Form 3160-3 (June 2015)			D		APPROVED p. 1004-0137	
UNITED STATES	ы	1BBS U			inuary 31, 2018	
DEPARTMENT OF THE IN BUREAU OF LAND MANA	ITERIOR GEMENT	TNOV 1 2 2019	•	5. Lease Serial No. NMNM132949		
Form 3160-3 (June 2015) UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA APPLICATION FOR PERMIT TO DE	RILL OR	REENTEBIN	ED	6. If Indian, Allotee	or Tribe Name	
	ENTER			7. If Unit or CA Agr	reement, Name and No.	
Ib. Type of Well: Oil Well Gas Well Oth	ner			8. Lease Name and	Well No.	
Ic. Type of Completion: Hydraulic Fracturing Sin	igle Zone	Multiple Zone		STOVE PIPE FED	ERAL COM	
2. Name of Operator COG OPERATING LLC (229/37)			N	9. APJ-Well No. 30-025	46502	-
	3b. Phone N (432)683-74	lo. (include area code 443		10 Field and Pool, of MESA VERDE / B		5
4. Location of Well (Report location clearly and in accordance wi	ith any State	requirements.*)			Blk. and Survey or Area	
At surface SESW / 270 FSL / 1425 FWL / LAT 32.16746		($\langle \frown \rangle$	SEC 317 T245 / R	35E / NMP	
At proposed prod. zone LOT 4 / 50 FSL / 780 FWL / LAT 3	32.137828	/LONG -103.41261	5			
 14. Distance in miles and direction from nearest town or post offic 9 miles 	:e*			12. County or Parish LEA	n 13. State NM	
location to nearest 50 feet	16. No of ac	cres in lease	17. Spaci 640.54	ng Unit dedicated to the	his well	
18 Distance from proposed location*	19. Propose	d Depth	20/BLM	BIA Bond No. in file		
to nearest well, drilling, completed, 30 feet applied for, on this lease, ft.	12939 feet	/ 23355 feet	FED: NN	IB000215		
	22. Approxi 10/01/2019	mate date work will s	start*	23. Estimated durati 30 days	on	
	24. Attač	1.1		L		
The following, completed in accordance with the requirements of o	Onshore Oil	and Gas Order No. 1,	, and the H	Iydraulic Fracturing n	ule per 43 CFR 3162.3-3	
(as applicable)	$\langle \rangle$	>				
1. Well plat certified by a registered surveyor. 2. A Drilling Plan.	$\langle \rangle$	4. Bond to cover the Item 20 above).	e operation	s unless covered by ar	n existing bond on file (see	
 A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 		5. Operator certifica		mation and/or plans as	may be requested by the	
25. Signature (Electronic Submission)		(Printed/Typed) Reyes / Ph: (575)7	48-6940		Date 06/19/2019	
Title			10 00 10			
Regulatory Analyst Approved by (Signature)	Name	(Printed/Typed)			Date	
(Electronic Śubmission)		Layton / Ph: (575)2	34-5959		11/08/2019	
Title / (Assistant Field Manager Lands & Minerals	Office CARL	: .SBAD				
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	holds legal of	or equitable title to the	ose rights	in the subject lease w	hich would entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma of the United States any false, fictitious or fraudulent statements or					iny department or agency	
GCP Rec 11/12/19	ren WI	TH CONDIT	IONS	K-12 11/13/	19	
(Continued on page 2)	val Date	: 11/08/2019		*(In:	structions on page 2)	

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U(\$,C, 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 11/08/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: SESW / 270 FSL / 1425 FWL / TWSP: 24S / RANGE: 35E / SECTION: 31 / LAT: 32.167464 / LONG: -103.410489 (TVD: 0 feet, MD: 0 feet)
 PPP: LOT 4 / 100 FNL / 780 FWL / TWSP: 25S / RANGE: 35E / SECTION: 6 / LAT: 32.166449 / LONG: -103.41257 (TVD: 1250 feet, MD: 12600 feet)
 PPP: LOT 7 / 1321 FSL / 780 FWL / TWSP: 25S / RANGE: 35E / SECTION: 6 / LAT: 32.155829 / LONG: -103.412587 (TVD: 12772 feet, MD: 16450 feet)
 BHL: LOT 4 / 50 FSL / 780 FWL / TWSP: 25S / RANGE: 35E / SECTION: 7 / LAT: 32.137828 / LONG: -103.412587 (TVD: 12772 feet, MD: 16450 feet)

BLM Point of Contact

Name: Deborah Ham Title: Legal Landlaw Examiner Phone: 5752345965 Email: dham@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:	
LEASE NO.:	NMNM132949
WELL NAME & NO.:	Stove Pipe Federal Com 705H
SURFACE HOLE FOOTAGE:	270' FSL & 1425' FWL
BOTTOM HOLE FOOTAGE	50' FSL & 780' FWL
LOCATION:	Section 31, T 24S, R 35E, NMPM
COUNTY:	Lea County, New Mexico

H2S	r Yes	r No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	
Variance	C None	• Flex Hose	C Other
Wellhead	Conventional		C Both
Other	☐ 4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	F Pilot Hole
Special Requirements	✓ Water Disposal	COM	🔽 Unit

A. HYDROGEN SULFIDE

 Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8**" surface casing shall be set at approximately **1200**' (a minimum of 25' into the Rustler Anhydrite and above the salt) and cemented to surface.
 - a. If cement does not circulate to surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of **6 hours** after pumping cement, ideally between 8-10 hours after completing the cement job.
 - b. WOC time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500 psi</u> compressive strength, whichever is greater. This is to include the lead cement.
 - c. If cement falls back, remedial cementing will be done prior to drilling out that string.
 - d. WOC time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.

Page 1 of 6

- 2. The 9-5/8" intermediate casing shall be cemented to surface.
 - a. If cement does not circulate to surface, see B.1.a, c & d.
 - b. Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
 - i. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with the second stage.
 - ii. Second stage via DV tool: Cement to surface. If cement does not circulate, contact the appropriate BLM office.
- 3. The 5-1/2" production casing shall be cemented with at least 200' tie-back into the previous casing.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi).

D. SPECIAL REQUIREMENTS

- 1. The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- 2. The well sign on location shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

DR 10/7/2019

Page 2 of 6

GENERAL REQUIREMENTS

- 1. The BLM is to be notified in advance for a representative to witness:
 - a. Spudding well (minimum of 24 hours)
 - b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
 - c. BOP/BOPE tests (minimum of 4 hours)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig:
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be available upon request. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or

Page 3 of 6

if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification

Page 4 of 6

matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a

Page 5 of 6

maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- e. All tests are required to be recorded on a calibrated test chart and shall be made available upon request.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

1. Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

- 1. All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.
- 2. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 6 of 6

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400042916

Operator Name: COG OPERATING LLC

Well Name: STOVE PIPE FEDERAL COM

Well Type: OIL WELL

Submission Date: 06/19/2019 Federal/Indian APD: FED Well Number: 705H Well Work Type: Drill

n (d. 1977) 1977 - Angeles 1979 - Angeles

11/11/2019

APD Print Report

Show Final Text

Application

	Section 1 - General		· · · · · · · · · · · · · · · · · · ·
APD ID:	10400042916	Tie to previous NOS?	Submission Date: 06/19/2019
BLM Offic	e: CARLSBAD	User: Mayte Reyes	Title: Regulatory Analyst
Federal/In	ndian APD: FED	Is the first lease penetrat	ed for production Federal or Indian? FED
Lease nu	mber: NMNM132949	Lease Acres: 80.48	
Surface a	ccess agreement in place?	Allotted?	Reservation:
Agreeme	nt in place? NO	Federal or Indian agreem	ent:
Agreeme	nt number:		
Agreemer	nt name:		
Кеер арр	lication confidential? YES		
Permittin	g Agent? NO	APD Operator: COG OPE	RATING LLC
Operator	letter of designation:		

Operator Info

Operator Organization Name: COG OPERATING LLC

Operator Address: 600 West Illinois Ave

Operator PO Box:

Operator City: Midland State: TX

Operator Phone: (432)683-7443

Operator Internet Address: RODOM@CONCHO.COM

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Master Development Plan name: Master SUPO name:

Zip: 79701

Operator Name: COG OPERATING LLC		Ì
Well Name: STOVE PIPE FEDERAL COM	Well Number: 705H	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	2
Well Name: STOVE PIPE FEDERAL COM	Well Number: 705H Well API Number:	
Field/Pool or Exploratory? Field and Pool	Field Name: MESA VERDE Pool Name: BONE SPRING	
Is the proposed well in an area containing other min	eral resources? USEABLE WATER,OIL	
Is the proposed well in a Helium production area? N	Use Existing Well Pad? NO New surface disturbance?	
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Name: Number: 602H, 703H, 704H,	
Well Class: HORIZONTAL	STOVE PIPE FEDERAL COM 705H Number of Legs:	
Well Work Type: Drill		
Well Type: OIL WELL		
Describe Well Type:		
Well sub-Type: EXPLORATORY (WILDCAT)		
Describe sub-type:		
Distance to town: 9 Miles Distance to n	earest well: 30 FT Distance to lease line: 50 FT	
Reservoir well spacing assigned acres Measuremen	: 640.54 Acres	
Well plat: COG_Stove_Pipe_705H_C102_2019061	161058.pdf	
Well work start Date: 10/01/2019	Duration: 30 DAYS	
Section 3 - Well Location Table		
Section 3 - Well Location Table		
Survey Type: RECTANGULAR		
Describe Survey Type:		
Datum: NAD83	Vertical Datum: NAVD88	
Survey number:	Reference Datum:	
Wellbore NS-Foot NS Indicator EW Indicator Twsp Twsp Range Range Section Aliquot/Lot/Tract	Latitude Longitude County Meridian Meridian Lease Type Lease Number Elevation MD	Will this well produce
SHL 270 FSL 142 FWL 24S 35E 31 Aliquot 3 Leg 5 5 4 SESW 4	.16746 - 103.4104 EEA NEW NEW F FEE 333 0 0 MEXI MEXI CO CO 0 0	
KOP 270 FSL 142 FWL 24S 35E 31 Aliquot 3 Leg 5 <td>.16746 - 103.4104 EA NEW NEW F FEE 333 0 0 89 CO CO CO F FEE 333 0 0</td> <td></td>	.16746 - 103.4104 EA NEW NEW F FEE 333 0 0 89 CO CO CO F FEE 333 0 0	

Well Name: STOVE PIPE FEDERAL COM

Well Number: 705H

																			1
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce
PPP Leg #1	100	FNL	780	FWL	25S	35E	6	Lot 4	32.16644 9	- 103.4125 7	LEA		NEW MEXI CO	F	NMNM 132949	- 922 0	126 00	125 50	
PPP Leg #1	132 1	FSL	780	FWL	25S	35E	6	Lot 7	32.15582 9	- 103.4125 87	LEA	NEW MEXI CO		F	NMNM 120913	- 944 2	164 50	127 72	
EXIT Leg #1	100	FSL	780	FWL	25S	35E	7	Lot 4	32.13796 6	- 103.4126 15	LEA	NEW MEXI CO		F	NMNM 119760	- 940 8	233 00	127 38	
BHL Leg #1	50	FSL	780	FWL	25S	35E	7	Lot 4	32.13782 8	- 103.4126 15	LEA		NEW MEXI CO	F	NMNM 119760	- 960 9	233 55	129 39	

Drilling Plan

Section 1 - Geologic Formations

Formation			True Vertical	Measured		· · · · · · ·	Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	UNKNOWN	3330	0	0		NONE	N
2	RUSTLER	2446	884	884		NONE	N
3	TOP SALT	1945	1385	1385	SALT	NONE	N
4	BOTTOM SALT	-1890	5220	5220	ANHYDRITE	NONE	N
5	LAMAR	-2185	5515	5515	LIMESTONE	NATURAL GAS,OIL	N
6	BELL CANYON	-2226	5556	5556		NONE	N
7	CHERRY CANYON	-3147	6477	6477		NATURAL GAS,OIL	N
8	BRUSHY CANYON	-4791	8121	8121		NATURAL GAS,OIL	N
9	BONE SPRING LIME	-6061	9391	9391	SANDSTONE	NATURAL GAS,OIL	N
10	BONE SPRING 1ST	-7250	10580	10580	HALITE	NATURAL GAS,OIL	N

Well Name: STOVE PIPE FEDERAL COM

Well Number: 705H

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
11	BONE SPRING 2ND	-7781	11111	11111		NATURAL GAS,OIL	N
12	BONE SPRING 3RD	-8880	12210	12210		NATURAL GAS,OIL	N
13	WOLFCAMP	-9340	12670	12670	SHALE	NATURAL GAS,OIL	N
14	WOLFCAMP	-9455	12785	12785		NATURAL GAS,OIL	Y
15	WOLFCAMP	-9670	13000	13000		NATURAL GAS,OIL	N

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 12939

Equipment: Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: Request a 5M annular variance on a 10M system. (5M variance attached in section 8). A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Stove_Pipe_705H_10M_Choke_20190619070218.pdf

BOP Diagram Attachment:

COG_Stove_Pipe_705H_10M_BOP_20190619070227.pdf

COG_Stove_Pipe_705H_Flex_Hose_20190619070244.pdf

Pressure Rating (PSI): 5M

Rating Depth: 12100

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold **Requesting Variance?** YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Well Name: STOVE PIPE FEDERAL COM

Well Number: 705H

Choke Diagram Attachment:

COG_Stove_Pipe_705H_5M_Choke_20190619070307.pdf

BOP Diagram Attachment:

COG_Stove_Pipe_705H_5M_BOP_20190619070315.pdf

COG_Stove_Pipe_705H_Flex_Hose_20190619070332.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	ר
1	SURFACE	17.5	13.375	NEW	ΑΡΙ	N	0	1200	0	1200	-9411	- 10581	1200	J-55	54.5	ST&C	2.11	6.29	DRY	7.86	DRY	7.
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	12100	0	12100		- 21491	12100	HCL -80		OTHER - BTC	1.54	1.03	DRY	1.97	DRY	1.
_	PRODUCTI ON	8.75	5.5	NEW	API	N	0	23355	0	12939	-	- 29318	23355	P- 110		OTHER - BTC	1.73	2.04	DRY	2.43	DRY	2.

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Stove_Pipe_705H_Casing_Prog_20190619070559.pdf

Well Name: STOVE PIPE FEDERAL COM

Well Number: 705H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Stove_Pipe_705H_Casing_Prog_20190619070641.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Stove_Pipe_705H_Casing_Prog_20190619070648.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1200	530	1.75	13.5	927	50	Class C	4% Gel
SURFACE	Tail		0	1200	250	1.34	14.8	335	50	Class C	2% CaCl2
INTERMEDIATE	Lead	5530	0	1210 0	990	2.8	11	2772	50	Stage 1: Lead NeoCem. Stage 2: Cementing attached in Section 8.	As needed

Well Name: STOVE PIPE FEDERAL COM

Well Number: 705H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	1210 0	300	1.1	16.4	330	50	Class H (Cementing attached in Section 8)	As needed
PRODUCTION	Lead		1110 0	2335 5	400	2	12.7	800	35	Lead: 35:65:6 H BLEND	As needed
PRODUCTION	Tail		1110 0	2335 5	3100	1.24	14.4	3844	35	Tail: 50:50:2 Class H Blend.	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1210 0	2335 5	OIL-BASED MUD	10.5	12.5							ОВМ
0	1200	OTHER : FW Gel	8.4	8.6							FW Gel
1200	1210 0	OTHER : Diesel Brine Emulsion	8.6	8.9							Diesel Brine Emulsion

Well Name: STOVE PIPE FEDERAL COM

Well Number: 705H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: None planned

List of open and cased hole logs run in the well:

CNL,GR

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8415

Anticipated Surface Pressure: 5568.42

Anticipated Bottom Hole Temperature(F): 185

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Stove_Pipe_705H_H2S_SUP_20190619071021.pdf COG_Stove_Pipe_705H_H2S_Schematic_20190619071027.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Stove_Pipe_705H_AC_RPT_20190619071041.pdf COG_Stove_Pipe_705H_Directional_Plan_20190619071051.pdf

Other proposed operations facets description:

Drilling Program attached. Cementing Plan attached. Gas Capture Plan attached.

Other proposed operations facets attachment:

COG_Stove_Pipe_705H_Drilling_Prog_20190619071105.pdf COG_Stove_Pipe_705H_GCP_20190619071111.pdf COG_Stove_Pipe_705H_Cementing_Prog_20190619071117.pdf

Other Variance attachment:

COG_5M_Variance_Well_Plan_20190211080830.pdf

NORTHERN DELAWARE BASIN

LEA COUNTY, NM BULLDOG STOVE PIPE FEDERAL COM #705H

OWB

Plan: PWP1

Standard Survey Report

12 June, 2019

Company:	NORTHERN DE	LAWARE BAS	IN	Local Co	o-ordinate Re	ference:	Well STOVE	PIPE FEDERA	AL COM #705H	
	EA COUNTY, N	IM		TVD Ref	erence:		RKB = 3330'	+ 30' @ 3360.0	Ousft (Nabors 894)	
•	BULLDOG			MD Refe	rence:			-	Ousft (Nabors 894)	
	STOVE PIPE FE	DERAL COM	#705H		aference:		Grid			
	OWB				Calculation M	ethod:	Minimum Cur	vature		
	PWP1			Databas		eurou.	EDM Users	Valure		
Design.	- VVF 1	·		Dalabas						
Project	LEA COUN	ry, NM								
Map System: Geo Datum:	US State Plai NAD 1927 (N	ne 1927 (Exact ADCON CONL	solution) IS)	System	n Datum:		Mean Sea Le	evel		
Map Zone:	New Mexico E	East 3001	· · · · · · · · · · · · · · · · · · ·							
Site	BULLDOG									
Site Position:			Northing:	39	98,637.10 usft	Latitude	1		32° 5' 36.820	
From:	Мар		Easting:	74	1,887.40 usft	Longitud	le:		103° 33' 8.116 '	
Position Uncerta	inty:	0.0 usft	Slot Radius:		13-3/16 "	Grid Cor	vergence:		0.42 °	
Vell	STOVE PIPE		OM #705H							
Well Position	+N/-S	0.0 usft	Northing:		425,824.3	30 usfi	Latitude:		32° 10' 2.419	
	+E/-W	0.0 usft	Easting:		785,706.		Longitude:		103° 24' 36.073	
Position Uncerta		3.0 usft	Wellhead E	levation:			Ground Leve	l:	3,330.0 u	
Position Uncertainty 3.0 USR		Wonnedd E						0,000.0 0		
Wellbore	OWB	· · · · · · · · · · · · · · · · · · ·	······································			··········			···· ·····	
Magnetics	Model Na	ame S	ample Date		lination (°)	Di	p Angle (°)	Field	l Strength (nT)	
					()		()			
	WM	M2015	2/4/2019		6.73		59.9	9 47,	737.72119282	
········		M2015	2/4/2019		6.73		59.9	9 47,	737.72119282	
	WM PWP1	M2015	2/4/2019		6.73		59.9	9 47,	737.72119282	
Design Audit Notes:		M2015			·			9 47,		
			Phase:	PLAN	·	Tie On Depf		9 47,	737.72119282	
Audit Notes:	PWP1	Depth Fre	Phase: om (TVD)	PLAN +N/-S		+E/-W	h:	Direction		
Audit Notes: Version:	PWP1		Phase: om (TVD)	PLAN +N/-\$ (usft			h:	Direction (°)		
Audit Notes: Version:	PWP1	Depth Fre	Phase: om (TVD) sft)	PLAN +N/-\$ (usft	5)	+E/-W (usft)	h:	Direction (°)	0.0	
Audit Notes: Version: Vertical Section:	PWP1	Depth Fre	Phase: om (TVD) sft) 0.0	PLAN +N/-\$ (usft	5)	+E/-W (usft)	h:	Direction (°)	0.0	
Audit Notes: Version: Vertical Section Survey Tool Pro From	PWP1	Depth Fro (us Date 6/12/2	Phase: bm (TVD) ift) 0.0 019	PLAN +N/-\$ (usft	5) 0.0	+E/-W (usft)	h:	Direction (°) 18	0.0	
Audit Notes: Version: Vertical Section: Survey Tool Pro From (usft)	PWP1 gram To (usft)	Depth Fra (us Date 6/12/2 Survey (Wellb	Phase: bm (TVD) ift) 0.0 019	PLAN +N/-S (usft	5) 0.0 Tool Name	+E/-W (usft) 0.0	h: Description	Direction (°) 18	0.0	
Audit Notes: Version: Vertical Section Survey Tool Pro From	PWP1 gram To (usft) 0 12,244.8	Depth Fro (us Date 6/12/2	Phase: bm (TVD) ift) 0.0 019	PLAN +N/-S (usft	5) 0.0	+E/-W (usft) 0.0	h: Description Standard Wi	Direction (°) 18 reline Keeper v	0.0	
Audit Notes: Version: Vertical Section: Survey Tool Pro From (usft) 0.	PWP1 gram To (usft) 0 12,244.8	Depth Fro (us Date 6/12/2 Survey (Wellb PWP1 (OWB)	Phase: bm (TVD) ift) 0.0 019	PLAN +N/-S (usft	S) 0.0 Tool Name Standard Kee	+E/-W (usft) 0.0	h: Description Standard Wi	Direction (°) 18 reline Keeper v	0.(33.00 ver 1.0.4	
Audit Notes: Version: Vertical Section: Survey Tool Pro From (usft) 0. 12,244.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination	Depth Fro (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth	Phase: bm (TVD) ift) 0.0 019	PLAN +N/-S (usft	S) 0.0 Tool Name Standard Kee	+E/-W (usft) 0.0	h: Description Standard Wi	Direction (°) 18 reline Keeper v	0.(33.00 ver 1.0.4	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft)	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°)	Depth Fra (us Date 6/12/2 Survey (Wellt PWP1 (OWB) PWP1 (OWB) Azimuth (°)	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft)	PLAN +N/-S (usft)	S O.0 Tool Name Standard Kee MWD+IFR1+ +E/-W (usft)	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft)	h: Description Standard Wi OWSG MWZ Dogleg Rate (°/100usft)	Direction (°) 18 reline Keeper v) + IFR1 + Mul D + IFR1 + Mul Build Rate (°/100usft)	0.1 33.00 Ver 1.0.4 Iti-Station Correction Turn Rate (°/100usft)	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00	Depth Fra (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0	PLAN +N/-S (usft) 0.0	S) 0.0 Tool Name Standard Kee MVD+IFR1+ +E/-W (usft) 0.0	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0	h: Description Standard Wi OWSG MWE Dogleg Rate (*/100usft) 0.00	Direction (°) 18 reline Keeper v) + IFR1 + Mul Build Rate (°/100usft) 0.00	0.0 33.00 Ver 1.0.4 Iti-Station Correction Turn Rate (°/100usft) 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0.00	Depth Fra (us Date 6/12/2 Survey (Wellt PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0	PLAN +N/-S (usft) 0.0 0.0	S) 0.0 Tool Name Standard Kee MVD+IFR1+ +E/-W (usft) 0.0 0.0	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0	h: Description Standard Wi OWSG MWE Dogleg Rate (*/100usft) 0.00 0.00	Direction (°) 18 reline Keeper v) + IFR1 + Mul Build Rate (°/100usft) 0.00 0.00	0.0 33.00 Ver 1.0.4 Iti-Station Correction Turn Rate (°/100usft) 0.00 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0.00 0 0.00	Depth Fra (us Date 6/12/2 Survey (Wellt PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0	PLAN +N/-S (usft) 0.0 0.0 0.0	S 0.0 Tool Name Standard Kee MVD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0	h: Description Standard Wi OWSG MWE OWSG MWE Rate (*/100usft) 0.00 0.00 0.00	Direction (°) 18 reline Keeper v) + IFR1 + Mul Build Rate (°/100usft) 0.00 0.00 0.00	0.0 33.00 Ver 1.0.4 Iti-Station Correction Turn Rate (°/100usft) 0.00 0.00 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200. 300.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	Depth Fra (us Date 6/12/2 Survey (Wellt PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0 300.0	PLAN +N/-S (usft) 0.0 0.0 0.0 0.0 0.0	S 0.0 Tool Name Standard Kee MVD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0 0.0	h: Description Standard Wi OWSG MWE OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00	Direction (°) 18 reline Keeper () + IFR1 + Mul Build Rate (°/100usft) 0.00 0.00 0.00 0.00	0. 33.00 Ver 1.0.4 Iti-Station Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	Depth Fro (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0	PLAN +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	S) 0.0 Tool Name Standard Kee MV/D+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0	h: Description Standard Wii OWSG MW/ OWSG MW/ OWSG MW/ Dogleg Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00	Direction (°) 18 reline Keeper () + IFR1 + Mul Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	0. 33.00 Ver 1.0.4 Iti-Station Correction Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	Depth Fro (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00	Phase: pm (TVD) ift) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0	PLAN +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	S) 0.0 Tool Name Standard Kee MV/D+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0	h: Description Standard Wii OWSG MVVE Dogleg Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00	Direction (°) 18 reline Keeper () + IFR1 + Mul Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	0. 33.00 Ver 1.0.4 ti-Station Correction Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00	Depth Fra (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	PLAN +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	S) 0.0 Tool Name Standard Kee MV/D+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	h: Description Standard Wii OWSG MW/ OWSG MW/ OWSG MW/ OWSG MW/ 000 000 0.00 0.00 0.00 0.00 0.00 0.00	Direction (°) 18 reline Keeper () + IFR1 + Mul Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0. 33.00 Ver 1.0.4 Iti-Station Correction Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600. 700.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0 0.00 0 0.00 0 0 0.00 0 0.00 0 0 0.	Depth Fra (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	PLAN +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	S) 0.0 Tool Name Standard Kee MV/D+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	h: Description Standard Wii OWSG MVVE Cover (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Direction (°) 18 reline Keeper () + IFR1 + Mul Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0. 33.00 Ver 1.0.4 ti-Station Correction Turn Rate (°/100usft) 0.00	
Audit Notes: /ersion: /ertical Section: Survey Tool Pro From (usft) 0. 12,244. Planned Survey Measured Depth (usft) 0. 100. 200. 300. 400. 500. 600.	PWP1 gram To (usft) 0 12,244.8 8 23,354.7 Inclination (°) 0 0.00 0 0 0.00 0 0.00 0 0 0.00 0 0.00 0 0 0.	Depth Fra (us Date 6/12/2 Survey (Wellb PWP1 (OWB) PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Phase: pm (TVD) sft) 0.0 019 pore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	PLAN +N/-S (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	S) 0.0 Tool Name Standard Kee MV/D+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 eper 104 MS Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	h: Description Standard Wii OWSG MW/ OWSG MW/ OWSG MW/ OWSG MW/ 000 000 0.00 0.00 0.00 0.00 0.00 0.00	Direction (°) 18 reline Keeper () + IFR1 + Mul Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.1 33.00 Ver 1.0.4 Iti-Station Correction Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	

6/12/2019 12:18:17PM

Company:	NORTHERN DELAWARE BASIN	Local Co-ordinate Reference:	Well STOVE
Project:	LEA COUNTY, NM	TVD Reference:	RKB = 3330'
Site:	BULLDOG	MD Reference:	RKB = 3330'
Well:	STOVE PIPE FEDERAL COM #705H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Cur
Design:	PWP1	Database:	EDM_Users

Well STOVE PIPE FEDERAL COM #705H RKB = 3330' + 30' @ 3360.0usft (Nabors 894) RKB = 3330' + 30' @ 3360.0usft (Nabors 894) Grid Minimum Curvature

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.00
5,000.0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
5,200.0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00

Company:	NORTHERN DELAWARE BASIN	Local Co-ordinate Reference:	Well STOVE PIPE FEDERAL COM #705H
Project:	LEA COUNTY, NM	TVD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)
Site:	BULLDOG	MD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)
Well:	STOVE PIPE FEDERAL COM #705H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDM_Users

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	0.00	0.00	5,300.0	0.0	0.0	0.0	0.00	0.00	0.00
5,400.0	0.00	0.00	5,400.0	0.0	0.0	0.0	0.00	0.00	0.00
5,500.0	0.00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build		0.00	0,000.0	0.0	0.0		0.00	0.00	0.00
5,600.0	2.00	269.63	5,600.0	0.0	-1.7	0.1	2.00	2.00	0.00
5,700.0	4.00	269.63	5,699.8	0.0	-7.0	0.4	2.00	2.00	0.00
5,757.2	5,14	269.63	5,756.8	-0.1	-11.5	0.7	2.00	2.00	0.00
,	6 hold at 5757		-,					2.00	
5,800.0	5.14	269.63	5,799.5	-0.1	-15.4	0.9	0.00	0.00	0.00
5,900.0	5.14	269.63	5,899.1	-0.2	-24.3	1.4	0.00	0.00	0.00
6,000.0	5.14	269.63	5,998.7	-0.2	-33.3	2.0	0.00	0.00	0.00
6,100.0	5.14	269.63	6,098.3	-0.3	-42.3	2.5	0.00	0.00	0.00
6,200.0	5.14	269.63	6,197.9	-0.3	-51.2	3.0	0.00	0.00	0.00
6,300.0	5.14	269.63	6,297.5	-0.4	-60.2	3.5	0.00	0.00	0.00
6,400.0	5.14	269.63	6,397.1	-0.4	-69.2	4.1	0.00	0.00	0.00
6,500.0	5.14	269.63	6,496.7	-0.5	-78.1	4.6	0.00	0.00	0.00
6,600.0	5.14	269.63	6,596.3	-0.6	-87.1	. 5.1	0.00	0.00	0.00
6,700.0	5.14	269.63	6,695.9	-0.6	-96.1	5.7	0.00	0.00	0.00
6,800.0	5.14	269.63	6,795.5	-0.7	-105.0	6.2	0.00	0.00	0.00
6,900.0	5.14	269.63	6,895.1	-0.7	-114.0	6.7	0.00	0.00	0.00
7,000.0	5.14	269.63	6,994.6	-0.8	-123.0	7.2	0.00	0.00	0.00
7,100.0	5.14	269.63	7,094.2	-0.9	-131.9	7.8	0.00	0.00	0.00
7,200.0	5.14	269.63	7,193.8	-0.9	-140.9	8.3	0.00	0.00	0.00
7,300.0	5.14	269.63	7,293.4	-1.0	-149.9	8.8	0.00	0.00	0.00
7,400.0	5.14	269.63	7,393.0	-1.0	-158.8	9.4	0.00	0.00	0.00
7,500.0	5.14	269.63	7,492.6	-1.1	-167.8	9.9	0.00	0.00	0.00
7,600.0	5.14	269.63	7,592.2	-1.1	-176.8	10.4	0.00	0.00	0.00
7,700.0	5.14	269.63	7,691.8	-1.2	-185.7	10.9	0.00	0.00	0.00
7,800.0	5.14	269.63	7,791.4	-1.3	-194.7	11.5	0.00	0.00	0.00
7,900.0	5.14	269.63	7,891.0	-1.3	-203.6	12.0	0.00	0.00	0.00
8,000.0	5.14	269.63	7,990.6	-1.4	-212.6	12.5	0.00	0.00	0.00
8,100.0	5.14	269.63	8,090.2	-1.4	-221.6	13.0	0.00	0.00	0.00
8,200.0	5.14	269.63	8,189.8	-1.5	-230.5	13.6	0.00	0.00	0.00
8,300.0	5.14	269.63	8,289.4	-1.6	-239.5	14.1	0.00	0.00	0.00
8,400.0	5.14	269.63	8,389.0	-1.6	-248.5	14.6	0.00	0.00	0.00
8,500.0	5.14	269.63	8,488.6	-1.7	-257.4	15.2	0.00	0.00	0.00
8,600.0	5.14	269.63	8,588.2	-1.7	-266.4	15.7	0.00	0.00	0.00
8,700.0	5.14	269.63	8,687.8	-1.8	-275.4	16.2	0.00	0.00	0.00
8,800.0	5.14	269.63	8,787.4	-1.8	-284.3	16.7	0.00	0.00	0.00
8,900.0	5.14	269.63	8,887.0	-1.9	-293.3	17.3	0.00	0.00	0.00
9,000.0	5.14	269.63	8,986.6	-2.0	-302.3	17.8	0.00	0.00	0.00
9,100.0	5.14	269.63	9,086.2	-2.0	-311.2	18.3	0.00	0.00	0.00
9,200.0	5.14	269.63	9,185.8	-2.1	-320.2	18.9	0.00	0.00	0.00
9,300.0	5.14	269.63	9,285.4	-2.1	-329.2	19.4	0.00	0.00	0.00

6/12/2019 12:18:17PM

Company:	NORTHERN DELAWARE BASIN	Local Co-ordinate Reference:	Well STOVE PIPE FEDERAL COM #705H	
Project:	LEA COUNTY, NM	TVD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)	
Site: Well:	BULLDOG STOVE PIPE FEDERAL COM #705H	MD Reference: North Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894) Grid	1
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature	
Design:	PWP1	Database:	EDM_Users	

Planned Survey

.

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,400.0	5.14	269.63	9,385.0	-2.2	-338.1	19.9	0.00	0.00	0.00
9,500.0	5.14	269.63	9,484.6	-2.2	-347.1	20.4	0.00	0.00	0.00
9,600.0	5.14	269.63	9,584.2	-2.3	-356.1	21.0	0.00	0.00	0.00
9,700.0	5.14	269.63	9,683.8	-2.4	-365.0	21.5	0.00	0.00	0.00
9,800.0	5.14	269.63	9,783.4	-2.4	-374.0	22.0	0.00	0.00	0.00
9,900.0	5.14	269.63	9,883.0	-2.5	-383.0	22.5	0.00	0.00	0.00
10,000.0	5.14	269.63	9,982.6	-2.5	-391.9	23.1	0.00	0.00	0.00
10,100.0	5.14	269.63	10,082.2	-2.6	-400.9	23.6	0.00	0.00	0.00
10,200.0	5.14	269.63	10,181.8	-2.7	-409.9	24.1	0.00	0.00	0.00
10,300.0	5.14	269.63	10,281.4	-2.7	-418.8	24.7	0.00	0.00	0.00
10,400.0	5.14	269.63	10,381.0	-2.8	-427.8	25.2	0.00	0.00	0.00
10,500.0	5.14	269.63	10,480.6	-2.8	-436.7	25.7	0.00	0.00	0.00
10,600.0	5.14	269.63	10,580.2	-2.9	-445.7	26.2	0.00	0.00	0.00
10,700.0	5.14	269.63	10,679.7	-2.9	-454.7	26.8	0.00	0.00	0.00
10,800.0	5.14	269.63	10,779.3	-3.0	-463.6	27.3	0.00	0.00	0.00
10,900.0	5.14	269.63	10,878.9	-3.1	-472.6	27.8	0.00	0.00	0.00
11,000.0	5.14	269.63	10,978.5	-3.1	-481.6	28.4	0.00	0.00	0.00
11,100.0	5.14	269.63	11,078.1	-3.2	-490.5	28.9	0.00	0.00	0.00
11,200.0	5.14	269.63	11,177.7	-3.2	-499.5	29.4	0.00	0.00	0.00
11,300.0	5.14	269.63	11,277.3	-3.3	-508.5	29.9	0.00	0.00	0.00
11,400.0	5.14	269.63	11,376.9	-3.3	-517.4	30.5	0.00	0.00	0.00
11,500.0	5.14	269.63	11,476.5	-3.4	-526.4	31.0	0.00	0.00	0.00
11,600.0	5.14	269.63	11,576.1	-3.5	-535.4	31.5	0.00	0.00	0.00
11,700.0	5.14	269.63	11,675.7	-3.5	-544.3	32.0	0.00	0.00	0.00
11,800.0	5.14	269.63	11,775.3	-3.6	-553.3	32.6	0.00	0.00	0.00
11,900.0	5.14	269.63	11,874.9	-3.6	-562.3	33.1	0.00	0.00	0.00
12,000.0	5.14	269.63	11,974.5	-3.7	-571.2	33.6	0.00	0.00	0.00
12,100.0	5.14	269.63	12,074.1	-3.8	-580.2	34.2	0.00	0.00	0.00
12,200.0	5.14	269.63	12,173.7	-3.8	-589.2	34.7	0.00	0.00	0.00
12,244.8	5.14	269.63	12,218.3	-3.8	-593.2	34.9	0.00	0.00	0.00
Start DLS	10.00 TFO -90.	01							
12,300.0	7.54	222.48	12,273.2	-6.5	-598.1	37.9	10.00	4.34	-85.44
12,400.0	16.33	197.51	12,371.0	-24.8	-606.8	56.6	10.00	8.79	-24.97
12,500.0	26.00	190.25	12,464.2	-59.9	-614.9	92.0	10.00	9.67	-7.26
12,600.0	35.84	186.78	12,549.9	-110.6	-622.3	143.1	10.00	9.84	-3.48
12,700.0	45.74	184.65	12,625.5	-175.6	-628.7	208.3	10.00	9.90	-2.13
12,800.0	55.68	183.14	12,688.7	-252.7	-633.9	285.6	10.00	9.93	-1.51
12,900.0	65.62	181.95	12,737.7	-339.7	-637.7	372.6	10.00	9.95	-1.19
13,000.0	75.58	180.94	12,770.9	-433.8	-640.0	466.8	10.00	9.95	-1.01
13,100.0	85.54	180.02	12,787.3	-532.3	-640.8	565.2	10.00	9.96	-0.92
13,147.7	90.29	179.59	12,789.0	-580.0	-640.7	612.8	10.00	9.96	-0.90
Start 1020	7.0 hold at 131	47.7 MD							
13,200.0	90.29	179.59	12,788.7	-632.3	-640.3	665.0	0.00	0.00	0.00

6/12/2019 12:18:17PM

· · · · · · · · · · · · · · · · · · ·			
Company:	NORTHERN DELAWARE BASIN	Local Co-ordinate Reference:	Well STOVE PIPE FEDERAL COM #705H
Project:	LEA COUNTY, NM	TVD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)
Site:	BULLDOG	MD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)
Well:	STOVE PIPE FEDERAL COM #705H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDM_Users

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,300.0	90.29	179.59	12,788.2	-732.3	-639.6	764.8	0.00	0.00	0.00
13,400.0	90.29	179.59	12,787.7	-832.3	-638.9	864.6	0.00	0.00	0.00
13,500.0	90.29	179.59	12,787.2	-932.3	-638.2	964.5	0.00	0.00	0.00
13,600.0	90.29	179.59	12,786.7	-1,032.3	-637.4	1,064.3	0.00	0.00	0.00
13,700.0	90.29	179.59	12,786.2	-1,132.3	-636.7	1,164.1	0.00	0.00	0.00
13,800.0	90.29	179.59	12,785.7	-1,232.3	-636.0	1,263.9	0.00	0.00	0.00
13,900.0	90.29	179.59	12,785.2	-1,332.3	-635.3	1,363.7	0.00	0.00	0.00
14,000.0	90.29	179.59	12,784.7	-1,432.3	-634.6	1,463.6	0.00	0.00	0.00
14,100.0	90.29	179.59	12,784.2	-1,532.3	-633.9	1,563.4	0.00	0.00	0.00
14,200.0	90.29	179.59	12,783.7	-1,632.3	-633.2	1,663.2	0.00	0.00	0.00
14,300.0	90.29	179.59	12,783.2	-1,732.3	-632.4	1,763.0	0.00	0.00	0.00
14,400.0	90.29	179.59	12,782.7	-1,832.3	-631.7	1,862.8	0.00	0.00	0.00
14,500.0	90.29	179.59	12,782.2	-1,932.2	-631.0	1,962.7	0.00	0.00	0.00
14,600.0	90.29	179.59	12,781.8	-2,032.2	-630.3	2,062.5	0.00	0.00	0.00
14,700.0	90.29	179.59	12,781.3	-2,132.2	-629.6	2,162.3	0.00	0.00	0.00
14,800.0	90.29	179.59	12,780.8	-2,232.2	-628.9	2,262.1	0.00	0.00	0.00
14,900.0	90.29	179.59	12,780.3	-2,332.2	-628.1	2,361.9	0.00	0.00	0.00
15,000.0	90.29	179.59	12,779.8	-2,432.2	-627.4	2,461.8	0.00	0.00	0.00
15,100.0	90.29	179.59	12,779.3	-2,532.2	-626.7	2,561.6	0.00	0.00	0.00
15,200.0	90.29	179.59	12,778.8	-2,632.2	-626.0	2,661.4	0.00	0.00	0.00
15,300.0	90.29	179.59	12,778.3	-2,732.2	-625.3	2,761.2	0.00	0.00	0.00
15,400.0	90.29	179.59	12,777.8	-2,832.2	-624.6	2,861.1	0.00	0.00	0.00
15,500.0	90.29	179.59	12,777.3	-2,932.2	-623.9	2,960.9	0.00	0.00	0.00
15,600.0	90.29	179.59	12,776.8	-3,032.2	-623.1	3,060.7	0.00	0.00	0.00
15,700.0	90.29	179.59	12,776.3	-3,132.2	-622.4	3,160.5	0.00	0.00	0.00
15,800.0	90.29	179.59	12,775.8	-3,232.2	-621.7	3,260.3	0.00	0.00	0.00
15,900.0	90.29	179.59	12,775.3	-3,332.2	-621.0	3,360.2	0.00	0.00	0.00
16,000.0	90.29	179.59	12,774.8	-3,432.2	-620.3	3,460.0	0.00	0.00	0.00
16,100.0	90.29	179.59	12,774.3	-3,532.2	-619.6	3,559.8	0.00	0.00	0.00
16,200.0	90.29	179.59	12,773.8	-3,632.2	-618.8	3,659.6	0.00	0.00	0.00
16,300.0	90.29	179.59	12,773.3	-3,732.2	-618.1	3,759.4	0.00	0.00	0.00
16,400.0	90.29	179.59	12,772.8	-3,832.2	-617.4	3,859.3	0.00	0.00	0.00
16,500.0	90.29	179.59	12,772.3	-3,932.2	-616.7	3,959.1	0.00	0.00	0.00
16,600.0	90.29	179.59	12,771.8	-4,032.2	-616.0	4,058.9	0.00	0.00	0.00
16,700.0	90.29	179.59	12,771.3	-4,132.2	-615.3	4,158.7	0.00	0.00	0.00
16,800.0	90.29	179.59	12,770.8	-4,232.2	-614.5	4,258.6	0.00	0.00	0.00
16,900.0	90.29	179.59	12,770.3	-4,332.2	-613.8	4,358.4	0.00	0.00	0.00
17,000.0	90.29	179.59	12,769.8	-4,432.2	-613.1	4,458.2	0.00	0.00	0.00
17,100.0	90.29	179.59	12,769.3	-4,532.1	-612.4	4,558.0	0.00	0.00	0.00
17,200.0	90.29	179.59	12,768.8	-4,632.1	-611.7	4,657.8	0.00	0.00	0.00
17,300.0	90.29	179.59	12,768.3	-4,732.1	-611.0	4,757.7	0.00	0.00	0.00
17,400.0	90.29	179.59	12,767.8	-4,832.1	-610.3	4,857.5	0.00	0.00	0.00
17,500.0	90.29	179.59	12,767.3	-4,932.1	-609.5	4,957.3	0.00	0.00	0.00
17,600.0	90.29	179.59	12,766.8	-5,032.1	-608.8	5,057.1	0.00	0.00	0.00

6/12/2019 12:18:17PM

COMPASS 5000.14 Build 85

1

Company:	NORTHERN DELAWARE BASIN	Local Co-ordinate Reference:	Well STOVE PIPE FEDERAL COM #705H
Project:	LEA COUNTY, NM	TVD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)
Site:	BULLDOG	MD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)
Well:	STOVE PIPE FEDERAL COM #705H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	EDM_Users

Planned Survey

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17,700.0	90.29	179.59	12,766.3	-5.132.1	-608.1	5.156.9	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•				•					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•			•						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•			•			
	18,100.0	90.29	179.59	12,704.3	-5,552.1	-005.2	5,550.2	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-,			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,400.0	90.29	179.59		-5,832.1		5,855.7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,500.0	90.29	179.59	12,762.3	-5,932.1	-602.4	5,955.5	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,600.0	90.29	179.59	12,761.8	-6,032.1	-601.7	6,055.3	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,700.0	90.29	179.59	12,761.3	-6,132.1	-601.0	6,155.2	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,800.0	90.29	179.59	12,760.8	-6,232.1	-600.2	6,255.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
19,100.090.29179.5912,759.3 $-6,532.1$ -598.1 $6,554.4$ 0.00 0.00 0.00 19,200.090.29179.5912,758.8 $-6,632.1$ -597.4 $6,654.3$ 0.00 0.00 0.00 19,400.090.29179.5912,757.8 $-6,832.1$ -595.7 $6,754.1$ 0.00 0.00 0.00 19,500.090.29179.5912,757.3 $-6,832.1$ -595.2 $6,953.7$ 0.00 0.00 0.00 19,600.090.29179.5912,756.8 $-7,032.1$ -594.5 $7,053.5$ 0.00 0.00 0.00 19,600.090.29179.5912,756.8 $-7,232.0$ -593.8 $7,153.4$ 0.00 0.00 0.00 19,800.090.29179.5912,756.3 $-7,232.0$ -593.1 $7,253.2$ 0.00 0.00 0.00 20,000.090.29179.5912,754.8 $-7,432.0$ -591.7 $7,452.8$ 0.00 0.00 0.00 20,000.090.29179.5912,754.8 $-7,632.0$ -590.2 $7,652.5$ 0.00 0.00 0.00 20,200.090.29179.5912,753.8 $-7,632.0$ -589.5 $7,852.1$ 0.00 0.00 0.00 20,200.090.29179.5912,753.8 $-7,632.0$ -589.5 $7,852.1$ 0.00 0.00 0.00 20,500.090.29179.5912,753.8 $-7,632.0$ -589.5 $7,852.1$ 0.00 0.00	•			•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			•						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.000.0		470.50	40 750 0	C COO 4	507 4	0.054.0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19,600.0	90.29	179.59	12,756.8	-7,032.1	-594.5	7,053.5	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19,700.0	90.29	179.59	12,756.3	-7,132.0	-593.8	7,153.4	0.00	0.00	0.00
20,000.0 90.29 179.59 12,754.8 -7,432.0 -591.7 7,452.8 0.00 0.00 0.00 20,100.0 90.29 179.59 12,754.3 -7,532.0 -590.9 7,552.7 0.00 0.00 0.00 20,200.0 90.29 179.59 12,753.8 -7,632.0 -590.2 7,652.5 0.00 0.00 0.00 20,300.0 90.29 179.59 12,753.3 -7,732.0 -588.5 7,752.3 0.00 0.00 0.00 20,400.0 90.29 179.59 12,751.8 -7,832.0 -588.8 7,852.1 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.8 -8,032.0 -587.4 8,051.8 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.8 -8,032.0 -587.4 8,051.8 0.00 0.00 0.00 20,700.0 90.29 179.59 12,750.8 -8,232.0 -588.5 8,351.2 0.00 0.00	19,800.0	90.29	179.59	12,755.8	-7,232.0	-593.1	7,253.2	0.00	0.00	0.00
20,100.0 90.29 179.59 12,754.3 -7,532.0 -590.9 7,552.7 0.00 0.00 0.00 20,200.0 90.29 179.59 12,753.8 -7,632.0 -590.2 7,652.5 0.00 0.00 0.00 20,300.0 90.29 179.59 12,753.8 -7,732.0 -589.5 7,752.3 0.00 0.00 0.00 20,400.0 90.29 179.59 12,752.8 -7,832.0 -588.8 7,852.1 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.8 -8,032.0 -587.4 8,051.8 0.00 0.00 0.00 20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,700.0 90.29 179.59 12,750.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 20,700.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00	19,900.0	90.29	179.59	12,755.3	-7,332.0	-592.4	7,353.0	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20,000.0	90.29	179.59	12,754.8	-7,432.0	-591.7	7,452.8	0.00	0.00	0.00
20,300.0 90.29 179.59 12,753.3 -7,732.0 -589.5 7,752.3 0.00 0.00 0.00 20,400.0 90.29 179.59 12,752.8 -7,832.0 -588.8 7,852.1 0.00 0.00 0.00 20,500.0 90.29 179.59 12,752.3 -7,932.0 -588.1 7,951.9 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,700.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,800.0 90.29 179.59 12,760.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00	20,100.0	90.29	179.59	12,754.3	-7,532.0	-590.9	7,552.7	0.00	0.00	0.00
20,300.0 90.29 179.59 12,753.3 -7,732.0 -589.5 7,752.3 0.00 0.00 0.00 20,400.0 90.29 179.59 12,752.8 -7,832.0 -588.8 7,852.1 0.00 0.00 0.00 20,500.0 90.29 179.59 12,752.3 -7,932.0 -588.1 7,951.9 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,700.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,800.0 90.29 179.59 12,760.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00	20,200,0	90.29	179.59	12,753.8	-7.632.0	-590.2	7.652.5	0.00	0.00	0.00
20,400.0 90.29 179.59 12,752.8 -7,832.0 -588.8 7,852.1 0.00 0.00 0.00 20,500.0 90.29 179.59 12,752.3 -7,932.0 -588.1 7,951.9 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.3 -8,032.0 -587.4 8,051.8 0.00 0.00 0.00 20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,700.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,900.0 90.29 179.59 12,749.8 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.8 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.3 -8,732.0 -583.8 8,550.9 0.00 0.00				•						
20,500.0 90.29 179.59 12,752.3 -7,932.0 -588.1 7,951.9 0.00 0.00 0.00 20,600.0 90.29 179.59 12,751.8 -8,032.0 -587.4 8,051.8 0.00 0.00 0.00 20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,800.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,900.0 90.29 179.59 12,760.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.8 -8,432.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.8 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.3 -8,732.0 -583.4 8,650.3 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 <td>•</td> <td></td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•			•	•					
20,600.0 90.29 179.59 12,751.8 -8,032.0 -587.4 8,051.8 0.00 0.00 0.00 20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,800.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,900.0 90.29 179.59 12,750.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00 0.00 21,200.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.8 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 <td></td>										
20,700.0 90.29 179.59 12,751.3 -8,132.0 -586.6 8,151.6 0.00 0.00 0.00 20,800.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,900.0 90.29 179.59 12,750.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00 0.00 21,100.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.3 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,300.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,600.0 90.29 179.59 12,747.3 -8,932.0 <td></td>										
20,800.0 90.29 179.59 12,750.8 -8,232.0 -585.9 8,251.4 0.00 0.00 0.00 20,900.0 90.29 179.59 12,750.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00 0.00 21,100.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.3 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 <td>20,600.0</td> <td>90.29</td> <td>179.59</td> <td>12,751.0</td> <td>-0,032.0</td> <td>-307.4</td> <td>0,051.0</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	20,600.0	90.29	179.59	12,751.0	-0,032.0	-307.4	0,051.0	0.00	0.00	0.00
20,900.0 90.29 179.59 12,750.3 -8,332.0 -585.2 8,351.2 0.00 0.00 0.00 21,000.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00 0.00 21,100.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.8 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 <td>20,700.0</td> <td>90.29</td> <td>179.59</td> <td>12,751.3</td> <td>-8,132.0</td> <td>-586.6</td> <td>8,151.6</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	20,700.0	90.29	179.59	12,751.3	-8,132.0	-586.6	8,151.6	0.00	0.00	0.00
21,000.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00 0.00 21,100.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.8 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 <td>20,800.0</td> <td>90.29</td> <td>179.59</td> <td>12,750.8</td> <td>-8,232.0</td> <td>-585.9</td> <td>8,251.4</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	20,800.0	90.29	179.59	12,750.8	-8,232.0	-585.9	8,251.4	0.00	0.00	0.00
21,000.0 90.29 179.59 12,749.8 -8,432.0 -584.5 8,451.0 0.00 0.00 0.00 21,100.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.8 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 <td>20,900.0</td> <td>90.29</td> <td>179.59</td> <td>12,750.3</td> <td>-8,332.0</td> <td>-585.2</td> <td>8,351.2</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	20,900.0	90.29	179.59	12,750.3	-8,332.0	-585.2	8,351.2	0.00	0.00	0.00
21,100.0 90.29 179.59 12,749.3 -8,532.0 -583.8 8,550.9 0.00 0.00 0.00 21,200.0 90.29 179.59 12,748.8 -8,632.0 -583.1 8,650.7 0.00 0.00 0.00 21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00	21,000.0	90.29	179.59	12.749.8		-584.5	8,451.0	0.00	0.00	0.00
21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00										
21,300.0 90.29 179.59 12,748.3 -8,732.0 -582.3 8,750.5 0.00 0.00 0.00 21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00	21 200 0	00.20	170 50	10 749 9	9 632 0	592.4	9 650 7	0.00	0.00	0.00
21,400.0 90.29 179.59 12,747.8 -8,832.0 -581.6 8,850.3 0.00 0.00 0.00 21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00				,						
21,500.0 90.29 179.59 12,747.3 -8,932.0 -580.9 8,950.2 0.00 0.00 0.00 21,600.0 90.29 179.59 12,746.8 -9,032.0 -580.2 9,050.0 0.00 0.00 0.00 21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00										
21,600.090.29179.5912,746.8-9,032.0-580.29,050.00.000.000.0021,700.090.29179.5912,746.3-9,132.0-579.59,149.80.000.000.0021,800.090.29179.5912,745.8-9,232.0-578.89,249.60.000.000.00										
21,700.0 90.29 179.59 12,746.3 -9,132.0 -579.5 9,149.8 0.00 0.00 0.00 21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00	•									
21,800.0 90.29 179.59 12,745.8 -9,232.0 -578.8 9,249.6 0.00 0.00 0.00	21,600.0	90.29	179.59	12,746.8	-9,032.0	-580.2	9,050.0	0.00	0.00	0.00
	21,700.0	90.29	179.59	12,746.3	-9,132.0	-579.5	9,149.8	0.00	0.00	0.00
	21,800.0	90.29	179.59	12,745.8	-9,232.0	-578.8	9,249.6	0.00	0.00	0.00

6/12/2019 12:18:17PM

<pre>en longereite electricites p</pre>									
Company:	NORTHERN DELAWARE BASIN	Local Co-ordinate Reference:	Well STOVE PIPE FEDERAL COM #705H						
Project:	LEA COUNTY, NM	TVD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)						
Site:	BULLDOG	MD Reference:	RKB = 3330' + 30' @ 3360.0usft (Nabors 894)						
Well:	STOVE PIPE FEDERAL COM #705H	North Reference:	Grid						
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature						
Design:	PWP1	Database:	EDM_Users						
Ye									

Planned Survey

N/-S Isft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,432.0	-577.3	9,449.3	0.00	0.00	0.00
9,532.0	-576.6	9,549.1	0.00	0.00	0.00
9,632.0	-575.9	9,648.9	0.00	0.00	0.00
9,732.0	-575.2	9,748.7	0.00	0.00	0.00
9,831.9	-574.5	9,848.5	0.00	0.00	0.00
9,931.9	-573.8	9,948.4	0.00	0.00	0.00
0,031.9	-573.0	10,048.2	0.00	0.00	0.00
0,131.9	-572.3	10,148.0	0.00	0.00	0.00
0,231.9	-571.6	10,247.8	0.00	0.00	0.00
0,331.9	-570.9	10,347.6	0.00	0.00	0.00
0,431.9	-570.2	10,447.5	0.00	0.00	0.00
0,531.9	-569.5	10,547.3	0.00	0.00	0.00
0,631.9	-568.8	10,647.1	0.00	0.00	0.00
0,731.9	-568.0	10,746.9	0.00	0.00	0.00
0,786.6	-567.6	10,801.5	0.00	0.00	0.00
		,			

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
LTP (STOVE PIPE FE - plan misses targ - Point			12,738.0 3300.0usft		-566.4 3 TVD, -1073	415,087.60 31.9 N, -568.0 E)	785,140.10	32° 8' 16.225 N	103° 24' 43.731 W
PBHL (STOVE PIPE I - plan misses targ - Point			12,738.0 3354.7usft		-566.1 1 TVD, -1078	415,037.60 86.6 N, -567.6 E)	785,140.40	32° 8' 15.730 N	103° 24' 43.732 W
FTP (STOVE PIPE FE - plan misses targ - Circle (radius 50	et center by		12,789.0 12950.2us		-640.6 6.4 TVD, -386	425,449.60 6.2 N, -639.0 E)	785,065.86	32° 9' 58.765 N	103° 24' 43.563 W

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
 5500	5500	0	0	Start Build 2.00
5757	5757	0	-12	Start 6487.6 hold at 5757.2 MD
12,245	12,218	-4	-593	Start DLS 10.00 TFO -90.01
13,148	12,789	-580	-641	Start 10207.0 hold at 13147.7 MD
23,355	12,738	-10,787	-568	TD at 23354.7

Checked By:

Approved By:

Date:

,

6/12/2019 12:18:17PM

1. Geologic Formations

TVD of targe	et 12,939'	Pilot hole depth	NA
MD at TD:	23,355'	Deepest expected fresh water:	300'
Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	884	Water	
Top of Salt	1385	Salt	
Base of Salt	5220	Salt	
Lamar	5515	Salt Water	
Bell Canyon	5556	Salt Water	
Cherry Canyon	6477	Oil/Gas	
Brushy Canyon	8121	Oil/Gas	
Bone Spring Lime	9391	Oil/Gas	
1st Bone Spring Sand	10580	Oil/Gas	
2nd Bone Spring Sand	11111	Oil/Gas	
3rd Bone Spring Sand	12210	Oil/Gas	
Wolfcamp	12670	Oil/Gas	
Wolfcamp A Shale	12785	Target Oil/Gas	
Wolfcamp B	13000	Not Penetrated	

2. Casing Program

Hole Size	Casing From	g Interval To	Csg. Si	ze Weig (Ibs	- I Grade	Conn.	SF Collapse	SF Burst	SF Tension
17.5"	0	1200	13.375	5" 54.	5 J55	STC	2.11	6.29	7.86
12.25"	0	12100	9.625'	" 47	HCL80	втс	1.54	1.03	1.97
8.75"	0	23,355	5.5"	23	9 P110	втс	1.73	2.04	2.43
				BLM Min	imum Safe	ty Factor	1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef? Is well within the designated 4 string boundary?	
is well within the designated 4 string boundary:	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

ì

3. Cementing Program

Casing	# Sks	Wt. Ib/ gal	YId ft3/ sack	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	530	13.5	1.75	9	12	Lead: Class C + 4% Gel
Sun.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	990	11	2.8	19	48	Lead: NeoCem
Stage1	300	16.4	1.1	5	8	Tail: Class H
				DV Too	l @ 5530'	
Inter.	770	11	2.8	19	48	Lead: NeoCem
Stage2	100	14.8	1.35	6.34	8	Tail: Class C + 2% Cacl
5.5 Prod	400	12.7	2	10.6	16	Lead: 35:65:6 H Blend
5.5 Prod	3100	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	11,100'	35%

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	Туре		Tested to:
			Anr	ular	X	2500 psi
	13-5/8"	5M	Blind Ram		Х	5M
12-1/4"			Pipe Ram		Х	
			Double Ram			
			Other*			
			5M A	nnular	Х	5000 psi
			Blind Ram		Х	10M
8-3/4"	13-5/8"	10M	Pipe Ram		Х	
			Double Ram			
			Other*			

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
N	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

5. Mud Program

	Depth	Туре	Weight	Viscosity	Water Loss	
From	То	iyhe	(ppg)	viscosity	water Loss	
0	Surf. Shoe	FW Gel	8.4 - 8.6	28-29	N/C	
Surf csg	Int shoe	Diesel Brine Emul	8.6 - 8.9	30-40	N/C	
Int shoe	Lateral TD	OBM	10.5 - 12.5	30-40	20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
what will be used to monitor the loss of gain of huid?	r v f/r asofil visual workoring

6. Logging and Testing Procedures

Logging, Coring and Testing.		
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.	
N	Are Logs are planned based on well control or offset log information.	
N	Drill stem test? If yes, explain.	
N	Coring? If yes, explain.	

Ad	ditional logs planned	Interval
Ν	Resistivity	Pilot Hole TD to ICP
Ν	Density	Pilot Hole TD to ICP
Y	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
Ν	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	8415 psi at 12939' TVD
Abnormal Temperature	NO 185 Deg. F.

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other Facets of Operation

Y	Is it a walking operation?
N	Is casing pre-set?

×	H2S Plan.
×	BOP & Choke Schematics.
×	Directional Plan
X	5M Annular Variance