

VICINITY MAP

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15		R	18	17			14	13	18	17	16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	e.	n	16	1 1		PRIVATE RE/				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	23	24 m	n 19 ¥	20 20 20	EUN	ICÈ₫			°	20	21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27			57.30	1	28 کرک	27	ž 26		AIT RD	29	28	ര
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	E	22	31	32	E23 AVE.	21-1		36	31 ST.	32 234	33	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	2	1	6	5 N		з	2	4RD 1	6	5	4	
DELAWARE BASIN IB I7 I6 I5 I4 I3 IM IA <thia< th=""> IA IA<td>10</td><td></td><td></td><td></td><td></td><td>_</td><td>10</td><td>1~1</td><td>DRIN 15</td><td>7</td><td>8</td><td>9</td><td></td></thia<>	10					_	10	1~1	DRIN 15	7	8	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DELAWA											70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹⁵	FEDERAL				16	15	14	13 6	81 8	17	<u>ب</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			90 24	84 47 19	20	21		~ \	24	19	20	≃	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	26	25	30	KING		27	26	25	30	29	28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	35	36	31		33	34	4	DRINKA %	31	32	33	AS
15 14 13 8 5 18 16 15 14 13 5 7 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	з	2	1		{	A PR	SUMMIT	2	1	6	5	4	Х
15 14 13 8 5 18 16 15 14 13 5 7 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	10	11	12	7			10	μ _{pr}	- 12	7	8	9	
	15	14	13 ឌ			16	15	14	13	81 %	17	16	
			*			[I	$V_{}$		1

SEC. <u>17</u> TWP.<u>22–S</u> RGE. <u>37–E</u> SURVEY N.M.P.M. COUNTY <u>LEA</u> STATE NEW MEXICO DESCRIPTION <u>1650'</u> FSL & 2310' FWL ELEVATION <u>3387'</u> OPERATOR <u>RANGE RESOURCES</u> LEASE <u>FEDERAL 1–17</u>

EXHIBIT B

£

J

EUNICE FIELD (Blinebry/Tubb/Drinkard) Range Operating NM, Inc. Federal 1-17 #3 Geological Data for Permit Prepared by Terri Mayfield-Cowan 6/13/2007

I) WELL OBJECTIVES The objective of the well is to drill and evaluate the Penrose-Skelly through Drinkard Formations and complete the well as a Blinebry/Tubb/Drinkard producer. Secondary target is the San Andres Formation.

II) LOCAT	ION Bottom-hole Location:	1650' FSL & 2310' FWL Section 17-T22S-R37E Lea County, New Mexico Lat: 32.389005 Long: -103.185687 same, vertical
	Elevation:	GL: 3387 ft Est. KB: 3397 ft
	Directions to Location:	From the intersection of St. Rd. #207 & Co. Rd. # E-21 (Delaware Basin), Go W on Co. Rd. E21 ~ 1.1 mi. Turn left & Go S on caliche lease road ~ 0.5 mi. Turn right & Go W-SW on caliche lease road ~0.45 mi. to proposed road survey. Follow flags SE ~ 490 ft. to the pad site.
	Access to Location:	Unrestricted

III) PROGNOSIS

Proposed TD: Est. BHP @TD: 2650 psi	-3503 ft	6900 ft MD	Tight oil & gas likely Water poss
Lwr Permian Abo	-3235 ft	6632 ft MD+	Tight oil & gas poss
Lwr Permian Drinkard Fm	-2840 ft	6237 ft MD+	Oil, gas, water likely
Lwr Permian Tubb Fm	-2675 ft	6072 ft MD+	Oil, gas, water poss
Upr Permian Blinebry Fm	-2030 ft	5427 ft MD*	Oil, gas, water likely
Upr Permian Glorieta Fm	-1675 ft	5072 ft MD	Oil, gas, water likely
Upr Permian San Andres Fm	-485 ft	3882 ft MD	Gas, oil, water likely
Upr Permian Penrose-Skelly Fm	-65 ft	3462 ft MD	Oil, gas, water poss
Upr Permian Rustler Fm	+2335 ft	1062 ft MD	Not Reservoir Rock

f

Est. BHP @TD: 2650 psi

*= Primary Reservoir Targets += Secondary Reservoir Targets

IV) PRIMARY RESERVOIR TARGETS

Upper Permian Blinebry Formation

Dolostone
Est. 640 ft, 30 ft. net pay
10%; ranges from 6% -15%
120° F
2200 psi (assuming no pressure depletion)

Lower Permian Tubb Formation

Rock Type:	Silty Dolostone
Thickness:	Est. 170 ft., 10 ft. net pay
Avg. Porosity:	8%, Ranges from 2%-15%
Est. Reservoir Temp.:	130 degrees F
Est. Reservoir Press.:	2500 psi, assuming no pressure depletion

Lower Permian Drinkard Formation

Rock Type: Dolostone Thickness: Est. 400 ft., 75 ft. Net Pay Avg. Porosity: 12%, Ranges from 2%-20% Est. Reservoir Temp.: 135 degrees F Est. Reservoir Press.: 2650 psi, assuming no pressure depletion

V) SECONDARY RESERVOIR TARGETS

a 1

1) Upper Permian Penrose-Skelly through Grayburg Dolostones likely significant depletion

VI) EVALUATION

Mud System 10.1 lbs/gal Brine-Suttles Unit on @2500' w/ gas monitoring
equipment & cuttings collected
Upon TD Halliburton will run DLL, MGRD, CSNG, DSN, SDL w/Sonic &
Rotary Sidewall Cores as optional services

VII) POTENTIAL HAZARDS/PITFALLS

Abnormal Pressure/Temperature Zones:	Possibilty of partial depletion within Queen to Grayburg Formations
Fractured/Lost Circulation Zones:	See above-Please tag mud if circulation is lost in primary pay interval
Presence of H ₂ S or CO ₂ :	None expected
Faults Intersecting the Wellbore:	None expected

Revised Drilling Program Federal 1-17 #3 Lea County, NM

August 29, 2007

Surface Location: 1650' FNL & 2310' FWL Section 17-T22S-R37E Lea County, New Mexico Lat: 32.389005 Long: -103.185687'

Bottom-hole Location: same, vertical

Elevation: GL: 3387 ft Est. KB: 3282 ft

Directions to Location: From intersection of St. Rd. #207 and Co. Rd. #E21 (Delaware Basin), go West on Co. Rd. #E21 approx. 1.1 miles. Turn left and go South on caliche lease road approx. 0.5 miles. Turn right and go West-Southwest on caliche lease road approx. 0.45 miles to proposed road survey. Follow flags South-East approx. 490 feet to the Northeast corner of proposed pad.

Access to Location: Unrestricted

1. Geologic Name of Surface Formation

a. Permian

\$

2. Estimated Top of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas:

Lwr Permian Drinkard Fm Lwr Permian Abo Proposed TD: Est. BHP @TD: 2100 psi	2840 ft -3235 ft -3503 ft	6237 ft MD+ 6632 ft MD+ 6900 ft MD	Tight oil & gas poss Tight oil & gas poss Tight oil & gas likely Water poss
Upr Permian Blinebry Fm	-2030 ft	5427 ft MD*	Oil, gas, water poss
Lwr Permian Tubb Fm	-2675 ft	6072 ft MD+	Tight oil & gas poss
Upr Permian Rustler Fm	+2335 ft	1062 ft MD	Not Reservoir Rock
Upr Permian Penrose-Skelly Fm	-65 ft	3462 ft MD	Oil, gas, water poss
Upr Permian San Andres Fm	-485 ft	3882 ft MD	Oil, gas, water poss
Upr Permian Glorieta Fm	-1675 ft	5072 ft MD	Oil, gas, water poss

*= Primary Reservoir Targets += Secondary Reservoir Targets

PRIMARY RESERVOIR TARGETS

Upper Permian Blinebry Formation

Rock Type:	Dolostone
Thickness:	~625 ft
Avg. Porosity:	10%; ranges from 6% -15%
Est. Reservoir Temp.:	110° F
Est. Reservoir Press.:	2100 psi (assuming no pressure depletion)

SECONDARY RESERVOIR TARGETS

- 1) Upper Permian **Blinebry Formation** through **San Andres Dolostone** likely significant depletion
- 2) Lower Permian **Tubb & Drinkard Siliciclastics & Dolostones** likely lower quality Hydrocarbon reservoirs with low permeability & possibly water

3. Casing Program;

1

Hole Size	Hole Interval	<u>OD Csg</u>	Casing Interval	<u>Weight</u>	<u>Collar</u> StC	<u>Grade</u>
12 ¼"	0' - +/-1200'	8 5/8"	0' - +/-1200'	24#	LT&C	J-55
7 7/8"	0' - +/-6900'	5 1⁄2"	0' - +/-6900'	15.5# 17:#_	LT&C	J-55 9-5-07
Design Para	meter Factors:			P	erop	orater
Casing Size	<u>Collapse De</u>	<u>sign Factor</u>	Burst Design Fac	<u>tor Ten</u>	<u>sion Desi</u>	gn Factor
8 5/8"	2.4		4.7	9.8		
5 1⁄2"	1.3		1.5	2.7		

4. Cement Program: (Hole conditions may require cementing in two stages)

a. 8 5/8	Surface	Cement to surface with Lead: 350 sks of 35/65 POZ:Class C + 6% Gel + 5% (BWOW) NaCl, Surrry weight = 12.8 ppg, Yield = 1.94 ft^3 /sk Tail: 150 sks Class C + 1% CaCl ₂ Slurry weight 14.8 ppg, Yield = 1.32 ft ³ /sk. Displace with fresh water, bump plug with 500 psi over final pump pressure. TOC - surface.
b. 5 ½	Production	Cement Lead: 370 sks of 50/50 POZ:Class C + 10% Gel + 5% NaCl. Slurry weight= 11.8 ppg, Yield = 2.4 cf/sk Tail: 300 sks of 50/50 POZ:Class C + 2% Gel + 5% (BWOW) NaCl, Slurry weight = 14.2 ppg, Yield = 1.38 cf/sk. Displace with fresh water. TOC =/-1000'

The above cement volumes could be revised pending the caliper measurement from the open hole logs. The top of cement on surface casing is designed to reach the surface. All casing is new and API approved.

5. **Pressure Control Equipment:**

_

The blowout preventor equipment (BOP) as shown below will consist of a (2M system) double ram type (3000 psi WP) preventor and rotating head. Both units will be hydraulically operated and the ram type preventor will be equipped with blind rams on top and 4 1/2 " drill pipe rams on bottom. The BOP will be installed on the 8 5/8" surface casing and utilized continuously until total depth is reached. **ALL**

BOP's and associated equipment will be tested to 1000 psi high and 250 psi low with the rig pump. Prior to drilling out the 8 5/8" casing shoe, the BOP's AND Hydril will be tested per BLM Drilling Operations Order #2.

Pipe rams will be operated and checked each 24-hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily driller's log. A 2" kill line and 3" choke line will be incorporated in the drilling spool below the ram-type BOP. Other accessory BOP equipment will include a Kelly cock, floor safety valve, choke lines and choke manifold having a minimum 2000 psi WP rating.

6. **Proposed Mud Circulation System**

.,#

Depth	Mud Wt.	Visc.	Fluid Loss	<u>Type System</u>
0 - 1200'	8.4 - 9.4	32-34	NC	Water
1200 - 6000'	10.0	28	NC	Brine
6000' – 6900'	10.0 – 10.2	30-33	10cc	Dispersed

The necessary mud products for weight addition and fluid loss control will be on location at all times.

7. Auxiliary Well Control and Monitoring Equipment:

- a. A. Kelly cock will be in the drill string at all times.
- A full opening drill pipe stabbing valve having the appropriate connection will be on the rig floor at all times.
- c. Hydrogen Sulfide detection equipment will be in operation after drilling out the 8 5/8" casing shoe until the 5 ½" casing is cemented. Breathing equipment will be on location upon drilling the 8 5/8" shoe until total depth is reached.

8. Logging, Coring, and Testing Program:

Mudlogging: Mud System 10.1 lbs/gal Brine-Suttles Unit on @2500' w/ gas monitoring equipment & cuttings collected

Drillstem Tsts: No DST's are planned-should the need for a DST arise, a procedure, equipment to be used & safety measures will be provided via sundry notice to the BLM

Wireline Logs: 1. Upon TD, the following open hole logs will be run from TD to surface

casing point: Dual Laterolog-Micro Guard, Spectral Gamma Ray, Compensated neutron, Spectral Density

- 2. Delta T Sonic & Rotary Sidewall Cores are optional services for the open hole
- 3. From Surface Casing point to Surface, Compensated neutron & Gamma Ray will be run in cased portion of hole

Whole Coring: No Whole Coring in planned.

9. **Potential Hazards:**

No abnormal pressures or temperatures are expected. All personnel will be familiar with all aspects of safe operations of equipment being used to drill this well. Estimated BHP 2800 psi and Estimated BHT 130°.

10. Anticipated Starting Date and Duration of Operations:

a. Road and location construction will begin after the BLM has approved the APD. Anticipated spud date will be as soon after BLM approval and as soon as a rig will be available. Move in operations and drilling is expected to take 7-10 days. If production casing is run then an additional 30 days will be needed to complete well and construct surface facilities and/or lay flow lines in order to place well on production.

Ŀ

