0.00	0.00	0.00
5.5	500.0	6.00	319.00	5,481.9	33.8	0.3	-265.9	0.00	0.00	0.00
	600.0	6.00	319.00	5,581.4	41.7	-6.6	-273.9	0.00	0.00	0.00
	700.0	6.00	319.00	5,680.8	49.5	-13.4	-281.8	0.00	0.00	0.00
	800.0	6.00	319.00	5,780.3	57.4	-20.3	-289.8	0.00	0.00	0.00
5,9	900.0	6.00	319.00	5,879.7	65.3	-27.1	-297.7	0.00	0.00	0.00
6.0	000.0	6.00	319.00	5,979.2	73.2	-34.0	-305.6	0.00	0.00	0.00
	100.0	6.00	319.00	6,078.6	81.1	-40.9	-313.6	0.00	0.00	0.00
	200.0	6.00	319.00	6,178.1	89.0	-47.7	-321.5	0.00	0.00	0.00
	300.0	6.00	319.00	6,277.5	96.9	-54.6	-329.4	0.00	0.00	0.00
6,4	400.0	6.00	319.00	6,377.0	104.8	-61.4	-337.4	0.00	0.00	0.00
6 5	500.0	6.00	319.00	6,476.4	112.7	-68.3	-345.3	0.00	0.00	0.00
	600.0	6.00	319.00	6,575.9	120.5	-75.1	-353.3	0.00	0.00	0.00
	700.0	6.00	319.00	6,675.3	128.4	-82.0	-361.2	0.00	0.00	0.00
-	724.8	6.00	319.00	6,700.0	130.4	-83.7	-363.2	0.00	0.00	0.00
	800.0	4.50	319.00	6,774.9	135.6	-88.2	-368.4	2.00	-2.00	0.00
-	900.0	2.50	319.00	6,874.7	140.2	-92.2	-373.0	2.00	-2.00	0.00
	900.0 000.0	0.50	319.00	6,974.7	140.2	-92.2	-375.0	2.00	-2.00	0.00
	024.8	0.00	0.00	6,999.5	142.2	-94.0	-375.1	2.00	-2.00	0.00
	100.0	0.00	0.00	7,074.7	142.2	-94.0	-375.1	0.00	0.00	0.00
	200.0	0.00	0.00	7,174.7	142.2	-94.0	-375.1	0.00	0.00	0.00
		0.00		7,274.7	142.2	-94.0	-375.1	0.00	0.00	0.00
	300.0 400.0	0.00	0.00 0.00	7,274.7	142.2	-94.0 -94.0	-375.1	0.00	0.00	0.00
	400.0 500.0	0.00	0.00	7,474.7	142.2	-94.0	-375.1	0.00	0.00	0.00
	600.0	0.00	0.00	7,574.7	142.2	-94.0	-375.1	0.00	0.00	0.00
	700.0	0.00	0.00	7,674.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,8	800.0	0.00	0.00	7,774.7	142.2	-94.0	-375.1	0.00	0.00	0.00

ł

_

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Oper JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	ating, LL	c.	· · · · · · · · · · · · · · · · · · ·			Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcular Database:	e:	Well Pimento 121F KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatur EDM5000	
Planned Survey			e se sensen en desenant o		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		······································	and an an an a second an aras	
MD (usft)	Inc (°)		Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/10Dusft)
7,90	0.0	0.00	0.00	7,874.7	142.2	-94.0	-375.1	0.00	0.00	. 0.00
8,00	0.0	0.00	0.00	7,974.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,10	0.0	0.00	0.00	8,074.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,20	0.0	0.00	0.00	8,174.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,30	0.0	0.00	0.00	8,274.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,40		0.00	0.00	8,374.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,50	0.0	0.00	0.00	8,474.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,52	25.3	0.00	0.00	8,500.0	142.2	-94.0	-375.1	0.00	0.00	0.00
8,60	0.0	1.49	319.00	8,574.7	143.0	-94.6	-375.8	2.00	2.00	0.00
8,70	0.0	3.49	319.00	8,674.6	146.2	-97.5	-379.1	2.00	2.00	0.00
8,80	0.0	5.49	319.00	8,774.2	152.2	-102.6	-385.1	2.00	2.00	0.00
8,82	25.3	6.00	319.00	8,799.5	154.1	-104.3	-387.0	2.00	2.00	0.00
8,90	0.0	6.00	319.00	8,873.7	160.0	-109.4	-392.9	0.00	0.00	0.00
9,00	0.0	6.00	319.00	8,973.2	167.9	-116.3	-400.9	0.00	0.00	0.00
9,10	0.0	6.00	319.00	9,072.6	175.7	-123.1	-408.8	0.00	0.00	0.00
9,20	0.0	6.00	319.00	9,172.1	183.6	-130.0	-416.7	0.00	0.00	0.00
9,30	0.0	6.00	319.00	9,271.5	191.5	-136.8	-424.7	0.00	0.00	0.00
9,40	0.0	6.00	319.00	9,371.0	199.4	-143.7	-432.6	0.00	0.00	0.00
9,50	0.0	6.00	319.00	9,470.4	207.3	-150.6	-440.6	0.00	0.00	0.00
9,60	0.0	6.00	319.00	9,569.9	215.2	-157.4	-448.5	0.00	0.00	0.00
9,70	0.0	6.00	319.00	9,669.3	223.1	-164.3	-456.4	0.00	0.00	0.00
9,80	0.0	6.00	319.00	9,768.8	231.0	-171.1	-464.4	0.00	0.00	0.00
9,90	0.0	6.00	319.00	9,868.2	238.9	-178.0	-472.3	0.00	0.00	0.00
10,00	0.0	6.00	319.00	9,967.7	246.7	-184.8	-480.2	0.00	0.00	0.00
10,10	0.0	6.00	319.00	10,067.1	254.6	-191.7	-488.2	0.00	0.00	0.00
10,20	0.0	6.00	319.00	10,166.6	262.5	-198.6	-496.1	0.00	0.00	0.00
10,30	0.0	6,00	319.00	10,266.0	270.4	-205.4	-504.1	0.00	0.00	0.00

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating, JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	LLC.		<u></u>		Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcula Database:	e:	Well Pimento 121 KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatur EDM5000	
Planned Survey									_
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
10,400	0.0 6.00	319.00	10,365.5	278.3	-212.3	-512.0	0.00	0.00	0.00
10,500	0.0 6.00	319.00	10,464.9	286.2	-219.1	-519.9	0.00	0.00	0.00
10,600	.0 6.00	319.00	10,564.4	294.1	-226.0	-527.9	0.00	0.00	0.00
10,700			10,663.8	302.0	-232.9	-535.8	0.00	0.00	0.00
10,800	0.0 6.00	319.00	10,763.3	309.9	-239.7	-543.8	0.00	0.00	0.00
10,900	0.0 6.00	319.00	10,862.8	317.7	-246.6	-551.7	0.00	0.00	0.00
11,000	0.0 6.00	319.00	10,962.2	325.6	-253.4	-559.6	0.00	0.00	0.00
11,100	0.0 6.00	319.00	11,061.7	333.5	-260.3	-567.6	0.00	0.00	0.00
11,138			11,100.0	336.6	-262.9	-570.6	0.00	0.00	0.00
11,200	0.0 4.77	319.00	11,161.2	340.9	-266.7	-575.0	2.00	-2.00	0.00
11,300).0 2.77	319.00	11,261.0	345.9	-271.0	-580.0	2.00	-2.00	0.00
11,400	0.0 0.77	319.00	11,360.9	348.2	-273.1	-582.3	2.00	-2.00	0.00
11,438	8.6 0.00	0.00	11,399.5	348.4	-273.2	-582.5	2.00	-2.00	0.00
11,500	0.0 0.00	0.00	11,460.9	348.4	-273.2	-582.5	0.00	0.00	0.00
11,509	0.1 0.00	0.00	11,470.0	348.4	-273.2	-582.5	0.00	0.00	0.00
Sec 34									
11,600			11,560.9	348.4	-273.2	-582.5	0.00	0.00	0.00
11,609	9.1 0.00	0.00	11,570.0	348.4	-273.2	-582.5	0.00	0.00	0.00
Pim121 K	OP								
11,700			11,660.3	342.2	-267.2	-576.3	12.00	12.00	0.00
11,800			11,755.9	321.4	-246.9	-555.4	12.00	12.00	0.00
11,900			11,843.2	286.9	-213.3	-520.6	12.00	12.00	0.00
12,000			11,918.7	240.1	-167.6	-473.5	12.00	12.00	0.00
12,100).0 58.91	135.73	11,978.9	183.1	-112.0	-416.1	12.00	12.00	0.00
12,200).0 70.91	135.73	12,021.2	118.3	-48.9	-350.9	12.00	12.00	0.00
12,300).0 82.91	135.73	12,043.8	48.7	18.9	-280.8	12.00	12.00	0.00
12,353	8.0 89.26	5 135.73	12,047.4	10. 9	55.8	-242.7	12.00	12.00	0.00

_

COMPASS 5000.15 Build 90

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev (JUN/PIM JUN/PIM # Pimento 12 Wellbore #1 Design #1	IS 1H	LC.	;			Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	e:	Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvature EDM5000	
Planned Survey	· · · · ·							· · · · ·		
MD (usft)	In (°		Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
12,36	3.5	89.26	135.73	12,047.5	3.4	63.1	-235.1	0.00	0.00	0.00
12,40	. 0.0	89.33	140.11	12,048.0	-23.7	87.6	-207.8	12.00	0.17	12.00
12,50	0.0	89.51	152.11	12,049.0	-106.6	143.3	-124.6	12.00	0.19	12.00
12,51		89.54	153.96	12,049.1	-120.3	150.2	-110.8	12.00	0.20	12.00
Pim121 12,60		89.72	164.11	12,049.7	-199.2	180.5	-31.7	12.00	0.21	12.00
12,70		89.94	176.11	12,050.0	-297.5	197.6	66.8	12.00	0.22	12.00
12,72		90.00	179.41	12,050.0	-325.0	198.7	94.2	12.00	0.22	12.00
Pim121	FTP2									
12,80	0.0	90.00	179.41	12,050.0	-397.5	199.4	166.7	0.00	0.00	0.00
12,90		90.00	179.41	12,050.0	-497.5	200.5	266.7	0.00	0.00	0.00
13,00	0.0	90.00	179.41	12,050.0	-597.5	201.5	366.7	0.00	0.00	0.00
13,10	0.0	90.00	179.41	12,050.0	-697.5	202.6	466.7	0.00	0.00	0.00
13,20	0.0	90.00	179.41	12,050.0	-797.5	203.6	566.7	0.00	0.00	0.00
13,30	0.0	90.00	179.41	12,050.0	-897.5	204.6	666.7	0.00	0.00	0.00
13,40		90.00	.179.41	12,050.0	-997.5	205.7	766.7	0.00	0.00	0.00
13,50	0.0	90.00	179.41	12,050.0	-1,097.4	206.7	866.7	0.00	0.00	0.00
13,60	0.0	90.00	179.41	12,050.0	-1,197.4	207.7	966.7	0.00	0.00	0.00
13,70	0.0	90.00	179.41	12,050.0	-1,297.4	208.8	1,066.7	0.00	0.00	0.00
13,80	0.0	90.00	179.41	12,050.0	-1,397.4	209.8	1,166.7	0.00	0.00	0.00
13,90	0.0	90.00	179.41	12,050.0	-1,497.4	210.8	1,266.7	0.00	0.00	0.00
14,00	0.0	90.00	179.41	12,050.0	-1,597.4	211.9	1,366.7	0.00	0.00	0.00
14,10	0.0	90.00	179.41	12,050.0	-1,697.4	212.9	1,466.7	0.00	0.00	0.00
14,20	0.0	90.00	179.41	12,050.0	-1,797.4	213.9	1,566.7	0.00	0.00	0.00
14,30	0.0	90.00	179.41	12,050.0	-1,897.4	215.0	1,666.7	0.00	0.00	0.00
14,40	0.0	90.00	179.41	12,050.0	-1,997.4	216.0	1,766.7	0.00	0.00	0.00
14,50	0.0	90.00	179.41	12,050.0	-2,097.4	217.1	1,866.7	0.00	0.00	0.00

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design: Planned Survey	Ameredev Operating, I JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	LC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calculat Database:	e:	Well Pimento 1211 KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatur EDM5000	
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
14,600.		179.41	12,050.0	-2,197.4	218.1	1,966.7	0.00	0.00	0.00
14,700.		179.41	12,050.0	-2,297.4	219.1	2,066.7	0.00	0.00	0.00
14,800.	0 90.00	179.41	12.050.0	2 207 4	220.2	0 466 7	0.00	0.00	0.00
14,800. 14,900.		179.41	12,050.0 12,050.0	-2,397.4 -2,497.4	220.2 221.2	2,166.7 2,266.7	0.00 0.00	0.00 0.00	0.00 0.00
14,800.		179.41	12,050.0	-2,597.4	221.2	2,200.7	0.00	0.00	0.00
15,044.		179.41	12,050.0	-2,642.0	222.7	2,411.3	0.00	0.00	0.00
	nto NMNM 136234		,>.•	_,	;;	_,			
15,100.		179.41	12,050.0	-2,697.4	223.3	2,466.7	0.00	0.00	0.00
15,200.	0 90.00	179.41	12,050.0	-2,797.4	224.3	2,566.7	0.00	0.00	0.00
15,300.	0 90.00	179.41	12,050.0	-2,897.4	225.3	2,666.7	0.00	0.00	0.00
15,400.	0 90.00	179.41	12,050.0	-2,997.3	226.4	2,766.7	0.00	0.00	0.00
15,500.	0 90.00	179.41	12,050.0	-3,097.3	227.4	2,866.7	0.00	0.00	0.00
15,600.	0 90.00	179.41	12,050.0	-3,197.3	228.4	2,966.7	0.00	0.00	0.00
15,700.	.0 90.00	179.41	12,050.0	-3,297.3	229.5	3,066.7	0.00	0.00	0.00
15,800.	.0 90.00	179.41	12,050.0	-3,397.3	230.5	3,166.7	0.00	0.00	0.00
15,900.	.0 90.00	179.41	12,050.0	-3,497.3	231.6	3,266.7	0.00	0.00	0.00
16,000.	.0 90.00	179.41	12,050.0	-3,597.3	232.6	3,366.7	0.00	0.00	0.00
16,100.	.0 90.00	179.41	12,050.0	-3,697.3	233.6	3,466.7	0.00	0.00	0.00
16,200.	0 90.00	179.41	12,050.0	-3,797.3	234.7	3,566.7	0.00	0.00	0.00
16,300.	.0 90.00	179.41	12,050.0	-3,897.3	235.7	3,666.7	0.00	0.00	0.00
16,400.	.0 90.00	179.41	12,050.0	-3,997.3	236.7	3,766.7	0.00	0.00	0.00
16,500.	.0 90.00	179.41	12,050.0	-4,097.3	237.8	3,866.7	0.00	0.00	0.00
16,600.	.0 90.00	179.41	12,050.0	-4,197.3	238.8	3,966.7	0.00	0.00	0.00
16,700.	.0 90.00	179.41	12,050.0	-4,297.3	239.8	4,066.7	0.00	0.00	0.00
16,800.	.0 90.00	179.41	12,050.0	-4,397.3	240.9	4,166.7	0.00	0.00	0.00
16,900.	.0 90.00	179.41	12,050.0	-4,497.3	241.9	4,266.7	0.00	0.00	0.00
17,000.	.0 90.00	179.41	12,050.0	-4,597.3	243.0	4,366.7	0.00	0.00	0.00

_

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating, JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1 Design #1	LLC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcula Database:	: e:	Well Pimento 1211 KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatur EDM5000	
Planned Survey									
MD (usft)	inc (°)	Azi (azimuth) (°)	CVT (flau)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
17,100	0.0 90.00	179.41	12,050.0	-4,697.3	244.0	4,466.7	0.00	0.00	0.00
17,200	0.0 90.00	179.41	12,050.0	-4,797.2	245.0	4,566.7	0.00	0.00	0.00
17,300			12,050.0	-4,897.2	246.1	4,666.7	0.00	0.00	0.00
17,400	0.0 90.00		12,050.0	-4,997.2	247.1	4,766.7	0.00	0.00	0.00
17,500	0.0 90.00		12,050.0	-5,097.2	248.1	4,866.7	0.00	0.00	0.00
17,600	0.0 90.00	179.41	12,050.0	-5,197.2	249.2	4,966.7	0.00	0.00	0.00
17,684	4.7 90.00	179.41	12,050.0	-5,281.9	250.0	5,051.4	0.00	0.00	0.00
Sec 03									
17,700	0.0 90.00	179.41	12,050.0	-5,297.2	250.2	5,066.7	0.00	0.00	0.00
17,800	0.0 90.00	179.41	12,050.0	-5,397.2	251.2	5,166.7	0.00	0.00	0.00
17,900	0.0 90.00	179.41	12,050.0	-5,497.2	252.3	5,266.7	0.00	0.00	0.00
18,000	0.0 90.00	179.41	12,050.0	-5,597.2	253.3	5,366.7	0.00	0.00	0.00
18,10	0.0 90.00	179.41	12,050.0	-5,697.2	254.3	5,466.7	0.00	0.00	0.00
18,200	0.0 90.00	179,41	12,050.0	-5,797.2	255,4	5,566.7	0.00	0.00	0.00
18,300	0.0 90.00	179.41	12,050.0	-5,897.2	256.4	5,666.7	0.00	0.00	0.00
18,400	0.0 90.00	179.41	12,050.0	-5,997.2	257.5	5,766.7	0.00	0.00	0.00
18,50	0.0 90.00	179.41	12,050.0	-6,097.2	258.5	5,866.7	0.00	0.00	0.00
18,60	0.0 90.00	179.41	12,050.0	-6,197.2	259,5	5,966.7	0.00	0.00	0.00
18,70	0.0 90.00) 179.41	12,050.0	-6,297.2	260.6	6,066.7	0.00	0.00	0.00
18,80	0.0 90.00) 179.41	12,050.0	-6,397.2	261.6	6,166.7	0.00	0.00	0.00
18,90	0.0 90.00) 179.41	12,050.0	-6,497.2	262.6	6,266.7	0.00	0.00	0.00
19,000	0.0 90.00) 179.41	12,050.0	-6,597.2	263.7	6,366.7	0.00	0.00	0.00
19,10	0.0 90.00) 179.41	12,050.0	-6,697.1	264.7	6,466.7	0.00	0.00	0.00
19,20	0.0 90.00) 179.41	12,050.0	-6,797.1	265.7	6,566.7	0.00	0.00	0.00
19,30	0.0 90.00) 179.41	12,050.0	-6,897.1	266.8	6,666.7	0.00	0.00	0.00
19,40	0.0 90.00) 179.41	12,050.0	-6,997.1	267.8	6,766.7	0.00	0.00	0.00
19,50	0.0 90.00) 179.41	12,050.0	-7,097.1	268.8	6,866.7	0.00	0.00	0.00

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev (JUN/PIM JUN/PIM # Pimento 12 Wellbore # Design #1	21H	LC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calculat Database:	e:	Well Pimento 121 KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatur EDM5000	
lanned Survey	-									_
MD (usft)	ln (°	3C °)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
19,6	00.0	90.00	179.41	12,050.0	-7,197.1	269.9	6,966.7	0.00	0.00	0.00
19,7	00.0	90.00	179.41	12,050.0	-7,297.1	270.9	7,066.7	0.00	0.00	0.00
19,8	00.0	90.00	179.41	12,050.0	-7,397.1	272.0	7,166.7	0.00	0.00	0.00
19,9	00.0	90.00	179.41	12,050.0	-7,497.1	273.0	7,266.7	0.00	0.00	0.00
20,0	00.0	90.00	179.41	12,050.0	-7,597.1	274.0	7,366.7	0.00	0.00	0.00
20,1	00.0	90.00	179.41	12,050.0	-7,697.1	275.1	7,466.7	0.00	0.00	0.00
20,2	00.0	90.00	179.41	12,050.0	-7,797.1	276.1	7,566.7	0.00	0.00	0.00
20,3	00.0	90.00	179.41	12,050.0	-7,897.1	277.1	7,666.7	0.00	0.00	0.00
20,4	00.0	90.00	179.41	12,050.0	-7,997.1	278.2	7,766.7	0.00	0.00	0.00
20,5	00.0	90.00	179.41	12,050.0	-8,097.1	279.2	7,866.7	0.00	0.00	0.00
20,6	00.0	90.00	179.41	12,050.0	-8,197.1	280.2	7,966.7	0.00	0.00	0.00
20,7	00.0	90.00	179.41	12,050.0	-8,297.1	281.3	8,066.7	0.00	0.00	0.00
20,8	00.0	90.00	179.41	12,050.0	-8,397.1	282.3	8,166.7	0.00	0.00	0.00
20,9	00.0	90.00	179.41	12,050.0	-8,497.1	283.4	8,266.7	0.00	0.00	0.00
21,0	00.0	90.00	179.41	12,050.0	-8,597.0	284.4	8,366.7	0.00	0.00	0.00
21,1	00.0	90.00	179.41	12,050.0	-8,697.0	285.4	8,466.7	0.00	0.00	0.00
21,2	00.0	90.00	179.41	12,050.0	-8,797.0	286.5	8,566.7	0.00	0.00	0.00
21,3	00.0	90.00	179.41	12,050.0	-8,897.0	287.5	8,666.7	0.00	0.00	0.00
21,4	00.0	90.00	179.41	12,050.0	-8,997.0	288.5	8,766.7	0.00	0.00	0.00
21,5	00.0	90.00	179.41	12,050.0	-9,097.0	289.6	8,866.7	0.00	0.00	0.00
21,6	00.0	90.00	179.41	12,050.0	-9,197.0	290.6	8,966.7	0.00	0.00	0.00
21,7	00.0	90.00	179.41	12,050.0	-9,297.0	291.6	9,066.7	0.00	0.00	0.00
21,8	00.0	90.00	179.41	12,050.0	-9,397.0	292.7	9,166.7	0.00	0.00	0.00
21,9	0.00	90.00	179.41	12,050.0	-9,497.0	293.7	9,266.7	0.00	0.00	0.00
22,0	00.0	90.00	179.41	12,050.0	-9,597.0	294.7	9,366.7	0.00	0.00	0.00
22,1	00.0	90.00	179.41	12,050.0	-9,697.0	295.8	9,466.7	0.00	0.00	0.00
22.2	200.0	90.00	179.41	12,050.0	-9,797.0	296.8	9,566.7	0.00	0.00	0.00

_

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Project: JL Site: JL Vell: Pi Vellbore: W	neredev Operating, L JN/PIM JN/PIM #1S mento 121H lellbore #1 esign #1	LC.				Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	:	Well Pimento 121 KB @ 3018.0usft KB @ 3018.0usft Grid Minimum Curvatu EDM5000	
Planned Survey MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
22,300.0	90.00	179.41	12,050.0	-9,897.0	297.9	9,666.7	0.00	0.00	0.00
22,400.0	90.00	179.41	12,050.0	-9,997.0	298.9	9,766.7	0.00	0.00	0.00
22,500.0	90.00	179.41	12,050.0	-10,097.0	299.9	9,866.7	0.00	0.00	0.00
22,600.0	90.00	179.41	12,050.0	-10,197.0	301.0	9,966.7	0.00	0.00	0.00
22,700.0	90.00	179.41	12,050.0	-10,297.0	302.0	10,066.7	0.00	0.00	0.00
22,800.0	90.00	179.41	12,050.0	-10,396.9	303.0	10,166.7	0.00	0.00	0.00
22,865.8	90.00	179.41	12,050.0	-10,462.7	303.7	10,232.5	0.00	0.00	0.00
Pim121 LTP 22,900.0	90.00	179.41	12,050.0	-10,496.9	304.1	10,266.7	0.00	0.00	0.00
22,915.8	90.00	179.41	12,050.0	-10,512.7	304.2	10,282.4	0.00	0.00	0.00
Sec 10 - Pim	494 000								

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
 - 13-5/8" 10M Lower Blind Rams
 - o :: 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack.

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

QUALITY CONTROL	No.: QC-DB- 651 / 2013			
	Page : 1 / 44			
Hose No.:	Revision : 0			
66551, 66552, 66553, 66554	Date: 14. November 2013.			
	Prepared by : Scala Lander			
	Appr. by: Appr. Such			

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK Purchaser Order No.: ContiTech Rubber Order No.: 537587 ContiTech Oil & Marine Corp. Order No.: 4500370505

NOT DESIGNED FOR WELL TESTING

ContiTech Rubber Industrial Kit. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +38 62 568 737 Fex: +38 62 568 738 e-mail: Info@fluid.contitech.hu Infernet: www.contitech-rubber.hu The Court of Ceongréd Courty es Registry Court Registry Court No: HU 08-09-002502 EU VAT No: HU11087209 Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No.: QC- D	B- 651 / 2013
Industrial Kft.	Page:	2/44

CONTENT

1.	API QMS Certificate (No.: 0760)	<u>Page</u> 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15 .
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4 .	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20 .
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28 .
5.8.	Welding Log Sheet (No.: 2013/2898)	29.
5.9 <i>.</i>	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6. 6.1.	Steel Cord Inspection Certificate (No.: 4046181212)	40.
0.1.		· · · · ·
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

0 ١. 2

ContiTech Rubber Industrial Kft. Quality Control Dept. (1)

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	3/44

Certificate of Authority to use the Official API Monogram License Number: ORIGINAL 16C-0004

The American Petroleum Institute hereby grants to

CONTITECH RUBBER INDUSTRIAL LTD. **Budapesti ut 10** Szeged Hungary

the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spee Q1° and **API Spec 16C** and in accordance with the provisions of the License Agreement.

In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number: 160-0004

The American Petroleum Institute reserves the right to revoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Fermieum Institute. The scope of this license includes the following product: Flexible Choke and Kill Lines

QMS Exclusions: No Exclusions Identified as Applicable

Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016 To verify the authenticity of this license, go to www.apl.org/compositelist. American Petroleum Institute

Director of Global Industry Service

CONTITECH RUBBER

Industrial Kft

Page

\$

No:QC-DB-

651 /2013 4

CONTITECH RUBBER	No:QC-DE	8-651 /2013
Industrial Kft.	Page:	5/44

QUALITY INSPECTION ANI	CERT. N	ł°:	1905										
PURCHASER: Cor	PURCHASER: ContiTech Oil & Marine Corp.												
CONTITECH RUBBER order Nº: 5	Choke and Kill Hose												
HOSE SERIAL Nº: 6	6551	NOMINAL / AC	TUAL LE	ENGTH:		10,67 n	n / 10,75 m						
W.P. 68,9 MPa 10000	psi	T.P. 103,4	MPa	1500)() psi	Duration:	60	min.					
Pressure test with water at ambient temperature						<u> </u>							
		Des ettersta											
	č	See attachm	ent. (1	l page	;)								
				·									
- - -		•											
↑ 10 mm = 10 Min. → 10 mm = 25 MPa					: .								
COUPLINGS Type		Seria	l Nº		Q	uality	Heat N°						
3" coupling with		8084	808		AIS	il 4130	24613	1613					
4 1/16" 10K API Flange er	nd		·	- 1 ^{- 1}	AIS	4130	034939)					
NOT DESIGNED	FOR W	ELL TESTIN	IG	•		A	PI Spec 16	C					
All matel made and flaudeas		· · · ·		:		Temp	erature rate	:" B "					
All metal parts are flawless WE CERTIFY THAT THE ABOVE HOS						H THE TERM	S OF THE ORDER						
INSPECTED AND PRESSURE TESTE STATEMENT OF CONFORMITY: Wi conditions and specifications of the al accordance with the referenced standar	e hereby c bove Purct ds, codes a	ertify that the abor naser Order and t	ve items/e hat these and meet	equipmen items/ea the relev	nt supplied quipment v ant accept	vere fabricate	d inspected and te	sted in					
Date: Insp 13. November 2013.	ector		Quality	y Contro	Conti Indi	Tech Rubhe: ustrial Kft. Control Dep							
P.O.Box 152 Szeged H-6701 e-mail: Info@	32 566 737 32 566 738 fluid.contitech. contitech-rubb		rt rt No: HU 06	-09-002502	Szeged	a) and Creditbank 28014250-000000	20						

No: 1904, 1905

Page: 1/1

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	6/44

QUALIT INSPECTION AN			ATE		CERT. N	1 °:	1906	
PURCHASER: CO	ntiTech (Dil & Marine C	Corp.		P.O. Nº:		4500370505	
CONTITECH RUBBER order N°: 5	37587	HOSE TYPE:	3"	D		Choke and	d Kill Hose	
HOSE SERIAL Nº: 6	6552	NOMINAL / AC	TUAL LEN	GTH:		10,67 m	n / 10,73 m	
W.P. 68,9 MPa 10000	psi	T.P. 103,4	MPa	1500	0 psi	Duration:	60	min.
Pressure test with water at ambient temperature							: : :	
		• • •			·			
	5	See attachm	ent. (1 p	bage)			
↑ 10 mm = 10 Min. → 10 mm = 25 MPa								
COUPLINGS Type		Seria	l N°	T	Q	uality	Heat N°	
3" coupling with		8088	8085		AIS	SI 4130	24613	
4 1/16" 10K API Flange ei	nd				AIS	SI 4130	034939	
NOT DESIGNED		ELL TESTIN	IG			A	PI Spec 16 (5
All metal parts are flawless						Temp	erature rate:	"B"
WE CERTIFY THAT THE ABOVE HOS INSPECTED AND PRESSURE TESTE						H THE TERMS	OF THE ORDER	
STATEMENT OF CONFORMITY: W conditions and specifications of the a accordance with the referenced standard	e hereby c bove Purch	ertify that the about the about the second the second second second second second second second second second s	ve items/equ hat these ite	uipmen ems/ec	it supplied	were fabricate	d inspected and te	sted in
	c	OUNTRY OF OR	IGIN HUNGA	ARY/E	U	•		
Date: Insp	ector		Quality C	Contro				• •
13. November 2013.			Belau	كنه	Indus	ech Rubber strial Kft. control Dept.	tack in	<u>s</u>
P.O.Box 152 Szeged H-6701 e-mail: info@	82 568 737 82 568 738 Muld.contitech.l	Registry Cou hu Registry Cou	: Csongråd Count Irt Irt No: HU 06-09- HU1 1087209		Szeged	al and Craditbank -26014250-000000	20	:

CONTITECH RUBBER	No:QC-DB	- 651 /2013
Industrial Kft.	Page:	7 / 44

3" coupling with 8089 8087 AISI 4130 23171 4 1/16" 10K API Flange end AISI 4130 03 NOT DESIGNED FOR WELL TESTING API Spec Temperature	
HOSE SERIAL N°: 66553 NOMINAL / ACTUAL LENGTH: 10,67 m / 10,745 W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 Pressure test with water at ambient temperature See attachment. (1 page) See attachment. (1 page) See attachment. (1 page) ↑ 10 mm = 10 Min.	0505
W.P. 68,9 MPa 10000 psi T.P. 103,4 MPa 15000 psi Duration: 60 Pressure test with water at ambient temperature See attachment. (1 page) See attachment. (1 page) See attachment. (1 page) → 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality H 3° coupling with 3° coupling with 8089 8087 AISI 4130 23171 4 1/16° 10K API Flange end AISI 4130 0X NOT DESIGNED FOR WELL TESTING API Spec API Spec	e
Pressure test with water at ambient temperature See attachment. (1 page) 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial № Quality H 3" coupling with 8089 8087 AISI 4130 23171 4 1/16" 10K API Flange end AISI 4130 00 NOT DESIGNED FOR WELL TESTING API Spec Temperature	m
ambient temperature [↑] 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality H 3° coupling with 8089 8087 AISI 4130 23171 4 1/16° 10K API Flange end AISI 4130 00 NOT DESIGNED FOR WELL TESTING API Spec Temperature	mii
↑ 10 mm = 10 Min. → 10 mm = 25 MPa COUPLINGS Type Serial N° Quality 3° coupling with 8089 8087 4 1/16° 10K API Flange end AISI 4130 03 NOT DESIGNED FOR WELL TESTING API Spect Temperature	
→ 10 mm = 25 MPa COUPLINGS Type 3" coupling with 8089 8087 AISI 4130 23171 4 1/16" 10K API Flange end AISI 4130 03 NOT DESIGNED FOR WELL TESTING API Spect Temperature	
→ 10 mm = 25 MPa COUPLINGS Type 3" coupling with 8089 8087 AISI 4130 23171 4 1/16" 10K API Flange end AISI 4130 03 NOT DESIGNED FOR WELL TESTING API Spect Temperature	
COUPLINGS Type Serial N° Quality H 3" coupling with 8089 8087 AISI 4130 23171 4 1/16" 10K API Flange end AISI 4130 03 NOT DESIGNED FOR WELL TESTING API Spect Temperature	
4 1/16" 10K API Flange end AISI 4130 03 NOT DESIGNED FOR WELL TESTING API Spec Temperature Temperature	eat N°
NOT DESIGNED FOR WELL TESTING API Spec Temperature	24613
Temperature	4939
•	16 C
VI metal parts are flawless	rate:"B"
VE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE O NSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT.	RDER
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity v conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design re	and tested i
COUNTRY OF ORIGIN HUNGARY/EU	,
Date: Inspector Quality Control 13. November 2013. Inspector Industrial White	(eg

CONTITECH RUBBER	No:QC-DB- 651 /2013						
Industrial Kft.	Page:	8/44					

I	INSP	-			CERT. №: 1908										
PURCHA	ASER:		Conti	Tech (Oil &	Marine (Corp.		P.O. Nº	 _	45003705	05			
CONTITE	DSE SERIAL N°: 66554 NO P. 68,9 MPa 10000 psi T.P. essure test with water at abient temperature See See 10 mm = 10 min. See 10 mm = 25 MPa COUPLINGS Type 3" coupling with 4 1/16" 10K API Flange end NOT DESIGNED FOR WELL metal parts are flawless SECRTIFY THAT THE ABOVE HOSE HAS BEEN M CERTIFY THAT THE ABOVE HOSE HAS BEEN M SECERTIFY THAT THE ABOVE HOSE HAS BEEN M MPECTED AND PRESSURE TESTED AS ABOVE W ATEMENT OF CONFORMITY: We hereby certify ditions and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes and specifications of the above Purchaser bordance with the referenced standards, codes		HOS	E TYPE:	3"	ID	I	Choke and	Kill Hose						
HOSE SI	ERIAL I	N°:	665	54	NOM	INAL / AC		ENGTH:	H: 10,67 m / 10,71 m						
W.P. 6	58,9	MPa	10000	psi	T.P.	103,4	MPa	1500)O psi	Duration:	60	mir			
			ət		· ·					I					
					-		. ,								
			•		See a	attachm	ent. ('	l page	•••						
:															
				: •		·. 									
10 n	nm =	10	Min.			·									
→ 10 r	mm =	25	MPa						_						
	COU	IPLINGS	Туре			Seria	I Nº		G	luality	Hea	t Nº			
	3" (coupling	with		- 8	090	808	6	AIS	5 4130	23171	24613			
4 1	1/16" 1	OK API F	lange end						AIS	SI 4130	034	939			
	NOT	DESI	GNED FO	DR W	ELL	TESTIN	IG	,k_		A	PI Spec 1	6 C			
		. .		· :						Temp	erature ra	nte:"B"			
VE CERT	IFY THA	T THE A	OVE HOSE							H THE TERMS	OF THE ORD	ER			
onditions	and sp	ecification	s of the abov	e Purcl	haser C	Order and t	hat these	tems/e	quipment	were fabricated	inspected ar	id tested i			
				c	COUNT	RY OF OR	IGIN HUI	IGARY/E	U						
)ate:		· · ·	Inspec	tor			Quali	y Contro	Çus	tiTech Rubbs	ar ($\overline{)}$			
13. No	ovemb	oer 2013	3.		· ·		2	me ,		dustrial Kft. ty Control De	Barn Li	/ //>			
ontiTech Rubb udapestiút 10 O.Box 152 Sz ungary)., Szeged I	1-6728	Phone: +38 62 5 Fao: +58 62 6 e-mail: Info@fuid Internet: www.com	i66 738 1.contitech.		The Court of Registry Cou Registry Cou EU VAT No:	rt rtNo:HU0	3-09-002502	Szeged	al and Creditbank -28014250-000000	20	-			

Page: 1/1

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1906, 1907, 1908

Hach tiTech Rubher dustriai Kft. ty Control Dept. (1)

													-											(Co
ß							1								1								•		
	ľ	1 1	9. 94			C d		li		1	71	222				. 1			 				÷		Ţ
GN	┼┢	4	9.	63		C	F		h	4	Ż	40	┡	1.1		<u></u>	+	1	1		<u>t</u>	+		11	$\frac{1}{1}$
6- 		1	9.	84	0 10					7.21.5	7171									:			•		
RD BL	11			的科	a		p		þ	1	7	60		6)		70	ļ	8	þ		9	D	1	od
		1	9. 9. 05	647 3	9	C a r				111	6	50									:[-			1
RC BL		111	9. 9. 05	51 78 5		C qr				1	6	40		;]							 				Ì
		11	9. 9. 95	認わり	þ	G		1.		1	6 6 6								└			 			
RD			9. 9. 86	78 78 7	цор	č		- - 		1	6 6					1		1					ļ	1	
	T															; ; ;			I						
12 66	-11 552	, , ,	22 66	13		16 66	5	30 54			00 								ĺ			-			Í
							ļ	IJ	\mathbb{F}	5			:				Ī	- -		ſ		1	;		
	if	T	T	Π	1	T	Ħ	1		+	Ħ	Ti	T	1	1	ii	1	1		1		1	÷	: [i I

And a second of a

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	9/44			

Ontinental & CONTITECH

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

3

				Γ	CONT	ITEC	H RUBE	BER	No:QC	C-DB- 6	651 /20	
					li I	ndust	ial Kft.	Γ	Page:		10/4	44
				L								
							0.1	_	,			
						(Bod	<u> </u>			:	
r	Customer:		ContiT	ech Rubl	ber Indusi	trial Kft	ηT					
	Order Numi	ber:				258500	8083	- 8088				7
	Part Numbe	HT:			4205	160045	00 0 3	. geve				
	Our Ret:					064201			5	t e		
	Date: Certificate I	lumber:	(TR		h Februa Rev. 18/0			_				- 13
	Approved S					~~~~~	1 3	451-	- 14	66		
	RM	Greaves A	Cocking	J Jarvis /	A Pears S	Selman	42	120	$\sim \sim$	L.C		
								041		43	·	
	Descript	ion			CERT	FICATE	OF CONF	ORMITY			Heat	Treatment
	AIS14130/BL						HARDENED					ENCH)
	MIN ELONG						WATER TEN	PERATUR	E BEFORE	QUENCH, 2	28°C, AFTE	
1	(OR COLDE! REDUCTION					AVBC	TEMP. MEA					RMOCOUPL
	TAKEN FROM						TEST COUP					ATION
	MECHANICA			ASTM A370	0		REDUCTION		_			
	NACE MR01	/6/15015150	APPLIES			1	FURNACE C					PIECE
	APPROX 20	TONNES 2	10 MM DIA				C/E = 0.693		-			
	CERTS TO E	N10204 3.1					ł					
· ·					• .	CAS	T 24613)				
	C	SI	Mn	s	P	NI	er	Mo	AI	Cu	Sn	Nb
	0.3200	0.2590	0.5680	0.0090	0.0100	0.166	0 1.0560	0.2350	0.0200	0.1420	0.007	0.0010
	V	Ta	ТІ	Nb+Ta	Co	N	B	W	Ce	Fe	As	Sb
	0.0010		0.0010		}	0.007	9 0.0001				ł	
			H (ppm)	_	1					1		1
	Pb	iCa 👘	Tue (Abud				1				1	
	Pb	Ca	1.20									
	Pb	Ca	1	0.69			N 517 N/ms	n2 MIN Y	IELD		<u> </u>	
		Temperatu	1.20	0.69	T SPECIP	Rm	N 517 N/ms A %	n2 MIN Y Z %	IELD Imp	act	Temp.	Hardness
			1.20	0.69 TES Re	T SPECIP Rp 0.2 517.000	Rm	A%		the second s	act	Temp.	Hardness
		Temperatu	1.20	0.69 TES	T SPECIP	Rm	A %		the second s	act		-
		Temperatu RT	1.20	0.69 TES Re	T SPECIP Rp 0.2 517.000	Rm	A % 40 RESULTS A %		imp	act	Temp.	-
		Temperatu RT	1.20	0.69 TES Re	T SPECIP Rp 0.2 517.000 Nami2	Rm Nimm TEST Rm	A % 2 40 RESULTS A %	Ζ%	Jk KCV 46°C			-
	Test Nur ST2256	Temperatu RT	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	kCV 46°C KCV 46°C	oules 60 50 78 50 50 46	Charpy Directio	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	JK KCV -46°C KCV -60°C -60°C -60°C -60°C	oules 60 50 78 50 50 46	Charpy Directio LONG LONG	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	imp 	50 50 78 50 50 78 50 50 46 rtaco 52.0% 80.0%	Charpy Directio LONG LONG	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	KCV -46°C KCV -46°C KCV -80°C % Shaar Su 62.0%	oules 60 50 78 50 50 46 stace	Charpy Direction LONG LONG	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	KCV -46°C KCV -46°C KCV -80°C % Shaar Su 62.0%	60 50 78 50 50 46 stace 52.0% 60.0% ensten (mm)	Charpy Direction LONG LONG	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	KCV -46°C KCV -46°C KCV -80°C % Shaar Su 62.0%	60 50 78 50 50 46 stace 52.0% 60.0% ensten (mm)	Charpy Direction LONG LONG	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	اسم پر ۲۵۲۲ ۲۵۲۲ ۲۵۲۲ ۲۵۲۲ ۲۵۲۲ ۲۵۲۲ ۲۵۲۲ ۲	60 50 78 50 50 78 52 0% 60.0% ensten (mm) 0.740 1.020	Charpy Directio	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm Nimm TEST Rm	A % 40 RESULTS A %	Z %	اسب پرد ۲۵۳۵ ۲۵۳۵ ۲۵۶۵ ۱۵۹۵ ۱۵۹۵ ۱۵۹۵ ۱۵۹۵ ۱۵۹۵	eules 60 50 78 50 50 46 rtace 52.0% 60.0% ensten (mm) 0.740 1.020 ontiTech Rut Industrial Kf	Charpy Directio LONG LONG LONG	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N	1.20 Ire Dtr./Temp 20.0°C	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/Jmm2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	Imp KCV 46°C % Shar & 62.0% : Late-30 Exp 0.840 /	60 50 78 50 50 78 52 0% 60.0% ensten (mm) 0.740 1.020	Charpy Directio	n (HB9/10/3000
	Test Nur ST2256	Temperatu RT nber 1N Ø 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/Jmm2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	Imp Jd KCV 48°C KCV 60°C % Shar & 62.0% : Late-79 Exp 0.840 (entitech Rut ontitech Rut ontitech Rut certificat Acceptable	Charpy Directio	n (HB9/10/3000
	Test Nur ST2256 Specimen	Temperatu RT nber 1N Ø 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/mm2 Rp	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	JKCV 48°C KCV 48°C KCV 48°C 52.0% 1 Late 39 Exp 0.840 0	60 50 78 50 50 46 stace 52.0% 80.0% ension (mm) 0.740 1.020 ontiTech Rub industrial Kf CÉRTIFICAT	Charpy Directio	n (HB9/10/3000
	Test Nur ST2256 Specimen	Temperatu RT nber 1N Ø 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/Jmm2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	JKCV 48°C KCV 48°C KCV 48°C 52.0% 1 Late 39 Exp 0.840 0	oules 60 50 78 50 50 46 rtaco 52.0% 60.0% enstan (mm) 0.740 1.020 ontiTech Rut industrial KT ACCEPTABL Quick Spectro INSPECTO	Charpy Directio	n (HB9/10/3000
	Test Nur ST2256 Specimen	Temperatu RT nber 1N Ø 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/Jmm2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	JKCV 48°C KCV 48°C KCV 48°C 52.0% 1 Late 39 Exp 0.840 0	oules 60 50 78 50 50 46 rtaco 52.0% 60.0% enstan (mm) 0.740 1.020 ontiTech Rut industrial KT ACCEPTABL Quick Spectro INSPECTO	Charpy Directio	/n H8w10d0000
	Test Nur ST2256 Specimen	Temperatu RT nber 1N 6 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/Jmm2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	JKCV 48°C KCV 48°C KCV 48°C 52.0% 1 Late 39 Exp 0.840 0	001105 60 50 78 50 50 46 17400 52.0% 60.0% ensten (mm) 0.740 1.020 0.740 1.0	Charpy Direction LONG LONG LONG LONG LONG	
	Test Nur ST2256 Specmen	Temperatu RT nber 1N 6 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 N/Jmm2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	Z %	JKCV 48°C KCV 48°C KCV 48°C 52.0% 1 Late 39 Exp 0.840 0	60 50 78 50 50 46 stace 52.0% 60.0% ensten (mm) 0.740 1.020 ontiTech Rut Industrial Kf CERTIFICAT ACCEPTABL ACCEPTABL	Charpy Directio	/n H8w10d0000
	Test Nur ST2256 Specimen	Temperatu RT nber 1N 6 12-500mm	1.20	0.69 TES Re Wrand	T SPECIP Rp 0.2 517.000 Nitrom2 524.000	Rm TEST Rm 698.00	A % RESULTS A % CL 50.00mm 0 27.60	2 % 67.70	Imp JK KCV 48°C KCV 80°C 80°C 80°C 80°C 80°C 80°C 80°C 80°C	60 50 78 50 50 46 stace 52.0% 60.0% ensten (mm) 0.740 1.020 ontiTech Rut Industrial Kf CERTIFICAT ACCEPTABL ACCEPTABL	Charpy Directio	44 (0)1246 254

				(Bo	dy)												<i>.</i>	_ •	
	·.				T										16	est)		erti	TIC	at	9
HICO METALS MANAGEMENT				8	089-	8090			Custan Numbe	ner Order vr		3225	2193 - 0	 I	Test Nu	mber			402483	·	
effield S9 2JN		To: CONTITECH RUBBER INDUSTRIAL KFT H-6728, SZEGED, BUDAPESTI UT 10, K/S62 - K/S75 BUDAPESTI UT 10, K/S62 - K/S75			Part Number			4205160045													
iephone: +44 114 2 csimile: +44 114 24					GED. APESTI UT 10, K 1562 -K 1575				EUR	-352087	1	Cast N	umber		6	23171	,				
			HUNG/	NGARY, NGARY 420516 0045			Report	Date		.2	5Sep12		Cert NL	Imber		EU	R-26584	5			
		•					Quanti	b	14 P	os 17402	Kga 210	mm Dia									
			Descri	scription AISI 4130 75KSI .2% PS API QTC				TC .	-	· · · · · · · · · · · · · · · · · · ·					Steel T	урө	ALLC	DY 4130			
suits quoted only refer t	o the items tes	ted																			
latertal Specification	AISH130																				
leat Treatment Spec	197-237BHN	1			-	Test	Spec 5	17N/MM	ZMIN.YLL	5				Test Sp	ec						
lett Practice	EFNO		Produ	tion Meth	od be	FORGE	D							-						_	
Heat Treatment	Tamp(°C)	So	ık 🛛	Co	lant	Chan	ge Ref.	Init	Max(°C)	Bato	3	Тетр ге	corded u	sing	CONTA	CT THEF	MOCOL	JPLE	ويرتجعون		
ARDEN	860	3 HRS		WATER O	UENCH	SHF-15	58284	20	30	0912091	308	Nature	of T/P		Separat	0					
EMPER	650	4 HRS		TABLE C	OOL	8HF-1	58284	1		1012091	319	Oto siz	e 4Inc	SQ X 6	ich LONG	1					
		1						1		1					F	leq. Min/l	Max	7	Achie	ved	
						1						Hardne	es on T/	>	197	237	HBW	229	22	9 1	HBW
		+				1.		1-				Hardne	ss on Mi	terial	197	237	HBW	218	23	5	HBW
ensilo -						- I	· · · ·			Impaoto -								_			
Location	Direction	Rp (20%		m		A%		Z%	<u> </u>	catior	1		ction		CVN		Lat Exp. (mm)	% Sh	ear
1/4T	LONGITUDIN/	U. 517	Min	655	to 600	18 N	Ain (4d)		0 Min		1/4T	·	LONGI	UDINAL	27	Min Ave		0.380 M	lin	0	
Results (N/mm2)			80	,	195	25 (5	50.0mm)	64.0	(12.56mn	n) Resulta	Joules	e)	-30 Ca	ntigrade	100	5 104 102	2	1.44 1.42	1.4	40 40	140
Results	<u>-</u>			+						Results					+				{	•	
Corrosion			<u></u>		/i++								. <u></u>		*****			ويباراني ويرويوني			
Pitting Resistance		Ferrite				·····			·····	Microstru	cture										
Carbon Equivalent				871			1	Gra	in Size	Min		6	Mex	<u>_</u>	6	1					
C SI Mn	P	8 0	Мо	N	Cu				T · ·	1		T	1	1	1	[T	T		1	
0.2940 0.2920 0.537	0 a0110 a	0050 1.062	0.2290	0.1860	0.2430				,†			1	1		1			1			
Come to BSEN10204.201 NACE MR-01-75 FE = BAL REDUCTION RATIO 6.5		1	- J				CCEPTA	Kh. ATE BLE		4 <i>1-</i> -				lardnass orca par /	Calibration load/pane STM E10	tration d).	rms to AF epth - HB	PieA 20th Ed W 10 diama	dition AN eter (mm)	NEX M. //3000 kg	f tes
Names of Approved Sh This report is not to be n	gnatories : S.M produced with	Aaxted G.Sm out written ap	th S.Sute provel.	r P.Rogen	M.Brown		C INSPE	10-04	1				Signature	NI	<u>}</u>			Page	1 of 1		

in the second second

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013 Page: 11 / 44

									C-DB- 651	/2013
							CH RUBBE			2/44
					L					
	ے ہے۔ Ford	HAM HAM	=== 2	Rt.]	808	Flang 3-80.90 ATING			ÉMI-TČ 18090	
	H-3531	. Miskol	c, Kie	ss Ernö	u. 17	. Pho	one: 36/4	6/401-03	B Fax: 3	5/46/379-199
			IN	SPECT	'I0I	N CE	RTIFI	CATE		
	ACCEPTA	NCE ACC	ORDING	G EN 1020	04-05	5/3.1		Certifi	cate No.	86989/13-0
	Date of	issue:	2013.	.03.27	Hámo	or No.:	98-39B5	263 Orde	er No.: 32	2259784/13/2
	Custome			Rubber 1 ed Budape			Kft.			
	Dimensi	on: MSO	-10059)7-002/A/	/H mm	1 I			$S/151 \times 18$ Quenched 8	2 tempered
	Quantit	y: 3	D pcs	Weight	::	73.0	kg/pc	Total we	ight:	2190.00 kg
	nomin	ation o	f prod	luct: For	:ged,	machin	ed disc			
	• *.	Chemica:	i anal	ysis %			Steelma		: 034939 SA Hutaos) strowiec POLA
	Test	Spec. value Min.	С	MN SI		P	S CR	MO	V Ce	
	No.		0.45	1.80 1.0	00.	025 0.	025 2.75	1.500 0.	300 0.82	
:		Result	0.28	0.56 0.2	00.	006 0.	003 0.99	0.1700.	003 0.62	·
	····	Mechanic	al pr	operties	3:					
			НВ	Rp0.2						
	Test No.	value Min. Max.	197 238	MPa 517	MPa 655	* 18	-30°C 27	ContiTech Industr CERTIF ACCEP		
		Result	235 238					DATE: 41	- 1 PECTOR 03.29	
	L13314	Result		525	662	19.50	35 52 82			
	Dimens Ultras Steel n NACE H HB-E10	onic tea naking (MR 0175/	nd vis t acc meltin ISO 1 ka:AS	ual cont . to SEP ng) proc 5156+API TM A370	192: ess: 17K	1-84 sp UHP-AS	pec. is s	atisfact um-treate pc/seri	d. ·	C
•	<	! E	xecut	ive Пá Чinos	 Mor	ZKL			Expèr	t
					eg elle Osztálj	ZKĽ Prorzé: V		()	MÜ - 4 - 107 Hámor 2	1/96 Rt.
							•	F	ALKA FER	- • .

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
	Page:	13 / 44

MISKOLC Kiss Ernő u. 17. sz. H-3531 tel:3	6/46/401-033 fax:36/46/379-	199 e-mail: <u>hamor@t-online,1</u>				
	PROTO	COL NUMMER: 98-39B52				
HEAT-TREAT	MENT PROTOC	OL				
BUYER: CONTITECH RÜBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.	Order No. of Buyer: . 32259784/13/2					
	Work No. of Buyer:					
PRODUCT:	QUANTITY: PIECE	No. of drawing:				
forged	30	MSO-100597-002/A/H Test No.:				
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939					

Typ of furnace: electric furnace

Hardening medium: water

Miskolc, Hámor ZRt. 2013-03-26.

Kando' head of heat-treatment

flámor zRt. Vlinoség ellenőrzée Osztaly

winword/doc/HOKEZ-K/CONTITEC/4130-820

		CONTITECH	RUBBER	No:QC-D	B- 651 /2013	
		Industria		Page:	14/44	
		· •				
lado :	61344	gamma controll	kft	19/10/13	12:54 Lap:	
	ETFO Apple Constant Property of the	REP	SS TEST ORT	Report N	o: 561/13.	
	CLIENT:	JE-ZO KFT.	SZECED, KÜLT	TERULET, 0140	18/22.	
	TEST EQUIPMENT;	TH 160-D Ha	rdness tester			
	PROCEDURE:	QCP-45-R1				
	DESCRIPTION OF COUP					
	DRAWING NUMBER: SERIAL NUMBER:	MT-3121-300 8083; 8084; 8	•			
			005; 0000	· · · · · · · · · · · · · · · · · · ·		
	BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART O COUPI		ACTUAL HARDNESS RESULT (HB)	
					···· ··· ·····························	
			bod		224	
·	Min HB 197	v. 8083	wel flang		222	
	Max HB 238		connectio		236 238	
			L. 1		-	
		8084	bod wei		213 208	
			flang	le	220	
•			connectio	n face	238	
			bod		214	
		8085	wek flang	- 1	214	
			connectio	_ #	219 222	
			he d	.		
		/ 8086	body weld		232 237	
			flang		238	
	: · · · ·		connection	n race	197	
			•			
	The coupling(s) conform to	API Spec 6A requi	rements			
	DATE:	PREPARED:		APPROXEC	ONTROLL KFT.	
	2012	1 Tel			iterater 01884714, hrsz	
	2013. október 30.	Ménesi Is	tván	Addyram THURAD		
	QCP-03 HB/11				CHURCH CONTRACT	

CONTITECH RUBBER	No:QC-DB	- 651 /2013
Industrial Kft.	Page:	15 / 44

gamma controll kft

19/10/13 12:54 Lap: 3

ATE: 2013. október 30.	PREPARED:		PPROVE	DONTROLL KFT.
ne coupling(s) conform to	DAPI Spec 6A remu	itements		
		• • •		
	7 0000	weld flange connection f	ace	210 226 234
	8090	flange connection body	face	229 231 238 207
:	√ 8089	flange connection body weld	face	223 213 219
	/ 8088	body weld		229 212
Min HB 197 Max HB 238	√ 8087	body weld flange connection		213 216 220 225
	1			
BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF COUPLI		ACTUAL HARDNESS RESULT (HB)
DRAWING NUMBER: SERIAL NUMBER:	NT-3121-30 8087; 8088;	00		• •
PROCEDURE: DESCRIPTION OF COUF	QCP-45-R1			
TEST EQUIPMENT:		SZECED, KÜLTE	RÜLET, 01	408/22.
	N			
GAMMA-CONTRUCT		ess test Port	Report	No: 562/13.

Folado :

1

61344

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	16 / 44			

Vizsgálati szám: ULTRAHANG VIZSGÁLATI Report No.: GAMMA-CONTROLL JEGYZŐKÖNYV 3505.600,400 vF 513/13 ULTRASONIC EXAMINATION namma-control hu 6750 Algyő, kültarület 01884/14, brez. REPORT Tel /Fex.: +36 62/517-400 / 61344 NAT Alan MAT-1-1140/2010 azémen adumézén vangé Coupling (Body) Vizsgálat tárgya / Object of test Gyártó Megrandelő JE-ZO Kft. Szeged Manufacturer Customer Rendelési szám Gyárlszám Serial-No. Order-No. Azonosító jel Követelmény ASTM A388 8083-8088 Identification Requirement Geometriai kialakítás / Rajzszám Vizsgálati hőkezelés előtt Geometric configuration / Drawing-No. Test heat treatment prior MT-3121-3000 ø200xø70x491 Anyagminőség Letapogatási irányok AISI 4130 / axiális és radiális Material Direction of scanning Adagszám 24613 / Heat-No. Vizsgálati felület állapota forgácsolt Vizsgálati terjedelem 100% machined Surface condition Exted of Test Vizsgált darabszám 6 db Testing pieces Vizsgálati adatok / Examination data Készülék típusa Készülék gyári száma USM25 7875f Type of US-equipment Serial-No. Of US-equipment Vizsgálófej(ek) SEB-2, Frekvencia(k) 2 MHz SEB4H Searc unit(s) Frequency(ies) 4 MHz MHz MHz Kalibrációs blokk Erősítés(ek) axiálisan 18 dB ET1,ET2 Gain Calibration standard identification dB dB radiálisan 6 dB Csatoló közeg Hanggyengülés olaj dB/m Attenuation Couplant oil Ertékelés / észlelt kijelzések / Evaluation / recordable indications

Értékelés X	megfelel satisfact		nem	megfelelő / not acceptable
Megjegyzés(ek)				
Remark(s)				
Hely / keit			~ /	GAMMA CONTROLL KTT.
Place / date		11.1.50	<u>'</u> ()'	K750 Alova Kelleret UD 95/19 IIISZ
Gamma-Control	Kft.	1 YOUL	-71	Adds7805.T1094019.4.VY
Algyő, 2013.10	.17	Vizsgálatot	végezte	www.gampaarontroli.hu
		Tested	by	Tel.: 06-30-218-2640 Approved by
		Tóth Ákos UT20	103090307	Benkő Péter - Felelős vezetőh.

Ez a jegyzőkönyv részleteiben nem másolható! / Copying details is prohibited!

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	17 / 44	

GAMMA-C	ONTROLL	ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV			Vizsgálati szám: Report No.:		
VI HAGUZES'UN ES 1074. WWW.CBMMB-C		ULTRASONIC EXAMINATION			514/13		
8750 Aigyō, kulteruset Tel/Fax: +38 82/51 A IOIT data NAT-1-114072910 azimum a	01684/14. lutez. 7-400 / 61344	REPORT					
Vizsgálat tárg	ma / Ohiaa			Coupling	$(\mathbf{P}, \mathbf{I}, \mathbf{I})$		
			Magnadali	Coupling	8004/		
Gyarto Manufacturer	Gyártó Manufacturer		Megrendelő JE-ZO Kft. Szeged				
Gyáriszám Serial-No.			Rendelési szám		- <u></u>		
	8089-8090	· · · · · · · · · · · · · · · · · · ·	Order-No. Követelmény Requirement		'M A388		
Geometrial klalakitás / F Geometric configuration	•	· · · · · · · · · · · · · · · · · · ·	Vizsgálati hőkezelés Test heat treatment		előtt prior		
MT-3121-3000 Anyagminőség Material	······································	ø200xø70x491 AISI 4130 🖌	Letapogatási irányok Direction of scanning axia		is és radlális		
Adagszám Heat-No.	<u> </u>	23171 /	Discussion				
Vizegálati felület állapot: Surface condition	3	forgácsolt machined	Vizsgálati terj Exted of Test	100%	6		
Vizsgált darabszárn Testing pieces		2 db			,		
resulty pieces	Vizs	gálati adatok /	Examinati	on data			
Készülék típusa Type of US-equipment		USM25	Készülék gyá		f		
Vizsgálófej(ek)	··· _/ · · · · · · · · · · · · · · · · · · ·	SEB-2,	Freikvencia(k)		2 MHz		
Searc unit(s)		SEB4H	Frequency(ies) 4				
					MHz		
Kalibrációs blokk Calibration standard Idei	ntfication	ET1,ET2	Erősítés(ek) Gain	axiálisan	18 dB dB		
				radiálisan	dB 6 dB		
Csatołó közeg		olaj	Hanggyengülés		dB/m		
Értékelés / észle	lt kijelzések	/ Evaluation / reco	ordable indic	ations			
Értékelés Evaluation	X	megfelelő satisfactory	, in	nem megfelelő / not	acceptable		
Megjegyzés(ek) Remark(s)							
Algyő, 2013.10.17 Viz		Vizsgá	Noll 1		GAMMA - CONTROLL KFT. 5750 Algor Houerote (1890/14. hrsz. Adosen: 19974514 2-06 www.gamma-comroll.hu Tel: 06190918-2640		
			ested by UT20103090307		Approved by Benkő Péter - Felelős vezetőh.		
	Er a hongáki	hyv részleteiben nem máso		and the second se	010103 VOLOIUII.		

3.változat 2013.07.16

CONTITECH RUBBER Industrial Kft.	No:QC-DB- 651 /2013		
	Page:	18 / 44	

GAMMA-CO	INTROLL	ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV			I.	Vizagálati azám: Report No.:	
	n n n n n n n n n n n n n n n n n n n	ULTRASONIC EXAMI			MINATIO	ON	516/13
6750 Algud Millerutet (1 Tel./Res. + 30 625174 AM17 Stat H12-1-1140/2018 science all	884/14 tasz 100 / 61914	REPORT					
Vizsgálat tárgy	ra / Objec	t of te	st		Flar	nge)	
Gyártó			·····	Megrendelö		~	
Manufacturer	•			Customer	JE-ZO K	ft. Sze	ged
Gyariszem	·			Rendalési szá			
Senal-No.				Order-No.			
Azonositó (al		·····		Követeimány	·····		
Identification	1083-8090			Requirement		AST	m a388
Geometriai kielakitás / Ra	izezám	·····		Vizsgálati hók	ozelés	·····.	előtt
Geometric configuration /	•			Test heat trea			prior
MT-3121-3000		A215-4	85x#190x94x#70	T TOL COPE DOP			Per cree
Anyagminôség	· · · · · ·			Letapogatasi i	iránvelr		
Material		AISI 41	130 🖊	Direction of ac	•	axiál	ls és radiális
Adeoszám				DAICONOT OF BE	anne i g		
Heat-No		03493	9 /	1			
Vizsadiati felület állapota	· · · ·	forgáceo	10	Vozsoálati terte	delem		
Surface condition		machine		Exted of Test		100%	
Vizsoat darabezám			-	LADE OF THE			
Testing pieces		8 db		1			
ectamili butero							
	Vize	ıgálati	adatok / E	raminati	on data		
Készülék típusa			-	Készülék gyár	i száma		
Type of US-equipment		USM2	5		US-equipment	7875	r en
Vizsgálófel(ek)		SEB-2.		Freitvencia(k)			2 MHz
Searc und(s)		SEB4H		Frequency(ies	5)		4 MHz
					•		MHz
							Silliz
Kalibrációs blokk				Erősités(ek)	axidilgen		6 dB
Calibration standard Ident	lication		ET1,ET2	Gain			
							dB
				1	radiálisan		6 05
Castoló közeg		olai		Hanggyengula	the second s		
Couplant		oti		Attenuation dB/m			
Ertékelés / észlel	t kijelsések	/ Evalu	ution / record	lable indici	ations		
Ertékelés	×	megfel	elő	<u>, </u>			
Evaluation	X	satisfa		1 1	em megfelel	o / not	acceptable
Megjegyzés(ek)	<u> </u>						
Remark(s)							
Haly / keit			Δ			12	. 0
Piace / date			1 11 un	<i>UI</i>			BARRALL KEL
Gamma-Controll Kft.		104	n 1		axe. Luik	前律约然日礼 加业	
Algyő, 2013.10.17 Vizsgéla		tot vegezte		1(646)4.2.56			
		Led by		ADDON	na-controll int		
	TAK TAK			20103090307			elelös vezetőh
1 10017		1					

Ez a jegyzőkönyv (észleteiben nem másolható) / Copying datails is prohibi

				8-651/2013
		lustrial Kft.	Page:	20 / 44
Meghatalmazzuk a tanúsít (MSZ EN 473 3.21) (The holder of this certificate has f GAMMA	vány tulajdomosát, hogy vizsg seen authorised to perform tests and t	ertification Body) álatokat végezzen és azo	k eredményéért fe	lelősséget vállaljon
6722 Száge Munkáltató aláírása OTP Ban	CONTROLL KFT d. Gyertyámos u. 1446/A dag 110/11/2006 147/2005/20406154 8amma-contrall.hu 96 30 218-2640		látum: <u>Aoog</u> Jatei)	.(1.07
	Folyamatos munkavěgz	és Igazolása (MSZ EN 4	739.)	
Sorsz.:	(Evidence of continued u Munkáltató aláírása	ork activity (MSZ EN 473 9.)) /////////////////////////////////////	Dátum
1	(Signature of the employer)	AnyoguineSimples		(Date)
2	1 sat	Concel Contra	Q	U.O.1.06.
3	NOST.		N. 101	2.01.09.
<i>4;</i> 5.	USA	-GANMA-CONTRA	<u>н 190</u>	3.01.09
6		Anjagotteo		
7.				
8.				a star starting
9, 10,				
Kiegészítések: (Additional řemarks.)				

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	21 / 44

								
	- PHOENIX		TECHN	ICAL D	ATA SHEET		TDS	Page
	Probitx Rubber Industrial Ltd.	WEL	DING PRO	DCEDUR	E SPECIFICA	ΓΙΟΝ	WPS	N° 1 of 2
M	CLIENT		THIS SPI	ECIFICAT	ION IS BASED	WPS Nº 1	4071	REV 4
:	IDENTITY CODE		ON AS	ME CODE	SECTION IX	SUPPORT	FING PQ	R N°
		, ` <u></u>	L				BL	JD 0700002/1
	ITEM	Qty			TAW-SMAW	Performe	•	
	DATA FOR ACCEPT	ANCE	TYPES: MA	NUAL	·····	Welder's	STAMP	
	JOINTS (QW-402)	75 Ir. 1.5	B B B C C C C C C C C C C C C C C C C C		Sequences	of weld see	on adden	rdum
Na harati	JOINT DESIGN	B	ACKING: Y	<u>es</u> /NO	WELD SEQUEN	NCE		
	BASE METALS (QW-403)			PART "A	"	PAR	Т "В"
	DRW Nº							
	GRADE:		WNo	o.:1 .7220	ASTM A 322-9	1: AISI 413 EN 10083-1		Mo4 (MSZ
	CARBON EQUIVALE	ent	max.C	e 🎽	0.82		0.	82
	MECHANICAL PROF TENSI	PERTIES: LE STRENGTH	N/mm ²	min.	655		6	55
	Ducti	LITY	%	min.	18		1	8
	Hardi	NESS	HB	max.	238		2	38
	Імрас	т Test -30°	C J	Average	27		2	7
	THICKNESS:	t = 5	-38 mm		OUTSIDE DIAMET	ER: 0	D = 60-2	280 mm
	FILLER METALS (Q)	₩404)						
	WELD MATERIAL	DIAMETER	BRA			NDARD		SUPPLIER
	Rođ	2.4 mm	EM		AWS A5.18			Böhler
	Electrode	3.2; 4.0	T-PUT Nil		AWS A 5.5-96:	E 10018-D2	2 (mod.)	Böhler
	LAPSE BETWEEN OF	PASSES	MIN./m	in 	······			
	POSITIONS (QW-40)5)			PREHEAT (QW-4	06)		
• •	POSITIONS: 1G R	lotated (horiz	contal)		PREHEAT TEMP.	: 300-330	°C	
	WELDING PROGRE	ession: Wel	d flat at or		INTERPASS TEM	P.: max. 35	i0 ℃	
	Position of fille		to the top		PREHEAT MAIN postweld he			gining of
	OTHER				METHOD OF PRI	eheattno: I	Furnace	
i l	L			ويستوجد ويتصفعونه				

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
	Page:	22 / 44

CONTIN	UATION	OF WP	S Nº 140-71 Rev	.4			P	age Nº 2 of
POSTWE	LD HEA	T TREAT	MENT (QW-407))	GAS (QW	-408)		
Hold	NG TEN	AP. RANG	<u> </u>	0 C°	SHIELDI	NG GAS A	rgon for root	t
Holdi	NG TEN	AP. TIME	4 HR					
HEATI	NG RAT	TE MAX.:	· · · · · · · · · · · · · · · · · · ·	·	PERCEN	TAGE COMPO	SION (MIXTUR	E)
Cooli	NG RAT	E MAX.:	80 °C/HR			9	9.995 %	
LOCAT	TION OF	THERM	OCOUPLE		FLOW RA	ATE 1	0-12 LITRES	s/min.
			· · · · · · · · · · · · · · · · · · ·		GASBAC	CKING: Argo	n (for 1st and	2nd passes
FURNA	CE AT	MOSPHEI	RE Air		FLOWR	ate 7.	9 Litres/min	
TYPE:				•	TRAILIN	G SHIELDING	GAS COMP.	
Electri Curren		iaracte DC	ERISTICS (QW-40	9)	ELECTRO	DE POLARITY	lst : 2nd-28th	pass: - passes: +
TUNGST	EN ELE	KTRODE	SIZE/TYPE: Ø3.2	mm thoriated	tungsten			
MODE O	F TRAN	ISFER FO	RGMAW					
ELECTRO	DDE / W	IRE FEE	D SPEED RANGE					····· .
WELD		ROCESS	FILLER	METAL	Cui	RRENT	VOLT	HEAT
LAYER	s		CLASS	DIAMETER		AMP.	RANGE	INPUT
		<u></u>			POLAR.	RANGE		(KJ/cm
1 2-3		GTAW	EML 5 T-PUT	2.4 mm 3.2 mm	- +	110-130	11-12	5-8.4 12-19.6
2-3			NiMo 100	J.2 1010		120-140	2+20	12-13.0
4-28		SMAW		4.0 mm	+	150-170	26-30	16.2-27.
TRAVEL	POFFD	BANCE	NiMo 100 100-130 n	m/min	<u> </u>	<u>[</u>		
						·····		
TECHNIC		······		······································				
STRING				<u></u>	URIFACE	OR GAS CUP SI	ZE Ø9mm	
·····			NING: Brushing,	Grinding			 	
EQUIPMI	ENTS FO	OR WELD	INC:		····			
OTHER:			····					
EXAMI				1	REMARKS		7 (1)	
			ceptance instruct Based on ASME			ly CMo3 (MS itent less than		
	TA TAT	10-10 7	Dasta VII ASIME	·		elding bake e		2 hours at
					350 ℃			ut
	Βy	DATE	TECH	NICAL D	ATA SHI	EET		
Desig.	Bazle	14.06.	WELDING P	ROCEDUI	RE SPECIF	ICATION	HOSETE	CHNICAL
	714	14.06	SUBJECT: Butt	weld of hose	coupling for	H2S service:	DEPAR	TMENT
Appr. 2	Lever							

CONTITECH RUBBER	No:QC-D	B- 651 /2013
	Page:	23 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page No:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bain 41
for the approved wall thickness range 5-38 mm	Checked:	
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	C Sefer

No.	Wali thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		1 2	3,2 3,2
2.	7-9		1 2-3	3,2 3,2
n:	9-11		1 2-3 4-5	3,2 3,2 4,0
3	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		1 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		1 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		1 2-3 4-19	3,2 3,2 4,0

Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm Rod EML 5; for the others; SMAW with electrode T-PUT NiMo 100

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	24 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
ADDENDUM	Revision:	4
for the approved wall thickness range 5-38 mm Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Page Nº:	2/2

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		i 2-3 4-23	3,2 3,2 4,0
a a lan ing a gang a gang a sa	32-35		1 2-3 4-24	3,2 3,2 4,0
13.	35-38		i 2-3 4-28	3,2 3,2 4,0

.

Specimen No. rum Area num Load KN Street 39/1 i8.9 15.8 657 39/2 18.9 15.7 664 Contract Control (Control (Contro) (Contro) (Control (Control (Control (Control (Control (Control	Kft. Page:	
Spectnen No. Width Thickness Area mm? Utilinais Total Utilin 39(1) 118.9 15.8 657 39/2 18.9 15.7 664 Stress Stress COW/1500.17 Type and Figure No. Neutrition Stress S		26 / 44
Spectnen No. Width Thickness Area mm? Utilinais Total Utilin 39(1) 118.9 15.8 657 39/2 18.9 15.7 664 Stress Stress COW/1500.17 Type and Figure No. Neutrition Stress S		
Spectnen No. Width Thickness Area mm? Utilinais Total Utilin 39(1) 118.9 15.8 657 39/2 18.9 15.7 664 Stress Stress COW/1500.17 Type and Figure No. Neutrition Stress S	Certificate no: BU	ID 0700002/1
Spectmen No. Width man Area mm? Ullimate Total Stress 39/1 18.9 15.7 664 39/2 18.9 15.7 664 Spectmen No. 18.7 664 Type and Figure No. Netth Location Spectmen Stee Specimen No. Notch Location Specimen Stee Test Temp. Specimen No. Notch Location Specimen Stee Test Temp. 39 5 10x10x55 30 39 5 10x10x55 30 39 5 10x10x55 30 39 5 10x10x55 30 39 HAZ 10x10x55 40 39 HAZ 10x10x55 30 39 HAZ 10x10x55 40 100x10x54 Stestotactor	Page 2 of 2	
18.9 18.9 15.8 657 39/2 18.9 15.7 664 180° Band roller dia. 36 min 2.42 pts. Basilis 5 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 180° Band roller dia. 36 min 2.42 pts. Satisfic 39 10x10x55 -30 39 HAZ 10x10x55 39 HAZ 10x10x55 </td <td>ne Unit</td> <td>R No. BUD 070</td>	ne Unit	R No. BUD 070
39/2 18.9 15.7 664 Childen Bank Coll (COLLED) Neuron State Neuron State Neuron State 180° Bank roller dia: 36 mm 2-2 ptr. Satisfra Satisfra Specimen No. Notch Location Specimen State Test Temp. 39 5 10x10x55 30 39 5 10x10x55 30 39 4AZ 10x10x55 -30 39 HAZ 10x10x55 -30 Comments: Yes No Penetration Into Nacro - Results Macro - Satisfactory Xesy - Satisfactory Yee of Tast Hardness test Openit Anilysis Other Macro - Satisfactory Laboratory Test Vet certify that the statements in this record are	MPa type of Partne & Cocascon Base material	·
Speciments: No Result Speciments: Speciments: Speciments:	Base material	200
Type and Figure No. Reads 1807 Bend roller dile. 36 mm 242 pts. Satisfa Specimen No. Notch Location Specimen Sze 39 5 10x10x55 39 5 10x10x55 39 5 10x10x55 39 5 10x10x55 39 4AZ 10x10x55 39 HAZ 10x10x55 30 HAZ 10x10x55 30 HAZ 10x10x55 30 HAZ 10x10x55 31 HAZ 10x10x55 39 HAZ 10x10x55 4 HAZ 10x10x55 30 HAZ 10x10x55 10a Denotation Italio Mecro - Results Hardness test <td>:</td> <td></td>	:	
180° Bend roller dia: 36 mm 2.42 pts: Satisf: Specimen No. Notch Location Specimen Sce Test Temp. 39 S 10x10x55 -30 39 S 10x10x55 -30 39 HAZ 10x10x55 -30 9 Yes No Penetration Into 10x0		
Specimen No. Notch Location Specimen Size Test Temp. 35 5 10x10x55 30 39 5 10x10x55 30 39 5 10x10x55 30 39 4AZ 10x10x55 30 39 HAZ 10x10x55 30 20 Satisfactory: Yes No Penetration Into Mecro - Results Hardness test Ceposit Analysis Other Mecro - Satisfactory Vrater States Satisfactory X-ray - Satisfactory Vecavity Test Laboratory Test Vedder's Name Thvadar Scabo DC-L 378258 Clock No. Laboratory Test	tory	
Specimen No. Notch Location Specimen Size nom Test Temp. •C 33 \$ 10x10x55 -30 39 \$ 10x10x55 -30 39 \$ 10x10x55 -30 39 HAZ 10x10x55 -30 Comments:		t northe e
Specimen No. Notch Location Specimen Size nom Test Temp. •C 33 \$ 10x10x55 -30 39 \$ 10x10x55 -30 39 \$ 10x10x55 -30 39 HAZ 10x10x55 -30 Comments:		
33 S 10x10x55 30 39 S 10x10x55 -30 39 HAZ 10x10x55 -30 Generationscints:	bripact Value	Drop Wei Vills (Y/N)
39 S 10x10x55 -30 39 HAZ 10x10x55 -30 Comments: IDx10x55 -30 Conducted Br: IDx10x55 IDx10x55 Vec certify that the statements in this record are correct and that the test weids werrequirements of Section IX of the ASME Code. ILoyd Data issued: 28 February 2007 ILoyd		viits (YAN)
39 HAZ 10x10x55 -30 39 HAZ 10x10x55 -30 39 HAZ 10x10x55 -30 Comments: Interface -30 Result-Satisfactory: Yes No Mecro - Results Interface -30 Coherer Mecro - Satisfactory -30 Veder's Name Tivater Szabo DC-IL 378258 Clock No. Test Conducted By: DKG EAST Anyagvizsgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test weids wer requirements of Section IX of the ASME Code. Interface Data Issued: 28 February 2007 Lloy d Manufacturer's Representative Lasio Bajust Interface	49 	
Comments:	38 	· 「 「 「 」 」 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、
Comments: Comments: Comments:	 62 3. Constraints of the solution of	ente Carry e celes. 1 1905 auguste - Arr
Image: Satisfactory: Yes No Penetration into Mecro - Results Macro - Results Macro - Results Other Hardness test Deposit Analysis Other Mecro - Satisfactory X-ray - Satisfactory X-ray - Satisfactory X-ray - Satisfactory Satisfactory Welder's Name Tivadar Szabo DC-IL 378258 Clock No. Test Conducted By: DKG EAST Anyagvizsgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Lloy d Date issued: 28 February 2007 Lloy d Bacc Manufacturer's Representative Lazio Bajust		Sa Na hara sa sa
Image: Satisfactory: Yes No Penetration into Mecro - Results Macro - Results Macro - Results Other Hardness test Deposit Analysis Other Mecro - Satisfactory X-ray - Satisfactory X-ray - Satisfactory X-ray - Satisfactory Satisfactory Welder's Name Tivadar Szabo DC-IL 378258 Clock No. Test Conducted By: DKG EAST Anyagvizsgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Lloy d Date issued: 28 February 2007 Lloy d Bacc Manufacturer's Representative Lazio Bajust	中國民主要任何基礎的統領	
Result- Satisfactory: Yes No Penetration into Mecro - Results Macro - Results Penetration into Other Hardness test Penetration into Deposit Analysis Mecro - Satisfactory Vekdor's Name Other Nacro - Satisfactory Vekdor's Name Tivadar Szabo DC-II. 378258 Clock No. Test Conducted By: DKG EAST Anyagy/asgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Lloy d Date issued: 28 February 2007 Lloy d Bace		M. Holleon
Result- Satisfactory: Yes No Penetration into Mecro - Results Macro - Results Penetration into Other Hardness test Penetration into Deposit Analysis Mecro - Satisfactory Vekdor's Name Other Nacro - Satisfactory Vekdor's Name Tivadar Szabo DC-II. 378258 Clock No. Test Conducted By: DKG EAST Anyagy/asgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Lloy d Date issued: 28 February 2007 Lloy d Bace		
Macro - Results Cliffind Tests Type of Test Hardness test Deposit Analysis Other Macro - Satisfactory X-ray - Satisfactory Llock No. Lloy d Birdan Mamdacture's Representative Lazio Bajusz		
Type of Test Hardness test Deposit Analysis Other Macro - Satisfactory X-ray - Satisfactory Welder's Name Tivadar Szabo DC-IL 378258 Clock No. Test Conducted By: DKG EAST Anyagvizsgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Data Issued: 28 February 2007 Lloyd Baccon Cod Manufacturer's Representative Lasio Bajust	arent Metal: Yes 🚺	No []
Other Macro - Satisfactory X-ray - Satisfactory Welder's Name Tivadar Szabo DC-II. 378258 Clock No. Test Conducted By: DKG EAST Anyagvizsgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Lloyrd Birdan Data Issued: 28 February 2007 Lloyrd Birdan Manufacture's Representative Lazio Bajust Heat Section IX		
X-ray - Satisfactory Vvekder's Name Tivadar Szabo DC-II. 378258 Test Conducted By: DKG EAST Anyagvizsgalati Labor. We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Date issued: 28 February 2007 Builder Builder Manufacturer's Representative Laboratory		
Test Conducted By: DKG EAST Anyagvizsgalati Labor. Laboratory Test We certify that the statements in this record are correct and that the test welds wer requirements of Section IX of the ASME Code. Data Issued: 28 February 2007 Bocc Cod Manufacture's Representative Lassio Bajust	(BC 15) Stamp No.	
requirements of Section IX of the ASME Code. Data Issued: 28 February 2007 Birdan Bandacture's Representative Lassio Bajusa		2007
requirements of Section IX of the ASME Code. Data Issued: 28 February 2007 Birdan Bandacture's Representative Lassio Bajusa	nranavari woldori and tastad in acro	ordance with the
Bacz w Manufacturer's Representative 1assio Bajusz	Hogisty	7
Manufacturer's Representative Lassio Bajust	Houde	
Manufacturer Phoenix Rubber Gumüpani Kit, SZEGED	Laszlo Penzes	[- <u> </u>
	Surveyor to Lloyd's Register EMEA	
	A member of the Lloyd's Register Group	

CONTITECH RUBBER	No:QC-DB- 651 /2013				
	Page:	27 / 44			

CONTECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

gnation nm) ng	GTAW/SMA Rod / Electro AWS 5.18: ER AWS 5.5: E9 ASTM A 322-91 4130 Pipe 1G 72 mm 19 Single Groove	ode 70S-3 018	ASTM A 322- 4130 Pipe/Pia 1G/Fia > 25 m Max to be v	ate at m	Identification of test pleces: WPS No.: 140-60 Rev.4
gnation nm)	AWS 5.18: ER AWS 5.5: E9 ASTM A 322-91 4130 Pipe 1G 72 mm 19 Single Groove	70S-3 018	4130 Pipe/Pk 1G/Fia > 25 m Max to be v	ate at m	pleces: WPS No.:
nm) ng	AWS 5.5: E9 ASTM A 322-91 4130 Pipe 1G 72 mm 19 Single Groove	018	4130 Pipe/Pk 1G/Fia > 25 m Max to be v	ate at m	pleces: WPS No.:
nm) ng	4130 Pipe 1G 72 mm 19 Single Groove		4130 Pipe/Pk 1G/Fia > 25 m Max to be v	ate at m	pleces: WPS No.:
nm) ng	1G 72 mm 19 Single Groove		1G/Fla > 25 m Max to be v	at m	pleces: WPS No.:
nm) ng	72 mm 19 Single Groove		> 25 m Max to be v	m	pleces: WPS No.:
nm) ng	19 Single Groove		Max to be v		pleces: WPS No.:
ng	Single Groove			velded	WPS No.:
	Groove				
(ses)					140-60 Rev.4
(ses)					
ses)		Groove		Fillet	Testing standard:
	Argon (99,95%)				ASME IX
/elding carried out, place: Szeged		Dat	e: Iding Engineer:	29 April 20 László Bai	10 USZ Barrer
	formed and		Not required		e and date:
			<u></u>		Szeged, 18-Jun-2010
Accept	ted (Vjk-1739/10)			1	•
			+ Sun		reyor:
					Péter Szabó
		+			an and simplified
			+ 512		np and signature
			+		A STREET WY
			+		~~~~~
	Accep	accepted Accepted (Vik-1739/10) Accepted (Vik-1739/10)	accepted Accepted (Vjk-1738/10) Accepted (Vjk-1739/10)	accepted Not required Accepted (vjk-1739/10) + Accepted (vjk-1739/10) + + + + + + + + + + + + + + + + + + +	accepted Not required Plac Accepted (Vjk-1739/10) 5 Accepted (Vjk-1739/10) 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	28 / 44

Continental -CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

PROLONGATION OF APPROVAL BY EMPLOYER						
Place	Date	Name/ position/ title	Stamp and signature			
Szeged	29.10.2010.	Laselo Bajuse / Hickling beding logist	Barred			
Szeged	29.04.2011.	Lass Lo Boyus / Welding tour depos	Berrel			
Szeged	29 10. 2011	Lasslo Baricon Welding Jedens byist	Beerer			
Sreged	29.04.2012	Caselo Bainen (Webling Secteralgost	Barrel			
Sz eject	29. 10. 2012.	Lassle Dairen / Mobling La le walt of	Beach			
Szagal	29.04.2013.	laselo Baiun Welling Laderdayist	Barrel			
Segul	28,10,2013	Cosilo Dairen / Weblieg faleuslass	Barcel			
<u> </u>			<u></u>			
· · ·						
_ <u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · ·			
<u>i</u>			· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			<u> </u>			

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	29 / 44			

- - ---

	eged, Kí Adószám	20 KFT. literület 01408/2 13341039-2-06 számlaszám:					OG S Mun				2013.	2898	? <u>.</u>
12	67008)	01, 163", 01, 101	101							PAGE /	oldal 1/	1	
	CLIENT Megrenc			TECH R	UBBER I	ndustri	al Kft.		CH.ORDE	R N ^Q .	226159	8	
	CONTR/ Kötésszi)L/JOB N ^O I m.szám	2808	-2905		WPS N ^Q Heg.ut.s		HD -71	Rev. 4	. 1.7
	NAME O	F WEDED PAR		Body		onge.	2000	•	DRWG N Rajzszár	. Q1	T 3121 -	-3000 .	
		e ^Q . OF WELDER		Szabo	livador	loszl	<u>ь.</u> Э.С	15.	LOCATI	ON/SHO	P Gazge	A. Tone !	szele G
	DATE	2013.10.2		QUANT		8.			SERIAL Sorszám	NUMBEI	75 8085 -	80 90	
	1. MATE	RIAL		UECT 1	bo	dy	MATERIA	N I		10	AST Nº.	12 40404	80 83-1
	CONTRO Anyag m	JL. ogfelelősóg		gy 1	 		Anyag		AISI . 419		dagszám	23171	, 8085-
	azonosit			NECT 2 av 2	1 -Flor	ne	MATERIA Anyag	u 1	AISI. JIS	- 1	AST N ^Q . degezām	0349	139.
		R METAL minőség	WE	DLAYER: alszám		Y	1.		2-3.	<u> </u>	4 - 11 .	·	
	és mére	•	TYP	Ε		Fhu.	5.	NIH	0. 100	. ND	10. IDD		
			DIAI Atm	METER		2	.4.		3.2.		4.		
			Elek	ER CAST tr.adagsz	ám	800	1303.	112	4075	112	27750.		
	3. ELECT	RICAL CTERISTICS	TYP	E POLAR	Polaritás	-	1		+		+		
	Elektromos adatok V		VOL	VOLT (V) AMPERE (A)		12. 180.			24. 26.		26.		······
			AMP					40			180.		
ſ		EAT TREATMEI da felhasználási					300 .		C°	-	8.		Hou
	5. APPLI	ED SHILDING G azott védőgáz	48	TYPE Tipus Ar		Percent Tisztas	tage Comp ég .	osition G	995.	%	Flow Rat Aramlási		}.
ŀ	6. HEAT Elômel	IREATMENT (pi				7. POS Helyz			atott :		Vmin		
Ī	8. SPEED	OF TRAVELS	100)÷130.			SE BEETW			. 6	3.		m
ŀ		WELD HEAT		Tin Id	ne	Te	mperature merseklet		Fume	ce atmos Itőközeg			ing rate sebesség
		ezelési adatok		240	min		G2O .	C°		eqő.		80	•••••••
1	1. RADIO Radio	OGRAPHIC TES gráfiai vizsg. biz	T CEI	RT. N ^Q . Ia	2410	115,	2451	145			-		
	REPAIR Javítás	YES/ Ige					X	NO/ Na	em				
		PLACE OF DEF Hibs helye	ECT				TYPE Hiba ti		FECT				
		METHOD OF R Javitási módsze		2				·····					
	/ISUAL IN Szemrevé			legfe]e)	å 5a	hsfact	ory.						<u> </u>
- E -	REMARK	-	Ŧ	ionius.	Maria	. Ika	We .	2600				IE 70	Vrm
. 8		of coling down ti		W	MINOSII	ETT H	ECESZT FARSASÁ Heller köz	G 7E		PECTO	6728 Szeg	JE-ZO cA, Kolter	ület 0140
Ī)átum, kih	uliés vége		H.	KOZKER	LOBII I	A avdle 6.	- (7		2013 N	/Add	5 5 zán : 133	341039-2-
Ī	-	10.26	اح ۳		6763 SZ	Szegat,	Heller köz 290-2-06	1. βυ	DA [®]	TE	ov qå l	Bankiza 00:-00127	Aszám: 1077-0016

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	30 / 44			

GAMMA-CONTROLL	SZEMREVÉTELEZÉSES	Record No. Jegyzőkönyv
alexan sala patro di tertari.	VIZ8GÁLATI JEGYZŐKÖNYV	száma
Www.garnero-control.hu 6750 Algrd, tetterorte: 0153414, tete. Tel/Fila.; +29 82517-400 / 01344 A NAT 620 NAT-1-142214 actions attentiatis sungifictmentations	VISUAL EXAMINATION REPORT	813/13

Object	Coupling welding	Serial No.	8083-8090	
	Caatlakozó hogesztés	Gyári szám		
Customer Megrendel	JE-20 Kft. Szeged	Orawing No. M. Rajzszám	r-3121-3000	
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminöség/méret	AISI 4130 115/77	
Quantity Mennyisé	8 db	Extent of examination Vizsgalat terjedelme	100%	
Requirements Követelmények	ASME code VIII/1	Hest treatment Hökezelés	after PWHT	
Written Procedure No. QCP-09-1 Vizsgálati eljárás száma		Welder Hegesztő	BC15	
	Visual examination / Sze	mrevételezéses vizsgálat		

Technique Mödszer	Direct visual	-
lastrument Készülék	•	•
Visual aids Segédeszközök	3x magnifiying l e ns	•

Measurement / Mérés -L

Equipment	······································	
Készülék		-
Instrument		
Készülék		•
Surface temperature	Surface	Lighting intensity
A felület 20 °C hőmérséklete	condition Feiület Allapota	Megvilágítás 1000lx
Test results		
Eredmények :	SATISPACTORY megfelelo8	pc(s)/db
	not accepted nem megicielö0	pc(s)/db
Vizsgálat helye és ideje:	Vizsgálatot végezje:	Áttekintette és jóváhagyta:
Place and date of test:	Tested by:	Reviewed and approved but To GAMMA - CONTROL BUT To 6750 Alexi. Kaliger Output A series
Gamma-Controll Kft. Aigy6, 2013.10.30. (10h)	Kis / ábor VT20103130102	Addream 100 454 477 56 www.paning-controlling Tel Posense 18-2345

tar a jegyzőkönyv részleteiben nem másofhatói / Conying devalla is prohibitett

1.vPeper 2013.07.10

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	31 / 44			

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Kis Gábor Balázs

Szeged, 1980. 02. 29.

Azonosító szám: VT20103130102 (Identification No.): mély aláírása A tanúsitotf sz (The signature of) d Indiv

÷.,

.

Vizzgálati eljárás(ok): (The NUT method(s):

Ipari terület:

(Industrial sector);

Stemrevételezéses anyagvizsgáló (Visual testing) Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek): Product sector(s):

A minősítés fokozata: (The level of certification);

A tanúsitás és kiadásának léöpentja: (The date of certification and it's issue);

A tanúsítás érvényes: (The date upon which certification expires):

Budepest, 2013. 02. 19.

(c), (w), (wp), (f)

2018, 02, 18.

VT2

Chas Tandsitó Testület ne (On behalf of certifying

Az ipari és/vagy termék teril-let érvényesség kiterjesztve: (Te industrial and/or product sector has been expanded to):

Dátum (Date):

Tamisító Testillet nevében (On behalf of certifying body)

A tanúsítás érvényessége (Renewed the validity of the certifi

Dátum

(Date):

Tamúsító Testület nevében (On behalf of certification body)

Vizsgáztató (Examiner)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett és forrasztott termékek (welded products); t - csövek és csövezetékek (tubes); wp - alakhott termékek (wrought products); k - kompozit anyagok (composites products).

-ig inegújítva (MSZ EN ISO 9712 10.): m umil (MSZ EN ISO 9712 10.):)

CONTITECH RUBBER	No:QC-DI	3- 651 /2013
Industrial Kft.	Page:	32 / 44

1.00

VT20103130102 MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body) Meghatalmazzuk a tamásátvány tulajdonosát, hogy vizsgálatokat végezzen és azok credményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21) (The holder of this contration to general tests and take responsibility for the test rembs. (MSZ EN ISO 9712 3.21)) 0726 Szehed, Túzok n. 8/A Munikáltató atláírásan 10046614.2. Ant (Signature of the employator for the test rembs. (MSZ EN ISO 9712 3.21)) 0726 Szehed, Túzok n. 8/A Munikáltató atláírásan 11004614.2. Ant (Signature of the employator for the test rembs. (MSZ EN ISO 9712 3.21)) 1 tel. (Staffall hu) 1 t

	(Signature of the employer)	Ph. "GAMMA CONSTROLL."	Dáturia (Date)	· .
1.	LAD_	Anyngolisgáló és Minőségetlenőrső Kfr.	7612.02:06	
2.				
3.				
4.			, and the second s	•
5.		· · · · · · · · · · · · · · · · · · ·		٠.
6				•
7.		······		
8				
9.			·····	
10.				

· · .

- Kiegészítések:
- (Additional remarks:)

A tanúsítvány a munkáltató aláirásával érvényes (This certificate is valid with the signature of the employer.)

					1		TIT		1 DI	JBBER		OC-	DB- 6	51 /20)13	
						JUN			al K		`	age:		33/4		
											<u></u>					
. :	613	44			5	gama controll			i kfi	L	1	19/18/1	3 12	:54	Lap:	
														könyv si	am:	
413.2	S GAMI	ia-C()NTR()(; .∟	R	AD				I VIZE KÖNY		ATI	Report	^{No.:} 2431/	13	
_			well but							RAPH	0			dáturna;		
A HAT alas I	6700 Alond, In Tol./Tex.: 41 W7-1-11603010	10 62/517-4 10 62/517-4	1234/14. Ibac 100 / \$1344 martiith viceoper		-	E				ON RE		r	Due of	report: 2013.10	.30	
Vizagála	t tárgya:		_		Couplin	8			endelő;							
Object: Mankast	zám;	<u> </u>						Rend	t: ulesi su	im:	<u> </u>		JE-20	Kit. Szeg	ed	
Job Na.: Rajazón	-			MI	-3121-3	000			gminôsi	's :			AIS	1 4130		
	i szabvány	:	<u> </u>		DCP-13-				alat terj	edcime:						
	nvetolmén	y.			STM E			Hoke					-	PWHT		
Kód:	co criteria:	~		MSZ	EN ISO	N ISO 6520-1				n condition: :	_,	·		CIS	·	
	és tipusa:	_				MMAMAT				Welder stamp: Kepmindsegjelző típusa;				set B typ		
Sugarfor	quipment: As:	,			Ir192			Képminőség Jetző halye:				F				
	ús mérete;			1	Jx1,5mm			Libin	Placement of (Q): Libbri képminéség: Reguired (X):				2%	2% (2-21)		
Activities								Filmi	ipus;							
	gozás mód	ja:	Kéri:		0,4 TBq Automat	<u>a.</u>	Film Type: X Fóliafejía és vastagalg: Screen type and thick:					FOMA R5 Pb 0.027				
Film proc	essing:	<u> </u>	Manual:		Automet		Ê	Scred		na Unick:		Hibák/	Defects			
	[뵎		불불	photes A		.	년 4월	s of tes	Gáz Porosity	Salak Slag	Kötés Leek af	Lack of	Repedés Crack	Felüle	
Megnevezés Designation	Mêret Size	B Felvetelet andmar: B Number of carlingraphe	Attragtanti anyamatagaig Peactated dirimeta	 Segrificants film trivolsta Source-to-film diamocr. 	Fin the strey supports bath constant Distance tran source side of object to firm	Felender Dentity.	a Megnilagitehi kilik Si Expos Timer	Madeber: A-meglelek NA-tem neglelek Rendt	Vergeta Miponija, Date of test	A 200	B 300	tiction C 401	D 402	E IOO	500	
8083	115/77	4	19	96	19	2,4	<u> </u>		01,01 101 101							
8084	113/77	4	19	96	19	2,4	0,5	A	10,38 104							
8085	115/77	4	19	96	19	2,4	0.5	·A	in, in Int							
8086	115/77	4	19	96	19	2,4	0,5	A .	10,10. (05)	·						
8087	115/77	4	19	96	19	2,4	0,5	A	10.30. 105			·				
8088	115/77	4	19	96	19	2,4	0,5	A	10,30. 105				·			
A filmsz The num	ibers of t	he film	zámok a		ak, beaz	onosí	tásuk a		endold	t terheli. the task o	of the cos	stumer.	L		······································	
Perform										Ménesi i.	- Szabó					
Vicessialist I Place of Lo					Értékolt Ovaluat			The	s in			10v/hacy CAN ^187507	MA - CX	attiet 0188	I. KF	
		Algyö oli Kft.	Teleph	ety		Addszám The			0-218-30	il.b. 40/						

ł

					Ľ			ustria		JBBEF ft	· · · · · ·	age:		34 / 4	
lo :	613	44			8	janni	1 CO1	trol	l Jet	ł	:	19/18/1	13 12	2:48	Lap
	S GAMI	¢A-C(INTROL		R	2AD				I VIZS		ATI	Report		
64.00	i Alfana i	na da es	1000				J	EGY	ZO	KÖN	TV			2430/	13
	9991.0 6750 Algud, k 1967Fight: + 1967Fight: +	umma-con Utortict ()1	toil.hu 1984/14. hrm		7					RAPH			KiAllith Date of	k dátumu: report:	
A JUST GRAD		Distance and	100/01244 rechti vizigili	Subouticit	-	E	KAN	<u>IIN</u>	TIC	ON RE	POR	<u> </u>		2013.10	.30
Vizegále	t tárgya:			<u></u>	Couplin			-	endelā;						
Object: Munkas:	nim;								disi szt				JE-ZO	Kft. Szej	zed
Joh No.: Rajpode	-			M	F-3121-3	000			minösé	8:					_
	li szabvány				DCP-13-				álut terj	edetme:	• • • • • • • • • • • • • • • • • • •			SI 4130	
	követelmén	y:			STM E			Extent Håke/	of test	ing:				00%	
Accortor Kåd;	ce criteria:						1 .		vañ jelê:	it condition;				PWHT	
Code: Berendez	ds tipusa:					ISO 6520-1 Welder stamp: Kdom (afsadeled stamp)				BC15					
Type of e Sugartan	quipmene ts:			GA	MMAM	Type of IQI;			ASTM set B type						
Source: Suptrior	às márato;		<u> </u>		Ir192	Placement of Kil:			F				_		
Source st	<i>d</i> t:				3x1,5mn	1			ed IQI:			<u> </u>	2%	(2-2T)	
Activity:	gozás mód	a .	Kćzi:		0,4 TBq	_		Film T	ypc:	0510gsåg;	· · · · · · ·		FON	MA R5	
Film proc		,	Mencal:		Autonut		<u>x</u>	Seren	type an	d thick:		CIR II.	Pb Defucts	0,027	
			1	3 s			l ·	48	9 	· Cláz,	Salak	Kötés	Gyök	Kepalés	Fei
Megnevezés Designation		Feirtitelet trimer Number of radiographs	kungtrad unyagyangalg	Sugaturts film thedate Source-to-film distance	First the a tingy ang furths food obtaintik Distance from astarce tide of Obtaints to fart	¥	Meprikgikii idi: Expon. Time	indente: Armegalette: Vrroem megalette Result recentrot: NArmot secretes	इर्धाय व्हेम्रिक्यांग्र, Date of ecs	Porosity A	Slag B	Leck of finiton C	Lack of peasanarine D	Crack E	Suri
Megn Desig	a Méret Size	C Fetter	Reader Present	Serief Serief	And Andrew Construction Construction Construction Construction	Feletedis Density		Nindende: N NA-room and A-roomsted	12	200	300	401	402	100	50
8089	115/77	4	19	96	19	2,4	0,5	A	10.30. 10b						
8090	114/77	4	19	96	19	2,4	0,5	A	10.30. 105						
-	•	-	-	-	-	-	-	-	• .	-	-	-	-	-	-
					:		·								
					•										
A filmsz					•										
The num Vizzgála Performa	tot végez		s and we	ids ar	e identic	al, the	ar ider	tificat		the task o Ménesi I.					_
Vizsgålat h	alyo;	<u></u>			Értékelt			;	_			Jóváhagyta			
Pince of ta					Evaluato	xd by:	/	Ĥ	Ż		· .			DNTROL	
Gamm	6750 na-Contro	Algyô Il Kft		ly				énesi 1 101011		7	ļ	. J	TERIOOS	Million of	1.10

ł

	CONTITECH RUB Industrial Kft.	Page:	B- 651 /2013 35 / 44
		Faye.	
(HUNGARIA	HEGESZTÉSTECHNIKAI ÉS AN NASSOCIATION OF WELDING TECH (Certification B IENTES ANYAGVIZS) (Certificate of NDT person	inology and mati ody) GÁLÓ TANÚ;	ERIAL TESTING)
	<u> </u>		
A tanúsítoit neve:		Azonosító szám: RT. (Identification No.):	20101120107
(The name and forename of Mo the certificated individual):	énesi István	MALL	
Contractor b about the	entes, 1988. 09. 06.	A tanúsított szer (The signification of the cert	
(race and date of pirm):			
Vizsgálati eljárá: (The NDT met Ipari te: (Industial)	(Radiographic testing) diet: Készülékek, berendezések	, létesítmények vizs	
Termék terület(Product secto	ek): (c). (w)	oi edubnicue hian	
A minösities foko (The level of certific		n an	5
A tapúsifás és kiadásának időp (The dale of certification and it a	issue):		
A tanúsítás érvé (The date upon which certification e			- · · ·
Taminito Testi (On behalf of ce	tifving Body)	TQ92 HJ Vizagazzato (Bazminer)	
Az ipari és/vagy termék ter let érvényésség kiterjesztv (The industrial and/or product sector h been expanded t	e: as y/2001 Giv Dátum (Datos) 2 JAD GO Dátum (Datos) 2 JAD GO 2 JAD GO	Taming the	In the second second
	and Material	Tanusito (est	THE BOOM STORE
A tanúsítás érvényessége Renewed the validity of the certification	-ig megújítva (MSZ EN	¥ 473 9.):	Martin Marcate Martin
Dátum (Date):			
	······································	Tanúsító Testület ne	
NAT-5-0013/2010 számon aki	és Anyagvizsgálati Egyesülés, mint " kreditált személytanúsító szervezet" a h ja alapján a fenhek szerint: ding Technology and Material Testing as an " No. NAT-5-013/2010", on the basis of his/her s dividual according to the abave:)	evezett személyt tanú	Testület által a sítia az MSZ EN
c - öntvények (castings); f - kovácso)it termékek (forgings); w - hegesztett kötések-te hucts); p - milanyag termékek (plastics products)	mekek (welded products);	t - csövek (tubes);

			CONTITECH RUBBER	R No:C	C-DB	C-DB- 651 /2013		
			Industrial Kft.	Pag	e:	36 / 44		
	AR	MAGYAR HEGE (HUNGARIAN ASSO	SZTÉSTECHNIKAI ÉS ANY DCIATION OF WELDING TECHNO (Certification Bod	AGVIZS(DLOGY AM V)	GÁLAT ID MAT	RT24 "I EGYESÜL ERIAL TESTIF		
	Meghata (MSZ E) (The holde Munkáltat (Signature of t	N 473 3.21) r of this certificate the boar Authors 6126 Szeged 6 aláírása: the employer) O TPBank: 11	donosát, hogy vizsgálatokat végezzen (NTROLL Kr 1. rdfa geform 84% and take responsibility for th 1094614-2-06 735005-20406154 D	és azok ered	MSZ EN 47	• • - •		
		<u> </u>	natos mulikavégzés igazolása (MSZ EN 4	473 9.)				
	Sorsz :	(Evic Munkáltató alàirás (Signature of the employ	dence of continued work activity (MSZ EN 473 sa Ph. yer)	<u>9.))</u> 011		Dátum (Date)		
	1.		Anyagolasgaip	65 - Kfr-	-012			
·	2.	1 AG			7013	. 0(.09		
	3.		Angust Statements					
•••••	4							
• • • •	5.							
	6.							
	7.				• <u>••</u> •••••••••••••••••••••••••••••••••			
· · ·	8.					•		
	9.							
	10.							
	Kiegészítése	e k:						
	(Additional rem	barks:)				22		
			· · · · · · · · · · · · · · · · · · ·					
		,						
			22 					
	• •	• .						
		- 	:					
		· · · · · · · · · · · · · · · · · · ·						

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	37 / 44

ContiTech Rubber Industrial Kft. Szeged/Hungary	Viz Liqu Fes X Mag	Examination record esgálati jegyzőkönyv id penetrant examination stékdiffúzlós vizsgálat gnetic particle examination gneses repedésvizsgálat	Record No. Jegyzökönyv száma : 1222/13
Manufacturer Gyártó	JE-ZO Kft.	Serial No. Gyári szám	8083-8090
Customer Megrendelő	ContiTech Rut Industrial Ki		MT 3121-3000
Object Tárgy	coupling(s)	Material Anyagminőség	AISI 4130
Quantity Mennyiség	8 pc(s)	Extent of examin Vizsgálat terjede	
Requirements Követelmények	ASTM E 70	9 Heat treatment Hőkezelés	yes
Written Procedure N Vizsgálati eljárás szá		11-1 Welder: Hegesztő:	Szabó T.

Liquid penetrant examination /Folyadékbehatolásos vizsgálat

Penetrant	Remover	Developer
Behatoló anyag	Tisztító	Előhívó
Dwell time	Drying	Developing time
Behatolási idő	Száritás	Előhívási idő
Surface temperature	Surface condition	Lighting intensity
A felület hömérséklete	Felület állapota	Megvilágítás

Magnetic particle examination/Mágnesezhető poros vizsgálat									
Equipment type TSW 1000 Készülék típusa	Testing materia Vizsgáló anyag		Magnetizing c Mágnesező á						
Black light type Superlight C UV-A lámpa típusa 10A-HE	Field strength c Térerőmérő	hecking Berth disc	nold Field strength Térerő	4,2 kA/m					
Surface temperature 23 °C A felület hõmérséklete	Surface condition Felület állapota	"" machin	ed Lighting intens Megvilágítás	sity 1000 μW/cm ²					
Test results									
Eredmények :	satisfactory								
		8	pc(s)/db						
		a a a a a a a a a a a a a a a a a a a							
	not accepted								
	nem megreis	əlō	pc(s)/db						
Performed by NDE Level II.		Revised by Q	.C. manager						
Vizsgálatot végazte		Ellenörizte –		ContiTech Rubber Industrial Kft.					
Signature Oravecz Gábo		Signature	Markó László	QC1					
nialias		Aláírás 🛛		6411					
Place/Date	Ĩ	Place/Date							
Kelt Szeged, 04.11.20	13.	Kelt	Szeged, 04.11.	2013.					
QCP-12-1-MPT/07									

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	38 / 44

(Identification No.):

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Mágnesezhető poros anyagvizsgáló

(Magnetic particle testing)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Oravecz Gábor

Szeged, 1958. 07. 07.

Fémfeldolgozás MM

(c), (f), (w), (wp)

(Metal manufacturing)

Budapest, 2012. 02. 21.

A tanúsított személy aláírása (The signature of the certificated individual)

Azonosító szám: MT20103010506Ú

Vizsgálati eljárás(ok): (The NDT method(s):

> Ipari terület: (Industrial sector):

Termék terület(ek): Product sector(s):

A minősítés szintje: (The level of certification):

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue);

A tanúsítás érvényes: (The date upon which certification expires):

2017. 02. 20.

MT2

Vizsgáztató (Framiner)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date)

Tanúsító Testület nevében (On behalf of certifying body)

A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN

ig megújítva (MSZ EN 473 9.):

473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakttott termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER	No:QC-DB	- 651 /2013
Industrial Kft.	Page:	39 / 44

MT20103010506Ú

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to perform tests and take responsibility for the test results. (MSZ EN 473 3.21))

Bacn

Munkáltató aláírása: (Signature of the employer.)

- coper

Dátum: 2012.02.21.

	Folyamatos munkavé (Evidence of continues	gzés igazolása (MSZ EN 473 9.) d work activity (MSZ EN 473 9.))	
Sorsz.:	Munkáltató aláírása (Signature of the employer)	Ph. Contil TSim Philippe	Dátum (Date)
1.	Hack yes	Industrial Kit. Quality Control Dept.	2013.01.24.
2.		(1)	
3.			
4.			
5.			
6.			
7.			
8.		· · · · · · · · · · · · · · · · · · ·	
9.			
10.			

Klegészítések:

(Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

CONTITECH RUBBER	No:QC-D	3- 651 /2013
Industrial Kft.	Page:	40 / 44

lierová 2 2028 Hik el:: ex::	317 ohovec / Slovakia 00421337383111 00421337422742						50	05760
STEEL	CORD	Page:1 /	1		Certific	ate of Analysis		
	FACTURER : BKHL				Deilve	y No. : 40461812	12	
Contitect	h Rubber Industrial Kit,	•		Sales	Order	3046059220/1	n	
	ECH RUBBER IND SZEGED	>			ase Order	32260330	-	
Budapes	tiút 10				tion lot	090000200665	/000001	
H-6728 8	SZEGED			Batch		3500245379		-
					roduced	01.07.2013		
				Date C		09.08.2013		
				Spools		32 delivered fr	om a batch of 3	12 orodvced
Spec cus	tomer Contitech Rubber h	ndustrial Kft		Units			om a batch of 1	÷
Your cod					y net Qty.	10517 KG		
Your spe		,			al Description	-	elcord 1X240M	V/3.8 NT 20/36 Z
Our Spec		-			1 20301/2001	5000 M		
Our oper	· · · · · · · · · · · · · · · · · · ·			Lay dir	ection	ZZ		
				Lay ler		20/36		
Tests				Speca		Results		
Test		Procedure	Unit	Alm	Min.	Avig.	Min ind	
					Max.	N	Max ind	
Cord dia	meter	RA12-100	mm	3,6000	3,4200	3,6845	3,6640	
					3,7800	6	3,6930	
Linear de	insity	RA30-110	g/m	65,000	61,700	65,632	65,300	
· .	·····				68,300	6	65,870	
Cord brea	aking strength	RA30-203	N		17900,0	19337,0	19087,0	
						6	19584,0	
Cord elor	ngation at break	RA30-203	%		2,50	2,98	2,80	
			+			6	3,15	
Zinc D1		RA40-741	g/m2		32,000	40,057 8	37,870 44,630	
Zinc D2		RA40-741	g/m2		44,000	48,788	45,350	
	;	10770/141	Brune		,000	6	45,350 55,100	
Residual	tomions	RA30-150	Nt	0,000	-3,000	-0,250	-0.500	
	·····		<u> </u>		3,000	6	0,000	
Cominen	its:							
D1: 0,64								
D2: 0,73								
Nominal	Chemical composition of Higl	h Grada Chastact				•		
	: 0.70-0.90	I GIAGO OXYSTOPL						
-	1858: 0.40-0.60							
%Silicon:								
%S: <0.0	11				••		•	
%P: <0.0								

Microstructure/Texture: Metallurgically the texture is known as a high drawn, fine perlitic structure.

•)

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

C.IVA 0008267	0.22 0.22 9.05	uppo inys	nico Bo enKriep	p.Acraal S	piecuali le							·.	; 1	Azienda con gestione co secondo li	ertificeto d	la IGQ	PAG	1/1				
				VIIII		Confor	me a EN.10	0204/ 3.	.1			<u>1° : (63</u>	892/201	2						25		
ecifica/Spec	ificatio	n:		Desti	natario/f	Receive	er:			Clien	te/Custe	omer: AC	CIAI VENDI	ER S.P.A						Š		
N 10088-2				ACCI	AI VEND	DER S.P	P.A.					VIA	A.NOBEL,	4/A Q.RE	IND.LE	S.P.I.P				°, C		
				VIA A	NOBEL	L, 3/A						431	100 PAR	MA				•	-	3		
				4310) PAR	RMA				Accia	alo/Stee	1: 304P	rs.							3		
																				6)	
				-										•						ß	ł	
DT/DEL. NOT	Έ:	16753 D	EL/OF	24/05/2			order Tern			04249			liente/Cus			r		<u> </u>		קאן י	Į.	
latricola erial Number							Tipo Prod Product 1		fin	Descrit Descrit			ioni(mm) ions(mm)	Pezzi Pieces	Weight (Kg)	Rif. C Cust. R		olata leat	NIM	J SPE	1	
47997	220					22	COIL		28	Descri	puon		x 460.0	1	6040	Cuat. A		31359	310727	4 1		
54489	22	<u> </u>			Ì	27	NASTRI STR		BA	•		1	x 284.7	1	1290			31741	324612	EI		
120	∞	т				Ĩ			~			0.107			1250	{			024012			Г
MATERIALE SOPRA I	LENCATO	STATO DIMEN		NTE E/O SUPE	RFICIALMENT	TE TRASFOR	MATO DA TERN	INOX SENZ	AALTER	ARNE LE CA	RATTERIST	HE MECCANICH	HE E CHIMICHE			L				چ ا		
					PERFICIALLY	TRASFORM	ED BY TERNINO		CHANG	ING THE ME	CHANECAL AI	ND CHEMICAL FI	EATURES							Įğ		1
nalisi di cola		nical Con	positio	<u></u>																16		
		610			5 Ø/	C N	0-9/	NI: 0/		0/	NI 6/	771.0/	0	ALL D		w	1 0/	0.0		12		
Colate/Heat	<u>C%</u>	Si %			» %	S %	Cr %	Ni %		Vio %	N %	Ti %	Cu %	Nb %	в	%	NI %	Co 9	%	PIPWOUND		
0431359	0.045	0.300	1:	290 0	.027	0.001	18.000	9.040		0.260	0.024	Ti %	0.310	Nb %	5 B	%	AI %	Co 9	%	NDTU		
		0.300	1:	290 0			the second second					Ti %		Nb %	<u>, B</u>	%	AI %	Co 9	%	NDTUL		
0431359 0431741	0.045 0.048	0.300	1.	290 0 420 0	.027 .029	0.001	18.000	9.040		0.260	0.024	Ti %	0.310	Nb %	B	%	AI %	Co 9	%	NDTUKE		
0431359	0.045 0.048 prove/	0.300 0.310	1: 1. 1. t (1N/z	290 0 420 0 nm ² =1 M	.027 .029 Pa)	0.001 0.001	18.000 18.090	9.040		0.260 0.320	0.024 0.019		0.310		Tratis		Resistorza	alle corresio		TUSC		
0431359 0431741	0.045 0.048 prove/	0.300 0.310	1: 1. 1. t (1N/z	290 0 420 0 nm ² =1 M ervament	.027 .029 Pa) o Ca	0.001 0.001	18.000	9.040	Allu	0.260 0.320 ngamen	0.024	Jra	0.310	Piega Bend	a Testa Ricot	armitoo di solub.7 restritorat	Resistenza Intergranut Resistanc		, Gra	TUSC		
0431359 0431741 isuitati delle	0.045 0.048 prove/	0.300 0.310 (est Resu Caric.	1: 1 t (1N/n unit. sn ield str	290 0 420 0 mm² =1 M ervament enght	.027 .029 Pa) o Ca	0.001 0.001 eric. un Tensile	18.000 18.090 it. Rottura strength	9.040	Allu Ultir	0.260 0.320 ngamen nate elo	0.024 0.019 to a rottu	ura %)	0.310 0.370 Durezza Hardness	Piega	a Testa Ricot	amico di solub. V restinoni, resiling for	Resistenza Intergranut Resistanc	alia corresion	, Gra	TUSC		
0431359 0431741 Lisuitati delle NIM		0.300 0.310 (est Resu Caric. RpO2% (1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	290 0 420 0 nm²=1 M ervament enght Rp1% N/r	.027 .029 Pa) o Ca	0.001 0.001 aric. un Tensile Rm 1	18.000 18.090 it. Rottura strength	9.040	Allu	0.260 0.320 ngamen nate elo	0.024 0.019 to a rottungation (Jra	0.310 0.370 Durezza Hardness HRB	Piega Bend	a Trest.tr Ricot Floot of enr solubi	armitoo di soutub.7 reastmant sealing for fiz.	Resistanza Intergranu Resistant Interg		ne Gra	TUSC		
0431359 0431741 Lisuitati delle	0.045 0.048 prove/	0.300 0.310 (est Resu Caric. RpO2% (245	1: 1. 1. t (1N/m unit. sn ield str	290 0 420 0 mm² =1 M ervament enght	.027 .029 Pa) o Ca	0.001 0.001 aric. un Tensile Rm 1 6	18.000 18.090 it. Rottura strength	9.040	Allu Ultir	0.260 0.320 ngamen nate elo	0.024 0.019 to a rottungation (:80	ura %)	0.310 0.370 Durezza Hardness	Piega Bend	a Trest.tr Ricot Floot of enr solubi	amico di solub. V restinoni, resiling for	Resistanza Intergranu Resistant Interg	alla corrosio tara secondo a to corrosio pranutare	ne Gra	TUSC		
0431359 0431741 Lisuitati delle NIM	0.045 0.048 0.048 0.048 0.048	0.300 0.310 fest Resu Caric. X RpO2% I 245 230 235	1: 1. 1. t (1N/n unit, sn ield str V/mm²	290 0 420 0 mm²=1 M ervament enght Rp1% N/r 271	.027 .029 Pa) o Cu	0.001 0.001 aric, un Tensile Rm 1 6 6	18.000 18.090 it. Rottura strength	9.040	Allu Ultir	0.260 0.320 ngamen nate elor Lo = 60.	0.024 0.019 to a rottungation (=80 7 .8	ura %)	0.310 0.370 Durezza Hardness HRB 70.5	Piega Bend	a Tratin Ricot	armitoo di soutub.7 reastmant sealing for fiz.	Resistenza Intergrand Resistance Interg	alla corrosio tara secondo a to corrosio pranutare	no Gra	TUSC		
0431359 0431741 delle NIM 310727	0.045 0.048 prove/ • • • • • • • •	0.300 0.310 fest Resu Caric. X RpO2% I 245 230 235	1: 1. 1. t (1N/n unit, sn ield str V/mm²	290 0 420 0 mm²=1 M ervament enght Rp1% N/r 271 261	.027 .029 Pa) o Cu	0.001 0.001 Earic, un Tensile Rm 1 6 6 6 6	18.000 18.090 it. Rottura strength Wmm [*] 07 04	9.040	Allu Ultir	0.260 0.320 ngamen nate elor Lo = 60. 62.	0.024 0.019 to a rottu ngation (ura %)	0.310 0.370 Durezza Hardness HRB 70.5 66.0	Piega Bend	a Tratin Ricot	amitzo di solub.7 reatmani sessing for fiz. 1050	Resistenza Intergrand Resistance Interg	alla corrosion larre secondo e lo corrosim pranutare	no Gra	TUSC		
0431359 0431741 Lisuitati delle NIM 310727	0.045 0.048 0.048 0.048 0.048	0.300 0.310 fest Resu Caric. X RpO2% I 245 230 235	1: 1. 1. t (1N/n unit, sn ield str V/mm²	290 0 420 0 mm²=1 M ervament enght Rp1% N/r 271 261 262	.027 .029 Pa) o Cu	0.001 0.001 Earic, un Tensile Rm 1 6 6 6 6	18.000 18.090 it. Rottura strength Wmm ³ 07 04 88	9.040	Allu Ultir	0.260 0.320 ngamen nate elor 60. 62. 62. 62.	0.024 0.019 to a rottu ngation (ura %)	0.310 0.370 Durezza Hardness HRB 70.5 66.0 70.5	Piega Bend	a Tratin Ricot	amitzo di solub.7 reatmani sessing for fiz. 1050	Resistenza Intergrand Resistance Interg	alla corrosion larre secondo e lo corrosim pranutare	no Gra	TUSC		
0431359 0431741 Lisuitati delle NIM 310727 324612	0.045 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.048	0.300 0.310 Caric. RpO2% I 245 230 235 237	1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	290 0 420 0 mm²≈1 M ervament enght 271 261 282 267	.027 .029 Pa) o Ci	0.001 0.001 Earlc. un Tensile Rm 1 6 6 6 6 6	18.000 18.090 it. Rottura strength V/mm ² 07 04 88 05	9.040 9.050	Allu Ultir	0.260 0.320 ngamen nate elor 60. 62. 62. 62.	0.024 0.019 to a rottu ngation (ura %)	0.310 0.370 Durezza Hardness HRB 70.5 66.0 70.5	Piega Bend	a Trata Rucot Fo heat t aduat	mitto di solub.7 esetting for 1050	Reststanza Intergranul Reststance Interg EN ISI	alla corrocio tare secondo a lo corrocio penutare O 3651-2 O 3651-2	ne Gra	TUSC		
0431359 0431741 Clouitati delle NIM 310727 324612	0.045 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.048	0.300 0.310 (est Resu Caric. 7 RpO2% I 245 233 237 237	1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	290 0 420 0 nm²=1 M ervament enght 271 261 262 267	.027 .029 Pa) 0 Ci 1 nm ²	0.001 0.001 Earle, un Tensile Rm 1 6 6 5 5 6	18.000 18.090 it. Rottura strength V/mm² 07 04 88 05	9.040 9.050	Allu Ultir	0.260 0.320 ngamen nate elou 60. 62. 62. 62.	0.024 0.019 to a rottingation (180 7 8 4 1	173 (%) Lo = A5	0.310 0.370 Durezza Hardness HRB 70.5 66.0 70.5 72.0	Piega Bend	a Testa Ricci Fo heat s solub comp	Instance di solub.? esettere for no50 1050	Resistance Intergrand Redistance Interg EN ISI EN ISI EN ISI	alla corrocio a bio corrocio a bio corrocio prendra secondo o 3651-2 0 3651-2	ne Gra			
0431359 0431741 Lisuitati delle NIM 310727	0.045 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.048	0.300 0.310 (est Resu Caric. 7 RpO2% I 245 233 237 237	1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	290 0 420 0 nm²=1 M ervament enght 271 261 262 267	.027 .029 Pa) 0 Ci 1 nm ²	0.001 0.001 Earle, un Tensile Rm 1 6 6 5 5 6	18.000 18.090 it. Rottura strength V/mm² 07 04 88 05	9.040 9.050	Allu Ultir	0.260 0.320 ngamen nate elor 60. 62. 62. 62.	0.024 0.019 to a rottu ngation (173 %) Lo = A5	0.310 0.370 Durezza Hardness HRB 70.5 66.0 70.5 72.0	Piega Bend	a Tret.r Ricot. Fo heat solubil solubil COMP Ce	amtoo di sotub.? essing for fat. 1050 LLIES WIT rtificato e	Resistance intergranul Resistance Interg EN ISI EN ISI EN ISI TH ED 2 messo	alle correction alle correction e lo correction parutare O 3651-2 0 3651-2 2000/53/ automa	/EC			
0431359 0431741 Clouitati delle NIM 310727 324612	0.045 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.048	0.300 0.310 Caric. Caric. Caric. Caric. 235 237 245 235 237 add certificatio of quar- restricted tion quar- restricted tion quar- restricted tion quar-	1: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	290 0 420 0 40 0 4	.027 .029 Pa) 0 Ci 1 nm ²	0.001 0.001 Earle, un Tensile Rm 1 6 6 5 5 6	18.000 18.090 it. Rottura strength V/mm² 07 04 88 05	9.040 9.050	Allu Ultir	0.260 0.320 ngamen nate elor 60. 62. 62. 62.	0.024 0.019 to a rottu ngation (ura %)	0.310 0.370 Durezza Hardness HRB 70.5 66.0 70.5 72.0	Piega Bend	a Tret.r Ricot. Fo heat solubil solubil COMP Ce	Instance di solub.? esettere for no50 1050	Resistance intergranul Resistance Interg EN ISI EN ISI EN ISI TH ED 2 messo	alla corrocio a bio corrocio a bio corrocio prendra secondo o 3651-2 0 3651-2	/EC			

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
Industrial Kft.	Page:	42 / 44

MKEH Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39. 1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927

Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Hivatkozási szám / Reference No.: 32259470

Page 1/3 oldal Kiadva / Issued Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY **CALIBRATION CERTIFICATE**

A kalibrálás tárgya:	villamos kimenőjelű nyomásmérő
Object of calibration:	electrical-output manometer
Gyártó / Manufacturer:	AFRISO-EURO-INDEX GmbH
Tipus / Type:	<u>DMU03</u> HD
Azonosító szám / Serial No.:	1518086
Műszaki adatok / Technical data:	(02500) bar méréstartomány / measuring range (02500) bar
- -	(420) mA kimenőjel tartomány / output signal range (420) mA
Kalibrálásra bemutatta:	ContiTech Rubber Industrial Kft.
Customer:	6728 Szeged, Budapesti út 10.
A kalibrálás helye és ideje: Place and date of calibration:	Magyar Kereskedelmi Engedélyezési Hivatal Hungarian Trade Licensing Office
	Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements Budapest, 2013.01.24.
A kalibrálást végezte:	life a
Calibrated by:	Szaulich Dénes
	metrológus / metrologist
A kalibrálásnál alkalmazott eta Standards used for the calibration:	lonok:
Megnevezés:	Gyártó: Tínus: Gyártási szám: Bizonyítyány szán

Megnevezés: Designation:	Gyártó: Manufacturer:	Típus: <i>Type</i> :	Gyártási szám: Serial No.:	Bizonyítvány szám: Certificate No.:	
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013	
digitális multiméter / digital multimeter	Keithley	2000	0597910	ELD-0014/2012	
normál ellenállás / resistance standard	ZIP	P 331	117530	ELD-0021/2012	
hőmérő / temperature measuring instr.	GANZ MM	DTHI	33656	Höm-0296/2012	

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztűk. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see <u>http://www.bipm.org)</u>.

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	43 / 44	

мкен
Metrológiai Hatóság/ <i>Metrology Authorit</i>
Mechanikai Mérések Osztály
Section of Mechanical Measurements

æ

Ugyiratszám / File No.:	
MKEH-MH/00287-003/2013/NY	
Bizonyítványszám / Certificate No.:	
NYO - 0008/2013	

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

nyomóközeg / Pressure transfer medium

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

21,1 °C függöleges / vertical 24V DC olaj / oil

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	:

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, environmental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 44 / 44

МКЕН

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

A bizonyltvány az MKEH trásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface, Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to wave any centralizer requirements on the 5-1/2" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 9-5/8" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

VAFMSS

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Star F.

APD ID: 10400031733

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Type: OIL WELL

Submission Date: 08/02/2018

Well Number: 121H Well Work Type: Drill Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

PIMENTO_FED_COM_26_36_03_121H___WELL_PAD_ACCESS_MAP_REV_20190201100812.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

PIMENTO_FED_COM_26_36_03_121H___WELL_PAD_ACCESS_MAP_REV_20190201100858.pdf Juniper_Pimento_Road_20190201101115.pdf

New road type: RESOURCE

Length: 4442

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and Ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information: NM One Call (811) will be notified before construction starts.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and Ditched

Road Drainage Control Structures (DCS) description: Crowned and Ditched

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Pimento_Fed_Com_26_36_03_121H___One_Mile_Radius_Existing_Wells_20180628162428.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A multiple well pad will be located on section 3, and will measure 400'x500'. The top 6" of soil and brush will be stockpiled south of the well pad. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Pimento Fed Com 26 36 03 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB.

Page 2 of 11

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary. **Production Facilities map:**

EP_JUN_PIM_1S_FLOWLINE_SEC_3_S_20190201115824.pdf

BO_JUNIPER_FED_COM_BATTERY_SITE_REV1_20190201115822.pdf

EP_JUN_PIM_1S_FLOWLINE_SEC_34_S_20190201115825.pdf

Juniper_CTB_Electric_20190201115826.pdf

Juniper_CTB_Water_20190201115828.pdf

PIMENTO_FED_COM_26_36_03_121H ___FACILITIES_MAP_REV_20190201115842.pdf

Section 5 - Location and Types of Water Supply

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

Water Source Table

Water source use type: DUST CONTROL,

Water source type: GW WELL

Source longitude:

Source latitude:

CASING Describe type:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

PIMENTO_FED_COM_26_36_03_121H___WATER_WELLS_MAP_REV_20190201120014.pdf

Pimento_Fed_Com_26_36_03_121H___WATER_WELLS_LIST_20190201120040.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells. New water well? NO

.

New Water Well Info

Well	latitude:	

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well Name: PIMENTO FED COM 26 36 03

Well depth (ft):Well casing type:Well casing outside diameter (in.):Well casing inside diameter (in.):New water well casing?Used casing source:Drilling method:Drill material:Grout material:Grout depth:Casing length (ft.):Casing top depth (ft.):Well Production type:Completion Method:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled south of the pad. V-door will face west. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (EOG) land in N2NE4 29-25S-36E or an existing caliche pit on private (Beckham) land in S2SW4 19-25S-36E or a proposed caliche pit on state land in S2SE4 11-26S-36E. **Construction Materials source location attachment:**

PIMENTO_FED_COM_26_36_03_121H___CALICHE_MAP_REV_20190201120115.pdf PIMENTO_FED_COM_26_36_03_121H___WELL_SITE_DIAGRAM_20190201120116.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Well Number: 121H

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

PIMENTO_FED_COM_26_36_03_121H___WELL_SITE_DIAGRAM_20190201120312.pdf Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PIMENTO

Multiple Well Pad Number: 121H

Recontouring attachment:

PIMENTO_FED_COM_26_36_03_121H____WELL_SITE_DIAGRAM_20190201120336.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Well pad proposed disturbance (acres): 4.59	Well pad interim reclamation (acres): 0.79	Well pad long term disturbance (acres): 3.8
Road proposed disturbance (acres): 3.06 Powerline proposed disturbance (acres): 2.23 Pipeline proposed disturbance	Road interim reclamation (acres): 0 Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	(acres): 2 23
(acres): 0.39 Other proposed disturbance (acres):	Other interim reclamation (acres): 0	(acres): 0.39 Other long term disturbance (acres):
6.03 Total proposed disturbance: 16.3	Total interim reclamation: 0.79	6.03 Total long term disturbance: 15.51

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the south and west sides of the pad. This will leave 3.8 acres for producing three wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Page 6 of 11

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed source:

Source address:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name: Email:

Phone:

.

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Region:

USFS Forest/Grassland:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office: USFS Ranger District:

Page 8 of 11

Operator Name:	AMEREDEV	OPERATING	LLC
-----------------------	----------	------------------	-----

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

USFS Forest/Grassland:

- Andrew Andreas

USFS Ranger District:

Disturbance type: PIPELINE	
Describe:	
Surface Owner: PRIVATE OWNERSHIP	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS

USFS Ranger District:

Disturbance type: OTHER Describe: Powerline Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office:

Page 9 of 11
Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

USFWS Local Office:	
Other Local Office:	

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: OTHER	
Describe: CTB	
Surface Owner: PRIVATE OWNERSHIP	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

ROW Applications

SUPO Additional Information:

Use APD as ROW?

Page 10 of 11

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held with Jeff Robertson (BLM) on 11/28/17. Ameredev made a donation with the MOU fund in lieu of an archaeology report.

Other SUPO Attachment

Pimento_Fed_Com_26_36_03_121H___SUPO_REV_20190201_20190201121526.pdf Pimento_Fed_Com_26_36_03_121H___Owner_Agreement_Letter_20190201121540.pdf

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

AMEREDE

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of 3rd St/NM-205/Frying Pan Rd & NM-128, head south on 3rd St/NM-205/Frying Pan Road approximately 5.6 miles. Turn right on Anthony Road and proceed west approximately 3.4 miles. Continue North (right) on Anthony Road and proceed north approximately 0.3 miles. Turn right on Pipeline Road and proceed east approximately 0.3 miles. Turn left on lease road and proceed north approximately 1 mile. Turn right on unnamed lease road and proceed east for approximately 1.1 miles to the north side of the location.

See Exhibit 1 – Well Pad Access for a map of the route.

Exhibit 1 – Well Pad Access

Section 1 – Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** Right-Of-Way will be acquired before construction begins.
- **C.** The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- **D.** Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 – New or Reconstructed Access Roads

- A. A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 4,442 feet.
- **C.** New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

CLOMU natural ground

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-Of-Way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.

- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Pimento Fed Com 26 36 03 121H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

Exhibit 2 - One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025208430000	SOUTHWEST JALIT-FED 1	PLUGGED	13505

Exhibit 2a – One Mile Radius Existing Wells List

4 | Page

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on Section 3, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Juniper/Pimento CTB, north of the well pad.
- C. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Pimento Fed Com 26 36 03 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- D. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- E. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

AMEREDEV

Exhibit 3 – Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

AMEREDEV

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05'40.62" N, 103°13' 35.26" W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03'3.2" N, 103°32'38.1" W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03'11.5" N, 103°17'02.0" W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5	· · ·	32°07'17.1" N, 103°17'48.0" W
CP 1263 POD 5	СВ 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	СВ 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	CB 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	CB 5	32°03'30.70" N, 103°17'45.70" W
J 26 Ryan	32°01′20.41″ N, 103°15′49.46″ W	
J3	32°02′	'41.5" N, 103°18'55.8" W

Exhibit 4 – Water Wells

Section 6 – Construction/Construction Materials

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W or the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.
- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 5 – Enlarged Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

AMEREDEV

Exhibit 5 – Enlarged Well Site Diagram

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- **C.** Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

9 | Page

AMEREDE

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram and Exhibit 5 Enlarged Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Drilling rig components/layout
 - 4. Proposed access road
 - 5. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- **C.** Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.

- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.
- D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.
- **E.** Interim reclamation will be performed on the well site after the well is drilled and completed. *Exhibit 3 – Well Site Diagram* and *Exhibit 5 – Enlarged Well Site Diagram* depict the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

- D. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. EOG has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for the Pimento Fed Com 26 36 03 121H well was held on Nov. 28, 2017.
- C. The well pad described in this document Juniper/Pimento (JUN/PIM #1S) will contain 6 wells that produce into a central tank battery (CTB) located north of the well pad. The wells share a common pad access road, and the six total flowlines from the individual wells will share a common corridor that terminates into the CTB. The CTB will be tied into a shared pipeline and electrical corridor. The wells that share the pad are:
 - Juniper Fed Com 25 36 34 081H, APD ID# 10400031765
 - Juniper Fed Com 25 36 34 091H, APD ID# 10400031762
 - Juniper Fed Com 25 36 34 111H, APD ID# 10400031759
 - Juniper Fed Com 25 36 34 121H, APD ID# 10400031755
 - Pimento Fed Com 26 36 03 111H, APD ID# 10400031732
 - Pimento Fed Com 26 36 03 121H, APD ID# 10400031733

Ameredev field representative:	Ameredev office contact:
Zac Boyd, Operations Supervisor	Christie Hanna, Regulatory Coordinator
Cell: (432) 385-6996	Direct: (737) 300-4723
Email: <u>zboyd@ameredev.com</u>	Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

AMEREDEV

6/28/2018

To whom it may concern:

Ameredev Operating, LLC is negotiating a private surface owner agreement with EOG Resources Inc. (P.O. Box 267 Midland, TX 79702; 432-425-1204) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Pimento Fed Com 26-36-03 121H well in section 3 of T26S, R36E.

Thank you,

Julia Steger

Julia Steger Engineer

5707 Southwest Parkway, Building 1, Suite 275 Austin, TX 78735

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

VAFMSS

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report 03/25/2019