Form 3160-5 (June 1990)

12

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED Budget Bureau No. 1004-0135

Expires: March 31, 1993

SUNDRY NOTICES AND REPORTS ON WELLS

Do not use this form for proposals to drill or to deepen or reentry to a different reservoir.

Use "APPLICATION FOR PERMIT---" for such proposals

BLM #NMNM01747

6. If Indian, Allottee or Tribe Name

5. Lease Designation and Serial No.

<u></u>
7. If Unit or CA, Agreement Designation
8. Well Name and No.
Lea Federal Unit #19 9. API Well No.
30-025-36905 10. Field and Pool, or Exploratory Area
Lea
11. County or Parish, State Lea County, NM

TYPE OF	ACTION
Abandonment	Change of Plans
Recompletion	New Construction
Plugging Back	Non-Routine Fracturing
Casing Repair	Water Shut-Off
Altering Casing	Conversion to Injection
Other	x Dispose Water
	(Note: Report results of multiple completion on Well
	Abandonment Recompletion Plugging Back Casing Repair Altering Casing

CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA

13 Describe Proposed or Completed Operations (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work. If well is directionally drilled, give subsurface locations and measured and true vertical depths for all markers and zones pertinent to this work.)*

Per your Notice of Incidents of Noncompliance Number A	AJM-143-06, please find attached a Notice of Intent for water dispose
approval for the Lea Federal Unit #19, in Lea County, NM.	A2526272830

14. I hereby certify that the foregoing is true and correct
Signed Suburation Title Environmental & Safety Tech Date

(This space for Federal or State office use)
Approved by CSC SGD, DAVID Title Conditions of approval, if any:

MAY 15 2006

Title 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

SEE ATTACHED FOR CONDITIONS OF APPROVAL

*See Instruction on Reverse Side

The following information is needed before your disposal of produced water can be approved, per Ousbore Oil & Gas Order #7.

You may attach this information to your Sundry Notice (3160-5). Submit all required information as per this attachment, submit a Sandry Notice(3160-5), one original and five copies to this office within the required time.

1.	Name(s) of all formation(s) producing water on the lease. Morrow	
2,	Amount of water produced from all formations in barrels per day.	
	A CURRENT water analyzis of produced water from all zones showing at least the total dissolved solids, ph, and the concentrations of chlorides and sulfates. See Attached	26272820
4.	and the concentrations of chlorides and sulfates. See Attached How water is stored on the lease. Stored in 300 barrel steel welded tank.	e ke
	How water is moved to the disposal facility. Trucked by Key Energy.	
6.	Identify the Disposal Pacifity by: A. Operators' Name Millard Deck Oil Company	. 4 10, 11
	D. Well Name Atha Well No. 1 C. Well type and well number galt water disposal #1 D. Location by quarter/quarter, section, township, and range Section 31, Township 21, Range 36 East	

7. A copy of the Underground Injection Control Permit - issued for the injection well by the Environmental Protection Agency or New Mexico Oil Conservation Division where the State has achieved primacy. See attached. 05/04/2006 11:38

Champion Technologies

Water Analysis Report

1/9/2006

Address:

Customer: SAMSON LONE STAR

Attention:

CC;

Lease: Lea Fed

Formation:

Test Date: 01/03/2006

Salesman: Tracy Headstream

Target Name: Lea Fed 19

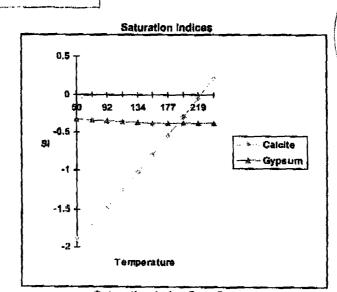
Sample Point: Lea Fed 19

	Sample Date:	12/23/2005
ali mining and it		A

Water Analysis(mg/L)	
Calcium	3529
Magnesium	437
Barium	
Strontium	
Sodium(calc.)	21781
Bicarbonate Alkalinity	244
Sulfate	1302
Chloride	40000
Resistivity	0.0951
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Appended Dat	ta(mg/L)	Physical Properties	
CO2	450	ionic Strength(caic.)	1.28
H28	0	pH(calc.)	5.50
Iron	215	Temperature(°F)	84
Oxygen		Pressure(psia)	50
Additional Da	ta	Density	8.7
Specific Gravi		1.05 Dew	Poin

Additional Data	Density	8.72
Specific Gravity	1.05	Dew Poin
Total Dissolved Solids(Mg/L)	67293	Lead
Total Hardness(CaCO3 Eq Mg/	10613	Zinc
SI & PTB Requite		


Calcite Calculation Information

. "		· · · · · · · · · · · · · · · · · · ·	
:		Calculation Method	Value
ŧ			
٠		CO2 in Brine(mg/L)	450
١.		The state of the s	
٠,	*** * ** ***		

Remarks:

Scale Type	\$I	PTB
Caicite (Calcium Carbonate)	-1,56	
Gypsum (Calcium Sulfate)	-0.35	
Hemlhydrate (Calcium Sulfate)	-0.34	-003
Anhydrite (Calcium Sulfate)	-0.55	252627.
Barite (Barium Sulfate)	7	7

Celestite (Strontium Sulfate)

Saturation index Data Points											
	50	71	92	113	134	156	177	198	219	240	ĺ
Calcite	-1.89	-1.68	-1.47	-1.25	-1.02	-0.79	-0.54	-0.29	-0.04	0.23	į
Gypsum	-0.33	-0.34	-D.35	-0.36	-0.37	-0.38	-0.38	-0.38	-0.38	-0,38	