<u>District I</u> 1625 N. French	Dr., Hobbs, NM 88240
	Avenue, Artesia, NM 88210
rict III	

D Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

For temporary pits, closed-loop systems,	200
below-grade tanks, submit to the appropri	ate
NMOCD District Office.	
For permanent pits and exceptions subm	nto
the Santa Fe Environmental Burcan Office	ano
provide a copy to the appropriate NMOCD	ļ.
District Office.	

Pit, Closed-Loop Syste	m, Below-Grade Tank, or					
Proposed Alternative Method I	Permit or Closure Plan Application					
m continue Demait of a pit closed-loop sv	stem, below-grade tank, or proposed alternative method ystem, below-grade tank, or proposed alternative method					
in the second state on the second state of the second state of the second second system, below grade tank or alternative request						
Please be anvised that approval of this request toos not responsibility to comp	bury should operations result in postulation of an area, generations or ordinances. by with any other applicable governmental authority's rules, regulations or ordinances.					
Operator: Ma TOSC, Operator of its responsibility to comp Operator: Ma TOSC, Operator NG, CD. Address: 40 PO Box 953 Michane Tx 79'	OGRID#: 184860					
operation of the generative the Tx 79'	102-					
Facility or well name: Un mat Field Vates Sand UNI	f # 222					
Facility of well lattic: (111118) 1 1000 1000 1000	DCD Permit Number: $P = D0879$					
A Transfin 22	S Range 35 E County: LLa					
U/L or Qtr/Qtr <u>Section</u> Township <u>B</u> Center of Proposed Design: Latitude <u>NB2.39738</u>	Longitude 6 103, 33539 NAD: 1927 1983					
Surface Owner: Federal State Private Tribal Trust or Indian A						
Pit: Subsection F or G of 19.15.17.11 NMAC	Closed-losn System: Subsection H of 19.15.17.11 NMAC					
Temporary: Drilling 🗌 Workover	Drying Pad Tanks Haul-off Bins Other					
Permanent Emergency Cavitation Steel Pit						
Lined 🖾 Unlined	Liner type: Thickness mil [] LLDPE [] HDPE [] PVC					
et type: Thickness mil 🗌 LLDPE 🗌 HDPE 🗌 PVC	Other					
Other String-Reinforced	Seams: Welded Factory Other					
Come Walded Fectory Other	Volume:bblyd ³					
Volume: [] 000 bb Dimensions: L x W x D	Dimensions: Lengthx Width					
Below-grade tank: Subsection I of 19.15.17.11 NMAC	Fencing: Subsection D of 19.15.17.11 NMAC					
Volume:bbl	Chain link, six feet in height, two strands of barbed wire at top					
Type of fluid:	Four foot height, four strands of barbed wire evenly spaced between one and					
Tank Construction material:	four feet					
Secondary containment with leak detection	Netting: Subsection E of 19.15.17.11 NMAC					
□ Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off	Screen I Netting Other					
Visible sidewalls and liner	Monthly inspections					
Visible sidewalls only	Signs: Subsection C of 19.15.17.11 NMAC					
Other	12'x24', 2' lettering, providing Operator's name, site location, and					
Liner type: Thicknessmil [] HDPE [] PVC	emergency telephone numbers					
	Signed in compliance with 19.15.3.103 NMAC					
	Administrative Approvals and Exceptions					
Alternative Method: Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration	Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.					
of approval	Please check a box if one or more of the following is requested, if not leave					
	Mank: Administrative approval(s): Requests must be submitted to the					
	appropriate division district or the Santa Fe Environmental Bureau office for					
	consideration of approval.					
	Exception(s): Requests must be submitted to the Santa Fe					

Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate district office or may be considered an exception which must be submitted to the Santa Fe vironmental Bureau office for consideration of approval. Applicant must attach justification for request. Please refer to 15.17.10 NMAC for guidance. Siting criteria does not apply to drying pads or above-grade tauks associated with a closed-	
loop system. Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank.	Yes 🕅 No
- NM Office of the State Engineer - iWATERS database search; USUS; Data obtained from meanly were supervised were stated were supervised from the ordinary high-water mark).	🗌 Yes 🕅 No
 Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to temporary, emergency, or cavitation pits and below-grade tanks) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	Yes 🕅 No K NA
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to permanent pits)	□ Yes 🖄 No ⊠ NA
 Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site 	🛛 Yes 🗋 No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance	🗌 Yes 🖾 No
 Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site 	Yes 🕅 No
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 	Yes 🕅 No
 In unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	Yes 🕅 No
Within a 100-year floodplain. - FEMA map	Yes 🛛 No
Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.1 Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Previously Approved Design (attach copy of design) API Number:	C 7.9 NMAC
Closed-loop Systems Permit Application Attachment Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the attached. Geologic and Hydrogeologic Data (required for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B Siting Criteria Compliance Demonstrations (required for on-site closure) - based upon the appropriate requirements of 19.15.17.11 Design Plan - based upon the appropriate requirements of 19.15.17.12 Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC NMAC Previously Approved Design (attach copy of design) API Number:	of 19.15.17.9

	Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC							
2	Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the de attached.	ocuments are						
	Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC							
Ń	Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment							
	Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC							
	 Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC 							
	Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC							
	Quality Control/Quality Assurance Construction and Installation Plan							
	 Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC 							
	☐ Preeboard and Overtopping Frevention Fian - based upon the appropriate requirements of 19.15.17.11 House							
1	Emergency Response Plan							
	Oil Field Waste Stream Characterization Monitoring and Inspection Plan							
	Erosion Control Plan							
	Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC							
	Proposed Closure: 19.15.17.13 NMAC							
	Type: 🕅 Drilling 🗌 Workover 🗌 Emergency 🛄 Cavitation 📋 Permanent Pit 🔲 Below-grade Tank 🔲 Closed-loop System [Alternative						
	Proposed Closure Method: 2 Waste Excavation and Removal							
	 Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) 							
	In-place Burial 📋 On-site Trench Burial							
	Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for co	nsideration)						
2	Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC							
	Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from							
	the appropriate district office or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau							
	office for consideration of approval. Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17.10							
	NMAC for guidance.							
Ň	ound water is less than 50 feet below the bottom of the buried waste.	Yes 🖾 No						
	- NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	NA NA						
	Ground water is between 50 and 100 feet below the bottom of the buried waste	Yes X No						
	 NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells 	7280						
7	Ground water is more than 100 feet below the bottom of the buried waste.	Yes & No						
	 NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells 							
	Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa	Yes 🔀 No						
	 lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site 							
1	Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	Yes 🛛 No						
	Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application.	Yes No						
	- NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site							
	Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance	Yes S-No						
1	adopted pursuant to NMSA 1978, Section 3-27-3, as amended.	L TOBULA						
)	 Written confirmation or verification from the municipality; Written approval obtained from the municipality 							
	Within 500 feet of a wetland.	Yes M No						
	- US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site							
	Within the area overlying a subsurface mine.	Yes K No						
'	 Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 							
	Within an unstable area							
	- Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological	Yes 🛛 No						
	Society; Topographic map							
1	Within a 100-year floodplain.	Yes 🕅 No						
1	- FEMA map	1						

Form	C-144

Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Waste Removal Closure For Closed-loop Systems That Utilize Hanl-off Bins Only: (19.15.17.13.D NMAC) Instructions: Please indentify the facility
or facilities for the disposal of liquids, drifting fluids and drill cuttings. Disposal Facility Name: Support Society Content of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Construction and Design of Burial Trench (if applicable) based upon the appropriate requirements of 19.15.17.13 NMAC Construction and Design of Burial Trench (if applicable) based upon the appropriate requirements of 19.15.17.13 NMAC Construction Source - based upon the appropriate requirements of 19.15.17.13 NMAC Construction and Design of Burial Trench (if applicable) based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampting Plan (if anylicable) - based upon the appropriate requirements of 19.15.17.13 NMAC
Communication bindpring Plan - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards cannot be achieved) Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC Interventional Certification: Interventional Certification Submitted with this application is true, accurate and complete to the best of my knowledge and belief.
Name (Print): CAM Robbins Title: Forman Signature: Cam Robbins Date: 10/2/08 o-mail address: Telephone:
D Approval: Permit Application (including closure plan) Closure Plan (only) OCD Representative Signature: Approval Date: I = 29.09 Title: ENULPO OCD Permit Number: Pl-00879
Closure Report (required within 60 days of closure completion): Subsection K of 19.15.17.13 NMAC Closure Completion Date: Closure Method: D Waste Excavation and Removal On-Site Closure Method Alternative Closure Method If different from approved plan, please explain.
Onsaure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Please indicate, by a check mark in the box, that the documents are attached. Proof of Closure Notice Proof of Deed Notice (if applicable) Plot Plan Confirmation Sampling Analytical Results Maste Material Sampling Analytical Results Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude N32,39738
Operator Closure Certification: I hereby certify that the information and attachments submitted with this closure report is true, accurate and complete to the best of my knowledge and belief. I also certify that the closure complies with all applicable closure requirements and conditions specified in the approved closure plan. Name (Print): AA Robbi i A S Title: Inature: $Date:$ $Date:$ $D = \frac{10 / 2 / 0 S}{2 / 0 S}$ e-mail address: Telephone:
Form C-144 Oil Conservation Division Page 4 of 4

P 2 CONSTRUCTION, INC.

Maintenance D Lease D Construction D Dirt Work D Environmental Services

1656 N. Flamingo Ave. Unit A, Odessa, TX 79763 D Office (432) 381-4800 - Fax # (432) 381-4801

July 24, 2008

Melrose Operating Company P. O. Box 953 Midland TX. 79702

Attn: Mr. Cam Robbins Production Supervisor

RE: Work Plan For Pit Closure Located Jalmat Field Yates Sand Unit#222; U/L B Sec 14, T22S and R35E of Lea County, New Mexico

Dear Mr. Robbins:

P2 Construction, Inc. would like to take this time to thank you and Melrose Operating Co., for the opportunity to provide our professional services. Please find attached our work plan and cost for the above listed site.

If you have any questions and/or need more data in regards to projects please call at any time. My cell phone is 432-425-6192.

1

Sincerely,

Reynaldo Garza, (Sr. Project Manager P2 Construction Inc.

Summary/Overview

The Jalmat Field Yates Sand Unit site should be completed and remediated in accordance with the standards of the NMOCD. Pit closure of the temporary drilling pit will be addressed accordingly.

The potential contaminates of concern are mid to high-level concentrations of Production water and Drill Cuttings circulated into temporary drilling pit from well bore.

The lands primary use is domestic pasture for ranching and the production of oil and gas.

The ground water depth data available for this area showed the depth to ground water to be in the 185' range BGS.

Pursuant to the standards of the NMOCD, the clean up level for this site will be at <5,000ppm of TPH, <50ppm for BTEX and Chlorides less than <250ppm.

The following scope of work was based on data from our site visit and the requirements of the NMOCD for site clean up.

Scope of Work for waste removal and site reclamation

NOTE: Melrose Operating Co. has requested for P2 Construction, Inc. to remove and remediate reserve pit drill cuttings for pit closure. Melrose has also requested that P2 Construction submit a copy of results and reclamation plan to NMOCD for entombment of impacted soils.

- 1. First P2 Construction will call One-Call for line spot clearance before any excavation at the site is started.
- 2. P2 Construction will mobilize to the site located in the area Southwest of Eunice, NM equipment and personnel necessary to start and complete the site remediation as required, getting the site back into compliance.
- 3. P2 Construction will delineate the site vertical and horizontal for chloride's to determine the extent of impacted soil. Samples will them be sent to a third party lab for analysis. Once analyses are sent back with the results; NMOCD will then be contacted for approval before any capping or pit closure is resumed. Due to the size of reserve pit P2 will split the site into quadrants testing 25% of impacted soils. P2 will test the vertical; starting one foot from mud removal into deep bury pit.

4. P2 Construction, Inc. will then start excavation of impacted soil from the temporary pit. Impacted soils (including liner) will be transferred to an approved NMOCD disposal. P2 construction will dry contents of pit to properly transport to Sundance Disposal or a like approved disposal. Sundance Disposal is located approximately 15 miles NE of job site. Then pit will be backfilled with native soil up to ground level.

- 5. P2 Construction will field screen the site during the excavation and once the CL levels have dropped below NMOCD guidelines, final samples will be taken and sent to a third party lab for analysis; once results are final then OCD will be notified for pit closure.
- 6. Once all of the remediation criteria have been met for site closure and compliance, the site will be backfilled with clean material from the site. The site will be contoured with a slight crown to prevent the ponding of any rain water and reseeded; with the proper seed according to the NMOCD. Vegetative cover will equal 70% of the native perennial vegetative cover consisting of at least three native plant species, including at least one grass, but not including noxious weeds, and maintain that cover through two successive growing seasons or until successful growth is established.
- 7. Temporary pit location will be marked by an approved steel marker, no less than four inches in diameter, cemented in a hole three feet deep in the center of the onsite burial. The marker will be flush with the ground to allow access of the active well pad and for safety concerns. The marker will include a threaded collar to be used for future abandonment. The top of the marker will contain a welded steel plate 12" square that indicates the temporary pit. The plate will be easily removable and a four foot tall riser will be threaded into the top of the collar marker and welded around the base with the operator's information. The operator's information will include the following: Operator Name, Lease Name, Well Name and Number, Unit Number, Section, Township, Range and an indicator that the marker is a pit closure location.
- Once all of the closure criteria have been met, a final closure report will be prepared by P2 Construction. This report will include a summary of remediation operations, findings on-site and lab analysis, site maps and project photos.

3

If you have any questions and/or need more data in regards to this project please call432-425-6192 at any time.

4

Sincerely, Reynaldo Garza Sr. Project Manager P2 Construction, Inc.

•

0

Ď

DISTRICT I 1825 N. FRENCH DR., KOBBS, MM 8024 DISTRICT II		OIL	CONS	SERVA	TIC	Department	ION Subm	Revised J It to Appropriate D	wtrict C
1301 W. GRAND AVENUE, ARTESIA. NM 6 DISTRICT III 1600 Rio Brazos Rd., Aztec. NM	,					FRANCIS DR. exico 87505		State Lease Fec Lease	
DISTRICT IV 1220 S. ST. FRANCES DE., SANTA PE, NI API NUTDER	W 57503		CATION	AND AC	REA	GE DEDICATI	Pool Name	I AMENDI	ED REF
30-025- 388	175		33820				at (T-Y-7 R		
Property Code			,	Property TATA	7 Namo 6 A T	Field Yates	Sand Unit	Well Num 222	aber
25191 OGRID No.	<u> </u>			Operator				Elevatio	
184860		N	IELROSE			G COMPANY		358	7'
				Surface	Loca	ation			
UL or lot No. Section	Township	Range	Lot Idn	Feet from	the	North/South line	Feet from the	East/West line	Coun
B 14	22-S	35-E		606		NORTH	1802	EAST	LEA
		Bottom	Hole Loo	cation If	Diffe	rent From Sur	face		
UL or lot No. Section	Township	Range	Lot kin	Peet from	the	North/South line	Feet from the	Bast/West line	Count
									<u> </u>
Dedicated Acres Joint or	Infill Con	neolidation		der No.					
40 NO ALLOWABLE WI				aterfloo					
				1	~		contained herei		
		L	NAD 27 Y=5096 X=8080 AT.=32°23	69.3 N			Signature Ann Printed Nam Regi Tille 4-1 Date SURVEYO	eladgo and boltaf Lathie E. Ritchie	D nt TION

DISTRICT I 1625 N. PERNCH DR., 1 DISTRICT II 1301 V. GRAND AVENUE DISTRICT III	I, ARTESIA, IM	88210		CONS	OUTH ST. H	besources Department ON DIVIS FRANCIS DR. exico 87505	ION Submi	F. Revised J. It to Appropriate D. State Lesse Pee Lesse	ustrict Off - 4 Cop
1000 Rio Brazos R			WELL LO	CATION	AND ACREA	GE DEDICATI	ON PLAT	C AMENDE	D REPO
	Number		-	Pool Code		To 1 m	Pool Name lat (T-Y-7 Ru	(rs)	
30-025	- 389	375		33820	Property Nam			Well Num	iber
Property C 25191	ode				JALMAT	Field Yates	Sand Unit	222	
OGRID No				FLROSE	Operator Name	G COMPANY		Elevatio 3587	
184860	 				Surface Loca				
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	Count
В	14	22-S	35-E		606	NORTH	1802	EAST	LEA
		<u>L</u>	Bottom	Hole Loc	cation If Diffe	erent From Sur	face		
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	Bast∕₩est line	County
		<u> </u>			der No.			L	<u>}</u>
Dedicated Acres	Jointo	or infill Co	nsolidation		laterflood U	nit			
40						INTIL ALL INTER	RESTS HAVE BE	EN CONSOLIDA	ATED
11				l ľ	<u>}</u>		11	n is true and compl windge and beives	
	 		L	NAD 23 Y=5096 X=8080 AT.=32*23	69.3 N		Signature Ann Printed Nam — Reg Tille — 4-1 Date SURVEY / hereby cortij on this plat u matual survey supervision	E. Ritchie E. Ritchie ulatory Agen 1-08 OR CERTIFICA by that the well loca was plotted from field made by ms or and that the some (he billing my bolt G. EID inter the ARY-23, 2000	TION tion show under s true

-

-

LOCATION VERIFICATION MAP

SEC. <u>14</u> TWP. <u>22-S</u> RGE. <u>35-E</u> SURVEY <u>N.M.P.M.</u> COUNTY <u>LEA</u> STATE <u>N.M.</u> DESCRIPTION <u>606'</u> FNL <u>& 1802'</u> FEL ELEVATION <u>3587'</u> OPERATOR <u>MELROSE</u> OPERATING COMPANY LEASE <u>JALMAT</u> U.S.G.S. TOPOGRAPHIC MAP OIL CENTER, N.M.

VICINITY MAP

SEC. <u>14</u> TWP.<u>22-S</u> RGE.<u>35-E</u> SURVEY <u>N.M.P.M.</u> COUNTY <u>LEA</u> STATE <u>N.M.</u> DESCRIPTION <u>606'</u> FNL <u>& 1802'</u> FEL ELEVATION <u>3587'</u> OPERATOR <u>MELROSE</u> OPERATING COMPANY LEASE JALMAT

ç

September 24, 2008

Final Report For Jalmat Field Yates Sand Unit #222; U/L B Sec14, T22S and R35E of Lea County, NM ; API #30-025-38875

Scope of work for entombment and site reclamation

- 1. P2 Construction Inc. mobilized to site located in the area Southwest of Eunice NM equipment and personnel were instructed of the procedures and guidelines of the NMOCD.
- 2. P2 construction took upon the proximity of the water flood station and water flow 50 feet west of site. According to NMOCD guidelines; P2 Construction transported all contents of drilling mud and impacted material to Sundance Disposal. Which is located approximately East by North East of the job site
- 3. P2 excavated the site and pre-mixed impacted material to transport for drying; so that material would not run out from Belly Dump Trailers.
- 4. P2 then delineated the site vertically and horizontally for chlorides. P2 then sent four site samples and one background sample to a 3rd party lab for analysis.
- 5. P2 received notice from the 3rd party lab that soil samples analysis failed and were more than total average of 250 ppm chloride concentration. P2 then excavated site from 6' to 8' in depth. P2 then transported those contents to Sundance Disposal. P2 transported a total of 1,000 cyrds to disposal.

- Once the lab results were received from 3rd party lab and come back with results less than total average of 250 ppm Chloride concentration, BTEX less than 50 ppm, TPH less than 5,000 ppm.
- 7. P2 then backfilled the deep bury trench with native top soil; so that re-vegetation would be possible. Then P2 backfilled the cleaned out temporary drilling pit with caliche up to one foot and a half from the surface. Then P2 backfill the remainder of the one foot and a half with native top soil for vegetation.
- 8. P2 then re-seeded area with RS warm season grass mix.P2 then used a farm tractor and seeder bin to spread the seed and cover seed approximately 1"to 1-1/2" in depth over the entire area of temporary pit and deep bury trench; which covered an area approximately 200'X150'in width. Seeding is based on at least three native plants and should result in at least 70% of plant growth within two seasons.

Signature Reynaldo J Garza

Sr.Project Manager

P2 Construction Inc.

1

INERI OTHE WEEL NOXI GERM RICHA	ETY: ; N: VT:	L 5 8 R LB: DS, INC.	iULF 73843G DRE 0 LBS /08 96 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.49%).32% 3.00%).19% 40NE 90%	1. 13	
% By Wt. 26.00% 20.00% 18.00% 12.00% 5.00% 5.00% 4.00% <u>3.00%</u> 100.00%	2008 RS WA Kir WW Spar Blu Blaze Little Bl Sel. 75 Kleing Green Sprangl VNS Sideoats Blue Grama Sand Lovegas Annus' Ryegra Tiffany I aff	nd: estem luestem rass etop Grama ss	ON GRASS Lot: PH06 BLZ213 27046 27025AF GSS161 GBB114 LLS211 L738434 409126		VECA, TX 1999)
GERMINAT TOTAL GEI	50 LBS ETER - OP: D: EEED PER LB: TON: RMINAZION & I ON SEEDS, INC.	HARD SEEL	10/07 78.95% 21.01% 0.01% 0.03% NONE DORMANT			
OTHER (WEED SI NOXIOU GERMIN TOTAL (ED: LATTER: CROP: ED: S SEED PER L	BLAZE BLZ213 KS 40 LBS 04/08 B: 61% + 149 DORMANT S	63.02% 36.63% 0.19% 0.16% NONE 6 DORMA1	- -		

.---

,

0

0 0

0

0

0 0 • 0 • 0 0 0 0 • • •

• •

•

•

Ō

~

VARIETY: **SEL.75** LOT #: 27046A ORIGIN: TΧ NET WT: **50 LBS** TESTED: 03/08 90.08% PLS PURE SEED: 98.99% **INERT MATTER -**0.88% OTHER CROP: 0.03% WEED SEED: 0.10% NOXIOUS SEED PER LB: NONE GERMINATION: 69% + 22% DORMANT SEED TOTAL GERMINATION = 91% RICHARDSON SEEDS, INC. VEGA, TEXAS 79092 GREEN SPRANGLETOP KIND: VAN HORN VARIETY: LOT #: 27025ARC ΤX ORIGIN: **50 LBS** NET WT: 04/08 80.28%PLS TESTED: 84.50% PURE SEED: 14.19% **INERT MATTER** 0.12% OTHER CROP: 1.19% WEED SEED: NOXIOUS SEED PER LB: NONE 77% + 18% DORMANT SEED GERMINATION:~ 95% TOTAL GERMINATION = RICHARDSON SEEDS, INC. VEGA, TEXAS 79092 BLUE GRAMA KIND: NOT STATED VARIETY: LOT #: 6061A **ORIGIN:** ΤX NET WT: **30 LBS** 12/07 TESTED: 69.46% PLS PURE SEED: 75.50% INERT MATTER: ~ 24.35% **OTHER CROP:** 0.09% 0.05% WEED SEED: NOXIOUS SEED PER LB: NONE GERMINATION: 92% RICHARDSON SEEDS, INC. VEGA, TEXAS 79092 KIND: SIDEOATS GRAMA VARIETY: NOT STATED LOT #: G\$\$1619 ORIGIN: KS NET WT: 40 LBS **TESTED:** 04/08 63.01% PLS PURE SEED: 92.66% **INERT MATTER:** 4.84% 0.00% **OTHER CROP:** WEED SEED: 2.50% NOXIOUS SEED PER LB: NONE GERMINATION: 68% RICHARDSON SEEDS, INC. VEGA, TEXAS 79092

D

D

D

D

D

ĥ

KIND: SAND VARIETY: LOT #: ORIGIN: NET WT: TESTED: 11/07 PURE SEED: INERT MATTER OTHER CROP: WEED SEED: NOXIOUS SEED PER GERMINATION: TOTAL GERMINATION = RICHARDSON SEEDS VEGA, TEXAS 79092	7% + 78% DORMANT SEI 85%	ЗD			
KIND: VARIETY: LOT #: ORIGIN: NET WT: TESTED: PURE SEED: INERT MATTER: OTHEK CROP: WEED SEED: COATING MATERIAL NOXIOUS SEED PER I GERMINATION: RICHARDSON SEEDS, VEGA, TEXAS 79092	LB: NONE 88%	· · · · · · · · · · · · · · · · · · ·	·	·	
			X		

Report Date: August 12, 2008 Well #222

Summary Report

Ray Garza P2 Construction 1656 N Flamingo Ave Unit A Odessa, TX, 79763

Report Date: August 12, 2008

Work Order: 8080806

Project Location:Lea County, NMProject Name:JFYSUProject Number:Well #222

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
169967	BG	soil	2008-08-06	08:00	2008-08-07
169968	\mathbf{FE}	soil	2008-08-06	08:15	2008-08-07
169969	FW	soil	2008-08-06	08:20	2008-08-07
169970	NE	soil	2008-08-06	08:25	2008-08-07
169971	SW	soil	2008-08-06	08:30	2008-08-07

	BTEX			MTBE	TPH DRO	TPH GRO	
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
169967 - BG	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<50.0	<1.00
169968 - FE	< 0.0100	< 0.0100	< 0.0100	<0.0100		<50.0	<1.00
169969 - FW	< 0.0100	<0.0100	<0.0100	< 0.0100	1	<50.0	<1.00
169970 - NE	<0.0100	<0.0100	< 0.0100	<0.0100		<50.0	<1.00
169971 - SW	< 0.0100	< 0.0100	< 0.0100	< 0.0100		< 50.0	<1.00

Sample: 169967 - BG

Param	Flag	Result	Units	\mathbf{RL}
Chloride		9140	mg/Kg	3.25

Sample: 169968 - FE

Param	Flag	Result	Units	RL
Chloride		2680	mg/Kg	3 25

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: August 12, 2008 Well #222		gust 12, 2008 Work Order: 8080806 JFYSU		Page Number: 2 of 2 Lea County, NM	
Sample: 169969	- FW				
Param	Flag	Result	Units	RL	
Chloride	1105	5960	mg/Kg	3.25	
Sample: 169970			**	DI	
Param Chloride	Flag	Result 9320	Units mg/Kg	RL 3.25	
Sample: 169971	- SW				
Param	Flag	Result	Units	RL	
Chloride		1350	mg/Kg	3.25	

1

Report Date: September 26, 2008 Well #222

Summary Report

Ray Garza P2 Construction 1656 N Flamingo Ave Unit A Odessa, TX, 79763

Report Date: September 26, 2008

Work Order: 8092606

Project Location: Lea County, NM Project Name: JFYSU Project Number: Well #222

Sample	Description	Matrix	Date Taken	Time Taken	Date Received
174715	NE	soil	2008-09-25	11:00	2008-09-25
174716	NW	soil	2008-09-25	11:05	2008-09-25
174717	SW	soil	2008-09-25	11:10	2008-09-25
174718	SE	soil	2008-09-25	11:15	2008-09-25

Sample: 174715 - NE

Param	Flag	Result	Units	RL
Chloride		289	mg/Kg	3.25

Sample: 174716 - NW

Param	Flag	Result	Units	\mathbf{RL}
Chloride		270	mg/Kg	3.25

Sample: 174717 - SW

Param	Flag	Result	Units	\mathbf{RL}
Chloride		260	mg/Kg .	3.25

Sample: 174718 - SE

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: Septer Well #222	Date: September 26, 2008 Work Order: 8092606 222 JFYSU		Page Number: 2 of 2 ' Lea County, NM	
Param	Flag	Result	Units	RL
Chloride		278	mg/Kg	3.25

.

.

,

,

Ľ

6701 Aberdeen Avenue Suite 9 Lubbock, Texas 79424 800-378-1296 806-794-1296 FAX 806-794-1298

 200 East Sunset Road, Suite E
 El Paso, Texas 79922

 5002 Basin Street, Suite A1
 Midland, Texas 79703

 6015 Harris Parkway Suite 110
 Ft Worth, Texas 76132

9 Lubbock, Texas 79424 800 • 378 • 1296
 E El Paso, Texas 79922 868 • 588 • 3443
 Midland, Texas 79703
 10 Ft Worth, Texas 76132
 E-Mail lab@traceanalysis.com

800 • 378 • 1296 806 • 794 • 1296 888 • 588 • 3443 915 • 585 • 3443 432 • 689 • 6301 817 • 201 • 5260

FAX 806+794+1298 FAX 915+585+4944 FAX 432+689+6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

DBE: VN 20657

NELAP Certifications

Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Ray Garza P2 Construction 1656 N Flamingo Ave Unit A Odessa, TX, 79763

Ă

Report Date: September 26, 2008

Work Order: 8092606

Project Location: Lea County, NM Project Name: JFYSU Project Number: Well #222

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
174715	NE	soil	2008-09-25	11:00	2008-09-25
174716	NW	soil	2008-09-25	11:05	2008-09-25
174717	SW	soil	2008-09-25	· 11:10	2008-09-25
174718	SE	soil	2008-09-25	11:15	2008-09-25

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 6 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director

Standard Flags

.

.

•

•

•

0

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

,

Page 2 of 6

Case Narrative

Samples for project JFYSU were received by TraceAnalysis, Inc. on 2008-09-25 and assigned to work order 8092606. Samples for work order 8092606 were received intact at a temperature of 6.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test		Method
Chloride	(Titration)	SM 4500-Cl B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8092606 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

1

Page 3 of 6

Report Date: September 26, 2008 Well #222

Analytical Report

Sample: 174715 - NE

÷

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titration) 52758 45221	Analytical Method: Date Analyzed: Sample Preparation	2008-09-26	Prep Method: Analyzed By: Prepared By:	$\mathbf{R}\mathbf{D}$
	_	RL	TT •.	Dilution	RL
Parameter	Flag	Result	Units	Dilution	
Chloride		289	mg/Kg	10	3 25

Sample: 174716 - NW

Chloride		270	mg/Kg	10	3.25
Parameter	Flag	RL Result	Units	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (Titration) 52758	Analytical Method: Date Analyzed: Sample Preparation	SM 4500-Cl B 2008-09-26 2008-09-26	Prep Method: Analyzed By: Prepared By:	RD

Sample: 174717 - SW

,

Chloride		260	mg/Kg	10	3.25
Parameter	Flag	RL Result	Units	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Chloride (Titration) 52758	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2008-09-26 2008-09-26	Prep Method: Analyzed By: Prepared By:	ŔĎ

Sample: 174718 - SE

Laboratory:	Lubbock				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	52758	Date Analyzed:	2008-09-26	Analyzed By:	RD
Prep Batch:	45221	Sample Preparation:	2008-09-26	Prepared By:	RD

continued ...

Report Date Well #222	e: September 2	6, 2008	Work	Order: 80 JFYSU	92606				Number Lea Coun	
sample 1747	18 continued .									
			\mathbf{RL}							
Parameter]	Flag	Result	U	nits		Diluti	ion		RL
. .			RL		r •,		D .1			DI
Parameter Chloride	i	Flag	Result 278		/Kg		Diluti	$\frac{100}{10}$		$\frac{\text{RL}}{3.25}$
Cilloride				mg	/118			10		0.20
Method Bla	ank (1) (QC Batch: 52758								
QC Batch:	52758		Date Analyzed:	2008-09	-26			Ana	lyzed By:	RD
Prep Batch:			QC Preparation:	2008-09	-26				oared By:	
			MI	JI.		,				
Parameter		Flag	Res			Uni	its			\mathbf{RL}
Chloride			<1.			mg/	K a			3.25
Laboratory	Control Spi	ke (LCS-1)			26	ing/	ng	4.00	Iumad Dau	
Laboratory QC Batch:	Control Spi 52758 45221	ke (LCS-1)	Date Analyzed: QC Preparation:	2008-09- 2008-09-		<u></u>	ng		lyzed By: bared By:	RD
	52758	ke (LCS-1) LC	Date Analyzed: QC Preparation:	2008-09		Mat			bared By:	RD
Laboratory QC Batch: Prep Batch: Param	52758	LC Res	Date Analyzed: QC Preparation: 2S ult Units	2008-09- 2008-09- Dil.	-26 Spike Amount	Mat: Rest	rix 1lt	Prep Rec.	pared By: R Li	RD RD lec. mit
Laboratory QC Batch: Prep Batch: Param Chloride	52758 45221	LC Res 97	Date Analyzed: QC Preparation: S ult Units 5 mg/Kg	2008-09- 2008-09- Dil. 1	-26 Spike Amount 100	Mati Resi <1	rix 1lt 80	Prep Rec. 98	pared By: R Li	RD RD .ec. mit
Laboratory QC Batch: Prep Batch: Param Chloride	52758 45221	LC Res 97. n the spike result.	Date Analyzed: QC Preparation: 2S ult Units	2008-09- 2008-09- Dil. 1 the spike	-26 Spike Amount 100 and spike o	Mati Resi <1	rix ılt 80 result.	Prep Rec. 98	pared By: R Li	RD RD .ec. mit - 104.4
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov	52758 45221	LC Res 97. n the spike result. LCSD	Date Analyzed: QC Preparation: 2S ult Units .5 mg/Kg . RPD is based on	2008-09- 2008-09- Dil. 1 the spike Spike	-26 Spike <u>Amount</u> 100 and spike o Matrix	Matı Resu <1 luplicate	rix ılt 80 result. Re	Prep <u>Rec.</u> 98 ec.	Pared By: R Li 96.5	RD RD mit - 104.4 RPD
Laboratory QC Batch: Prep Batch: Param Chloride	52758 45221	LC Res 97. n the spike result.	Date Analyzed: QC Preparation: 2S ult Units .5 mg/Kg	2008-09- 2008-09- Dil. 1 the spike	-26 Spike Amount 100 and spike o	Mati Resi <1	rix 1lt 80 result. Re Lir	Prep Rec. 98	pared By: R Li	RD RD .ec.
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov Param Chloride	52758 45221 very is based o	LC Res: 97. n the spike result. LCSD Result 98.3	Date Analyzed: QC Preparation: 2S ult Units .5 mg/Kg . RPD is based on Units Dil.	2008-09- 2008-09- Dil. 1 the spike Spike Amount 100	-26 Spike Amount 100 and spike of Matrix Result <1.80	Mat: Rest <1 i luplicate <u>Rec.</u> 98	rix ılt 80 result. Re Lir 96.5 -	Prep Rec. 98 ec. mit 104.4	Pared By: R Ji 96.5 RPD	RD RD mit - 104.4 RPD Limit
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov Param Chloride Percent recov	52758 45221 very is based o	LC Res: 97. n the spike result. LCSD Result 98.3	Date Analyzed: QC Preparation: 2S ult Units .5 mg/Kg . RPD is based on Units Dil. mg/Kg 1 . RPD is based on	2008-09- 2008-09- Dil. 1 the spike Spike Amount 100	-26 Spike Amount 100 and spike of Matrix Result <1.80	Mat: Rest <1 i luplicate <u>Rec.</u> 98	rix ılt 80 result. Re Lir 96.5 -	Prep Rec. 98 ec. mit 104.4	Pared By: R Ji 96.5 RPD	RD RD mit - 104.4 RPD Limit
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov Param Chloride Percent recov Matrix Spil	52758 45221 very is based o	LC Res 97. n the spike result LCSD Result 98.3 n the spike result.	Date Analyzed: QC Preparation: 2S ult Units .5 mg/Kg . RPD is based on Units Dil. mg/Kg 1 . RPD is based on	2008-09- 2008-09- Dil. 1 the spike Spike Amount 100	-26 Spike Amount 100 and spike of Matrix Result <1.80 and spike of	Mat: Rest <1 i luplicate <u>Rec.</u> 98	rix ılt 80 result. Re Lir 96.5 -	Prep <u>Rec.</u> 98 ec. mit 104.4	Pared By: R 96.5 RPD 1	RD RD - 104.4 RPD Limit 20
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov Param Chloride	52758 45221 very is based o very is based o ke (MS-1)	LC Res 97. n the spike result LCSD Result 98.3 n the spike result.	Date Analyzed: QC Preparation: S ult Units .5 mg/Kg . RPD is based on Units Dil. mg/Kg 1 . RPD is based on .74718	2008-09- 2008-09- Dil. 1 the spike Amount 100 the spike	-26 Spike Amount 100 and spike of Matrix Result <1.80 and spike of -26	Mat: Rest <1 i luplicate <u>Rec.</u> 98	rix ılt 80 result. Re Lir 96.5 -	Prep <u>Rec.</u> 98 ec. mit 104.4 Ana	Pared By: R Ji 96.5 RPD	RD RD - 104.4 RPD Limit 20
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov Param Chloride Percent recov Matrix Spil QC Batch:	52758 45221 very is based o very is based o ke (MS-1) 52758	LC Res 97. n the spike result LCSD Result 98.3 n the spike result.	Date Analyzed: QC Preparation: 2S ult Units 5 mg/Kg . RPD is based on Units Dil. mg/Kg 1 . RPD is based on .74718 Date Analyzed: QC Preparation:	2008-09- 2008-09- Dil. 1 the spike Amount 100 the spike 2008-09-	-26 Spike Amount 100 and spike of Matrix Result <1.80 and spike of -26 -26	Mat: Rest <1 i luplicate <u>Rec.</u> 98	rix ılt 80 result. Re Lir 96.5 - result.	Prep <u>Rec.</u> 98 ec. mit 104.4 Ana	RPD 1 lyzed By:	RD RD - 104.4 RPD Limit 20 RD RD
Laboratory QC Batch: Prep Batch: Param Chloride Percent recov Param Chloride Percent recov Matrix Spil QC Batch:	52758 45221 very is based o very is based o ke (MS-1) 52758	LC Res: 97. n the spike result. LCSD Result 98.3 n the spike result. Spiked Sample: 1	Date Analyzed: QC Preparation: 2S ult Units .5 mg/Kg . RPD is based on Units Dil. mg/Kg 1 . RPD is based on .74718 Date Analyzed: QC Preparation: Sult Units	2008-09- 2008-09- Dil. 1 the spike Amount 100 the spike 2008-09-	-26 Spike Amount 100 and spike of Matrix Result <1.80 and spike of -26	Mat: Rest <1 i luplicate <u>Rec.</u> 98 luplicate	rix 1lt 80 result. Re Lir 96.5 - result.	Prep <u>Rec.</u> 98 ec. mit 104.4 Ana	Pared By: R 96.5 RPD 1 lyzed By: pared By:	RD RD - 104.4 RPD Limit 20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

•

,

.

Report Dat Well #222	c: Scptember	26, 2008 [·]		Worl	c Order: 80 JFYSU	92606		0	e Numbe Lea Cou	
	r	MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		768	mg/Kg	10	500	277.78	98	74.7 - 123.2	0	20
Percent rec	overy is based	on the spike result	. RPD is b	based or	n the spike	and spike o	duplicat	e result.		
Standard	(ICV-1)							-		
QC Batch:	52758		Date An	alyzed:	2008-09-2	26		Ana	lyzed By	r: RD
			ICVs	j	[CVs	ICVs		Percent		
			True	F	ound	Percen	t	Recovery		Date
Param	Flag	Units	Conc.	(Conc.	Recover	у	Limits		nalyzed
Chloride		mg/Kg	100		100	100		85 - 115	200	08-09-26
Standard	(CCV-1)									
QC Batch:	52758		Date An	alyzed:	2008-09-2	26		Ana	lyzed By	r: RD
			CCVs	(CCVs	CCVs		Percent		
			True	F	Found	Percen	t	Recovery		Date
Param	Flag	Units	Conc.	(Conc.	Recover	у	Limits	Ar	nalyzed
Chloride		mg/Kg	100		99.4	99		85 - 115	200	08-09-26

.

.

• 7 • •

ŏ

]]	FraceAnal email: lab@tracea	•	•		1C	•			6701 L	Abe ubb Tel Fax	rdee ock, (800	n Ave Texa 5) 794 6) 794	inue, is 794 1-1296 4-129	Suite 9 424 6 8	5002 Ba Midla Tel Fax	asin Sti Ind, Te (432) ((432)	xas 7	9703	A1	20	El F Te Fa	°aso ≥I (91 ∋x (91	Tex 5) 58 5) 51	Rd, as 79 35-34 85-49 8-344	9922 43 944	eΕ	880	08 C	amp FL T F	Bowie Worth el (81 ax (81	e Bivd , Texa 7) 201- 7) 560	Wes 5 76 526 -433
Company Name:		marys	15.COI				Pho	ne #			(800			~~~~	<u> </u>	T	·		·							RE	QU	IES	 5T			
Address: (Stre	struction_		~	,			Fax	<u>B</u> c #:	2	<u>38</u>	<u> / ·</u>	- 4	<u>48</u> 2	$\frac{50}{7}$		4			(Cir	rcle	eo	r S	Spe	eci	ify	M	etł	hor	dN	o .)	
Contapt Person:	muyo wit to	1 A	CH	Sal	<u>k</u> j		E-m		2-	38	<u>.</u>	-4	<u>\$0</u>			-			2000	1.001												
Invoice to:	alla	<u></u>					ía,	<u>(g</u> _	<u>_ P</u>	2.0	<u>ic</u>	$(\mathcal{Q}_{\mathfrak{g}})$	ib_	ajshal.	Net_	-	C35)		10010	a Cd Cr Pb Se Hg	`											
(If different from abo Project #:	ve) Marcsl								A1							624	8260B / 624 / TX1005 Ext(C35)		ריש						5							
220					(\mathcal{X}	$\leq l$	Nam	_						/ 8260B /	/ TX1005	HZ	04 C0						/ 625	1 1						
Project Location (inc	uding state):					Ē	San	nplei	Ľ	natu	寒	<u> </u>				2 / 82		, Q	27	Bac				624	8270C		608					
		S	ŧ		MA	TRIX	7				RV	ATIVE IN	Ē	SAM	LING	1,60	/ TX1005	JO DE	- 1.5	5 2		atiles	ŝ	8260B / 624	Vol. 8				t			
		# CONTAINERS	Volume / Amount				Ţ	\uparrow	$\left[\right]$	Ī	Ť				-	8021B / 602	8021B/ 18.1/TX	TPH 8015 GRO / DRO / TVHC	PAH 8270C / 625	TCLP Metals Ag A	atiles	Semi Volatiles	TCLP Pesticides	ol. 82	Semi.	82 / 6	Pesticides 8081A/	E B	Content			
LAB #	FIELD CODE	DNTA	me /	щ		AIR SLUDGE			5	3	Ŧ	ų	ų	μ	ш			8015	8270		P Vol	P Ser	P Pe	NS V	NS SI	PCB's 8082 / 6	icides	BOD, TSS.	Moisture	¥		
(ONLY)		U 4	Volu	WATER	SOIL	SLU		Ρ̈́	- NNO3	H ₂ SO ₄	NaOH			DATE	TIME	MTBE	H	H	PAH		TCL	TCLP			5 S	PCB	Pest	BOB	Mois A L	5		
174115 NE		402			X		1	\uparrow			ŀ	X	+	9/25/02	11:00	>													×	:		1.
16 NW		1			X							X		1	11:05														X			
717 SW		\Box			X							X			11:10	r I I													X			
NR SE					X							X			11:15	11									<u> </u>				×	٤		\downarrow
														/	L										_		Ц	\perp				\downarrow
														4													$\left \right $	\downarrow		+		\downarrow
							<u> </u>					~	_			\downarrow				_			_		_		\square	\downarrow				
										_					ļ	_			_	_			_				$\left \right $	_		_↓		+
		<u> </u>	<u> </u>					L		_			-					$\left \right $	_	_									_			+
	·	_						 		_	_				ļ	++				_		$\left - \right $	-			\square	\vdash			+	+	+
Relinguished by:	Company: Date:		me:	Re	Ceive	ed by:	-		ompa	anv	<u> </u>	Dat	te:	 Time	Te	mp°c:	. 3		XB.		<u>191</u> 271	1 24	REA	MAR	KS:		Ц					
I A A	Dan Lohn	1	334				•										加加加		ON								~				2	4
Relinquished by:	Company: Date:		me:		ceive	ed by:	:	C	omp	any	:	Dat	te:	Time	: Te	mp°c		1.10	<u> </u>	即於	and and Anglaid		~~	_							Э	ſ
					/	1													iece ,		IAN			_		-			Requii uired			

-

RACEANAI

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 8808 Camp Bowie Blvd West, Suite 180 Ft Worth, Texas 76116

Lubbock, El Paso, Midland, Texas 79703

800 • 378 • 1296 Texas 79424 Texas 79922 888•588•3443

E-Mail lab@traceanalysis com

806 • 794 • 1296 915 • 585 • 3443 432•689•6301 817 • 201 • 5260

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944 FAX 432 • 689 • 6313 FAX 817 • 560 • 4336

Report Date: August 12, 2008

Work Order:

8080806

NELAP Certifications Lubbock: T104704219-08-TX LELAP-02003

Kansas E-10317

El Paso: T104704221-08-TX LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Ray Garza P2 Construction 1656 N Flamingo Ave Unit A Odessa, TX, 79763

Project Location: Lea County, NM Project Name: JFYSU Well #222 Project Number:

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
169967	BG	soil	2008-08-06	08:00	2008-08-07
169968	FE	soil	2008-08-06	08:15	2008-08-07
169969	\mathbf{FW}	soil	2008-08-06	08:20	2008-08-07
169970	NE	soil	2008-08-06	08:25	2008-08-07
169971	SW	soil	2008-08-06	08:30	2008-08-07

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 16 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blair Leftwich, Director

Standard Flags

B - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project JFYSU were received by TraceAnalysis, Inc. on 2008-08-07 and assigned to work order 8080806. Samples for work order 8080806 were received intact at a temperature of 3.8 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (Titration)	SM 4500-Cl B
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

•

•

lacksquare

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8080806 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Page 2 of 16

Report Date: August 12, 2008 Well #222

Work Order: 8080806 JFYSU

Page Number: 3 of 16 Lea County, NM

Analytical Report

Sample: 169967 - BG

Laboratory: Lubbock Analysis: BTEX QC Batch: 51304 Prep Batch: 44000		Analytical Date Analy Sample Pre	zed:	S 8021B 2008-08-08 2008-08-08		Prep Me Analyzed Prepared	l By:	S 5035 ER ER
		RI	1					
Parameter Flag		Result	t	Units	I	Dilution		RL
Benzene		< 0.0100)	mg/Kg		1		0.0100
Toluene		< 0.0100) ,	$\mathrm{mg/Kg}$		1		0.0100
Ethylbenzene		< 0.0100)	mg/Kg		1		0.0100
Xylene		< 0.0100)	mg/Kg		1		0.0100
		ć			Spike	Percent	Re	covery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	L	imits
Trifluorotoluene (TFT)		1.24	mg/Kg	. 1	1.00	124	59	- 136.1
4-Bromofluorobenzene (4-BFB)	•	1.26	mg/Kg	1	1.00	126	54.4	- 176.2

Sample: 169967 - BG

Chloride		9140	mg/Kg	100	3.25
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	44042	Sample Preparation:	2008-08-11	Prepared By:	RG
QC Batch:	51357	Date Analyzed:	2008-08-12	Analyzed By:	RG
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Lubbock				

Sample: 169967 - BG

.

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 51280 43984	Analytical Method: Date Analyzed: Sample Preparation:	Mod. 8015B 2008-08-10 2008-08-08	Prep Method: Analyzed By: Prepared By:	MN
Parameter	Flag	RL Result	Units	Dilution	RL
DRO	······································	<50.0	mg/Kg	1	50.0

۰,

Report Date: August 12, 20 Well #222			Work Orde JFY			0	umber. 4 of 16 ea County, NM
Surrogate Flag	Result	Units		lution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane	99.0	mg/K	g	1	100	99	49.5 - 185
Sample: 169967 - BG							
Laboratory: Lubbock Analysis: TPH GRO		Analytic	al Method:	S 8015B		Prep Me	ethod: S 5035
QC Batch: 51305		Date Ana		2008-08-08	3.	Analyze	
Prep Batch: 44000		Sample F	Preparation	2008-08-08	3	Prepared	•
		\mathbf{RL}					
Parameter Fl	ag	Result		Units		Dilution	RL
GRO		<1.00		mg/Kg		1	1.00
~					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	D)	1.28	mg/Kg	1	1.00	128	55.3 - 161.9
4-Bromofluorobenzene (4-BF	в)	1.36	mg/Kg	1	1.00	136	45.6 - 214.7
Sample: 169968 - FE							
Laboratory: Lubbock							
Analysis: BTEX		Analytical	Method:	S 8021B		Prep Me	ethod: S 5035
QC Batch: 51304		Date Anal		2008-08-08		Analyze	
Prep Batch: 44000			eparation:	2008-08-08		Prepareo	-
	·		r.				

,

		R	L				
Parameter	Flag	Resu	lt	Units	I	Dilution	RL
Benzene		< 0.010	0	mg/Kg		1	0.0100
Toluene		< 0.010	ю	mg/Kg		1	0.0100
Ethylbenzene		< 0.010	10	mg/Kg		1	0.0100
Xylene		< 0.0100		mg/Kg		1	0.0100
					Spike	Percent	Recovery
Surrogate	Fla	g Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		1.35	mg/Kg	1	1.00	135	59 - 136 1
4-Bromofluorobenzene (4-BF	B)	1.28	mg/Kg	1	1.00	128	54.4 ~ 176.2

Report Date: August 12, 2008 Well #222		Worl	Gorder: 808080 JFYSU	Page Number: 5 of 16 Lea County, NM			
Sample: 169	9968 - FE						
Laboratory:	Lubbock						
Analysis:	Chloride (Titrat	ion)	Analytical		4500-Cl B		Aethod: N/A
QC Batch:	51357		Date Anal	*	8-08-12	•	zed By: RG
Prep Batch:	44042		Sample Pr	eparation: 200	8-08-11	Prepar	red By: RG
			RL				
Parameter	Fla	g	Result	Uni	ts	Dilution	RI
Chloride			2680	mg/K	g	100	3.25
Sample: 169	9968 - FE						
Laboratory:	Lubbock						
Analysis:	TPH DRO		Analytical Me	thod: Mod. 8	015B	Prep N	Aethod: N/A
QC Batch:	51280		Date Analyzed		3-10	Analyz	zed By: MN
Prep Batch:	43984		Sample Prepa	ration: 2008-08	8-08		red By: MN
	E.		RL	TT .			~ *
Parameter	Fla	5	Result	Uni		Dilution	RI
DRO			<50.0	mg/K	g	1	50.0
				`	Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
n-Triacontane	3	102	mg/Kg	1	100	102	49.5 - 185
Sample: 169	9968 - FE						
Laboratory:	Lubbock						
Analysis:	TPH GRO		Analytical Me	thod: S 8015I	3	Prep Me	thod: S 503
QC Batch:	51305		Date Analyzed		3-08	Analyzed	
Prep Batch:	44000		Sample Prepar	ration: 2008-08	3-08	Preparec	d By: ER
			\mathbf{RL}				
Parameter	Flag	g	Result	Uni	ts	Dilution	' RI
GRO	·····		<1.00	mg/K			* • •

							1.00	
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)		1.41	mg/Kg	1	1.00	141	55.3 - 161.9	
4-Bromofluorobenzene (4-BFB)		1.39	mg/Kg	1	1.00	139	45.6 - 214.7	

.

Report Date: August 12, 2008 Well #222		Work Order: 8080806 JFYSU				Page Number: 6 of 16 Lea County, NM			
Sample: 169	9969 - FW								
Laboratory:	Lubbock				0				5095
Analysis:	BTEX		Analytical M		S 8021B		Prep Me		5035 ER
QC Batch:	51304		Date Analyz		2008-08-08		Analyze		
Prep Batch:	44000		Sample Prej	paration:	2008-08-08		Prepare	аву: с	ER.
			RL						
Parameter	Fl	ag	Result		Units		Dilution		RL
Benzene			< 0.0100		mg/Kg		1		0.0100
Toluene			< 0.0100		mg/Kg		1		0100
Ethylbenzene			< 0.0100		mg/Kg		1		0.0100
Xylene			< 0.0100		mg/Kg		1	(0.0100
r						Spike	Percent	Reco	overy
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Lin	nits
Trifluorotolue	ene (TFT)	- 0	1.30	mg/Kg	1	1.00	130	59 -	136.1
	obenzene (4-BFB	:)	1.26	mg/Kg	1	1.00	126	54.4 -	176.2
Laboratory: Analysis:	Lubbock Chloride (Titrat	ion)		tical Meth		00-Cl B		Method:	
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titrat 51357 44042		Date A Sample ·RL	tical Meth Analyzed: e Preparat	2008-08 tion: 2008-08	8-12	Analy Prepa	Method: zed By: .red By:	N/A RG RG
Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock Chloride (Titrat 51357		Date A Sample RL Result	Analyzed:	2008-08 tion: 2008-08 Units	8-12	Analy Prepa Dilution	zed By:	RG RG RI
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	Lubbock Chloride (Titrat 51357 44042 Fla _j		Date A Sample ·RL	Analyzed:	2008-08 tion: 2008-08	8-12	Analy Prepa	zed By:	RG RG RI
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride	Lubbock Chloride (Titrat 51357 44042 Fla _j		Date A Sample RL Result	Analyzed:	2008-08 tion: 2008-08 Units	8-12	Analy Prepa Dilution	zed By:	RG RG RI
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 16	Lubbock Chloride (Titrat 51357 44042 Fla _j		Date A Sample RL Result 5960	Analyzed: e Preparat	2008-08 tion: 2008-08 Units	8-12	Analy Prepa Dilution	zed By:	RG RG RI
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory:	Lubbock Chloride (Titrat 51357 44042 Flag 9969 - FW		Date A Sample RL Result	Analyzed: e Preparat	2008-08 tion: 2008-08 Units	3-12 3-11	Analy Prepa Dilution 100 Prep	zed By: red By: 	RG RG RI 3.23
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory: Analysis:	Lubbock Chloride (Titrat 51357 44042 Flag 9969 - FW Lubbock		Date A Sample RL Result 5960	Analyzed: e Preparat	2008-03 tion: 2008-03 <u>Units</u> <u>mg/Kg</u> Mod. 8015 2008-08-10	3-12 3-11 B	Analy Prepa Dilution 100 Prep Analy	zed By: red By: Method: /zed By:	RG RG 3.23 N/A MN
Prep Batch:	Lubbock Chloride (Titrat 51357 44042 Flaj 9969 - FW Lubbock TPH DRO		Date A Sample RL Result 5960	Analyzed: e Preparat	2008-03 tion: 2008-03 <u>Units</u> <u>mg/Kg</u> Mod. 8015 2008-08-10	3-12 3-11 B	Analy Prepa Dilution 100 Prep Analy	zed By: red By: 	RG RG 3.23 N/A MN
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory: Analysis: QC Batch:	Lubbock Chloride (Titrat 51357 44042 Flaj 9969 - FW Lubbock TPH DRO 51280		Date A Sample RL Result 5960 Analytical Date Anal Sample Pr	Analyzed: e Preparat	2008-03 tion: 2008-03 <u>Units</u> <u>mg/Kg</u> Mod. 8015 2008-08-10	3-12 3-11 B	Analy Prepa Dilution 100 Prep Analy	zed By: red By: Method: /zed By:	RG RG RI 3.25
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titrat 51357 44042 Flaj 9969 - FW Lubbock TPH DRO 51280	g	Date A Sample RL Result 5960	Analyzed: e Preparat	2008-03 tion: 2008-03 <u>Units</u> <u>mg/Kg</u> Mod. 8015 2008-08-10	3-12 3-11 B	Analy Prepa Dilution 100 Prep Analy	zed By: red By: Method: /zed By:	RG RG RI 3.25 N/A MN MN
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock Chloride (Titrat 51357 44042 Flag 9969 - FW Lubbock TPH DRO 51280 43984	g	Date A Sample RL Result 5960 Analytical Date Anal Sample Pr RL	Analyzed: e Preparat	2008-03 tion: 2008-03 <u>Units</u> mg/Kg Mod. 8015 2008-08-10 : 2008-08-08	3-12 3-11 B	Analy Prepa Dilution 100 Prep Analy Prepa	zed By: red By: Method: /zed By:	RG RG RI 3.23 N/A MN MN RI
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock Chloride (Titrat 51357 44042 Flag 9969 - FW Lubbock TPH DRO 51280 43984	g	Date A Sample RL Result 5960 Analytical Date Anal Sample Pr RL Result	Analyzed: e Preparat	2008-03 tion: 2008-03 <u>Units</u> mg/Kg Mod. 8015 2008-08-08 Units	8-12 3-11 B	Analy Prepa Dilution 100 Prep Analy Prepa Dilution 1	zed By: red By: Method: /zed By: ared By:	RG RG RI 3.25 N/A MN MN MN RI 50.0
Laboratory: Analysis: QC Batch: Prep Batch: Parameter Chloride Sample: 169 Laboratory: Analysis: QC Batch:	Lubbock Chloride (Titrat 51357 44042 Flag 9969 - FW Lubbock TPH DRO 51280 43984	g	Date A Sample RL Result 5960 Analytical Date Anal Sample Pr RL Result	Analyzed: e Preparat Method: lyzed: reparation	2008-03 tion: 2008-03 <u>Units</u> mg/Kg Mod. 8015 2008-08-08 Units	3-12 3-11 B	Analy Prepa Dilution 100 Prep Analy Prepa Dilution	zed By: red By: Method: /zed By: ared By: Re	RG RG RI 3.25 N/A MN

Spike Percent Units mg/Kg Surrogate n-Triacontane Result 87.4 Recovery 87 Dilution Flag Amount 100 1
	Date Ana	l Method:				
	Date Ana	l Method:				
	Date Ana	1 Method:	0.00150		Deer Ma	thod: S 50
			S 8015B		Prep Me Analyzeo	
		•	2008-08-08 2008-08-08		Prepared	
	Sample P	reparation:	2008-08-08		Ttepareu	Г Б у. 1510
	RL		T T •.			n
				···· <i>··</i>		R
	<1.00		mg/Kg		1	1.0
				Spike	Percent	Recovery
Flag	Result	Units	Dilution	Amount	Recovery	Limits
	1.32	mg/Kg	1	1.00	132	55.3 - 161
	1.36	mg/Kg	1	1.00	136	45.6 - 214
	Date Anal	yzed:	2008-08-08 2008-08-08		Analyzed Prepared	d By: ER
	RI	L				•
			Units	I		F
					-	0.01
						0.01
						0.01
	<0.010	0	mg/Kg		L	0.01
				Spike	Percent	Recover
Flag	Result	Units	Dilution	Amount		Limits
						59 - 136.
	1.14	mg/Kg	1	1.00	114	54.4 - 176
)	Analy	vtical Meth	od: SM 4500	-Cl B	Pred A	Method: N
•					•	zed By: RO
		$\begin{tabular}{ c c c c } \hline Result \\ \hline <1.00 \\ \hline \\ \hline \\ \hline \\ Flag & Result \\ \hline \\ 1.32 \\ \hline \\ 0.010 \\ \hline \\ \hline \\ 0.010 \\ \hline \\ \hline \\ 1.18 \\ \hline \\ 1.14 \\ \hline 1.1$	Result Flag Result Units 1.32 mg/Kg 1.32 mg/Kg 1.36 mg/Kg Analytical Method: Date Analyzed: Sample Preparation: RL Result <0.0100	ResultUnits<1.00	ResultUnits <1.00 mg/KgFlagResultUnitsDilutionAmount1.32mg/Kg11.001.36mg/Kg11.001.36mg/Kg11.001.36mg/Kg11.001.36mg/Kg11.001.36mg/Kg2008-08-08Sample Preparation:2008-08-08Sample Preparation:2008-08-08RLResultUnitsI <0.0100 mg/Kg $<0.0100mg/Kg<0.0100mg/Kg<0.0100mg/Kg<0.0100mg/Kg1.001.18mg/Kg11.001.14mg/Kg11.001.14mg/Kg11.00$	ResultUnitsDilution <1.00 mg/Kg1FlagResultUnitsDilutionAmountRecovery 1.32 mg/Kg1 1.00 132 1.36 mg/Kg1 1.00 132 1.36 mg/Kg1 1.00 136 Analytical Method:S 8021BPrep MeDate Analyzed:2008-08-08AnalyzedSample Preparation:2008-08-08PreparedRLResultUnitsDilution <0.0100 mg/Kg1 <0.0100 mg/Kg1 <0.0100 mg/Kg1 <0.0100 mg/Kg1 <1.18 mg/Kg1 1.18 mg/Kg1 1.14 mg/Kg1 1.14 mg/Kg1 0 Analytical Method:SM 4500-Cl BPrep Ne

Chloride			9320 m	ng/Kg	100	3.25
Parameter	H	lag R	RL Lesult	Units	Dilution	\mathbf{RL}
Prep Batch:	44042		Sample Preparation:	2008-08-11	Prepared By:	

Report Date: Well #222	August 12, 2008		1	Work Orden JFY				umber: 8 of 16 a County, NM
Sample: 169	9970 - NE							
Laboratory: Analysis: QC Batch: Prep Batch.	Lubbock TPH DRO 51280 43984		Analytical Date Ana Sample Pi		Mod. 8015 2008-08-10 2008-08-08		Analyz	Method: N/A zed By: MN zed By: MN
			RL					
Parameter	Flag		Result		Units		Dilution	RL
DRO	·		<50.0		mg/Kg		1	50.0
Surrogate	Flag	Result	Units	Dil	ution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		90.2	mg/Kg		1	100	90	49.5 - 185
Sample: 169 Laboratory: Analysis: QC Batch: Prep Batch:	9970 - NE Lubbock TPH GRO 51305 44000		Analytica Date Ana Sample P		S 8015B 2008-08-08 2008-08-08		Prep Me Analyze Preparec	d By: ER
			RL					
Parameter	Flag		Result		Units		Dilution	RI
GRO			<1.00		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue			1.21	mg/Kg	1	1.00	121	55.3 - 161.9
4-Bromofluor	obenzene (4-BFB)		1.24	mg/Kg	1	1.00	124	45.6 - 214.1
Sample: 16	9971 - SW							
Laboratory: Analysis:	Lubbock BTEX		Analytical	Method:	S 8021B		Prep M	ethod: S 503
QC Batch:	51304		Date Anal	yzed:	2008-08-08		Analyze Prepare	d By: ER
Prep Batch:	44000		Sample Pr RI		2008-08-08		riepare	uby. En
Parameter	Fla	ıg	Resul	t	Units		Dilution	R
Benzene			< 0.010		mg/Kg		1	0.010
Toluene Ethylbenzene			<0.010 <0.010		mg/Kg mg/Kg		1 1	0.010 0 010
Etnyldenzene Xvlene	;				mg/Kg		1	0.010

mg/Kg mg/Kg mg/Kg mg/Kg Benzene < 0.0100 1 . <0.0100 <0.0100 <0.0100 1 Toluene Ethylbenzene 1 Xylene 1

•

Well #222	: August 12, 2008	<u> </u>		Work Order: JFYS			Lea County, NM		
						Spike	Percent	Recove	0
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limit	
Trifluorotolue			1.30	mg/Kg	1	1.00	130	59 - 130	
I-Bromofluor	obenzene (4-BFB)		1.28	mg/Kg	1	1.00	128	54.4 - 17	70.Z
Sample: 16	9971 - SW								
•									- / .
Analysis:	Chloride (Titratic	on)		tical Method		00-Cl B			N/A
QC Batch:	51357			Analyzed:	2008-08			•	RG
Prep Batch:	44042		Sampl	le Preparatio	on: 2008-08	8-11	Prepa	red By: R	RG
			RL						~ 7
Parameter	Flag		Result		Units		Dilution		RL
Chloride			1350		mg/Kg		100	č	3.25
Sample: 16 Laboratory: Analysis:	Lubbock TPH DRO			l Method:	Mod. 8015				N/A
Laboratory:	Lubbock		Date Ana		Mod. 8015 2008-08-10 2008-08-08)	Analy: Prepar	zed By: N	N/A MN MN
Laboratory: Analysis: QC Batch:	Lubbock TPH DRO 51280		Date Ana Sample P RL Result	lyzed:	2008-08-10 2008-08-08 Units)	Analy: Prepar Dilution	zed By: N red By: M	MN MN RL
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 51280 43984		Date Ana Sample P RL	lyzed:	2008-08-10 2008-08-08)	Analy: Prepar	zed By: N red By: M	MN MN
Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock TPH DRO 51280 43984 Flag		Date Ana Sample P RL Result	lyzed:	2008-08-10 2008-08-08 Units)	Analy: Prepar Dilution	zed By: N red By: M	MN MN RL 50.0
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate	Lubbock TPH DRO 51280 43984 Flag	Result	Date Ana Sample P RL Result <50.0 Units	slyzed: reparation. Dilu	2008-08-10 2008-08-08 Units mg/Kg) 3 Spike Amount	Analy: Prepar Dilution 1 Percent Recovery	zed By: M red By: M	MN MN <u>RL</u> 50.0 very its
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO	Lubbock TPH DRO 51280 43984 Flag		Date Ana Sample P RL Result <50.0	slyzed: reparation. Dilu	2008-08-10 2008-08-08 Units mg/Kg) 3 Spike	Analy: Prepar Dilution 1 Percent	zed By: M red By: M	MN MN <u>RL</u> 50.0 very its
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate	Lubbock TPH DRO 51280 43984 Flag e 9971 - SW	Result	Date Ana Sample P RL Result <50.0 Units mg/Kg Analytica Date Ana Sample P	alyzed: reparation. Dilu 3 1	2008-08-10 2008-08-08 Units mg/Kg	Spike Amount 100	Analy: Prepar Dilution 1 Percent Recovery	zed By: M red By: M Recov Limi 49.5 -	VÍN VIN 50.0 very its 185 5035
Laboratory: Analysis: QC Batch: Prep Batch: Parameter DRO Surrogate n-Triacontane Sample: 16 Laboratory: Analysis: QC Batch:	Lubbock TPH DRO 51280 43984 Flag e 9971 - SW Lubbock TPH GRO 51305	Result 87.4	Date Ana Sample P RL Result <50.0 Units mg/Kg Analytica Date Ana	ulyzed: reparation. Dilu g 1	2008-08-10 2008-08-08 <u>Units</u> mg/Kg 	Spike Amount 100	Analy: Prepar Dilution 1 Percent Recovery 87 Prep Ma Analyze	zed By: M red By: M Recov Limi 49.5 -	VÍN VIN 50.0 very its 185 5035

-

.

.

-

Report Date: August 12, 2008 Well #222		W	ork Orde JFY	er: 8080806 /SU		Ŷ	mber: 10 of 16 ea County, NM
_		D14	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Surrogate	Flag	Result 1.36	mg/Kg		1.00	136	55.3 - 161.9
Frifluorotoluene (TFT) I-Bromofluorobenzene (4-BFB)		1.30	mg/Kg		1.00	139	45.6 - 214.7
Method Blank (1) QC Ba	atch: 51280	,					
QC Batch: 51280		Date Anal	lvzed:	2008-08-10		Analy	zed By: MN
Prep Batch: 43984		QC Prepa		2008-08-08			red By: MN
Parameter	Flag		MD Resu		Uni	ts	RL
DRO	<u>+ 105</u>		<6.7		mg/l	Kg	50
<u> </u>							
		.			Spike	Percent	Recovery
Surrogate Flag	Result	Units	D	lution	Amount	Recovery	Limits
n-Triacontane	90.5	mg/Kg		1	100	90	49.5 - 185
		mg/Kg		1	100	90	49.5 - 185
	90.5 atch: 51304	mg/Kg		1	100		
Method Blank (1) QC B		Date Ana	•	2008-08-08	100	Anal	yzed By: ER
Method Blank (1) QC Bacch - 51304			•	2008-08-08	100	Anal	
Method Blank (1) QC Bacch 51304		Date Ana	aration:	2008-08-08 2008-08-08	100	Anal	yzed By: ER
Method Blank (1) QC B QC Batch· 51304 Prep Batch: 44000	atch: 51304	Date Ana	aration: N	2008-08-08	<u>100</u> Un	Anal Prepa	yzed By: ER
Method Blank (1) QC Bacch 51304 Prep Batch: 44000 Parameter		Date Ana	aration: N	2008-08-08 2008-08-08 MDL esult	Un mg,	Analy Prepa its /Kg	yzed By: ER ared By: ER RL 0.01
Method Blank (1) QC Bacch 51304 Prep Batch: 44000 Parameter Benzene	atch: 51304	Date Ana	Aration: N Re <0.00 <0.00	2008-08-08 2008-08-08 MDL esult 0347 0525	Un mg, mg,	Analy Prepa its /Kg /Kg	yzed By: ER ared By: ER RL 0.01 0.01
Method Blank (1) QC Bacch 51304 Prep Batch: 44000 Parameter Benzene Foluene Ethylbenzene	atch: 51304	Date Ana	Aration: N Re <0.00 <0.00 <0.00	2008-08-08 2008-08-08 MDL esult 0347 0525 0607	Un mg, mg, mg,	Analy Prepa its /Kg /Kg /Kg	yzed By: ER ared By: ER RL 0.01 0.01 0.01 0.01
Method Blank (1) QC Bacch 51304 Prep Batch: 44000 Parameter Benzene Foluene Ethylbenzene	atch: 51304	Date Ana	Aration: N Re <0.00 <0.00	2008-08-08 2008-08-08 MDL esult 0347 0525 0607	Un mg, mg,	Analy Prepa its /Kg /Kg /Kg	yzed By: ER ared By: ER RL 0.01 0.01
Method Blank (1) QC Bacch 51304 Prep Batch: 44000 Parameter Benzene Foluene Ethylbenzene	atch: 51304	Date Ana	Aration: N Re <0.00 <0.00 <0.00	2008-08-08 2008-08-08 MDL esult 0347 0525 0607	Un mg, mg, mg,	Analy Prepa its /Kg /Kg /Kg	yzed By: ER ared By: ER RL 0.01 0.01 0.01 0.01
Method Blank (1) QC Ba QC Batch: 51304 Prep Batch: 44000 Parameter Benzene Foluene Ethylbenzene Xylene	atch: 51304 Flag	Date Ana	Aration: N Re <0.00 <0.00 <0.00	2008-08-08 2008-08-08 MDL esult 0347 0525 0607	Un mg, mg, mg, mg,	Analy Prepa its /Kg /Kg /Kg /Kg	yzed By: ER ared By: ER 0.01 0.01 0.01 0.01
Method Blank (1) QC Bach 51304 Prep Batch: 51304 Parameter Benzene Foluene Ethylbenzene Kylene	atch: 51304	Date Ana QC Prepa	Aration: N Re <0.00 <0.00 <0.00 <0.00 <0.00	2008-08-08 2008-08-08 MDL esult 0347 0525 0607 0724 Dilution	Un mg, mg, mg, Spike	Analy Prepa its /Kg /Kg /Kg /Kg /Kg	yzed By: ER ared By: ER 0.01 0.01 0.01 0.01 0.01 0.01 0.01
QC Batch [·] 51304	atch: 51304 Flag	Date Ana QC Prepa Result	aration: N Re <0.00 <0.00 <0.00 <0.00 <0.00 Units	2008-08-08 2008-08-08 MDL esult 0347 0525 0607 0724 Dilution 5 1	Un mg, mg, mg, Spike Amount	Analy Prepa its /Kg /Kg /Kg /Kg /Kg /Kg Recovery	yzed By: ER ared By: ER 0.01 0.01 0.01 0.01 0.01 0.01 Limits
Method Blank (1) QC Bach QC Batch 51304 Prep Batch: 44000 Parameter Benzene Foluene Ethylbenzene Kylene Surrogate Frifluorotoluene (TFT) I-Bromofluorobenzene (4-BFB)	atch: 51304 Flag	Date Ana QC Prepa Result 0.970	Aration: N Re <0.00 <0.00 <0.00 Units mg/Kg mg/Kg mg/Kg	2008-08-08 2008-08-08 MDL esult 0347 0525 0607 0724 Dilution 5 1	Un mg, mg, mg, Spike Amount 1.00	Analy Prepa its /Kg /Kg /Kg /Kg /Kg /Kg /Kg /Recovery 97 75 75	yzed By: ER ared By: ER 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0

-

.

	,			
		MDL		
Parameter	Flag	Result	Units	RL
GRO		< 0.144	mg/Kg	1

,

· .

			JF		Page Number: 11 of 16 Lea County, NM					
urrogate		Flag	Result	Units	Dilu		Spike mount	Percent Recovery	Li	covery imits
Trifluorotoluene (TFT)			0.993	mg/Kg	5		1.00	99		- 108.5
-Bromofluorobenzene (4-)	BFB)		0.806	mg/Kg	5	1	1.00	81 .	34.5	- 105.8
Method Blank (1)	QC Batc	h: 51357				,				
QC Batch: 51357 Prep Batch: 44042			Date An QC Prep		2008-08- 2008-08-				yzed By ared By	
Parameter	Fl	ຈຕ		MD Resu			Units			RL
Chloride		<u>46</u>		<1.8			mg/Kg			3.25
aboratory Control Sp	oike (LC	S-1)		ι						
QC Batch: 51280 Prep Batch: 43984			Date An QC Preț		2008-08- 2008-08-			-	zed By ared By	
_				T T T	D'1	Spike	Matri			Rec.
Param		Resu 284		Units ng/Kg	Dil.	Amount 250	Resul <6.7			Limit .9 - 138
DRO Percent recovery is based	on the sp				the spike					
·		LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		277	mg/Kg	1	250	<6.77	111 '	73.9 - 138	2	20
Percent recovery is based	on the sp	oike result.	RPD is l	based on t	the spike	and spike d	uplicate re	sult.		
	LCS	LCSD		r		Spike	· LCS	LCSD		Rec.
Surrogate	Result	Result		nits	Dil.	Amount	Rec. 95	Rec. 88		Limit
-Triacontane Laboratory Control Sp	94.8 oike (LC	88.1 S-1)	111	g/Kg	1	100	90		43).5 - 185
QC Batch: 51304			Date Ar	•	2008-08				lyzed B	-
Prep Batch: 44000			QU Pre	paration:	2008-08	-08		Prep	pared B	y. ER
		LCS			D'1	Spike	Matrix	T		Rec.
Param Benzene		Resul 0.908		nits		Amount 1.00	Result <0.0034	Rec. 7 91		Limit 5 - 115.5
penzene		0.905		g/Kg g/Kg	1 1	1.00	< 0.0034) - 115.5 - 114.7

`

-

Report Date: August 12, 2008 Well #222				Order: 8080 JFYSU					Page Nu L	ea Cour	
control spikes continued	TO	C			Sat	ko	Mat	riv		Ŧ	Rec.
_			TTalita	Dil	Spil Amo		Res		Rec.		imit
Param	Resi		Units	 1	1.0		<0.0		93		- 114.2
Ethylbenzene Vulene	0.92		mg/Kg mg/Kg	1	3.0		< 0.0		93		- 114.5
Xylene Percent recovery is based on the s											
,	LCSD			Spike		atrix			Rec.		RPD
Param	Result	Unit	s Dil.	Amount	Re	esult	Rec.	\mathbf{L}	\mathbf{imit}	RPD	Limit
Benzene	0.983	mg/K	(g 1	1.00	<0.	00347	98	80.5	- 115.5	8	20
Toluene	0.991	mg/K		1.00	<0.0	00525	99	80 -	114.7	8	20
Ethylbenzene	1.01	mg/K		1.00	<0.	00607	101	77.1	- 114.2	9	20
Xylene	3.03	mg/K		3.00	<0.	00724	101	77.6	- 114.5	8.	20
Percent recovery is based on the s	pike result	. RPD	is based	on the spike	e and	spike d	uplicat	e result).		
	LC		LCSD			Spi		LCS	LCSD		Rec.
Surrogate	Rest		Result	Units	Dil.	Amo		Rec.	Rec.		imit
Trifluorotoluene (TFT)	0.91		0.946	mg/Kg	1	1.0		91	95		- 114.
4-Bromofluorobenzene (4-BFB)	0.85	29	0.924	mg/Kg	1	1.0)0	83	92	69.7	- 118.
QC Batch: 51305	CS-1)		e Analyze							yzed By	
QC Batch: 51305		QC 1	e Analyze Preparat)8-08					ared By	r: ER
QC Batch: 51305 Prep Batch: 44000	LC	QC I	Preparat	ion: 2008-0)8-08 Sj	pike		atrix	Prep	ared By	r: ER Rec.
QC Batch: 51305 Prep Batch: 44000 Param	LC Res	QC I CS sult	Preparat Units	ion: 2008-0 Dil.)8-08 Sj An	nount	Re	esult	Prep Rec	ared By	r: ER Rec. Jimit
Prep Batch: 44000 Param GRO	LC Res 8.9	QC I CS sult 96	Preparat Units mg/Kg	ion: 2008-0 Dil.)8-08 Sj <u>An</u> 1	nount .0.0	Re <0	esult 0.144	Prep Rec 90	ared By	r: ER Rec. Jimit
QC Batch: 51305 Prep Batch: 44000 Param	LC Res 8.1 spike result	QC I CS sult 96	Preparat Units mg/Kg	ion: 2008-0 Dil. 5 1 on the spik	08-08 Sj An 1 e and	nount .0.0 spike d	Re <0	esult 0.144 te resul	Prep Rec 90 t.	ared By	r: ER Rec. .imit - 114.
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s	LC Res 8.9 spike result LCSD	QC I Sult 96	Preparat Units mg/Kg is based	ion: 2008-0 	08-08 S An 1 e and M	nount .0.0 spike d atrix	Re <0 uplicat	esult 0.144 te resul ⁻ F	Prep <u>Rec</u> 90 t. Rec.	ared By L 73.1	r: ER Rec. Jimit - 114. RPI
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param	LC Res Spike result LCSD Result	QC 1 Sult 96 . RPD Uni	Preparat Units mg/Kg is based ts Di	Dil. Dil. 1 on the spik Spike	$\frac{S}{An}$ $\frac{1}{1}$ e and M t R	nount 0.0 spike d atrix esult	Re <0 uplicat Rec.	esult).144 te resul ⁻ F L	Prep <u>Rec</u> 90 t. Rec. imit	Pared By L 73.1 RPD	r: ER Rec. .imit - 114. RPI Lim
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO	LC Res spike result LCSD Result 9.12	QC 1 CS sult 96 2. RPD Uni mg/	Preparat Units mg/Kg is based ts Di Kg 1	ion: 2008-0 Dil. 5 1 on the spik Spike 1. Amount 10.0	08-08 S An 1 e and t R <	ount 0.0 spike d atrix esult 0.144	Re <0 uplicat Rec. 91	esult 0.144 te resul F L 73.1	Prep <u>Rec</u> <u>90</u> t. Rec. imit - 114.7	ared By L 73.1	r: ER Rec. Jimit - 114. RPI
QC Batch: 51305 Prep Batch: 44000 Param GRO	LC Res spike result LCSD Result 9.12	QC 1 Sult 96 RPD Uni mg/. RPD	Preparat Units mg/Kg is based ts Di Kg 1	ion: 2008-0 Dil. 5 1 on the spik Spike 1. Amount 10.0	08-08 S An 1 e and t R <	nount 0.0 spike d atrix esult 0.144 spike d Spi	Re <0 uplicat Rec. 91 luplicat	esult 0.144 te resul F L 73.1	Prep <u>Rec</u> <u>90</u> t. Rec. imit - 114.7	rared By I 73.1 <u>RPD</u> 2	r: ER Rec. .imit - 114. RPI Limi 20 Rec.
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate	LC Res spike result LCSD Result 9.12 spike result	QC 1 CS sult 96 5. RPD Uni mg/ 5. RPD 5.	Preparat Units mg/Kg is based ts Di Kg 1 is based LCSD Result	ion: 2008-0 Dil. J 1 on the spik Spike Amount 10.0 on the spik Units	08-08 S An 1 e and t R <	oount 0.0 spike d atrix esult 0.144 spike d Spi Amo	Rec. 20 uplicat Rec. 91 luplicat	esult 0.144 Fe result 73.1 te result LCS Rec.	Prep Rec 90 t. Rec. imit - 114.7 t. LCSD Rec.	ared By I 73.1 <u>RPD</u> 2	r: ER Rec. .imit - 114.' RPI Limi 20 Rec. Limit
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT)	LC Res spike result LCSD Result 9.12 spike result LC Res 0.9	QC 1 Sult 96 J. RPD Uni mg/ t. RPD SS ult 44	Preparat Units mg/Kg is based Kg 1 is based LCSD Result 0.924	ion: 2008-0 Dil. J 1 on the spik Spike Amount 10.0 on the spik Units mg/Kg	$\frac{S}{An}$ $\frac{1}{e \text{ and }}$ $\frac{M}{t - R}$ $\frac{<1}{e \text{ and }}$	oount 0.0 spike d atrix esult 0.144 spike d Spi Amo 1.0	Rec. 91 luplicat luplicat ike punt 00	esult 1.144 F E T T T T T T T T T T T T T	Prep <u>Rec</u> <u>90</u> t. Rec. imit - 114.7 t. LCSD <u>Rec.</u> <u>92</u>	ared By [1] 73.1 RPD 2 1 77.2	r: ER Rec. .imit - 114.' RPI Limi 20 Rec. .imit - 111.
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate	LC Res spike result LCSD Result 9.12 spike result LC Res	QC 1 Sult 96 J. RPD Uni mg/ t. RPD SS ult 44	Preparat Units mg/Kg is based ts Di Kg 1 is based LCSD Result	ion: 2008-0 Dil. J 1 on the spik Spike Amount 10.0 on the spik Units	$\begin{array}{c} \text{S} \\ \text{An} \\ 1 \\ \text{e and} \\ \text{mathematical methods} \\ \text{M} \\ \text{t} \\ \text{R} \\ \hline \text{ce and} \\ \hline \text{Dil.} \end{array}$	oount 0.0 spike d atrix esult 0.144 spike d Spi Amo	Rec. 91 luplicat luplicat ike punt 00	esult 0.144 Fe result 73.1 te result LCS Rec.	Prep Rec 90 t. Rec. imit - 114.7 t. LCSD Rec.	ared By [1] 73.1 RPD 2 1 77.2	r: ER Rec. .imit - 114. RPI Limi 20 Rec. Limit
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	LC Res spike result LCSD Result 9.12 spike result LC Res 0.9 0.8	QC 1 Sult 96 J. RPD Uni mg/ t. RPD SS ult 44	Preparat Units mg/Kg is based Kg 1 is based LCSD Result 0.924	ion: 2008-0 Dil. J 1 on the spik Spike Amount 10.0 on the spik Units mg/Kg	$\frac{S}{An}$ $\frac{1}{1}$ e and $\frac{M}{t - R}$ e and $\frac{C}{2}$ $\frac{C}{1}$	oount 0.0 spike d atrix esult 0.144 spike d Spi Amo 1.0	Rec. 91 luplicat luplicat ike punt 00	esult 1.144 F E T T T T T C S R e C 94	Prep <u>Rec</u> <u>90</u> t. Rec. imit - 114.7 t. LCSD <u>Rec.</u> <u>92</u>	ared By [1] 73.1 RPD 2 1 77.2	r: ER Rec. .imit - 114. RPI Limi 20 Rec. .imit - 111.
QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the s Surrogate Trifluorotoluene (TFT)	LC Res spike result LCSD Result 9.12 spike result LC Res 0.9 0.8	QC 1 Sult 96 . RPD Uni mg/ . RPD 2S ult 44 96	Preparat Units mg/Kg is based Kg 1 is based LCSD Result 0.924	Dil. Dil. 1 on the spik Spike Amount 10.0 on the spik Units mg/Kg mg/Kg	$\begin{array}{c} S \\ An \\ 1 \\ e \text{ and } \\ M \\ t \\ R \\ < n \\ < n$	oount 0.0 spike d atrix esult 0.144 spike d Spi Amo 1.0	Rec. 91 luplicat luplicat ike punt 00	esult 1.144 F E T T T T T C S R e C 94	Prep <u>Rec</u> 90 t. Rec. imit - 114.7 t. LCSD <u>Rec.</u> 92 94	ared By [1] 73.1 RPD 2 1 77.2	r: ER Rec. .imit - 114. RPI Limi 20 Rec. .imit - 111. 3 - 116.

-

.

	2008			der: 808080 FYSU	UG		F	Ŷ	imber: 1 ea Cour	
Param	LC Res		Units	Dil.	Spike Amount	Matrix Result		Rec.	L	lec. imit
Chloride	10	1 m	ıg/Kg	1	100	<1.80		101	96.5	- 104.4
Percent recovery is based	on the spike result	RPD is	based on	the spike a	and spike du	plicate re	sult.			
							Rec			RPL
~	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Lim		RPD	Limi
Param Chloride	101	mg/Kg	1	100	<1.80		6.5 - 1		1	20
Percent recovery is based			based on			plicate re	esult.			
reicent lecovery is based	on the spike roodit	101 2 10			•					
Matrix Spike (MS-1)	Spiked Sample: 1	69968							,	
QC Batch: 51280		Date Ar	nalvzed:	2008-08-	10			Analy	zed By	: MN
Prep Batch: 43984			paration:						ared By:	
The paten 10001		Ū	•							
	М	S			Spike	Matı	ix			Rec.
Param	Res		Units	Dil.	Amount	Resu		Rec.		Limit
DRO			mg/Kg	1	250	<6.7	7	119	50	.7 - 13
Percent recovery is based	on the spike result			the spike	and spike d	uplicate r	esult.			
i cicciti i coorcig in casea						-				RPI
-	MSD	Unite	Dil.	Spike Amount	Matrix Result	Rec.	Re Lin		RPD	Lim
Param DRO	Result 270	Units mg/Kg		250	<6.77	108	50.7		10	20
Percent recovery is based	on the spike result	. RPD is	based on	the spike	and spike d	upricate i	esuit.			
	MS MS	D			Spike	MS		MSD		Rec.
Surrogate	Result Resu		Units	Dil.	Amount	Rec	•	Rec.		Limit
n-Triacontane	85.9 85.	5 n	ng/Kg	1	100	86		86		9.5 - 18
Matrix Spike (MS-1) QC Batch: 51304 Prep Batch: 44000	Spiked Sample:	Date A	.nalyzed: eparation	2008-08 : 2008-08					lyzed B	
		•	•							
	M	3			Spike	Matri	c			Rec.
Param	Res		Units	Dil.	Amount	Resul		Rec.		Limit
	1.1		ng/Kg	1	1.00	<0 003	47	114	42.9	9 - 130
Benzene				T						
Benzene Toluene	1.1	.9 m	ng/Kg	· 1	1.00	< 0.005		119		9 - 135
Benzene		9 m 9 m					07	119 129 130	48.	9 - 135 3 - 149 8 - 150

Ð

-

Report Date: August 12, 2008 Well #222	• •		Work	Order: 8080 JFYSU	506				mber: 1 ea Coun	
natrix spikes continued	MSD	T	Dil	Spike Amount	Matrix Result	Rec.	Re Lir	ec. nit	RPD	RPD Limit
Param	Result	Units	Dil.	Amount	nesun					
~	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.		ec. mit	RPD	RPD Limit
Param Benzene	1.31	mg/Kg		1.00	< 0.00347	7 131	42.9 -	130.7	14	20
0	1.40	mg/Kg		1.00	< 0.00525		46.9 -	135.4	16	20
Toluene ²	1.49	mg/Kg		1.00	< 0.00607	7 149	48.3 -	149.3	14	20
Ethylbenzene Xylene	4.50	mg/Kg		3.00	< 0.00724	4 150	48.8 -	150.9	14	20
Percent recovery is based on the s					and spike	duplicate	e result.			
Percent recovery is based on the s	pike resu	16. ICI D 13	based	on the spine						
		MS	MSD			Spike	MS	MSD		Rec.
Surrogate	I	Result I	Result	Units	Dil. A	mount	Rec.	Rec.		imit
Trifluorotoluene (TFT)	34	1.34	1.41	mg/Kg	1	1	134	141		- 128.3
		1.35	1.41	m mg/Kg	1	1	135	141	61.5	- 161.2
Matrix Spike (MS-1) Spike QC Batch [.] 51305	i Sample	Date A	Analyze reparati						yzed By pared By	
Matrix Spike (MS-1) Spike QC Batch [.] 51305	-	Date A			8-08 Spike		trix	Ртер	ared By	∕: ER Rec.
Matrix Spike (MS-1) Spike QC Batch [.] 51305 Prep Batch: 44000		Date A QC Pr MS esult	reparati Units	on: 2008-0 Dil.	8-08 Spike Amount	t Re	sult	Piep Rec.	ared By	7: ER Rec. Limit
Matrix Spike (MS-1) Spike QC Batch [.] 51305 Prep Batch: 44000 Param	R	Date A QC Pr MS esult	reparati	on: 2008-0 Dil.	8-08 Spike	t Re		Ртер	ared By	7: ER Rec. Limit
Matrix Spike (MS-1) Spike QC Batch [.] 51305 Prep Batch: 44000 Param <u>GRO</u>	R	Date A QC Pr MS esult 10.8	Units mg/Kg	on: 2008-0 Dil.	8-08 Spike <u>Amount</u> 10.0	t Re <0	sult .144	Р1ер <u>Rec.</u> 108	ared By	7: ER Rec. Limit
Matrix Spike (MS-1) Spike QC Batch [.] 51305 Prep Batch: 44000 Param <u>GRO</u>	R	Date A QC Pr MS esult 10.8 ilt. RPD i	Units mg/Kg	on: 2008-0 Dil.	8-08 Spike <u>Amount</u> 10.0	t Re <0 e duplicat	sult .144 .e result R	Ртер <u>Rec.</u> 108 ec.	I 48.9	r: ER Rec. Limit - 155.8 RPD
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s	R spike resu	Date A QC Pr MS esult 10.8 ilt. RPD i	Units mg/Kg s based	on: 2008-0 Dil. 1 on the spike . Amount	8-08 Spike Amount 10.0 e and spike Matrix Result	t Re <0 e duplicat Rec.	sult .144 .e result R Li	Piep Rec. 108 ec. mit	ared By I 48.9 RPD	r: ER Rec. Limit - 155.8 RPD Limit
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param	R spike resu MSD	Date A QC Pr MS esult 10.8 ilt. RPD i	Units mg/Kg s based Dil	on: 2008-0 Dil. 1 on the spike	8-08 Spike Amount 10.0 e and spike Matrix	t Re <0 e duplicat Rec.	sult .144 .e result R Li	Ртер <u>Rec.</u> 108 ec.	I 48.9	r: ER Rec. Limit - 155.8 RPD
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO	R spike resu MSD Resul 11.4	Date A QC Pr MS esult 10.8 ilt. RPD i t Units mg/K	Units mg/Kg s based g 1	on: 2008-0 Dil. 1 on the spike . Amount 10.0	8-08 Spike Amount 10.0 e and spike Matrix Result <0.144	t Re <0 e duplicat Rec. 114	sult .144 e result R Li 48.9	Ртер <u>Rec.</u> 108 ec. mit - 155.8	ared By I 48.9 RPD	r: ER Rec. Limit - 155.8 RPD Limit
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO	R spike resu MSD Resul 11.4 spike resu	Date A QC Pr MS esult 10.8 ilt. RPD i t Units mg/K ult. RPD i	Units mg/Kg s based <u>Dil</u> g 1 s based	on: 2008-0 Dil. 1 on the spike . Amount 10.0	8-08 Spike Amount 10.0 e and spike Matrix Result <0.144 e and spike	t Re <0 e duplicat Rec. 114 e duplicat	sult .144 e result R Li 48.9	Ртер <u>Rec.</u> 108 ec. mit - 155.8	I 48.9 RPD 5	r: ER Rec. Limit - 155.8 RPD Limit
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the sparam GRO Param GRO Percent recovery is based on the sparam	R spike resu MSD Resul 11.4 spike resu	Date A QC Pr MS esult 10.8 nlt. RPD i t Units mg/K nlt. RPD i MS I	Units mg/Kg s based g 1	on: 2008-0 Dil. 1 on the spike . Amount 10.0	8-08 Spike Amound 10.0 e and spike Matrix Result <0.144 e and spike	t Re <0 e duplicat Rec. 114	sult .144 .e result R Li 48.9 te result	Prep Rec. 108 ec. mit - 155.8 	I 48.9 RPD 5	r: ER Rec. Limit - 155.8 RPD Limit 20 Rec. Limit
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the Surrogate	R spike resu MSD Resul 11.4 spike resu R	Date A QC Pr MS esult 10.8 hlt. RPD i t Units mg/K hlt. RPD i MS I esult R	Units mg/Kg s based g 1 s based MSD	on: 2008-0 Dil. 1 on the spike . Amount 10.0 on the spik Units	8-08 Spike Amound 10.0 e and spike Matrix Result <0.144 e and spike	t Re <0 e duplicat Rec. 1114 e duplicat Spike	sult .144 R result Li 48.9 te result MS	Prep <u>Rec.</u> 108 ec. mit - 155.8 MSD	RPD 5	r: ER Rec. Limit 20 Rec. Limit 3 - 145.
QC Batch 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the second sec	R spike resu MSD Resul 11.4	Date A QC Pr MS esult 10.8 ilt. RPD i t Units mg/K	Units mg/Kg s based g 1	on: 2008-0 Dil. 1 on the spike . Amount 10.0	8-08 Spike Amount 10.0 e and spike Matrix Result <0.144	t Re <0 e duplicat Rec. 114	sult .144 e result R Li 48.9	Ртер <u>Rec.</u> 108 ec. mit - 155.8	ared By I 48.9 RPD	r: El Rec. Limit) - 155 RP Lin
Matrix Spike (MS-1) Spike QC Batch 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the Surrogate Trifluorotoluene (TFT)	R spike resu MSD Resul 11.4 spike resu R	Date A QC Pr MS esult 10.8 nlt. RPD i t Units mg/K nlt. RPD i MS I esult R 1.00	Units mg/Kg s based g 1 s based MSD Result 1.07	on: 2008-0 Dil. 1 on the spike . Amount 10.0 on the spik Units mg/Kg	8-08 Spike Amound 10.0 e and spike Matrix Result <0.144 e and spike Dil. A 1	t Re <0 e duplicat Rec. 114 e duplicat spike mount 1	sult .144 re result R Li 48.9 te result MS Rec. 100	Prep <u>Rec.</u> 108 ec. mit - 155.8 MSD <u>Rec.</u> 107	RPD 5	r: ER Rec. Limit - 155. RPI Limi 20 Rec. Limit 3 - 145
Matrix Spike (MS-1) Spike QC Batch: 51305 Prep Batch: 44000 Param GRO Percent recovery is based on the s Param GRO Percent recovery is based on the Surrogate	R spike resu MSD Resul 11.4 spike resu R	Date A QC Pr MS esult 10.8 nlt. RPD i t Units mg/K nlt. RPD i MS I esult R 1.00	Units mg/Kg s based g 1 s based MSD Result	on: 2008-0 Dil. 1 on the spike . Amount 10.0 on the spik Units	8-08 Spike Amound 10.0 e and spike Matrix Result <0.144 e and spike Dil. A	t Re <0 e duplicat Rec. 114 e duplicat Spike	sult .144 R Li 48.9 te result MS Rec.	Prep Rec. 108 ec. mit - 155.8 MSD Rec.	RPD 5	r: ER Rec. Limit - 155. RPI Limi 20 Rec. Limit

³Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ⁴Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

	Μ			Spike	Matrix			Rec.
Param		sult Unit		Amount	Result	Rec.		imit
Chloride		500 mg/ł		5000	8987.46	······································	(4.7	- 123.2
Percent recovery is ba	ased on the spike resul	t. RPD is bas	ed on the spike	and spike du	iplicate re	sult.		
	MSD		Spike	Matrix		Rec.		RPD
Param	Result	Units I	oil. Amount	Result	Rec.	Limit	RPD	Limit
Chloride	13600		00 5000	8987.46	92 74	1.7 - 123.2	1	20
	ased on the spike resul		ed on the spike	and spike du	iplicate re	sult.		
Standard (ICV-1)						·		
QC Batch: 51280		Date Analy	zed: 2008-08-	10		Ana	lyzed By	: MN
		ICVs	ICVs	ICVs	F	Percent		
		True	Found	Percent	R	ecovery		Date
Param Flag	Units	Conc.	Conc.	Recovery		Limits		nalyzed
)8-08-1
DRO Standard (CCV-1)	mg/Kg	250	274	110	8	5 - 115		
DRO Standard (CCV-1)		Date Analy CCVs	zed: 2008-08- CCVs	10 CCVs	I	Ana Percent	lyzed By	: MN
DRO Standard (CCV-1) QC Batch: 51280)	Date Analy CCVs True	zed: 2008-08- CCVs Found	10 CCVs Percent	I R	Ana Percent Lecovery	lyzed By	: MN Date
DRO Standard (CCV-1) QC Batch: 51280 Param Flag	Units	Date Analy CCVs True Conc.	zed: 2008-08- CCVs Found Conc.	10 CCVs Percent Recovery	H R	Ana Percent ecovery Limits	lyzed By Ar	: MN Date nalyzed
DRO Standard (CCV-1) QC Batch: 51280 Param Flag)	Date Analy CCVs True	zed: 2008-08- CCVs Found	10 CCVs Percent	H R	Ana Percent Lecovery	lyzed By Ar	: MN Date nalyzed
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO	Units	Date Analy CCVs True Conc.	zed: 2008-08- CCVs Found Conc.	10 CCVs Percent Recovery	H R	Ana Percent ecovery Limits	lyzed By Ar	: MN Date nalyzed
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO Standard (ICV-1)	Units	Date Analy CCVs True Conc.	zed: 2008-08- CCVs Found Conc. 278	10 CCVs Percent Recovery 111	H R	Ana Percent Lecovery Limits 25 - 115	lyzed By Ar	: MN Date nalyzed)8-08-1
DRO Standard (CCV-1) QC Batch: 51280	Units	Date Analy CCVs True Conc. 250	zed: 2008-08- CCVs Found Conc. 278	10 CCVs Percent Recovery 111	H R	Ana Percent Lecovery Limits 25 - 115	lyzed By Ar 200	: MN Date nalyzed)8-08-1
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO Standard (ICV-1)	Units	Date Analy CCVs True Conc. 250 Date Analy	zed: 2008-08- CCVs Found Conc. 278 yzed: 2008-08	10 CCVs Percent Recovery 111	H R	Ana Percent Lecovery Limits 55 - 115 Ana	lyzed By Ar 200 alyzed B	: MN Date nalyzed 08-08-11 y ER Date
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO Standard (ICV-1) QC Batch: 51304	Units	Date Analy CCVs True Conc. 250 Date Analy ICVs True Conc.	zed: 2008-08- CCVs Found Conc. 278 zzed: 2008-08 ICVs Found Conc.	10 CCVs Percent Recovery 111 -08 ICVs Percen Recover	t	Ana Percent Lecovery Limits 55 - 115 Ana Percent Recovery Limits	lyzed By Ar 200 alyzed B	: MN Date nalyzed 08-08-11 y ER Date nalyzed
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO Standard (ICV-1) QC Batch: 51304 Param Benzene	Units mg/Kg Flag Units mg/Kg	Date Analy CCVs True Conc. 250 Date Analy ICVs True Conc. 0.100	zed: 2008-08- CCVs Found Conc. 278 yzed: 2008-08 ICVs Found Conc. 0.102	10 CCVs Percent Recovery 111 -08 ICVs Percen Recover 102	t	Ana Percent Limits 35 - 115 An: Percent Recovery Limits 85 - 115	lyzed By An 200 alyzed B A 200	: MN Date nalyzed 08-08-1 y ER Date nalyzec 08-08-0
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO Standard (ICV-1) QC Batch: 51304 Param Benzene Toluene	Units mg/Kg Flag Units mg/Kg mg/Kg	Date Analy CCVs True Conc. 250 Date Analy ICVs True Conc. 0.100 0.100	zed: 2008-08- CCVs Found Conc. 278 yzed: 2008-08 ICVs Found Conc. 0.102 0.103	10 CCVs Percent Recovery 111 -08 ICVs Percen Recover 102 103	t	Ana Percent Limits 35 - 115 An: Percent Recovery Limits 85 - 115 85 - 115	lyzed By An 200 alyzed B A 200 200	: MN Date nalyzed 08-08-1 9 ER Date nalyzec 08-08-0 08-08-0
DRO Standard (CCV-1) QC Batch: 51280 Param Flag DRO Standard (ICV-1) QC Batch: 51304 Param Benzene	Units mg/Kg Flag Units mg/Kg	Date Analy CCVs True Conc. 250 Date Analy ICVs True Conc. 0.100	zed: 2008-08- CCVs Found Conc. 278 yzed: 2008-08 ICVs Found Conc. 0.102	10 CCVs Percent Recovery 111 -08 ICVs Percen Recover 102	t	Ana Percent Limits 35 - 115 An: Percent Recovery Limits 85 - 115	lyzed By An 200 alyzed B A 200 200 200 200	: MN Date nalyzed 08-08-10 y ER

Report Date: Augus Well #222	t 12, 2008		ork Order: 8080 JFYSU	806		unber: 16 of 10 ea County, NM
		CCVs	CCVs	CCVs	Percent	
		True	Found	Percent	Recovery	Date
Param	Flag Unit		Conc.	Recovery	Limits	Analyzed
Benzene	mg/F	-	0.0944	94	85 - 115	2008-08-08
Foluene	mg/F	. •	0.0974	97	85 - 115	2008-08-08
Ethylbenzene	mg/H	Ŷ	0.0958	96	85 - 115	2008-08-08
Xylene	mg/F	0	0.289	96	85 - 115	2008-08-0
Standard (ICV-1)						
QC Batch: 51305		Date Anal	yzed: 2008-08-	-08	Anal	yzed By: ER
		ICVs	ICVs	ICVs	Percent	
		True	Found	Percent	Recovery	Date
Param Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzec
GRO	mg/Kg	1.00	0.906	91	85 - 115	2008-08-0
Standard (CCV-1))	Doto Anal	yzed: 2008-08-	08	Anal	yzed By: EF
QC Batch: 51305		Date Anal	yzed: 2008-08-	-08	Ana	yzeu by. Di
		CCVs	CCVs	CCVs	Percent	
		True	Found	Percent	Recovery	Date
Param Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzeo
GRO	mg/Kg	1.00	0.885	88	85 - 115	2008-08-0
	mg/Kg	1.00	0.885	88	85 - 115	2008-08-0
GRO Standard (ICV-1)	mg/Kg	1.00 Date Anal		2.77		
GRO Standard (ICV-1)	mg/Kg			2.77		
GRO Standard (ICV-1)	mg/Kg	Date Anal ICVs	yzed: 2008-08-	-12	Anal	
GRO Standard (ICV-1) QC Batch: 51357		Date Anal	yzed: 2008-08- ICVs	-12 ICVs	Anal Percent	yzed By· RC Date
GRO Standard (ICV-1) QC Batch: 51357		Date Anal ICVs True	yzed: 2008-08- ICVs Found	-12 ICVs Percent	Anal Percent Recovery	yzed By· RC
GRO Standard (ICV-1) QC Batch: 51357 Param Fla Chloride	g Units mg/Kg	Date Anal ICVs True Conc.	yzed: 2008-08- ICVs Found Conc.	-12 ICVs Percent Recovery	Anal Percent Recovery Limits	yzed By·RC Date Analyzed
GRO Standard (ICV-1) QC Batch: 51357 Param Fla	g Units mg/Kg	Date Anal ICVs True Conc.	yzed: 2008-08- ICVs Found Conc. 100	-12 ICVs Percent Recovery 100	Anal Percent Recovery Limits 85 - 115	yzed By·RC Date Analyzed
GRO Standard (ICV-1) QC Batch: 51357 Param Fla Chloride Standard (CCV-1	g Units mg/Kg	Date Anal ICVs True Conc. 100 Date Anal	yzed: 2008-08- ICVs Found Conc. 100 yzed: 2008-08	-12 ICVs Percent Recovery 100	Anal Percent Recovery Limits 85 - 115	yzed By RC Date Analyzer 2008-08-1
GRO Standard (ICV-1) QC Batch: 51357 Param Fla Chloride Standard (CCV-1	g Units mg/Kg	Date Anal ICVs True Conc. 100 Date Anal CCVs	yzed: 2008-08- ICVs Found Conc. 100 yzed: 2008-08 CCVs	-12 ICVs Percent Recovery 100 -12 CCVs	Anal Percent Recovery Limits 85 - 115 Anal Percent	yzed By· RC Date Analyze 2008-08-
GRO Standard (ICV-1) QC Batch: 51357 Param Fla Chloride Standard (CCV-1	g Units mg/Kg	Date Anal ICVs True Conc. 100 Date Anal	yzed: 2008-08- ICVs Found Conc. 100 yzed: 2008-08	-12 ICVs Percent Recovery 100	Anal Percent Recovery Limits 85 - 115	yzed By· RC Date Analyze 2008-08-

.

•

	ſ	TraceA	nal	ysi	s,	In	IC.			670	Lubl		, Tex	enue	e, Sur 9424 296	ite 9	5002 B Midt	asin S and, T	Street,	Suite 7970: -6301 -6313	A1		EI	Pas	Sunse o, Te 915) 5 915) 5	kas i	79922	te E 2	8	808 (Ft.	, Worl Tel (8	th, Te 317) 20	/d Wes xas 76 01-5260	116 D	.te 1
		email: lab(s.con	n					Fa 1	ix (80 (800	6) 79) 378	94-12 8-129	298 96		Fax	(432)) 689	-6313			F	ax (9	915) : 88) 58	585-4 38-34	1944 143				1	Fax (8	,17)5	60-433		
Company N		Construction, City, Zip)	tind					Pl	none	#: 	12	2	- <	8	1 -	480	0	Τ	,						ANA											
ddress:	(Stree	et, City, Zip)	/ A	2/			0/8	Fa	ax #:									1.				(Ci	rc	le	or	sp	ec	пу		let	no.	d l	NO.)	4	,
Contact Per	V. Lat	ungo Aur 1	wit A	Û	<u>60 7</u>)	(79	165	E	mail	<u>> </u>		58	1-	- 4	+8	01		-				2001					1								1	ard
ta.		urza.			·				[a]	χĢ	-	p.),,	<u>c (</u>	0.	obcate	obal.	2+	1.00	(02)		10B/	Se Hg													different from standard
nvoice to: / If different	/ from abov	$_{re)}$ Mal	asc.							0		•				-		624	24	TX1005 / TX1005 EXI(C35) RO / DRO / TVHC		90 P	200													ts mo
Project #:								P	rojec	t Nai	ne:								8260B / 624	TVHC		Set	5				625									of fro
Project Loca		uding state):					~		ampl	। २ न कि	gniat	ure:				<u> </u>		8260B	2606	E E		al z	Ba Cd Cr				4 0									ferei
lea.	Cour		1					=		Æ	3	\geq	2			• -		602 /	2/8	DRO		3	S Ha	s		č	8270C		608							ıf dif
		/		S	Ę		MAT	RIX		Р		ERV		Æ		SAMF	PLING	1~1	760		625	S Be	AS AS	ati,	es		8260B / 624	808	31A		ent					Time If 4
		-		# CONTAINERS	Amount			T		Τ	T	Π						8021B	802187602 /	GR0	2	Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200 7	TCLP Metals Ag /	TCLP Semi Volatiles	TCLP Pesticides		GC/MS Vol. 82 GC/MS Semi	PCB's 8082 / 608	Pesticides 8081A / 608	BOD, TSS, pH	Cont	V	N			Lpu
LAB#		FIELD CODE		NTAI		œ.		ß		ĺ.				ш					A A	418.1 / 8015 G	PAH 8270C /	Aetal:	Me	Ser	Ъе		2 S S S S S	80°	cides	1S	Inre	Christ				Turn Around
LAB USE)				Ō	Volume	WATER	SOIL	SLUDGE	2	D NH	1 ₂ SO	NaOH	빙	NONE		DATE	TIME	MTBE	BTEX	Hall	AH	otal		56	5	Ω		S S	esti	8	Moist	4	4			Turn
	0.					╉╼╍╍╂	- .	N N	-+-		+		<u>×</u>	-			I		X	<u>- -</u> X								1-	F		\uparrow	X		-+	-+-	<u>.</u>
69967				42		┝┤	<u>×</u>	┢	+-	+		$\left - \right $	-	-+		8-6-08				-+	+	-+			$\left - \right $	-+	+	+	+-	$\left - \right $		$-\frac{7}{7}$	t + t	-+		
968	ĘΕ		-	1-1			<u>{ </u>	+			+	$\left - \right $	\mathcal{H}	-+			8:51		1	X	┝┣	-+	+-	+-	┼┤	+	+-	+-	┢	$\left \right $	\vdash	-+-	+	-+		
969	FW			ļ ļ		$\left \right $	X				+		$\left\{ \cdot \right\}$			+	8-20	×	*	1	+			+-	+	+		+-	+-	\vdash	┢╍┼	+	1			
90	NE	·		<u> </u>			_	\downarrow					\downarrow				8.5.		X	<u> </u> 						+				$\left - \right $	\vdash		+		-+	
97	Sw																8:30	AL_	4	7						_	_		_	\downarrow	\vdash	;	7-1			
				$\boldsymbol{\Lambda}$																						_					Ц]			
and the second		<u></u>		<u>}_</u> ≁		$\uparrow \uparrow$		\uparrow	-†-	+-	1							1		1															T	
						+		┿┥			+	+					<u> </u>		$\uparrow \uparrow$	+-	†			_				-				1				
					 	+		╉╾┼		+				-+			†	-	$\uparrow \uparrow$		$\left \right $				+		-	\uparrow	+	1		-	++		-	
			······	<u> </u>		$\left - \right $		┼╌┼			+			\vdash				-+	++				-+		+		+	+	+	+			+-+			
Relinquish	ed by:	Company:	Date:	I	me:	Re	ceive			Com	pan	v:	D	ate:	 :	Time	і : т	emp°	c:		ÁB		ŜÊ		RE	MA	RKS	 i:		4	1			L	<u></u>	
	L	Pro 1	Del 2	יי פ			1	D	.(7		-		87	7	9: ¢	e-	15	ا ر.			NĽ														
Relinquish	egiby:	Company:	Date:	T	me:	Re	ceivo	d by:	010	Corr	pan	y:		ate:	<u> </u>	Time		emp°		Intac	$\left(\cdot \right)$	N.				(1					D -					
X4	1 C		-7-05	13	a-)															Heads	páce	<u>. Y I</u>	мĹ	NA)		-	-			anite drite	lnited				
Relinquish	ied by:	Company:	Date:		me:	Re	<i>cejve</i>	d by:		Сол	pan	y:	D	ate:	:	Time	: Т	emp°	c:					<u>, 1</u> 0					•		•	orting				
-	-	· -				$ \zeta $	(X	Λ	7	<u>، _</u>	1	nR	0	20	815	(X)	3.9	X	Logud	Rey	iew.	21	2						eede						

TraceAnal email: lab@tracea	-			67	01 Aberd Lubboo Tel (8 Fax (i	c k, Tex 306) 79 806) 79	as 794 4-1296 34-1298	124 5 8	5002 Bas Midlar Tel (Fax (nd, Te 432) (reet, S xas 7 589-63 689-63	9703 101	2	Te Fa	Paso, el (91 ax (91	Texa 5) 58 5) 58	is 79 5-344 5-49	922 13 44	Eŧ	8808	Ft.	. Worti Tel (81	e Blvd h, Texas (7) 201-1 (7) 560-	5260	 te 180
	-		Pho	ne #:		00) 378 			~						(888) I AI			3 IS R	FO	UF	ST				
Adress: (Street, City, Zip) Ste N. Flagueso AUL Unit A intact Person: Day Gurza			Fax	#:	<u>73</u> /	<u>~ </u>	81	-480	50				(Ci	rcl	e o	r S	pe	cif	y N	Me	tho	d N	lo.)		
ntact Person:	Odessa	T <u>¥ 7</u> 976S	E-m	<u>45 2</u> ail:		8(-	- 48	801	obal.m				20 7											.	-
poice to:				×χ	-p	2.1	<u>c C</u>) obcal	obal.M	+	:35)		108/2	<u>p</u>										.	standard
different from above)										Z	EX (O		Hg 601												
1. m (1 # 222		_	Proj	ect Na						8260B /	002	TZHC	b Se l	3				625							different from
pject Location (including state):			Sam	plets	ignature	:				/ 826	/ TX1	~					624	200	8						Iffere
	SS to	MATH		P	RESER		E	SAM	PLING	3 / 602	002.101 002 / 0200 / 024 18 1 / TX1005 / TX1005 Ex	0 / DRO 325	s Ba Co	2	latiles	S	60B / (Vol. 82	1A / 608		art				Time if d
AB## FIELD CODE	TAINE	~	щ							8021B / (81/T	15 GR	als Ag A	olatiles	emi Vo	esticide	Vol 82	Semi.	es 808	SS, pH	e Conte	Sã		ŀ	i pund
	# CONTAINERS	WATER SOIL AIR	SLUDGE	HCI HNO,	H ₂ SO ₄ NaOH	ICE ICE	NONE	DATE	TIME	MTBE	DIEX 044 1012 / 022 / 0200 / 024 TPH 418 1 / TX1005 / TX1005 Ext(C35)	PAH 8015 GRO /	Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200 7 TCI D Motols Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol 8260B	GC/MS Semi. Vol. 8270C / 625 PCR's 8082 / 608	Pesticides 8081A	BOD, TSS, pH	Moisture Content	Charde			Turn Around
967 86	400	X				X	-	8-6-28		2 U X						- 02			- <u>a</u>	Ē	2	.x		┟──┼╹	- 1
968 F F	,	1],		1	BUSA			.х							Τ			• X			
969 FW 970 NE						$\left \right $		17	8-20-	•	ĸ	·*										1			
900 NE						\mathbb{N}	1		8.75A	- `	K	·*										• *			
99 BSW								$ \rangle$	8:3DA		+	.*										- X			
															_	•									
inquished by: Company: Date:	Time:	Received	by: //	Com	pany:	Dat		Time:	Tem	p°c:		LAE			F	REM	ARK	S:							
Der Plad Blog	, 	Sala	Luci	\mathcal{Q}	·		-7	<u> </u>		رح		- O	NLY		R.										
indershed by: Company: Date:	Time: ጌ ጉ	Received	oy:	Com	pany:	Dat	te:	Time:	Iem	p°c:	Inta	Û	N		5		Dry	Weig	iht Ba	asıs I	Requi	red			
inquished by: Company: Date:	Time:	Received	by:		pany:	Dat	~	Time:		-		dspace					Che	RP Re eck lf	Spec	cial R	eporti	ing			
		Xe/	UZ	'h	-	280	JK	\$150	W 3	.8	Log	in*Rev	iew_/		25 25	_	Lim	uts Ari	e Ne	eded		-			

