

October 27,2008

, i_n

RECEIVED

DEC 22 2008

HOBBSOCD

AMAP'LLO 921 Horth Bivins Amarillo, Texas 79.07 Phone 306 4677.667 Fax 306.467.0622

AUST(N 3003 Ton Gary Cove Building C-100 Round Rock, Texas 78664 Phene 5 2088,3428 Fax 5.2,989,3487

MIDLAND #9 East industrial Loop Midland, Toras 78701 PFone432.522 2133 Fox 432.522.2130

NEW 3RAUNEELS 707 N. Walinut-Ave, Suite 209 New Braumfols, Toxas 79 30 Phona 210,579,0235 Fax 210,565 2191

TULSÅ 9906 East 43st Silcol, Sro. G Tulsa, UK 74146 Phone 913.742(0371 Fax 918.742.0376

HOBBS 318 East Taylor Strock Hobbs, New Mexico 88241 Pfione 305,393,4261 Fax 505 393,4659,

ENV RONMENTAL CONSULTING ENGINEFRING DR L.ING CONSTRUCTION EMITRGENCY RESPONSE

Tol! Free: 866.742:0742 www.talonipe.com Paul Kautz New Mexico Oil Conservation Division District 1 Office 1625 French Dr. Hobbs, New Mexico 88240

S.

RE: Request for closure of the Osudo "9" State Com #2 pit.

In August of 2008 Talon/LPE was contracted by the Mewbourne Oil Company to perform the pit closure activities at the Osudo "9" State Com #2, API# 30-025-38903, Unit C, Sec 9-T21S-R35E, in Lea county New Mexico. The C-144 for this pit closure was submitted to Chris Williams and approved on August 18, 2008.

Talon/LPE completed this pit closure by excavating and hauling the drill cuttings from the brine section of the pit to Lea Land Disposal Facility (permit number WM-01-035). Copies of the waste manifests will be on file at the Talon/LPE office located at 318 E Taylor in Hobbs, New Mexico. After excavation of the brine section was completed, Talon/LPE collected a five point composite sample on August 28, 2008. The sample was sent to Trace Analysis and analyzed in compliance with 19.15.17.13 NMAC.

The remainder of the drill cuttings were mixed at no more than a 3:1 ratio to stabilize the cuttings in preparation for trench burial. To mix the material it was moved to the west side of the pit. The east side floor was exposed and cleaned. After the east side of the pit was exposed, a five point composite sample was collected on August 28, 2008 by Talon/LPE and sent to Trace Analysis to be analyzed in compliance with 19.15.17.13 NMAC. After mixing the drill cuttings Paul Kautz was contacted to witness sampling of the pit contents. Talon/LPE collected a five point composite sample of the mixed drill cuttings on August 28, 2008. The samples were sent to Trace Analysis and analyzed in compliance with 19.15.17.13 NMAC. Analytical results indicated that the drill cuttings had exceeded the chloride limits set by the New Mexico Oil conservation division.

Talon/LPE remixed the drill cuttings not above the 3:1 ratio and re-sampled the drill cuttings on September 11, 2008. After reviewing the analytical for results the remixed drill cuttings it was determined that they could be buried on site. Talon/LPE excavated a burial cell approximately150'x40'x20' in the east side of the existing reserve pit. After lining the burial cell with a 20 mil liner, the drill cuttings were placed in the burial cell and capped with a 20 mil liner. Once the drill cuttings were removed from the west side of the reserve pit Eb Taylor with Talon/LPE collected two samples on September 26, 2008 from the floor and sent them to Trace Analysis to be analyzed in compliance with 19.15.17.13 NMAC. After analytical was reviewed the pit was backfilled and Talon/LPE will seed the location with Homesteaders Choice seed mix.

No deed amendment is required due to the fact that the surface owner is the state of New Mexico, Mewbourne Oil Company will place the burial marker at 32° 29' 55.87"N 103° 22' 27.30"W

After reviewing the attached documents and analysis by the NMOCD, Talon/LPE, and Mewbourne Oil Company we are requesting that this pit be considered closed.

Sincerely, ઇન્ટે જેટ

Eb Taylor New Mexico Division Manager Talon/LPE

1) 7		
District I 1625 N French Dr, Hobbs, NM 88240 District II 1301 W Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St Francis Dr, Santa Fe, NM 87505	State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	For temporary pits, closed-loop systems, and below-grade tanks, submit to the appropriate NMOCD District Office. For permanent pits and exceptions submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.
neceive _{Pit. C}	losed-Loop System, Below-Grade 7	Fank or
HOBBS OF Loging below-grade tank, or propos	t of a pit, closed-loop system, below-grade tank, o re of a pit, closed-loop system, below-grade tank, o reation to an existing permit re plan only submitted for an existing permitted or sed alternative method	r proposed alternative method or proposed alternative method non-permitted pit, closed-loop system,
Instructions: Please submit one applica	tion (Form C-144) per individual pit, closed-loop syste	em, below-grade tank or alternative request
nvironment. Nor does approval relieve the operator	of its responsibility to comply with any other applicable go	n pollution of surface water, ground water or the vernmental authority's rules, regulations or ordinances
	OGRID #:	14744
Address:PO BOX 5270; HOBBS, NEW MEZ	XICO 88241 00000 #	
racing of well name:OSODO 9 STATE CON	4 02	
API Number:30-025-38903	OCD Permit Number:	21. 00791
U/L or Qtr/QtrC Section 9	Township21 S Range35 E C	
Center of Proposed Design: Latitude N32' 29' 5	5.87"LongitudeW103° 22' 27.	20" LEA
Surface Owner: 🗌 Federal 🖾 State 🗌 Private 🗌	Tribal Trust or Indian Allotment	30 NAD: 🖾 1927 🛄 1983
2.		
Pit: Subsection F or G of 19.15.17.11 NMA	С	
Temporary: 🛛 Drilling 🔲 Workover		
Permanent Emergency Cavitation	P&A 20mil	
Lined 🗌 Unlined Liner type: Thickness	mil 🔲 LLDPE 🛛 HDPE 🗌 PVC 🗌 Oth	er
String-Reinforced		
Liner Seams: 🛛 Welded 🗌 Factory 🗋 Other	Volume: 15000 bbl	Dimensions: L_125 x W_120 x D_6
Drying Pad Above Ground Steel Tanks [Lined Unlined Liner type: Thickness	ell 🔲 Workover or Drilling (Applies to activities which	2.1
Below-grade tank: Subsection I of 19 15.17. Volume:bbl Type of flu Tank Construction material Secondary containment with leak detection Visible sidewalls and liner Visible sidewa	11 NMAC iid:	flow shut-off
5.		
<u>Alternative Method</u> :		
Submittal of an exception request is required Exce	ptions must be submitted to the Santa Fe Environmenta	I Bureau office for consideration of approval

Fencing: Subsection D of 19.15 17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)

Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church)

Four foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify

Netting: Subsection E of 19 15.17.11 NMAC (Applies to permanent pits and permanent open top tanks)

Screen Netting Other

Monthly inspections (If netting or screening is not physically feasible)

Signs: Subsection C of 19.15.17 11 NMAC

H2"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.3.103 NMAC

Administrative Approvals and Exceptions:

Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.

Please check a box if one or more of the following is requested, if not leave blank:

Administrative approval(s): Requests must be submitted to the appropriate division district or the Santa Fe Environmental Bureau office for consideration of approval.

Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.

01

Siting Criteria (regarding permitting): 19.15.17.10 NMAC

Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appropriate district office or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. Applicant must attach justification for request. Please refer to 19.15.17.10 NMAC for guidance. Siting criteria does not apply to drying pads or above-grade tanks associated with a closed-loop system.

 Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells 	Yes No
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site 	🗋 Yes 🗌 No
 Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to temporary, emergency, or cavitation pits and below-grade tanks) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No ☐ NA
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to permanent pits) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No ☐ NA
 Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site 	🗌 Yes 🗌 No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality	🗌 Yes 🗌 No
 Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site 	🗌 Yes 🗌 No
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 	🗌 Yes 🗌 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	🗋 Yes 🗌 No
Within a 100-year floodplain. - FEMA map	🗌 Yes 🗌 No

Temporary Pits, Emergency Pits, and Below. <u>Je Tanks Permit Application Attachment Checking</u> : Subsection B of 19.15 Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that attached.	5.17.9 NMAC the documents are
 Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 N Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15 17.11 NMAC 	MAC 15.17.9 NMAC
Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C and 19.15.17.13 NMAC	C of 19.15.17.9 NMAC
Previously Approved Design (attach copy of design) API Number or Permit Number:	
12. Closed-loop Systems Permit Application Attachment Checklister Schemin Production	
Instructions: Each of the following items-must be attached to the application. Please indicate, by a check mark in the box, that attached.	46.4
Geologic and Hydrogeologic Data (only for on-site closure) - based upon the requirements of Paragraph (3) of Subsection B Siting Criteria Compliance Demonstrations (only for on site closure) - based upon the requirements of Paragraph (3) of Subsection B (
Operating and Maintenance Plan - based upon the amount of the interview of the second	
and 19.15.17.13 NMAC	C of 19.15.17.9 NMAC
Previously Approved Design (attach copy of design) API Number:	
Previously Approved Operating and Maintenance Plan API Number:	OD system that use
above ground steel tanks or haul-off bins and propose to implement waste removal for closure)	-p eyerem mai use
Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Nuisance or Hazardous Odors, including H ₂ S, Prevention Plan Erregency Response Plan Oil Field Waste Stream Characterization Monitoring and Inspection Plan Errosion Control Plan Closure Plan - based upon the appropriate requirements of 19.15.17.9 NMAC and 19.15.17.13 NMAC	he documents are
Proposed Closure: 19.15.17 13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.	
Alternative Alternative Cavitation P&A Permanent Pit Below-grade Tank Closed-log	op System
Proposed Closure Method: 🛛 Waste Excavation and Removal	
 Waste Removal (Closed-loop systems only) On-site Closure Method (Only for temporary pits and closed-loop systems) 	
I I III DIGUE DII I I Instite French Durist	
Alternative Closure Method (Exceptions must be submitted to the Santa Fe Environmental Bureau for Wasta Exceptions and D	consideration)
 Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19 15 17 13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19 15 17 13 NMAC 	
Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19 15 17 13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC	

.

1

16. Waste Removal Closure For Closed-loop Syster That Utilize Above Ground St Instructions: Planse indentify the facility of facilities for the dimensional fille				
Instructions: Please indentify the facility or facilities for the disposal of liquids, dr facilities are required.	illing fluids and drill cuttings. Use attachment if	D NMAC) more than two		
Disposal Facility Name: D	Disposal Facility Permit Number			
Disposal Facility Name D	Disposal Facility Name Disposal Facility Permit Number:			
Will any of the proposed closed-loop system operations and associated activities occu Yes (If yes, please provide the information below) INO	or on or in areas that will not be used for future ser	vice and operations'		
Required for impacted areas which will not be used for future service and operations Soil Backfill and Cover Design Specifications based upon the appropriate regulation Plan - based upon the appropriate requirements of Subsection I of Site Reclamation Plan - based upon the appropriate requirements of Subsection 	equirements of Subsection H of 19.15.17.13 NMA	С		
17. <u>Siting Criteria (regarding on-site closure methods only)</u> : _19.15.17.10 NMAC.				
Instructions: Each siting criteria requires a demonstration of compliance in the clo provided below. Requests regarding changes to certain siting criteria may require a considered an exception which must be submitted to the Santa Fe Environmental B demonstrations of equivalency are required. Please refer to 19.15.17.10 NMAC for	osure plan. Recommendations of acceptable sound administrative approval from the appropriate dist			
Ground water is less than 50 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data of	btained from nearby wells	□ Yes ⊠ No □ NA		
Ground water is between 50 and 100 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data of	btained from nearby wells	□ Yes ⊠ No □ NA		
 Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data of 	btained from nearby wells	Yes 🗍 No		
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significate (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site 	cant watercourse or lakebed, sinkhole, or playa	Yes 🛛 No		
 Within 300 feet from a permanent residence, school, hospital, institution, or church in Visual inspection (certification) of the proposed site; Aerial photo; Satellite im 	existence at the time of initial application.	🗌 Yes 🛛 No		
 Within 500 horizontal feet of a private, domestic fresh water well or spring that less that watering purposes, or within 1000 horizontal feet of any other fresh water well or spring - NM Office of the State Engineer - iWATERS database; Visual inspection (certified) 	ng, in existence at the time of initial application. tification) of the proposed site	🗌 Yes 🛛 No		
 Within incorporated municipal boundaries or within a defined municipal fresh water wadopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; Written approval of the municipality of the municipality. 	ell field covered under a municipal ordinance	🗌 Yes 🛛 No		
Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual in		🗌 Yes 🛛 No		
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and 		🗌 Yes 🛛 No		
 Vithin an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Society; Topographic map 		🗌 Yes 🛛 No		
Vithin a 100-year floodplain. - FEMA map		🗌 Yes 🛛 No		
 Dn-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the followy a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of Sub Proof of Surface Owner Notice - based upon the appropriate requirements of Sub Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of a drying pad) - Protocols and Procedures - based upon the appropriate requirements of 19.15.17.1 Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.1 Waste Material Sampling Plan - based upon the appropriate requirements of the properties of the properti	nents of 19.15.17.10 NMAC section F of 19.15.17.13 NMAC priate requirements of 19.15 17.11 NMAC based upon the appropriate requirements of 19.15			

Waste Material Sampling Plan - based upon the appropriate requirements of Subsection F of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards cannot be achieved) Soil Cover Design - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

.

Opticular Application Certification: Thereby certify that the information submitted with this application is true, accarate and complete so the best of my knowledge and belief. Name (Phint) CHARLES MARTN Title: Beginzer: Signature: Beginzer: Construction: Marce (Phint) Charles & Marchan Date: Signature: Beginzer: Construction: Signature: Const	10		4495
Name (Print): CHARLES MARTIN Title:			
Signature: Bate: 8/15/2008 e-mail address			
e-mail address	Name (Print):	CHARLES MARTIN	Title:Engineer
Bit CD Approval: Permit Application (including closure plan) Closure Plan (only) COC Conditions (see attachment) OCD Representative Signature:	Signature: Charle	2. Muto	Date:8/15/2008
200 ODD Approval: □ Permit Application (including closure plan) ☑ Closure Plan (anly) □ OCD Conditions (see attachment) OCD Representative Signature:	e-mail address	cmartin@mewbourne.com	Telephone:(575) 393-5905
OCD Representative Signature:	OCD Approval: Pe	rmit Application (including closure	plan) X Closure Plan (only) C OCD Conditions (see the low 1)
11. Closure Report (required within 60 days of closure completion): Subsection K of [9,15,17,13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report Instructions: Operators are required to obtain an approved closure plan has been obtained and the closure activities have been completed. Implementation: Implementation: Plant Implementation: Implementation: Implementation: Implementation: Implement	OCD Representative Si	gnature: Chis We	Chiann Approval Date: 8/19/08
11. Closure Report (required within 60 days of closure completion): Subsection K of [9,15,17,13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report File closure report is required to be submitted to the division within 60 days of the completion Date:	Title: Dest.	Supervior	OCD Permit Number: P1- 00296
The set Method: Solution of the set of the	Closure Report (require Instructions: Operators The closure report is req	are required to obtain an approved uired to be submitted to the division	d closure plan prior to implementing any closure activities and submitting the closure report n within 60 days of the completion of the closure activities. Please do not complete this a obtained and the closure activities have been completed.
Closure Method: □ Maste Excavation and Removal ∑ On-Site Closure Method □ Alternative Closure Method □ Waste Removal (Closed-loop systems only) If different from approved plan, please explain. □ □ 23. Closure Report Regarding Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: 10. Instructions: Flease indentify the facility of facilities for where the liquids, drilling fluids and drill cuttings were disposed. Use attachment if more that 10. Disposal Facility Name: □ 10. Disposal Facility Name: □ 10. Disposal Facility Name: □ 10. Disposal Facility Name: □ Disposal Facility Name: 10. Disposal Facility Name: □ Disposal Facility Name: □ 10. Disposal Facility Name: □ Disposal Facility Name: □ 10. Disposal Facility Name: □ No 80. Reclamation (Photo Documentation) No 81. Reclamation (Photo Documentation) No 82. Site Reclamation Rates and Seeding Technique 1 42. Costract Report Attachment Checklist: Instructions: Each of the following items must be att			Closure Completion Date: 9139108
wo facilities were utilized. Disposal Facility Name:	Closure Method: Waste Excavation and If different from appro	l Removal 🔀 On-Site Closure M oved plan, please explain.	Aethod Alternative Closure Method Waste Removal (Closed-loop systems only)
Disposal Facility Name:	wo facilities were utilized	l	here the liquids, artiting fluids and drill cuttings were disposed. Use attachment if more that
Disposal Facility Parmit Number:	Disposal Facility Name:		Disposal Facility Permit Number:
Were the closed-loop system operations and associated activities performed on or in areas that will not be used for future service and operations? □ Yes (If yes, please demonstrate compliance to the items below) □ No □ Required for impacted areas which will not be used for future service and operations: □ Site Reclamation (Photo Documentation) □ Soil Backfilling and Cover Installation □ Re-vegetation Application Rates and Seeding Technique Construct Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Please indicate, by a check mark in the box, that the documents are attached. Proof of Closure Notice (surface owner and division) Proof of Closure Notice (surface owner and division) ○ Proof of Closure Notice (surface owner and division) ○ Proof of Closure Notice (surface owner and division) ○ Proof of Closure Notice (surface owner and division) ○ Proof of Closure Notice (surface owner and division) ○ Proof of Closure Notice (surface owner and division) ○ Proof of Closure Notice (surface owner and time to closure) ○ Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation ○ Re-vegetation Application Rates and Seeding Technique ○ Site Reclamation (Photo Documentation) ○ n-site Closure Location: Latitude 3 ○ A' 55.87" N Longitude 103° 55' 57' 30' N NAD: □1927 □ 1983 <td>Disposal Facility Name:</td> <td></td> <td>Disposal Facility Permit Number</td>	Disposal Facility Name:		Disposal Facility Permit Number
Site Reclamation (Photo Documentation) Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Constructions are attached. Proof of Closure Notice (surface owner and division) Proof of Deed Notice (required for on-site closure) Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude <u>3</u> <u>A</u> <u>SS.87</u> " <u>N</u> Longitude <u>103</u> <u>D</u> <u>J</u> <u>J</u> <u>U</u> <u>NAD</u> : <u>11927</u> 1983 Perator Closure Certification: hereby certify that the information and attachments submitted with this closure report is true, accurate and complete to the best of my knowledge and elife. I also certify that the closure complies with all applicable closure requirements and conditions specified in the approved closure plan. ame (Print): <u>Charles Martin</u> Title: <u>Graditeer</u> gnature: <u>Date Martin</u> Date: <u>12-17-08</u>	Yere the closed-loop syste Yes (If yes, please of	em operations and associated activit lemonstrate compliance to the items	ties performed on or in group that will work a start of the start of t
Losure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Please indicate, by a check Description Proof of Closure Notice (surface owner and division) Proof of Deed Notic (required for on-site closure) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicable) Waste Material Sampling Analytical Results (required for on-site closure) Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude 32 Al SS.87" N_Longitude 103° 20' 21.30" W NAD: [1927] 1983 Perator Closure Certification: hereby certify that the information and attachments submitted with this closure report is true, accurate and complete to the best of my knowledge and ellief. I also certify that the closure complies with all applicable closure requirements and conditions specified in the approved closure plan. amme (Print): Charles Martin Title: Engineer gnature: Date: [2 - 17 - 08]	Soil Backfilling and	hoto Documentation) Cover Installation	
mail address: CMartin @ Membrusha and a contraction of the	Iosure Report Attachme ark in the box, that the ark Proof of Closure No Proof of Closure No Proof of Deed Notic Confirmation Sample Confirmation Sample Waste Material Sam Disposal Facility Na Soil Backfilling and Ste Reclamation (PF) On-site Closure Loc Perator Closure Certific Disposal Facility that the info Disposal Facility that the info Disposal Facility that the info Site Reclamation (PF) On-site Closure Certific Disposal Facility that the info Disposal Certify that the info D	tice (surface owner and division) e (required for on-site closure) e closures and temporary pits) ing Analytical Results (if applicable pling Analytical Results (required f me and Permit Number Cover Installation cation Rates and Seeding Technique toto Documentation) ation: Latitude <u>32</u> <u>9</u> <u>9</u> <u>3</u> <u>55</u> . <u>ation:</u> eclosure complies with all applicab thes Martin Luc f. Martin	e $87"N$ Longitude 103° 33° 33° 33° 33° 33° 33° 33° NAD: $1927 1983$ I with this closure report is true, accurate and complete to the best of my knowledge and le closure requirements and conditions specified in the approved closure plan. Title: $5rgineer$ Date: $12-17-08$
	nail address: CMa	rtin @ mewhan	

On the 21^{st} day of M_{ag} , 2008 Mewbourne Oil Co. visually inspected the <u>Oscielo</u> "9" <u>Skie</u> "2 location in Unit Letter <u>C</u> of Sec<u>9</u>, T<u>21</u> S, R<u>35</u> E, of <u>Lec</u> County, NM with the API # <u>30</u> - cus - <u>38903</u>.

This is to certify that upon visual inspection of the above mentioned location there are no permanent residences, schools, hospitals, institutions or churches within 300 feet. The location is not within 500 feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, nor within 1000 horizontal feet of any other fresh water well or spring, nor within 500 feet of a wetland, nor within 300 feet of a continuously flowing water course, nor within 200 feet of any other significant watercourse or lakebed, sinkhole or playa lake (measured from the ordinary high-water mark).

Signature: Charles & Maita

Date: 8-18-08

August 14, 2008

Larry Johnson NMOCD District 1 Office 1625 N. French Dr Hobbs, New Mexico

RE: **Osudo "9" State Com #2** – Temporary Pit Closure Request API: 30-025-38903 Unit C Sec 9–T21S-R35E 660' FNL & 1980' FWL

Site Ranking Score: 0
Depth to Ground Water: 100-125'
100 Year Flood Plain: No
Potash Area: No per R-111P

Surface Owner: State of New Mexico Analytical Testing: Chlorides, BTEX, TPH, GRO, DRO Primary Land Use: Ranching and Oil & Gas Production

NOTE: THIS TEMPORARY PIT WAS ORIGIANLLY PERMITTED AND DRILLED UNDER <u>PIT RULE 50</u>

Pursuant to Rule 19.15.17.10 NMAC (a/k/a Pit Rule 17) of the New Mexico Oil Conservation District of the State of New Mexico regulatory requirement for temporary pit closure, please accept the following documentation for request of final closure of the temporary pit for the aforementioned location.

Talon/LPE (Talon) has been contracted by Mewbourne Oil Company (Mewbourne) to perform pit closure activities on the aforementioned location. Talon/LPE and Mewbourne wishes to purpose the following hybrid closure procedure for the aforementioned temporary pit.

- Waste Removal: In compliance with 19.15.17.13 NMAC, Talon will excavate all drill cuttings from the "duck pond" and transport to Lea Land Disposal Facility, Permit No. WM-1-035. The approximate amount of material will be 500 yards of brine saturated cuttings. Upon excavation of the "duck pond" all applicable soil testing will be performed pursuant to Pit Rule 17 to verify that the limits, which have been set by the NMOCD, have been obtained. A copy of the analytical data will be attached to the Final Report.
- Burial Trench: In compliance with 19.15.17.13 NMAC, Talon will stiffen the remaining "reef" area to a 3:1 ratio and place in a lined 20mil In-situ burial cell with approximate dimensions of 150x40x20. A 20mil "lid" will be placed on top of the burial cell to seal in the impacted material. Upon excavation of the "reef" all applicable soil testing will be performed pursuant to Pit Rule 17 to verify the limits, which have been set by the NMOCD, have been obtained. A copy of the analytical data. (Note: If the burial contents from the reef area are not at or below the required Chloride and TPH levels, this area will then be transported to Lea Land Disposal Facility, Permit No. WM-1-035.)
- Sampling Plan (floor): In compliance with Subsection F of 19.15.17.13 NMAC two five point composite samples will be taken from the floor of the excavation. One composite sample will be obtained from the "duck pond" area and the second composite will be obtained from the "reef" area. The NMOCD with be notified 48 hours prior to sampling. The following analytical tests/methods will be performed by Trace Analysis:

٠	Chlorides:	4500B
•	Benzene:	8021B
•	BTEX:	8021B
•	GRO/DRO:	8015M
•	TPH:	418.1

• Sampling L____ (burial contents): In compliance with Subjection F of 19.15.17.13 NMAC a five point composite sample will be taken from the stiffened burial contents of the excavation. The NMOCD with be notified 48 hours prior to sampling. The following analytical tests/methods will be performed by Trace Analysis:

		EPA	TEST
٠	Chlorides:	1312	•
٠	TPH:	418.1	

- Soil Cover Design: In compliance with Subsection H of 19.15.17.13 NMAC four feet of native material will be placed over the burial cell with a minimum of one foot of top soil to ensure re-vegetation. The excavated pit area will be backfilled with three foot of native material and a minimum of one foot of topsoil.
- **Re-vegetation Plan:** In compliance with Subsection I of 19.15.17.13 NMAC the area will be re-seeded with an approved seed mixture "that equals 70% of the native perennial vegetative cover" to re-establish native vegetation.

. . . .

- Site Reclamation Plan: In compliance with Subsection I of 19.15.17.13 NMAC the impacted and disturbed area will be re-contoured to surrounding terrain.
- **Marker:** A steel marker with be cemented in the ground at the center of the burial trench. All required information will be permanently listed on the marker
- **Deed:** In compliance with 19.15.17.13 NMAC a deed will be filed with the county clerk and an approved copy will be attached to the final report.
- C-105 w/plat: In compliance with 19.15.17.13 NMAC the C-105 and plat will be attached to the final report.

A copy of the Surface Owners Notification has been attached for documentation of compliance with Subsection F of 19.15.17.13 NMAC. A Topographical map and Satellite photo has been attached to verify that this location is not within any watercourse or wetlands area. Pursuant to Order R-111P, this area has also been cleared from the subsurface mining area. A copy of a Hydrological map and information from the iWaters Database has been attached as documentation for water depth and domestic/stock watering purposes. A copy of the FEMA 100-year Flood Plain map is not available for this area. Verbal verification has been obtained to verify this area is not within any municipal fresh water field.

Please review the attached documentation and you may contact Charles Martin of Mewbourne Oil Company at 575-441-2081 or Shelly J. Tucker of Talon/LPE at 575-706-7234 with any questions or concerns.

Sincerely, she

- -

-- -

Shelly J. Tucker⁰ Project Manager Talon/LPE

Attachments:

- 1. Surface Owner Notification letter
- 2. Diagram of burial cell
- 3. Diagram of temporary pit
- 4. Hydrogeologic Data (iWaters, Water Map)
- 5. Topographical Map
- 6. Satellite Image

/sjt

Mewbourne Oil Company - Paloma 20 State Com 01

August 14, 2008

Thaddeus Kostrubala New Mexico State Land Office PO Box 1148 Santa Fe, New Mexico 87501

RE: Osuda 9 State Com 02 – Temporary Pit Closure Surface Owner Notification API: 30-025-38903 Unit C Sec 9–T21S-R35E 660' FNL & 1980' FWL

Mr. Kostrubala:

This letter is to notify the State of New Mexico, which is listed as the surface owner of the aforementioned location, that Talon/LPE (Talon) has been contracted by Mewbourne Oil Company (Mewbourne) to perform pit closure activities on the referenced location. Pursuant to Rule 19.15.17.10 NMAC (a/k/a Pit Rule 17) of the New Mexico Oil Conservation District of the State of New Mexico (NMOCD), Talon/LPE and Mewbourne have filed the required documentation with the NMOCD to close this reserve pit. A portion of this reserve pit will be buried in an in-situ burial cell and a portion will be excavated and transported to Lea Land Disposaly Facility (Permit No. WM-1-035).

NM-01-0035

If you should have and questions or concerns, please feel to contact Charles Martin of Mewbourne Oil Company at 575-441-2081 or Shelly J. Tucker of Talon/LPE at 575-706-7234 with any questions or concerns.

Sincerely,

Spring Juelen

Shelly J. Tucker Project Manager Talon/LPE

/sjt

DISTRICT I 1825 N. French Dr., Hobbs, NM 88240 DISTRICT II 1301 W. Grand Avenue, Artesia, NM 88210 ·• *

•

. .

.

Г

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410

DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NH 87505 State of New Mexico Energy, Minerals and Natural Resources Department

Form C-102 Revised October 12, 2005

Submit to Appropriate District Office OIL CONSERVATION DIVISION 1220 South St. Francis Dr. State Lease - 4 Copies Fee Lease - 3 Copies Santa Fe, New Mexico 87505

~

D AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30 UPS	imper SIC) <u>}</u>		Pool Code			Pool Name		
Property Cod	ie		1		Property N SUDO "9"	Name STATE			umber
OGRID No.		<u> </u>		(Operator N			2	
L				MEWB		COMPANY		Eleva 362	
	2				Surface Lo	ocation			
UL or lot No. S C	ection 9	Township	Range	Lot Idn	Feet from the	North/South lin	e Feet from the	East/West line	County
	9	21 S	35 E		660	NORTH	1980	WEST	LEA
UL or lot No. S					ation If Dif	ferent From S	urface		
	ection	Township	Range	Lot Idn	Feet from the	North/South lin	e Feet from the	East/West line	County
Dedicated Acres	Joint or	Infill Con	asolidation	Code Ord	ler No.				
NO ALLOWA	BLE WI	ILL BE AS	SIGNED ON-STAN	TO THIS C DARD UNI	COMPLETION T HAS BEEN	UNTIL ALL INT APPROVED BY	ERESTS HAVE BE THE DIVISION	EN CONSOLIDA	TED
				SPC-N.: 54 E.: 75	3*22'27.30"		I hareby cor contained herein the best of my in this organization and including the location pursuan of such a miner a voluntary pooli- compulsory pooli- the division. Signature Printed Name SURVEYOR I hereby certify to on this plat was actual surveys in supervison and correct to the MAY Date Survey Signature Signa		ation sie to ond that ing th the old an owner t. or to nitered by Date ON a shown roles of niter my

Osudo 9 State # 2

۷.

-

-

: :

Report Date: September 12, 2008 MEWBOU030PIT

Summary Report

Shelly Tucker Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

• ; e

Report Date: September 12, 2008

Work Order: 8082929

Project Name: OSUDO 9 State #2 Project Number: MEWBOU030PIT

<i>~</i> .			Date	Time	Date
Sample	Description	Matrix	\mathbf{Taken}	Taken	Received
172385	Duck Pond	soil	2008-08-28	12:04	2008-08-29
172386	BH-1	soil	2008-08-28	12:13	2008-08-29
172387	RH-2	soil	2008-08-28	12:18	2008-08-29
172388	Insitu Cuttings	soil	2008-08-28	12:40	2008-08-29

		BTEX				TPH 418.1	TPH DRO	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	TRPHC	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
172385 - Duck Pond	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<10.0	<50.0	<1.00
172386 - BH-1	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<10.0	<50.0	<1.00
172387 - RH-2	< 0.0100	< 0.0100	< 0.0100	<0.0100		<10.0	<50.0	<1.00
172388 - Insitu Cuttings						12.0	20010	1.00

Sample:	172385 -	Duck	Pond	
---------	----------	------	------	--

Param	Flag	Result	Units	\mathbf{RL}
Chloride		126	mg/Kg	3.25

Sample: 172386 - BH-1

Param	Flag	Result	Units	\mathbf{RL}
Chloride		176	mg/Kg	3.25

Sample: 172387 - RH-2

continued ...

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 — This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: September 12, 2008 MEWBOU030PIT		Work Order: 8082929 OSUDO 9 State #2		Page Number: 2 of 3	
sample 172387 cor	ntinued				
Param	Flag	Result	Units	RL	
Param	Flag	Result	Units	RL	
Chloride		71.6	mg/Kg	3.25	

Sample: 172388 - Insitu Cuttings

Param	Flag	\mathbf{Result}	Units	\mathbf{RL}
SPLP Silver		< 0.00300	mg/L	0.00300
SPLP Arsenic		< 0.0100	mg/L	0.0100
SPLP Barium		0.385	mg/L	0.100
SPLP Cadmium		< 0.00500	mg/L	0.00500
SPLP Chloride		1320	mg/L	0.500
SPLP Cyanide		$<\!2.00$	mg/Kg	2.00
SPLP Fluoride		< 0.200	mg/L	0.200
SPLP Mercury		< 0.000200	mg/L	0.000200
Nitrate-N		< 0.200	mg/L	0.200
Naphthalene		< 0.000200	mg/L	0.000200
Acenaphthylene		< 0.000200	mg/L	0.000200
Acenaphthene		<0.000200	mg/L	0.000200
Dibenzofuran		< 0.000200	mg/L	0.000200
Fluorene		< 0.000200	mg/L	0.000200
Anthracene		< 0.000200	mg/L	0.000200
Phenanthrene		< 0.000200	mg/L	0.000200
Fluoranthene		< 0.000200	mg/L	0.000200
Pyrene		< 0.000200	mg/L	0.000200
Benzo(a)anthracene		< 0.000200	mg/L	0.000200
Chrysene		< 0.000200	mg/L	0.000200
Benzo(b)fluoranthene		< 0.000200	mg/L	0.000200
Benzo(k)fluoranthene		< 0.000200	mg/L	0.000200
Benzo(a)pyrene		<0.000200		0.000200-
Indeno(1,2,3-cd)pyrene		< 0.000200	8/ mg/L	0.000200
Dibenzo(a,h)anthracene		< 0.000200	mg/L	0.000200
Benzo(g,h,i)perylene		< 0.000200	mg/L	0.000200
SPLP Lead		< 0.0100	mg/L	0.0100
Total PCB		< 0.000500	mg/L	0.000500
Aroclor 1016 (PCB-1016)		< 0.000500	mg/L	0.000500
Aroclor 1221 (PCB-1221)		< 0.000500	mg/L	0.000500
Aroclor 1232 (PCB-1232)		< 0.000500	mg/L	0.000500
Aroclor 1242 (PCB-1242)		< 0.000500	mg/L	0.000500
Aroclor 1248 (PCB-1248)		< 0.000500	mg/L	0.000500
Aroclor 1254 (PCB-1254)		< 0.000500	mg/L	0.000500
Aroclor 1260 (PCB-1260)		< 0.000500	mg/L	0.000500
Aroclor 1268 (PCB-1268)		< 0.000500	mg/L	0.000500
SPLP Selenium		< 0.0500	mg/L	0.0500
SPLP U		< 0.0500	mg/L	0.0500
/inyl Chloride		<1.00	$\mu g/L$	1.00
			P 6/ 2	

continued ...

---- ----

.

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

.

Report Date: September 12, 2008	Work Order: 8082929	Page Number: 3 of 3
MEWBOU030PIT	OSUDO 9 State #2	

sample 172388 continued ...

Param	Flag	Result	Units	RL
1,1-Dichloroethene		<1.00	$\mu g/L$	1.00
Methylene chloride	1	8.23	$\mu { m g}/{ m L}$	5.00
1,1-Dichloroethane		<1.00	$\mu { m g/L}$	1.00
1,2-Dichloroethane (EDC)		<1.00	$\mu { m g}/{ m L}$	1.00
Chloroform		<1.00	$\mu g/L$	1.00
1,1,1-Trichloroethane		<1.00	$\mu { m g}/{ m L}$	1.00
Benzene	•	<1.00	$\mu { m g}/{ m L}$	1.00
Carbon Tetrachloride		<1.00	$\mu { m g}/{ m L}$	1.00
Trichloroethene (TCE)		<1.00	$\mu \mathrm{g/L}$	1.00
Toluene		1.43	$\mu { m g}/{ m L}$	1.00
1,1,2-Trichloroethane		<1.00	$\mu { m g}/{ m L}$	1.00
1,2-Dibromoethane (EDB)		<1.00	$\mu g/L$	1.00
Tetrachloroethene (PCE)		<1.00	$\mu { m g}/{ m L}$	1.00
Ethylbenzene		<1.00	$\mu { m g}/{ m L}$	1.00
m,p-Xylene		<1.00	$\mu g/L$	1.00
o-Xylene		<1.00	$\mu g/L$	1.00
1,1,2,2-Tetrachloroethane		<1.00	$\mu g/L$	1.00

 $^1 \rm Concentration$ due to possible lab contamination. \bullet

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data. ------

EZH Herrichon Avolice, Suite Bill, Lubropk, Joses (2042) 2001 July Silvey, Anady, Svite Bill, Herrie Pasou, Taravi, 2016 5002 Basin Graek, Silve Alin, Michaij (1996) 2010 2016 Herrich Parkway, Silve Cit, Fitt, Acuter, Tepes, 26132

цьрезьк, Іохор Уга́да — 2014 979 (199) 5: Рако, Голог, Лос II, Во́к - 569 (347) Міста, Панхо 73 100 (с. Алар, Пахор, Ль 152) с. -Мар, Гахер, Ль 152 с. -Мар, Гарббиа repha voisioa tr \$93+744+1295 EAX 505+344+1295 935+265+0443 FXX 535+655+4044 432+669+0301 EAX 432+656+0335 \$77+364+3283

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317

El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Shelly Tucker Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

۰.

Report Date: September 12, 2008

Work Order: 8082929

Project Name:OSUDO 9 State #2Project Number:MEWBOU030PIT

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	lime	Date
Sample	Description	Matrix	Taken	Taken	Received
172385	Duck Pond	soil	2008-08-28	12:04	2008-08-29
172386	BH-1	soil	2008-08-28	12:13	2008-08-29
172387	RH-2	soil	2008-08-28	12:18	2008-08-29
172388	Insitu Cuttings	soil	2008-08-28	12:40	2008-08-29

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 46 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

.

Michael april

Dr. Blair Leftwich, Director

Standard Flags

.

↑ ↓

.

 $\,B\,$ - The sample contains less than ten times the concentration found in the method blank.

Page 2 of 46

Case Narrative

Samples for project OSUDO 9 State #2 were received by TraceAnalysis, Inc. on 2008-08-29 and assigned to work order 8082929. Samples for work order 8082929 were received intact at a temperature of 2.8 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (Titration)	SM 4500-Cl B
SPLP Ag	S 6010B
SPLP As	S 6010B
SPLP Ba	S 6010B
SPLP Cd	S 6010B
SPLP Cl	E 300.0
SPLP Cyanide	SM 4500-CN C,E
SPLP Fluoride	E 300.0
SPLP Hg	S 7470A
SPLP NO3 (IC)	E 300.0
SPLP PAH	S 8270C
SPLP Pb	S 6010B
SPLP PCB	S 8082
SPLP Radium 226+228	Outside Testing
SPLP Se	S 6010B
SPLP U	S 6010B
SPLP Volatiles	S 8260B
TPH 418.1	E 418.1
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

5 4

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8082929 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

× 4,

Analytical Report

Sample: 172385 - Duck Pond

Laboratory:	Lubbock								
Analysis:	BTEX		Analytical	Method:	S 8021B		Prep Me	thod:	S 5035
QC Batch:	51972		Date Anal	yzed:	2008-09-02		Analyze	d By:	\mathbf{ER}
Prep Batch:	44568		Sample Pr	eparation:	2008-09-02		Prepared	d By:	\mathbf{ER}
			RI						
Parameter	Flag		Resul	t	Units	I	Dilution		RL
Benzene			< 0.010	00	mg/Kg		1		0.0100
Toluene			< 0.010	0	mg/Kg		1		0.0100
Ethylbenzene			< 0.010	0	m mg/Kg		1		0.0100
Xylene			< 0.010	00	mg/Kg		1		0.0100
						Spike	Percent	Re	covery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	L	imits
Trifluorotolue	ne (TFT)	1	1.49	mg/Kg	1	1.00	149	59	- 136.1
4-Bromofluoro	obenzene (4-BFB)		1.39	mg/Kg	1	1.00	139	54.4	- 176.2

Sample: 172385 - Duck Pond

Chloride		126	mg/Kg	10	3.25
Parameter	Flag	RL Result	Units	Dilution	RL
Prep Batch:	44744	Sample Preparation	n: 2008-09-08	Prepared By:	RG
QC Batch:	52180	Date Analyzed:	2008-09-09	Analyzed By:	
Analysis:	Chloride (Titration)	Analytical Method	: SM 4500-Cl B	Prep Method:	N/A
Laboratory:	Lubbock				

Sample: 172385 - Duck Pond

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH 418.1 51953 44548	Analytical Method: Date Analyzed: Sample Preparation:	E 418.1 2008-09-02 2008-09-02	J J	
		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
TRPHC		<10.0	mg/Kg	1	10.0

¹High surrogate recovery. Sample non-detect, result bias high.

Report Date: September 12, 2008	Work Order: 8082929	Page Number: 5 of 46
MEWBOU030PIT	OSUDO 9 State #2	

Sample: 172385 - Duck Pond

، 4

n-Triacontan	e	112	mg/Kg	1	100	112	49.5 - 185
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
DRO			<50.0	mg/I	Kg	1	50.0
Parameter	Fla	r	$\operatorname{RL}_{\operatorname{Result}}$	Uni		Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 51983 44578		Analytical Me Date Analyze Sample Prepa	d: 2008-0	9-02	-	fethod: N/A ed By: MN ed By: MN

Sample: 172385 - Duck Pond

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 51974 44568		Analytical Date Ana Sample Pr		S 8015B 2008-09-02 2008-09-02		Prep Me Analyzec Preparec	d By: ER
			RL					
Parameter	Flag		\mathbf{Result}		Units		Dilution	RL
GRO	· · · · · · · · · · · · · · · · · · ·		<1.00		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolue	ene (TFT)		1.46	mg/Kg	1	1.00	146	55.3 - 161.9
4-Bromofluor	obenzene (4-BFB)		1.63	mg/Kg	1	1.00	163	45.6 - 214.7

Sample: 172386 - BH-1

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 51972 44568		Analytical Method: Date Analyzed: Sample Preparation:	S 8021B 2008-09-02 2008-09-02	Prep Method: Analyzed By: Prepared By:	S 5035 ER ER
			\mathbf{RL}			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
Benzene			< 0.0100	mg/Kg	1	0.0100
Toluene			< 0.0100	mg/Kg	1	0.0100
Ethylbenzene	è		< 0.0100	mg/Kg	1	0.0100
Xylene			< 0.0100	mg/Kg	1	0.0100

Report Date: September 12, 2008 MEWBOU030PIT			Work Order: 8082929 OSUDO 9 State #2				Page Number: 6 of 46		
Surrogate			Result 1.32	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
	Trifluorotoluene (TFT) -Bromofluorobenzene (4-BFB)			mg/Kg mg/Kg	1	1.00 1.00	$\frac{132}{126}$		136.1 - 176.2
4-Dromonuol	obelizene (4 DI D)		1.26	ing/itg	1	1.00	120	01.1	- 110.2
Sample: 172	2386 - BH-1								
Laboratory:	Lubbock								
Analysis: Chloride (Titration)				vtical Metho				Aethod:	N/A
QC Batch:	52180			Analyzed:	2008-09-			zed By:	RG
Prep Batch:	44744		Samp	le Preparatio	on: 2008-09-	08	Prepai	red By:	RG
D			RL		TT :4		Diluctor		рт
Parameter Chloride	Flag		Result 176		Units mg/Kg		Dilution 10		RL 3.25
Sample: 172 Laboratory: Analysis: QC Batch:	Lubbock TPH 418.1 51953		Date An		E 418.1 2008-09-02		Analyz	Method: zed By:	N/A CM
Prep Batch:	44548		Sample .	Preparation:	2008-09-02		Prepai	red By:	СМ
			RL				3		
Parameter	Flag		Result		Units		Dilution		\mathbf{RL}
ТПРНС			<10.0		mg/Kg		1		10.0
Sample: 172	2386 - BH-1								
Laboratory:	Lubbock								
Analysis:	TPH DRO		•	l Method:	Mod. 8015B			fethod:	N/A
QC Batch:	51983		Date Ana	•	2008-09-02		-	zed By:	MN
Prep Batch:	44578		Sample P	reparation:	2008-09-02		Prepar	ed By:	MN
n.			RL						
Parameter	Flag		Result		$_{ m Units}$		Dilution		RL

. بر با

	+	.0				10 11 01 01 011	
DRO			<50.0	mg/Kg		1	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontane		110	mg/Kg	1	100	110	49.5 - 185

Report Date: September 12, 2008	Work Order: 8082929	Page Number: 7 of 46
MEWBOU030PIT	OSUDO 9 State #2	

Sample: 172386 - BH-1

ч. А,

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 51974 44568		Date Ana	l Method: lyzed: reparation:	S 8015B 2008-09-02 2008-09-02		Prep Me Analyze Preparec	d By: ER
			RL					
Parameter	$\mathbf{F}\mathbf{lag}$		Result		Units		Dilution	RL
GRO			<1.00		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		1.30	mg/Kg	1	1.00	130	55.3 - 161.9
4-Bromofluor	obenzene (4-BFB)		1.45	mg/Kg	1	1.00	145	45.6 - 214.7
								<u> </u>

Sample: 172387 - RH-2

Laboratory: Lubbock Analysis: BTEX QC Batch: 51972 Prep Batch: 44568		Analytical Date Analy Sample Pre	yzed:	S 8021B 2008-09-02 2008-09-02		Prep Me Analyzeo Prepareo	d By:	S 5035 ER ER
		RI	J					
Parameter Flag		Result	t	Units	Ι	Dilution		\mathbf{RL}
Benzene		< 0.0100)	mg/Kg		1		0.0100
Toluene		< 0.0100)	m mg/Kg		1		0.0100
Ethylbenzene		< 0.0100)	m mg/Kg		1		0.0100
Xylene		< 0.0100)	mg/Kg		1		0.0100
					Spike	Percent	Rec	covery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	${ m Li}$	mits
Trifluorotoluene (TFT)	2	1.50	mg/Kg	1	1.00	150	59 -	136.1
4-Bromofluorobenzene (4-BFB)		1.42	mg/Kg	1	1.00	142	54.4	- 176.2

Sample: 172387 - RH-2

Laboratory:	Lubbock				
Analysis:	Chloride (Titration)	Analytical Method:	SM 4500-Cl B	Prep Method:	N/A
QC Batch:	52180	Date Analyzed:	2008-09-09	Analyzed By:	RG
Prep Batch:	44744	Sample Preparation	: 2008-09-08	Prepared By:	\mathbf{RG}
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride		71.6	mg/Kg	10	3.25

²High surrogate recovery. Sample non-detect, result bias high.

Report Date: September 12, 2008 MEWBOU030PIT	Work Order: 8082929 OSUDO 9 State #2	Page Number: 8 of 46

.

ζ.

Sample: 172387 - RH-2

• ,'

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH 418.1 51953 44548	Analytical Method: Date Analyzed: Sample Preparation:	E 418.1 2008-09-02 2008-09-02	Prep Method: Analyzed By: Prepared By:	CM
		RL			DI
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
TRPHC		<10.0	mg/Kg	1	10.0

Sample: 172387 - RH-2

Laboratory:LubbockAnalysis:TPH DROQC Batch:51983Prep Batch:44578			Analytical Me Date Analyze Sample Prepa	d: 2008-0	9-02	Prep M Analyza Prepare	•
			RL	T	•,	Dilution	DI
Parameter	Fla	g	Result	Un		Dilution	RL
DRO			<50.0	mg/l	Kg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
n-Triacontan		118	mg/Kg	1	100	118	49.5 - 185

Sample: 172387 - RH-2

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 51974 44568		Analytical Date Anal Sample Pi		S 8015B 2008-09-02 2008-09-02		Prep Me Analyze Preparec	d By: ER
			\mathbf{RL}					
Parameter	Flag		\mathbf{Result}		Units		Dilution	RL
GRO			<1.00		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu	ene (TFT)	1 100	1.44	mg/Kg	1	1.00	144	55.3 - 161.9
	robenzene (4-BFB)		1.64	mg/Kg	1	1.00	164	45.6 - 214.7

Report Date: September 12, 2008 MEWBOU030PIT			Work Order: 8082929 OSUDO 9 State #2		Page Number: 9 of 46	
Laboratory:	2388 - Insitu Cuttings Lubbock SPLP Ag 52144 44655	Analytical Method: Date Analyzed: SPLP Extraction:	S 6010B 2008-09-08 2008-09-04	Prep Method: Analyzed By: Prepared By:	RR KV	
Parameter	Flag	Sample Preparation: RL Result	2008-09-05 Units mg/L	Prepared By: Dilution	KV 	
SPLP Silver		<0.00300		1	0.00500	

Sample: 172388 - Insitu Cuttings

• ~ .

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP As 52144 44655		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-09-08 2008-09-04 2008-09-05	Prep Method: Analyzed By: Prepared By: Prepared By:	$rac{\mathrm{RR}}{\mathrm{KV}}$
			\mathbf{RL}			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Arseni	с		< 0.0100	mg/L	1	0.0100

.

Sample: 172388 - Insitu Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP Ba 52144 44655		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-09-08 2008-09-04 2008-09-05	Prep Method: Analyzed By: Prepared By: Prepared By:	$rac{RR}{KV}$
			\mathbf{RL}			
Parameter		Flag	\mathbf{Result}	Units	Dilution	RL
SPLP Bariur	n		0.385	mg/L	1	0.100

Sample: 172388 - Insitu Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	SPLP Cd 52144	Analytical Method: Date Analyzed: SPLP Extraction:	S 6010B 2008-09-08 2008-09-04	Prep Method: Analyzed By: Prepared By:	$\mathbf{R}\mathbf{R}$
Prep Batch:	44655			1 0	
		Sample Preparation:	2008-09-05	Prepared By:	KV

,

Report Date: September 12, 2008 MEWBOU030PIT		Work Order: 8082929 OSUDO 9 State #2		Page Number: 10 of 46	
	RL	TT T	Dilution	RL	
Flag				0.00500	
	<0.00500	mg/L	1	0.00300	
situ Cuttings					
	Applutical Mathody	E 300 0	Pren Method:	SPLP 1312	
	0		-	RD	
				RD	
	Sample Preparation:	2008-09-08	Prepared By:	RD	
	RL			זמ	
Flag					
	1320	mg/L	100	0.300	
situ Cuttings yanide	Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	SM 4500-CN C,E 2008-09-05 2008-09-03 2008-09-05	Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 SS SS SS	
	Date Analyzed: SPLP Extraction:	2008-09-05 2008-09-03	Analyzed By: Prepared By:	SS SS	
	Flag situ Cuttings	Flag Result <0.00500 Asitu Cuttings Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation: RL	Flag Result Units <0.00500	Flag Result Units Dilution <0.00500	

• • •

Prep Batch:	44735	SPLP Extraction: Sample Preparation	2008-09-02 : 2008-09-08	Prepared By: Prepared By:	
_		RL	Units	Dilution	\mathbf{RL}
Parameter	Fla	g Result	Units	Dilucion	
SPLP Fluori	de	<0.200	mg/L	1	0.200

Report Date: September 12, 2008	Work Order: 8082929	Page Number: 11 of 46
MEWBOU030PIT	OSUDO 9 State $#2$	

Sample: 172388 - Insitu Cuttings

•

Laboratory: Analysis: QC Batch: Prep Batch:	SPLP Hg 52082		Analytical Method: Date Analyzed: Sample Preparation:	S 7470A 2008-09-04 2008-09-04	Ana	o Method: N/A lyzed By: TP pared By: TP
			RL			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Mercu	ry		< 0.000200	mg/L	1	0.000200

Sample: 172388 - Insitu Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP NO3 (IC) 52176 44735	Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	E 300.0 2008-09-09 2008-09-02 2008-09-08	Prep Method: Analyzed By: Prepared By: Prepared By:	RD RD
Parameter	Flag	RL Result	Units	Dilution	RL
Nitrate-N		< 0.200	mg/L	1	0.200

Sample: 172388 - Insitu Cuttings

Lubbock				
SPLP PAH	Analytical Method:	S 8270C	Prep Method:	SPLP 1312
52031	Date Analyzed:	2008-09-03	Analyzed By:	DS
44606	SPLP Extraction:	2008-09-02	Prepared By:	DS
	Sample Preparation:	2008-09-03	Prepared By:	DS
		SPLP PAHAnalytical Method:52031Date Analyzed:44606SPLP Extraction:	SPLP PAHAnalytical Method:S 8270C52031Date Analyzed:2008-09-03	SPLP PAHAnalytical Method:S 8270CPrep Method:52031Date Analyzed:2008-09-03Analyzed By:44606SPLP Extraction:2008-09-02Prepared By:

		\mathbf{RL}			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
Naphthalene		< 0.000200	mg/L	1	0.000200
Acenaphthylene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Acenaphthene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Dibenzofuran		< 0.000200	mg/L	1	0.000200
Fluorene		< 0.000200	mg/L	1	0.000200
Anthracene		< 0.000200	$\mathrm{mg/L}$	1	0.000200
Phenanthrene		< 0.000200	mg/L	1	0.000200
Fluoranthene		< 0.000200	mg/L	1	0.000200
Pyrene		< 0.000200	mg/L	1	0.000200
Benzo(a)anthracene		< 0.000200	mg/L	1	0.000200
Chrysene		< 0.000200	mg/L	1	0.000200
Benzo(b)fluoranthene		< 0.000200	mg/L	1	0.000200

continued ...

.

Report Date: September 12, 2008 MEWBOU030PIT	Work Order: 8082929 OSUDO 9 State #2	Page Number: 12 of 46

sample 172388 continued ...

••

				RL			
Parameter		\mathbf{Flag}	Res	ult	Units	Dilution	RL
Benzo(k)fluoranthen	e		< 0.000	200	mg/L	1	0.000200
Benzo(a)pyrene			< 0.000	200	$\mathrm{mg/L}$	1	0.000200
Indeno(1,2,3-cd)pyre	ene		< 0.000	200	mg/L	1	0.000200
Dibenzo(a,h)anthrac	ene		< 0.000	200	m mg/L	1	0.000200
$\underline{\text{Benzo}(g,h,i)}$ perylene			< 0.000	200	mg/L	1	0.000200
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
2-Fluorobiphenyl		0.0374	mg/L	1	0.0800	47	37.4 - 123
Nitrobenzene-d5		0.0422	mg/L	1	0.0800	53	34.3 - 130
Terphenyl-d14		0.0596	mg/L	1	0.0800	74	10 - 252

Sample: 172388 - Insitu Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	SPLP Pb 52144		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-09-08 2008-09-04 2008-09-05	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			RL			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
SPLP Lead			< 0.0100	mg/L	1	0.0100

Sample: 172388 - Insitu Cuttings

Laboratory: Lubbock Analysis: SPLP PCB QC Batch: 52094 Prep Batch: 44664	I S	Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 8082 2008-09-04 2008-09-02 2008-09-03	Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 DS DS DS
		RL			
Parameter	\mathbf{Flag}	Result	Units	Dilution	RL
Total PCB		< 0.000500	mg/L	1	0.000500
Aroclor 1016 (PCB-1016)		< 0.000500	m mg/L	1	0.000500
Aroclor 1221 (PCB-1221)		< 0.000500	mg/L	1	0.000500
Aroclor 1232 (PCB-1232)		< 0.000500	mg/L	1	0.000500
Aroclor 1242 (PCB-1242)		< 0.000500	mg/L	1	0.000500
Aroclor 1248 (PCB-1248)		< 0.000500	mg/L	1	0.000500
Aroclor 1254 (PCB-1254)		< 0.000500	mg/L	1	0.000500

continued ...

	Report Date: September 12, 2008 MEWBOU030PIT	Work Order: 8082929 OSUDO 9 State #2	Page Number: 13 of 4
-			

46

sample 172388 continued ...

• ',

			RL				
Parameter		\mathbf{Flag}	Result		Units	Dilution	RL
Aroclor 1260 (PCB-126	0)		< 0.000500		mg/L	1	0.000500
Aroclor 1268 (PCB-126			< 0.000500		mg/L	1	0.000500
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Deca chlorobiphenyl	3	0.000855	mg/L	1	0.000500	171	10 - 128

Sample: 172388 - Insitu Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP Se 52144 44655		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-09-08 2008-09-04 2008-09-05	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			RL			
Parameter		Flag	Result	Units	Dilution	RL
SPLP Seleniu	ım		< 0.0500	mg/L	1	0.0500

Sample: 172388 - Insitu Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP U 52144 44655		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-09-08 2008-09-04 2008-09-05	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			\mathbf{RL}			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
SPLP U			< 0.0500	mg/L	1	0.0500

Sample: 172388 - Insitu Cuttings

Laboratory:	Lubbock				
Analysis:	SPLP Volatiles	Analytical Method:	S 8260B	Prep Method:	SPLP 1312
QC Batch:	52233	Date Analyzed:	2008-09-09	Analyzed By:	KB
Prep Batch:	44786	SPLP Extraction:	2008-09-09	Prepared By:	KB
		Sample Preparation:	2008-09-09	Prepared By:	KB

³High surrogate recovery. Sample non-detect, result bias high.

Report Date: September 12, 2008 MEWBOU030PIT			Work Order: 8082929 OSUDO 9 State #2			Page Numb	Page Number: 14 of 46	
D	Flag		RL Result	Unit	s	Dilution	RL	
Parameter	Thag		<1.00	μg/l		1	1.00	
Vinyl Chloride			<1.00	$\mu g/I$		1	1.00	
1,1-Dichloroethene	4		8.23	$\mu g/I$		1	5.00	
Methylene chloride			<1.00	$\mu g/I$		1	1.00	
1,1-Dichloroethane			<1.00	$\mu g/I$		1	1.00	
1,2-Dichloroethane (EDC)			< 1.00	$\mu g/I$		- 1	1.00	
Chloroform			<1.00 <1.00	$\mu_{g/l}$		1	1.00	
1,1,1-Trichloroethane			<1.00	$\mu g/I$		1	1.00	
Benzene Carbon Tetrachloride			<1.00	$\mu g/I$		1	1.00	
			<1.00 <1.00	$\mu g/2$		- 1	1.00	
Trichloroethene (TCE)			1.43	$\mu g/2$		1	1.00	
Toluene			<1.00	$\mu g/2$		1	1.00	
1,1,2-Trichloroethane			<1.00	$\mu g/$		1	1.00	
1,2-Dibromoethane (EDB)			<1.00	$\mu g/$		ĩ	1.00	
Tetrachloroethene (PCE)			<1.00	$\mu g/2$		1	1.00	
Ethylbenzene			<1.00	$\mu g/$		1	1.00	
m,p-Xylene			<1.00	$\mu g/$		1	1.00	
o-Xylene			< 1.00	$\mu g/$		1	1.00	
1,1,2,2-Tetrachloroethane			<1.00	μβ/				
					Spike	Percent	Recovery	
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits	
Dibromofluoromethane		56.1	$\mu { m g/L}$	1	50.0	112	70 - 130	
Toluene-d8		53.5	$\mu { m g}/{ m L}$	1	50.0	107	70 - 130	
4-Bromofluorobenzene (4-BFB)		45.4	$\mu { m g}/{ m L}$	1	50.0	91	70 - 130	

Sample: 172388 - Insitu Cuttings

• •

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH 418.1 51953 44548	Analytical Method: Date Analyzed: Sample Preparation:	E 418.1 2008-09-02 2008-09-02	Prep Method: Analyzed By: Prepared By:	ĊM
_	1	RL	Units	Dilution	\mathbf{RL}
Parameter	Flag	Result		Dilution	
TRPHC		12.0	mg/Kg	1	10.0

Method Blank (1) QC Batch: 51953

QC Batch:	51953	Date Analyzed:	2008-09-02	Analyzed By:	CM
Prep Batch:		QC Preparation:	2008-09-02	Prepared By:	$\mathbf{C}\mathbf{M}$

 4 Concentration due to possible lab contamination. •

Report Date: Septembe MEWBOU030PIT	r 12, 2008			Order: 8082929 Page Numb O 9 State #2			mber: 15 of 46
		·	MDL		Unit	-0	RL
Parameter	Flag		Result		mg/I		10
TRPHC			. <1.06		IIIg/ I	<u>xg</u>	10
Method Blank (1)	QC Batch: 51972						
QC Batch: 51972		Date An		08-09-02		v	vzed By: ER ared By: ER
Prep Batch: 44568		QC Prep	aration: 20	08-09-02		гтера	ueu by. En
			MD				DI
Parameter	Flag	Result Units				RL 0.01	
Benzene		<0.00347 mg/Kg					0.01
Toluene			< 0.0052		mg/Kg mg/Kg		0.01
Ethylbenzene			< 0.006		mg/		0.01
Xylene			< 0.0072	24	ng/	Ng	0.01
		D	T T 1 .		Spike	Percent	Recovery Limits
Surrogate	Flag	Result	Units	Dilution	Amount 1.00	Recovery 94	<u>69.3 - 110.2</u>
Trifluorotoluene (TFT)		$\begin{array}{c} 0.945 \\ 0.673 \end{array}$	mg/Kg mg/Kg	1 1	1.00	94 67	24.4 - 114.6
4-Bromofluorobenzene (4-BFB)	0.073	mg/Kg	I	1.00	01	21.1 111.0
Method Blank (1)	QC Batch: 51974						
QC Batch: 51974		Date An	alvzed: 20)08-09-02		Analy	yzed By: ER
Prep Batch: 44568		QC Prep	•	008-09-02		Prepa	ared By: ER
			MDL		Uni	4.0	RL
Parameter	Flag		Result		UII		1
GRO			< 0.144	······································	ing/	ng	1
	Flag	Result	Units	Dilution	${ m Spike} \ { m Amount}$	Percent Recovery	$egin{array}{c} { m Recovery} \\ { m Limits} \end{array}$
Surrogato	i iag	0.914	mg/Kg	1	1.00	91	83.3 - 108.5
Surrogate Trifluorotoluene (TFT)							

Method Blank (1) QC Batch: 51983

• **•**,

QC Batch:	51983	Date Analyzed:	2008-09-02	Analyzed By:	MN
Prep Batch:		QC Preparation:	2008-09-02	Prepared By:	MN

Report Date: September 12, 2008 MEWBOU030PIT			ork Order: 80829 SUDO 9 State #		Page Number: 16 of 46		
				MDL	_		RL
Parameter		Flag	Result		t	Units	
DRO			<6.77		m	mg/Kg	
Surrogate	Flag	Result	Units	Dilution	${ m Spike} \ { m Amount}$	Percent Recovery	Recovery Limits
n-Triacontane		96.7	mg/Kg 1		100	97	49.5 - 185

Method Blank (1) QC Batch: 52031

•	Batch:52031Date Analyzed:Batch:44606QC Preparation:		Analyzed By: Prepared By:		
			MDL		

				MDL			
Parameter		Flag		Result		Units	\mathbf{RL}
Naphthalene				< 0.0000853		mg/L	0.0002
Acenaphthylene				< 0.0000768		m mg/L	0.0002
Acenaphthene				< 0.000103		$\mathrm{mg/L}$	0.0002
Dibenzofuran				< 0.000200		m mg/L	0.0002
Fluorene				< 0.0000861		m mg/L	0.0002
Anthracene				< 0.000170		mg/L	0.0002
Phenanthrene				< 0.0000884		mg/L	0.0002
Fluoranthene				< 0.0000969		mg/L	0.0002
Pyrene				< 0.0000855		mg/L	0.0002
Benzo(a)anthracene				< 0.0000703		$\mathrm{mg/L}$	0.0002
Chrysene				< 0.000113		mg/L	0.0002
Benzo(b)fluoranthene				< 0.000134		mg/L	0.0002
Benzo(k)fluoranthene				< 0.000227		mg/L	0.0002
Benzo(a)pyrene				< 0.000200		mg/L	0.0002
Indeno(1,2,3-cd)pyren	ie			< 0.000253		mg/L	0.0002
Dibenzo(a,h)anthrace	ne			< 0.000180		$\mathrm{mg/L}$	0.0002
$\underline{Benzo}(g,h,i)perylene$			•	< 0.000158		mg/L	0.0002
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
2-Fluorobiphenyl		0.0540	mg/L	1	0.0800	68	10 - 146
Nitrobenzene-d5		0.0654	mg/L	1	0.0800	82	10 - 141
Terphenyl-d14		0.0790	mg/L	1	0.0800	99	10 - 266

Method Blank (1) QC Batch: 52082

.

QC Batch:	52082	Date Analyzed:	2008-09-04	Analyzed By:	TP
Prep Batch:	44652	QC Preparation:	2008-09-04	Prepared By:	TP

~

Report Date: September 12, 2008 MEWBOU030PIT		·····	Work Order: 8082929 OSUDO 9 State #2			Page Number: 17 of 46		
Parameter	Flag			MDL Result	Uni	ts	\mathbf{RL}	
SPLP Mercury	×		< 0.0	000336	mg/	/L	0.0002	
Method Blank (1) .	QC Batch: 5209	4						
QC Batch: 52094		Date Ana	alvzed:	2008-09-04		Analyz	zed By: DS	
Prep Batch: 44664		QC Prep		2008-09-03			red By: DS	
- /								
Parameter		Flag		$egin{array}{c} \mathrm{MDL} \ \mathrm{Result} \end{array}$	т	Jnits	\mathbf{RL}	
Total PCB		Liag		<0.000125		ng/L	0.0005	
Aroclor 1016 (PCB-1016	3)			< 0.000120		ng/L	0.0005	
Aroclor 1221 (PCB-122)				< 0.0001122		ng/L	0.0005	
Aroclor 1232 (PCB-1232	,			< 0.0000459		ng/L	0.0005	
Aroclor 1242 (PCB-1242				< 0.000125		ng/L	0.0005	
Aroclor 1248 (PCB-1248				< 0.0000546		ng/L	0.0005	
Aroclor 1254 (PCB-1254				< 0.0000569		ng/L	0.0005	
Aroclor 1260 (PCB-1260				< 0.0000331		ng/L	0.0005	
Aroclor 1268 (PCB-1268				< 0.0000282		ng/L		
Sumerate	Flor D	and T	nits	Dilution	Spike Amount	Percent	Recovery Limits	
Surrogate Deca chlorobiphenyl			ng/L	1	0.000500	Recovery 117	10 - 128	
Deca emotoophenyr	0.00	0000 11		I	0.000300	117	10 - 128	
Method Blank (1)	QC Batch: 5211	6						
QC Batch: 52116		Date An	alyzed:	2008-09-05		Analy	zed By: SS	
Prep Batch: 44681		QC Prep		2008-09-05			red By: SS	
			1	MDL				
Parameter	\mathbf{Flag}		R	esult	Un	its	RL	
SPLP Cyanide			<	(1.94	mg/	′Kg	2	
Method Blank (1)	QC Batch: 5214	±						
QC Batch: 52144		Date Ana	lyzed:	2008-09-08		Analyz	ed By: RR	
Prep Batch: 44655		QC Prepa		2008-09-05		Prepar		
				MDL				
Parameter	Flag			MDL Result	Un	its	RL	

ند به ۲
Report Date: Septemb MEWBOU030PIT	er 12, 2008		0rder: 8082929 O 9 State #2		Page Number: 18	3 of 46
Method Blank (1)	QC Batch: 52144					
QC Batch: 52144 Prep Batch: 44655		Date Analyzed: QC Preparation:	2008-09-08 2008-09-05		Analyzed By: Prepared By:	RR KV
_			MDL			
Parameter SPLP Lead	0		lesult00320	Units mg/L	Fartran 18.1	RL 0.01
			· · ·····	v		
Method Blank (1)	QC Batch: 52144					
QC Batch: 52144		Date Analyzed:	2008-09-08		Analyzed By:	RR
Prep Batch: 44655		QC Preparation:	2008-09-05		Prepared By:	KV
Parameter	Flag		MDL Result	Units		RL
SPLP Selenium	<u> </u>		0.0131	mg/L		0.05
Method Blank (1) QC Batch: 52144 Prep Batch: 44655	QC Batch: 52144	Date Analyzed: QC Preparation:	2008-09-08 2008-09-05		Analyzed By: Prepared By:	RR KV
			MDL			
Parameter SPLP Arsenic	Flag		Result .00430	Units mg/L		RL 0.01
Method Blank (1)	QC Batch: 52144			IIIg/ D		0.01
	QC Daten. 52144		9008 00 03			DD
QC Batch: 52144 Prep Batch: 44655		Date Analyzed: QC Preparation:	2008-09-08 2008-09-05		Analyzed By: Prepared By:	RR KV
Parameter	Flag		MDL Result	Units		RL
SPLP Barium	·····	<().00170	mg/L		0.1
Method Blank (1)	QC Batch: 52144					

•

QC Batch:	52144	Date Analyzed:	2008-09-08	Analyzed By:	\mathbf{RR}
Prep Batch:	44655	QC Preparation:	2008-09-05	Prepared By:	$\mathbf{K}\mathbf{V}$

Report Date: Septembe MEWBOU030PIT	er 12, 2008	Work Order: 8082929 OSUDO 9 State #2	F	Page Number: 19	014
		MDL			
Parameter	Flag	Result	Units		RL
SPLP Silver		<0.00210	mg/L		0.00
Method Blank (1)	QC Batch: 52144				
QC Batch: 52144 Prep Batch: 44655		Date Analyzed: 2008-09-08 QC Preparation: 2008-09-05		Analyzed By: Prepared By:	RR KV
		MDL	TT 1.		RI
Parameter	Flag	Result <0.0105	Units mg/L		$\frac{1}{0.0}$
SPLP U					
Method Blank (1)	QC Batch: 52176				
QC Batch: 52176		Date Analyzed: 2008-09-09 QC Preparation: 2008-09-08		Analyzed By: Prepared By:	RE RE
Prep Batch: 44735		QC Preparation: 2008-09-08		r repared by.	IUL
		MDL	Tioite		R
Parameter	Flag	Result	Units mg/L		$-\frac{n}{0}$
Nitrate-N		<0.0700	mg/L		0.
Method Blank (1)	QC Batch: 52176				
QC Batch: 52176		Date Analyzed: 2008-09-09		Analyzed By:	RI
Prep Batch: 44735		QC Preparation: 2008-09-08		Prepared By:	RI
		MDL			-
Parameter	Flag	Result	Units		$\frac{R}{2}$
SPLP Chloride		<0.137	mg/L		0
Method Blank (1)	QC Batch: 52176				
QC Batch: 52176		Date Analyzed: 2008-09-09		Analyzed By:	RI
Prep Batch: 44735		QC Preparation: 2008-09-08		Prepared By:	RI
	167	MDL Begylt	Units		F
Parameter	Flag	Result <0.0889	mg/L		$-\frac{n}{0}$

.

4 5

4

Report Date: September 12, 2008 MEWBOU030PIT		Work Order: 8082929 OSUDO 9 State #2		Page Number: 20 of 46			
Method Blank (1)	QC Batch: 52180						
QC Batch: 52180 Prep Batch: 44744		Date Analyzed: 2008-09-09 QC Preparation: 2008-09-08		Analyzed By: Prepared By:			
		MDL					
Parameter	Flag	\mathbf{Result}	Units		RL		
Chloride		<1.80	mg/Kg		3.25		

Method Blank (1) QC Batch: 52233

· · ·

QC Batch: 52233	Date Analyzed:	2008-09-09	Analyzed By:	KB VD
Prep Batch: 44786	QC Preparation:	2008-09-09	Prepared By:	KB
		MDL		
Parameter	Flag	\mathbf{Result}	Units	RL
Bromochloromethane		< 0.177	μ g/L	1
Dichlorodifluoromethane		< 0.208	$\mu { m g/L}$	1
Chloromethane (methyl chloride)		< 0.134	$\mu { m g/L}$	1
Vinyl Chloride		< 0.135	$\mu { m g}/{ m L}$	1
Bromomethane (methyl bromide)		< 1.23	$\mu { m g/L}$	5
Chloroethane		< 0.182	$\mu { m g/L}$	1
Trichlorofluoromethane		< 0.0610	$\mu { m g/L}$	1
Acetone		<5.50	$\mu { m g/L}$	10
Iodomethane (methyl iodide)		< 0.107	$\mu { m g/L}$	5
Carbon Disulfide		< 0.0360	$\mu { m g/L}$	1
Acrylonitrile		< 0.0970	$\mu { m g/L}$	1
2-Butanone (MEK)		< 0.531	$\mu { m g/L}$	5
4-Methyl-2-pentanone (MIBK)		< 0.421	$\mu { m g}/{ m L}$	5
2-Hexanone		< 0.168	$\mu { m g/L}$	5
trans 1,4-Dichloro-2-butene		< 0.517	$\mu { m g/L}$	10
1,1-Dichloroethene		< 0.136	$\mu { m g}/{ m L}$	1
Methylene chloride		< 0.649	$\mu { m g}/{ m L}$	5
MTBE		< 0.123	$\mu { m g}/{ m L}$	1
trans-1,2-Dichloroethene		< 0.126	$\mu { m g}/{ m L}$	1
1,1-Dichloroethane		< 0.0600	$\mu { m g}/{ m L}$	1
cis-1,2-Dichloroethene		< 0.151	$\mu { m g}/{ m L}$	1
2,2-Dichloropropane		< 0.180	$\mu { m g}/{ m L}$	1
1,2-Dichloroethane (EDC)		< 0.113	$\mu { m g}/{ m L}$	1
Chloroform		< 0.141	$\mu { m g}/{ m L}$	1
1,1,1-Trichloroethane		< 0.116	$\mu { m g}/{ m L}$	1
1,1-Dichloropropene		< 0.0540	$\mu { m g}/{ m L}$	1
Benzene		< 0.146	$\mu { m g}/{ m L}$	1
Carbon Tetrachloride		< 0.0790	$\mu { m g} / { m L}$	1
1,2-Dichloropropane		< 0.111	$\mu \mathrm{g}/\mathrm{L}$	1
Trichloroethene (TCE)		< 0.117	$\mu g/L$	1

continued ...

Report Date: September 12, 2008 MEWBOU030PIT

Page Number: 21 of 46

•

 $method \ blank \ continued \ \ldots$

• ',

.

				MDI	-		
Parameter		\mathbf{F}	lag	Resul		Units	RL
Dibromomethane (methylene bromio	de)			< 0.140	0	$\mu g/L$	1
Bromodichloromethane				< 0.16	1	$\mu \mathrm{g/L}$	1
2-Chloroethyl vinyl ether				< 0.388	8	$\mu g/L$	5
cis-1,3-Dichloropropene				< 0.0890	0	$\mu g/L$	1
trans-1,3-Dichloropropene				< 0.0760	0	$\mu g/L$	1
Toluene				< 0.0600	0	$\mu g/L$	1
1,1,2-Trichloroethane				< 0.133	5	$\mu g/L$	1
1,3-Dichloropropane				< 0.0990		$\mu g/L$	1
Dibromochloromethane				< 0.0900)	$\mu g/L$	1
1,2-Dibromoethane (EDB)				< 0.0700		$\mu { m g}/{ m L}$	1
Tetrachloroethene (PCE)				< 0.270		$\mu g/L$	- 1
Chlorobenzene				< 0.0540		$\mu g/L$	1
1,1,1,2-Tetrachloroethane				< 0.0990		$\mu g/L$	1
Ethylbenzene				< 0.0360		$\mu g/L$	1
m,p-Xylene				< 0.0940		$\mu g/L$	1
Bromoform				<0.0570		$\mu g/L$	1
Styrene				<0.0910		$\mu g/L$	1
o-Xylene				< 0.0910		$\mu g/L$ $\mu g/L$	1
1,1,2,2-Tetrachloroethane				< 0.125		$\mu g/L$ $\mu g/L$	1
2-Chlorotoluene				< 0.0570		$\mu g/L$ $\mu g/L$	1
1,2,3-Trichloropropane			,	<0.0570		$\mu g/L$ $\mu g/L$	1
Isopropylbenzene				< 0.0850			1
Bromobenzene						$\mu g/L$	1
				< 0.106		$\mu g/L$	
n-Propylbenzene				< 0.0590		$\mu g/L$	1
1,3,5-Trimethylbenzene				< 0.0250		$\mu g/L$	1
tert-Butylbenzene				< 0.107		$\mu g/L$	1
1,2,4-Trimethylbenzene				< 0.0990		$\mu g/L$	1
1,4-Dichlorobenzene (para)				< 0.217		$\mu g/L$	1
sec-Butylbenzene				< 0.0430		$\mu g/L$	1
1,3-Dichlorobenzene (meta)				< 0.0690		$\mu g/L$	1
p-Isopropyltoluene				< 0.106		$\mu \mathrm{g/L}$	1
4-Chlorotoluene				< 0.0940		$\mu g/L$	1
1,2-Dichlorobenzene (ortho)				< 0.100		$\mu { m g} / { m L}$	1
n-Butylbenzene				< 0.0850		$\mu g/L$	1
1,2-Dibromo-3-chloropropane				< 0.690		$\mu g/L$	5
1,2,3-Trichlorobenzene				< 0.135		$\mu { m g}/{ m L}$	5
1,2,4-Trichlorobenzene				< 0.155		$\mu { m g}/{ m L}$	5
Naphthalene				< 0.594		$\mu { m g} / { m L}$	5
Hexachlorobutadiene				< 0.248	3	$\mu g/L$	5
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		54.8	$\mu g/L$	1	50.0	110	70 - 130
Toluene-d8		53.4	$\mu g/L$	1	50.0	107	70 - 130

continued ...

Report Date: September 12, 2008 MEWBOU030PIT	3	Work Order: 8082929 OSUDO 9 State #2						Page Number: 22 of 46				
method blank continued						Spike	Percent	R	ecovery			
Surrogate	Flag	\mathbf{Result}	Unit	s Dilı	ution	Amount	Recovery	y .	Limits			
4-Bromofluorobenzene (4-BFB)		46.5	$\mu { m g}/{ m I}$		1	50.0	93	7	0 - 130			
Laboratory Control Spike (LG QC Batch: 51953 Prep Batch: 44548	CS-1)	Date Ana QC Prep	•	2008-09-(2008-09-(yzed By ared By				
D	L		·• •,	D.1	Spike	Mat			Rec.			
Param TRPHC			Jnits g/Kg		Amount 250	Res <1.			Limit .5 - 136			
Percent recovery is based on the s				-					.0 100			
	LCSD			Spike	Matrix	-	Rec.		RPD			
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit			
TRPHC	234	mg/Kg	1	250	<1.06	94	75.5 - 136	10	20			
Percent recovery is based on the s	pike result	. RPD is b	ased on t	he spike a	nd spike o	luplicate r	esult.					
Percent recovery is based on the s	-	. RPD is b	ased on t	he spike a	and spike o	luplicate r	esult.					
Laboratory Control Spike (LC	22-1)											
OC Batch: 51972		Date Ana	alvzed:	2008-09-0	02		Ana	lvzed By	ER.			

• •

QC Batch: 51972 Prep Batch: 44568	Date Analyzed: QC Preparation			v	ed By: ER ed By: ER
D	LCS	Spike	Matrix	D	Rec.

Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
Benzene	0.978	mg/Kg	1	1.00	< 0.00347	98	80.5 - 115.5
Toluene	0.990	mg/Kg	1	1.00	< 0.00525	99	80 - 114.7
Ethylbenzene	1.02	mg/Kg	1	1.00	< 0.00607	102	77.1 - 114.2
Xylene	3.01	mg/Kg	1	3.00	< 0.00724	100	77.6 - 114.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Benzene	1.01	mg/Kg	1	1.00	< 0.00347	101	80.5 - 115.5	3	20
Toluene	1.01	mg/Kg	1	1.00	< 0.00525	101	80 - 114.7	2	20
Ethylbenzene	0.994	mg/Kg	1	1.00	< 0.00607	99	77.1 - 114.2	3	20
Xylene	2.99	mg/Kg	1	3.00	< 0.00724	100	77.6 - 114.5	1	20
	, , , ,		, ,	.1 .1					

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

continued ...

Report Date: September 12, 2008 MEWBOU030PIT			ork Order: 8 SUDO 9 Sta		l		Page N	umber:	23 of 46
control spikes continued	,								
_	LCS	LCSD			Spike	· LCS	LCSD		Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.]	Limit
	LCS	LCSD			Spike	LCS	LCSD		Rec.
Surrogate	Result	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	J	Limit
Trifluorotoluene (TFT)	0.897	1.00	mg/Kg	1	1.00	90	100	74.2	2 - 114.7
4-Bromofluorobenzene (4-BFB)	0.887	0.954	mg/Kg	1	1.00	89	95	69.7	7 - 118.7
Laboratory Control Spike (LC	S-1)								
QC Batch: 51974	D	ate Analyz	ed: 2008-	09-02			Anal	yzed B	v: ER
Prep Batch: 44568		C Preparat		09-02				ared B	
	LCS			S	oike	Matrix			Rec.
Param	Result	Units	Dil.	-		Result	Rec.		Limit
	10.6	mg/Kg				<0.144	106		- 114.7
GRU					0.0		200		
				les and	mile denli		1.		
				ke and :	spike dupli	cate resu	lt.		
	oike result. Rl LCSD	PD is based	l on the spil Spike	Ma	atrix]	Rec.		RPD
Percent recovery is based on the sp Param	ike result. Rl LCSD Result U	PD is based Jnits Di	l on the spil Spike l. Amour	Ma nt Re	atrix esult Re	c. I	Rec. Jimit	RPD	Limit
Percent recovery is based on the sp Param	ike result. Rl LCSD Result U	PD is based	l on the spil Spike 1. Amour	Ma nt Re	atrix	c. I	Rec.	RPD 2	
Percent recovery is based on the sp Param GRO	ike result. R LCSD Result U 10.8 m	PD is based Jnits Di g/Kg 1	l on the spil Spike l. Amour 10.0	Ma nt Re <0	atrix esult Re 0.144 10	$\begin{array}{cc} c. & I\\ 8 & 73.1 \end{array}$	Rec. Jimit - 114.7		Limit
Percent recovery is based on the sp Param GRO	bike result. RJ LCSD Result U 10.8 m bike result. RJ	PD is based Jnits Di g/Kg 1 PD is based	l on the spil Spike l. Amour 10.0	Ma nt Re <0	atrix esult Re 0.144 10 spike dupli	c. I 8 73.1 cate resul	Rec. Jimit - 114.7 It.	2	Limit 20
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS	PD is based Juits Di g/Kg 1 PD is based LCSD	l on the spil Spike 1. Amour 10.0 l on the spil	Ma nt Re <0 ke and s	atrix esult Re 0.144 10 spike dupli Spike	c. I 8 73.1 cate resul LCS	Rec. .imit - 114.7 lt. LCSD	2	Limit 20 Rec.
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result	PD is based Jnits Di g/Kg 1 PD is based LCSD Result	l on the spil Spike 1. Amour 10.0 l on the spil Units	Ma nt Re <0 ke and s Dil.	atrix esult Re).144 10 spike dupli Spike Amount	c. I 8 73.1 cate resul LCS Rec.	Rec. .imit - 114.7 lt. LCSD Rec.	2	Limit 20 Rec. Limit
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT)	vike result. RJ LCSD Result U 10.8 m vike result. RJ LCS Result 1.09	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg	Ma nt Re <0 ke and s Dil. 1	atrix esult Re 0.144 10 spike dupli Spike <u>Amount</u> 1.00	c. L 8 73.1 cate resu LCS Rec. 109	Rec. .imit - 114.7 lt. LCSD Rec. 97	2 1 77.4	Limit 20 Rec. Limit I - 111.4
GRO Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB)	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02	PD is based Jnits Di g/Kg 1 PD is based LCSD Result	l on the spil Spike 1. Amour 10.0 l on the spil Units	Ma nt Re <0 ke and s Dil.	atrix esult Re).144 10 spike dupli Spike Amount	c. I 8 73.1 cate resul LCS Rec.	Rec. .imit - 114.7 lt. LCSD Rec.	2 1 77.4	Limit 20 Rec.
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1)	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972 0.944	l on the spil Spike l. Amour 10.0 l on the spil Units mg/Kg mg/Kg	Ma nt Re <0 ke and s Dil. 1 1	atrix esult Re 0.144 10 spike dupli Spike <u>Amount</u> 1.00	c. L 8 73.1 cate resu LCS Rec. 109	Rec. .imit - 114.7 lt. LCSD Rec. 97 94	2 I 77.4 70.3	Limit 20 Rec. Limit 4 - 111.4 3 - 116.1
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1)	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972 0.944	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg mg/Kg	Ma nt Re <0 ke and s Dil. 1 1 09-02	atrix esult Re 0.144 10 spike dupli Spike <u>Amount</u> 1.00	c. L 8 73.1 cate resu LCS Rec. 109	Rec. Jimit - 114.7 It. LCSD Rec. 97 94 - Analy	2 I 77.4 70.3 vzed By	Limit 20 Rec. Limit 1 - 111.4 3 - 116.1
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1)	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972 0.944	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg mg/Kg	Ma nt Re <0 ke and s Dil. 1 1 09-02	atrix esult Re 0.144 10 spike dupli Spike <u>Amount</u> 1.00	c. I 8 73.1 cate resu LCS Rec. 109	Rec. Jimit - 114.7 It. LCSD Rec. 97 94 - Analy	2 I 77.4 70.3	Limit 20 Rec. Limit 1 - 111.4 3 - 116.1
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1)	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972 0.944	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg mg/Kg	Ma nt Re <0 ke and s Dil. 1 1 09-02 09-02	atrix esult Re 0.144 10 spike dupli Spike <u>Amount</u> 1.00	c. I 8 73.1 cate resu LCS Rec. 109	Rec. Jimit - 114.7 It. LCSD Rec. 97 94 - Analy	2 I 77.4 70.3 vzed By	Limit 20 Rec. Limit - 111.4 - 116.1
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983 Prep Batch: 44578	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1) Data Quito LCS Result 1.09 1.02	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972 0.944	l on the spil Spike 1. Amour 10.0 I on the spil Units mg/Kg mg/Kg ed: 2008-0	Ma $\frac{Ma}{C}$ $\frac{C}{C}$ $\frac{C}{C}$ $\frac{Dil.}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{09-02}{09-02}$ $\frac{C}{C}$	atrix esult Re 0.144 10 spike dupli Spike <u>Amount</u> 1.00 1.00	c. I 8 73.1 cate resu LCS Rec. 109 102	Rec. Jimit - 114.7 It. LCSD Rec. 97 94 - Analy	2 I 77.4 70.3 vzed By ared By	Limit 20 Rec. Limit - 111.4 - 116.1 - 116.1 - MN - MN
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983 Prep Batch: 44578	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1) Da Qu LCS	PD is based Jnits Di g/Kg 1 PD is based LCSD Result 0.972 0.944 ate Analyze C Preparat	l on the spil Spike 1. Amour 10.0 I on the spil Units mg/Kg mg/Kg ed: 2008-0 ion: 2008-0	Ma $\frac{Ma}{C}$ $\frac{C}{C}$ $\frac{C}{C}$ $\frac{Dil.}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{09-02}{09-02}$ C An	atrix esult Re 0.144 10 spike dupli Spike Amount 1.00 1.00	c. I 8 73.1 cate resul LCS Rec. 109 102	Rec. <u>jimit</u> - 114.7 It. LCSD Rec. 97 94 Analy Prepa	2 I 77.4 70.3 vzed By vzed By	Limit 20 Rec. Limit - 111.4 3 - 116.1 - 116.1 - MN : MN : MN Rec. Limit
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1) Da Qu LCS Result 289	PD is based Jnits Di <u>g/Kg 1</u> PD is based LCSD Result 0.972 0.944 ate Analyze C Preparat Units <u>mg/K</u>	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg mg/Kg ed: 2008-0 ion: 2008-0 s Dil. g 1	Ma at Re <(0) ke and s Dil. 1 1 09-02 09-02 S An 	atrix esult Re 0.144 10 spike dupli Spike Amount 1.00 1.00 5pike nount 250	c. I 8 73.1 cate resu LCS Rec. 109 102 Matrix Result <6.77	Rec. .imit - 114.7 It. LCSD Rec. 97 94 Analy Prepa Rec. 116	2 I 77.4 70.3 vzed By vzed By	Limit 20 Rec. Limit - 111.4 3 - 116.1 - 116.1 - MN : MN : MN Rec. Limit
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983 Prep Batch: 44578 Param DRO	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1) Da Qu LCS Result 289 ike result. RJ	PD is based Jnits Di <u>g/Kg 1</u> PD is based LCSD Result 0.972 0.944 ate Analyze C Preparat Units <u>mg/K</u>	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg mg/Kg ed: 2008-0 ion: 2008-0 s Dil. g 1 l on the spil	Ma $\frac{Ma}{(20)}$ $\frac{Ma}{(20$	atrix esult Re 0.144 10 spike dupli Spike Amount 1.00 1.00 5 pike nount 250 spike duplie	c. I 8 73.1 cate resul LCS Rec. 109 102 Matrix Result <6.77 cate resul	Rec. .imit - 114.7 It. LCSD Rec. 97 94 Analy Prepa Rec. 116 It.	2 I 77.4 70.3 vzed By vzed By	Limit 20 Rec.
Percent recovery is based on the sp Param GRO Percent recovery is based on the sp Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (4-BFB) Laboratory Control Spike (LC QC Batch: 51983 Prep Batch: 44578 Param DRO	bike result. RJ LCSD Result U 10.8 m bike result. RJ LCS Result 1.09 1.02 S-1) Da Qu LCS Result 289 ike result. RH LCSD	PD is based Jnits Di <u>g/Kg 1</u> PD is based LCSD Result 0.972 0.944 ate Analyze C Preparat Units <u>mg/K</u>	l on the spil Spike 1. Amour 10.0 l on the spil Units mg/Kg mg/Kg ed: 2008-6 s Dil. g 1 on the spike	Ma at Re Control (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Co	atrix esult Re 0.144 10 spike dupli Spike Amount 1.00 1.00 5pike nount 250 spike duplie fatrix	c. I 8 73.1 cate resul LCS Rec. 109 102 Matrix Result <6.77 cate resul	Rec. .imit - 114.7 It. LCSD Rec. 97 94 Analy Prepa Rec. 116	2 I 77.4 70.3 vzed By vzed By	Limit 20 Rec. Limit - 111.4 3 - 116.1 - 116.1 - MN : MN : MN Rec.

Ę

•••

mg/Kg Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 12, 2008 MEWBOU030PIT				c Order: 8 JDO 9 St			Page Number: 24 of 46		
Surrogate	LCS Result	$\begin{array}{c} { m LCSD} \\ { m Result} \end{array}$	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec. Limit	
n-Triacontane	84.9	71.3	mg/Kg	1	100	85	71	49.5 - 185	
Laboratory Control	Spike (LCS-	-1)							
QC Batch: 52031		Da	te Analyzed	l: 2008	-09-03		Analyz	ed By: DS	
Prep Batch: 44606		QC	Preparation 2 Pr	on: 2008	-09-03		Prepar	ed By: DS	
		LCS			Spike	Matrix		Rec.	
Param		Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	
Naphthalene		0.0383	mg/L	1	0.0800	< 0.0000853	48	10 - 141	
Acenaphthylene		0.0565	mg/L	1	0.0800	< 0.0000768	71	10 - 152	
Acenaphthene		0.0555	mg/L	1	0.0800	< 0.000103	69	10 - 151	
Dibenzofuran		0.0563	$\mathrm{mg/L}$	1	0.0800	< 0.000200	70	10 - 148	
Fluorene		0.0693	mg/L	1	0.0800	< 0.0000861	87	10 - 172	
Anthracene		0.0589	mg/L	1	0.0800	< 0.000170	74	19.6 - 172	
Phenanthrene		0.0590	$\mathrm{mg/L}$	1	0.0800	< 0.0000884	74	22.5 - 172	
Fluoranthene		0.0595	mg/L	1	0.0800	< 0.0000969	74	17.3 - 187	
Pyrene		0.0665	$\mathrm{mg/L}$	1	0.0800	< 0.0000855	83	14.9 - 199	
Benzo(a)anthracene		0.0593	mg/L	1	0.0800	< 0.0000703	74	19.4 - 185	
Chrysene		0.0636	$\mathrm{mg/L}$	1	0.0800	< 0.000113	80	18.4 - 188	
Benzo(b)fluoranthene		0.0558	$\mathrm{mg/L}$	1	0.0800	< 0.000134	70	10 - 193	
Benzo(k)fluoranthene		0.0693	mg/L	1,	0.0800	< 0.000227	87	27.8 - 196	
Benzo(a)pyrene		0.0654	$\mathrm{mg/L}$	1	0.0800	< 0.000200	82	12.4 - 205	
Indeno(1,2,3-cd)pyrene		0.0725	mg/L	1	0.0800	< 0.000253	91	10 - 198	
		0.0713	mg/L	1	0.0800	< 0.000180	89	10 - 172	
Dibenzo(a,h)anthracene				1	0.0800	< 0.000158	89	10 - 186	

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	\mathbf{RPD}	Limit
Naphthalene	0.0384	mg/L	1	0.0800	< 0.0000853	48	10 - 141	0	20
A cenaphthylene	0.0572	$\mathrm{mg/L}$	1	0.0800	< 0.0000768	72	10 - 152	1	20
Acenaphthene	0.0560	m mg/L	1	0.0800	< 0.000103	70	10 - 151	1	20
Dibenzofuran	0.0573	m mg/L	1	0.0800	< 0.000200	72	10 - 148	2	20
Fluorene	0.0707	$\mathrm{mg/L}$	1	0.0800	< 0.0000861	88	10 - 172	2	20
Anthracene	0.0601	mg/L	1	0.0800	< 0.000170	75	19.6 - 172	2	20
Phenanthrene	0.0607	$\mathrm{mg/L}$	1	0.0800	< 0.0000884	76	22.5 - 172	3	20
Fluoranthene	0.0609	$\mathrm{mg/L}$	1	0.0800	< 0.0000969	76	17.3 - 187	2	20
Pyrene	0.0677	mg/L	1	0.0800	< 0.0000855	85	14.9 - 199	2	20
Benzo(a)anthracene	0.0599	mg/L	1	0.0800	< 0.0000703	75	19.4 - 185	1	20
Chrysene	0.0647	$\mathrm{mg/L}$	1	0.0800	< 0.000113	81	18.4 - 188	2	20
Benzo(b)fluoranthene	0.0563	$\mathrm{mg/L}$	1	0.0800	< 0.000134	70	10 - 193	1	20
Benzo(k)fluoranthene	0.0709	mg/L	1	0.0800	< 0.000227	89	27.8 - 196	2	20
Benzo(a)pyrene	0.0668	$\mathrm{mg/L}$	1	0.0800	< 0.000200	84	12.4 - 205	2	20

continued ...

· · ·

Report Date: September 12, 2008 MEWBOU030PIT	Work Order: 8082929 OSUDO 9 State #2	Page Number: 25 of 46
	····· ··· ··· ··· ··· ····	

RPD

Limit

20

20

20

control spikes continued								
-	LCSD			Spike	Matrix		Rec.	
Param	Result	Units	Dil.	Amount	Result	Rec.	\mathbf{Limit}	RPD
Indeno(1,2,3-cd)pyrene	0.0747	mg/L	1	0.0800	< 0.000253	93	10 - 198	3
Dibenzo(a,h)anthracene	0.0740	mg/L	1	0.0800	< 0.000180	92	10 - 172	• 4
Benzo(g,h,i)perylene	0.0737	mg/L	1	0.0800	< 0.000158	92	10 - 186	3

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	LCSD Result	Units	Dil.	${f Spike} \ {f Amount}$	LCS Rec.	LCSD Rec.	Rec. Limit
2-Fluorobiphenyl	0.0410	0.0424	mg/L	1	0.0800	51	53	10 - 165
Nitrobenzene-d5	0.0495	0.0502	mg/L	1	0.0800	62	63	10 - 157
Terphenyl-d14	0.0627	0.0631	mg/L	1	0.0800	78	79	10 - 220

Laboratory Control Spike (LCS-1)

۰.

QC Batch:	52082	Date Analyzed:	2008-09-04	Analyzed By:	TP
Prep Batch:	44652	QC Preparation:	2008-09-04	Prepared By:	TP

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
SPLP Mercury	0.000973	mg/L	1	0.00100	< 0.0000336	97	80 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Mercury	0.000967	$\mathrm{mg/L}$	1	0.00100	< 0.0000336	97	80 - 120	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

Aroclor 1260 (PCB-1260)

v	52094 44664			nalyzed: paration					lyzed B pared B	•
		LCS				Spike	Matrix			Rec.
Param		Result	t	Jnits	Dil.	Amount	Result	$R\epsilon$	ec.	Limit
Aroclor 1260 ((PCB-1260)	0.00190) n	ng/L	1	0.00200	< 0.0000331	. 9	5	10 - 128
Percent recove	ery is based on the sp	oike result. R	PD is b	based or	the spike	and spike du	plicate result	•		
		LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit

1

0.00200

96

10 - 128

20

0

< 0.0000331

mg/L Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

				O 9 State #					
	LCS	LCSD		5.1	Spike			CSD]
Surrogate Deca chlorobiphenyl	Result 0.000464	Result 0.000464	Unit		Amount 0.000500		ec. 1 13	<u>Rec.</u> 93	$\frac{L}{10}$
									-
Laboratory Control Sp	ike (LCS-1)			0000 00 0	-				P
QC Batch: 52116 Prep Batch: 44681			nalyzed: eparation:	2008-09-0 2008-09-0				nalyzed l repared l	
_		CS	 .		Spike		atrix	_	
Param		esult	Units	Dil.	Amount		esult	Rec.	
SPLP Cyanide		2.4	mg/Kg	1	12.0		1.94	103	
Percent recovery is based of	-	. RPD is	based on t	-		icate re			
D	LCSD	.		Spike	Matrix	F	Rec.		
Param	Result	Unit		Amount	Result	Rec.	Limit	RPD	
SPLP Cyanide	12.0	mg/K	<u>g 1</u>	12.0	<1.94	100	-	3	
Laboratory Control Sp QC Batch: 52144	,	Date A:	nalyzed:	2008-09-08		icate re	Aı	alyzed B	
Laboratory Control Sp QC Batch: 52144	, ,	Date A:		-		icate re	Aı	aalyzed B epared B	
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655	ike (LCS-1)	Date A: QC Pre	nalyzed: paration:	2008-09-08 2008-09-05	Spike	Matr	Aı Pr ix	epared B	y:
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param	ike (LCS-1) La Re	Date A QC Pre CS sult	nalyzed: paration: Units	2008-09-08 2008-09-05 Dil. 4	Spike	Matr Resu	Ar Pr ix lt1	epared B Rec.	y: I
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium	ike (LCS-1)	Date A QC Pre CS sult 246	nalyzed: paration: Units mg/L	2008-09-08 2008-09-05 Dil. 4 1	Spike Amount 0.250	Matr Resu <0.001	Ar Pr ix lt 1 140	epared B	y: I
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium	ike (LCS-1)	Date A QC Pre CS sult 246	nalyzed: paration: Units mg/L	2008-09-08 2008-09-05 Dil. 4 1	Spike Amount 0.250	Matr Resu <0.001	Ar Pr ix lt 1 140	epared B Rec. 98	y: I
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based of Param	ike (LCS-1) L(Re: 0.2 Don the spike result LCSD Result	Date A: QC Pre CS sult 246 . RPD is Units	nalyzed: paration: Units mg/L based on t Dil.	2008-09-08 2008-09-05 Dil. 4 1 the spike an Spike Amount	Spike Amount 0.250 d spike dupli Matrix Result	Matr Resu <0.001 Icate res Rec.	Ar Pr ix lt 1 140 sult. Rec. Limit	epared B Rec. 98 RPD	y: I 85
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based of Param SPLP Cadmium	ike (LCS-1) Lo Rei 0.2 on the spike result LCSD Result 0.239	Date A: QC Pre Sult 246 . RPD is Units mg/L	nalyzed: paration: Units mg/L based on t Dil. 1	2008-09-08 2008-09-05 Dil. 4 1 the spike an Spike Amount 0.250	Spike Amount 0.250 d spike dupli Matrix Result <0.00140	Matr Resu <0.001 icate res Rec. 96	Ar Pr ix lt 1 40 sult. Rec. Limit 85 - 115	epared B Rec. 98	y:
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based of Param	ike (LCS-1) La Re 0.2 on the spike result LCSD Result 0.239 on the spike result	Date A: QC Pre CS sult 246 . RPD is <u>Units</u> mg/L . RPD is Date An	nalyzed: paration: Units mg/L based on t Dil. 1 based on t	2008-09-08 2008-09-05 Dil. 4 1 the spike an Spike Amount 0.250	Spike Amount 0.250 d spike dupli Matrix Result <0.00140 d spike dupli	Matr Resu <0.001 icate res Rec. 96	Ar Pr ix lt 1 40 sult. Rec. Limit 85 - 115 sult. Ar	epared B Rec. 98 RPD	y: I 85
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based of the second seco	ike (LCS-1)	Date A: QC Pre Sult 246 . RPD is <u>Units</u> <u>mg/L</u> . RPD is Date An QC Pre	nalyzed: paration: Units mg/L based on t Dil. 1 based on t nalyzed: paration:	2008-09-08 2008-09-05 Dil. 4 1 the spike an Spike Amount 0.250 the spike an 2008-09-08 2008-09-05	Spike Amount 0.250 d spike dupli Matrix Result <0.00140 d spike dupli	Matri Resu <0.001 cate res 96 cate res Matri	Ar Pr ix lt 1 40 sult. Rec. Limit 85 - 115 sult. Ar Pr	epared B Rec. 98 RPD 3 alyzed B epared B	y: <u>I</u> <u>85</u> y: y: 1
Laboratory Control Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based of Param SPLP Cadmium Percent recovery is based of Param SPLP Cadmium Percent recovery is based of Laboratory Control Sp QC Batch: 52144	ike (LCS-1) L(Re 0.2 on the spike result LCSD Result 0.239 on the spike result ike (LCS-1)	Date A: QC Pre Sult 246 . RPD is <u>Units</u> <u>mg/L</u> . RPD is Date Ai QC Pre	nalyzed: paration: Units mg/L based on t Dil. 1 based on t nalyzed:	2008-09-08 2008-09-05 Dil. 4 1 the spike an Spike Amount 0.250 the spike an 2008-09-08 2008-09-05	Spike Amount 0.250 d spike dupli Matrix Result <0.00140 d spike dupli	Matr Resu <0.000 icate res Rec. 96 cate res	Ar Pr ix lt 1 40 sult. Rec. Limit 85 - 115 sult. Ar Pr ix	epared B Rec. 98 RPD 3 alyzed B	iy: 1 <u>L</u> 85

.

* • • •

Report Date: September 12, 20 MEWBOU030PIT	08			Order: 80§2 00 9 State			Page	Number:	27 01 40
							1	1	
	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Lead	0.503	$\mathrm{mg/L}$	1	0.500	< 0.00320	101	85 - 115	2	20
Percent recovery is based on the	e spike result.	RPD is l	based on	the spike a	and spike du	plicate re	esult.		
Laboratory Control Spike (LCS-1)								
QC Batch: 52144		Date Ar	nalvzed:	2008-09-	-08		An	alyzed B	y: RR
Prep Batch: 44655			paration:	2008-09-	-05		Pre	epared By	y: KV
Tep Baten. Troop		•	•					-	
	LC	1C			Spike	Mat	riv		Rec.
D	Res		Units	Dil.	Amount	Res		lec.	Limit
Param SPLP Selenium	0.4		mg/L	1	0.500	<0.0		90	85 - 115
Percent recovery is based on the									
Percent recovery is based on the	e spike result.	RPD IS	based on	the spike	and spike du	pheate r	court.		
5				Spike	Matrix		Rec.		RPD
	LCSD			opike					
	$egin{array}{c} { m LCSD} \\ { m Result} \end{array}$	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Param SPLP Selenium Percent recovery is based on th	Result 0.438	$\mathrm{mg/L}$	1	Amount 0.500	Result <0.0131	88	85 - 115	RPD 2	Limit 20
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144	Result 0.438 e spike result.	mg/L RPD is Date Au	1	Amount 0.500 the spike 2008-09	Result <0.0131 and spike du	88	85 - 115 esult. Ar		20 y: RR
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144	Result 0.438 e spike result. LCS-1)	mg/L RPD is Date An QC Pre	1 based on nalyzed:	Amount 0.500 the spike 2008-09	Result <0.0131 and spike du -08 -05	88	85 - 115 esult. Ar Pr	2 nalyzed B	20 y: RR
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655	Result 0.438 e spike result. LCS-1)	mg/L RPD is Date An QC Pre	1 based on nalyzed:	Amount 0.500 the spike 2008-09	Result <0.0131 and spike du	88 plicate r	85 - 115 esult. Ar Pr	2 nalyzed B	20 y: RR y: KV
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param	Result 0.438 e spike result. LCS-1)	mg/L RPD is Date An QC Pre	1 based on nalyzed: paration Units	Amount 0.500 the spike 2008-09 : 2008-09	Result <0.0131 and spike du -08 -05 Spike	88 plicate r Mat	85 - 115 esult. Ar Pr arix ult l	2 nalyzed B epared B	20 y: RR y: KV Rec. Limit
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic	Result 0.438 e spike result. LCS-1) LCS-1) LC Res 0.4	mg/L RPD is Date An QC Pre	1 based on nalyzed: paration Units mg/L	Amount 0.500 the spike 2008-09 : 2008-09 Dil. 1	Result <0.0131 and spike du -08 -05 Spike Amount 0.500	88 plicate r Mat Res <0.00	85 - 115 esult. Ar Pr trix ult 1 0430	2 nalyzed B epared B Rec.	20 y: RR y: KV Rec. Limit
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param	Result 0.438 e spike result. LCS-1) LCS-1) LC Res 0.4 e spike result.	mg/L RPD is Date An QC Pre	1 based on nalyzed: paration Units mg/L	Amount 0.500 1 the spike 2008-09 2008-09 Dil. 1 1 1 the spike	Result <0.0131 and spike du -08 -05 Spike Amount 0.500	88 plicate r Mat Res <0.00	85 - 115 esult. Ar Pr trix ult 1 0430	2 nalyzed B epared B Rec.	20 y: RR y: KV Rec. Limit
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on th	Result 0.438 e spike result. LCS-1) LCS-1) LC Res 0.4	mg/L RPD is Date An QC Pre	1 based on nalyzed: paration Units mg/L	Amount 0.500 the spike 2008-09 : 2008-09 Dil. 1	Result <0.0131 and spike du -08 -05 Spike Amount 0.500 and spike du	88 plicate r Mat Res <0.00	85 - 115 esult. Ar Pr crix ult 1 0430 result.	2 nalyzed B epared B Rec.	20 y: RR y: KV Rec. Limit 85 - 115
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic	Result 0.438 e spike result. LCS-1) LCS-1 e spike result. LCSD	mg/L RPD is Date An QC Pre CS sult 195 RPD is Units	1 based on nalyzed: paration Units mg/L based on	Amount 0.500 1 the spike 2008-09 2008-09 Dil. 1 1 1 the spike Spike	Result <0.0131 and spike du -08 -05 Spike Amount 0.500 and spike du Matrix	88 plicate r Mat Res <0.00 plicate r	85 - 115 esult. Ar Pr orix ult 1 0430 result. Rec.	2 halyzed B epared B Rec. 99 RPD	20 y: RR y: KV Rec. Limit 85 - 115 RPD
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on th Param SPLP Arsenic	Result 0.438 e spike result. LCS-1) LCS-1) LCS-1 e spike result. LCSD Result 0.479	mg/L RPD is Date An QC Pre CS sult 195 RPD is Units mg/L	1 based on nalyzed: paration Units mg/L based on Dil. 1	Amount 0.500 the spike 2008-09 : 2008-09 : 2008-09 Dil. 1 the spike Spike Amount 0.500	Result <0.0131 and spike du -08 -05 Spike Amount 0.500 and spike du Matrix Result <0.00430	88 plicate r Mat Res <0.00 plicate r Rec. 96	85 - 115 esult. Ar Pr orix ult 1 0430 result. Rec. Limit 85 - 115	2 halyzed B epared B Rec. 99 RPD	20 y: RR y: KV Rec. Limit 85 - 115 RPD Limit
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on th Param SPLP Arsenic Percent recovery is based on th	Result 0.438 e spike result. LCS-1) LCS-1) LCSD Result LCSD Result 0.479 te spike result.	mg/L RPD is Date An QC Pre CS sult 195 RPD is Units mg/L	1 based on nalyzed: paration Units mg/L based on Dil. 1	Amount 0.500 the spike 2008-09 : 2008-09 : 2008-09 Dil. 1 the spike Spike Amount 0.500	Result <0.0131 and spike du -08 -05 Spike Amount 0.500 and spike du Matrix Result <0.00430	88 plicate r Mat Res <0.00 plicate r Rec. 96	85 - 115 esult. Ar Pr orix ult 1 0430 result. Rec. Limit 85 - 115	2 halyzed B epared B Rec. 99 RPD	20 y: RR y: KV Rec. Limit 85 - 115 RPD Limit
Param SPLP Selenium Percent recovery is based on th Laboratory Control Spike (QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on th Param	Result 0.438 e spike result. LCS-1) LCS-1) LCSD Result LCSD Result 0.479 te spike result.	mg/L RPD is Date An QC Pre CS sult 195 RPD is Units mg/L . RPD is	1 based on nalyzed: paration Units mg/L based on Dil. 1	Amount 0.500 the spike 2008-09 : 2008-09 : 2008-09 Dil. 1 the spike Spike Amount 0.500	Result <0.0131 and spike du -08 -05 Spike Amount 0.500 and spike du Matrix Result <0.00430 and spike du	88 plicate r Mat Res <0.00 plicate r Rec. 96	85 - 115 esult. Ar Pr orix ult 1 0430 result. Rec. Limit 85 - 115 result.	2 halyzed B epared B Rec. 99 RPD	20 y: RR y: KV Rec. Limit 85 - 115 RPD Limit 20

continued ...

• •

Report Date: September 12, 2008 MEWBOU030PIT				Order: 808 OO 9 State		<u></u>	Page	Number:	28 of 46
control spikes continued									_
	LC		TT:4 a	D:1	Spike	Mati			Rec.
Param	Res	ult	Units	Dil.	Amount	Resu		Rec.	Limit
	LC	S			Spike	Mati			Rec.
Param	Rest	-	Units	Dil.	Amount	Resu		lec.	Limit
SPLP Barium	1.0		$\rm mg/L$	1	1.00	< 0.00		105	85 - 115
Percent recovery is based on the sp	ike result.	RPD is	based on	the spike	and spike dup	olicate re	esult.		
	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Barium	1.03	mg/L	1	1.00	< 0.00170	103	85 - 115	2	20
Percent recovery is based on the sp	ike result.	RPD is	based on	the spike	and spike dup	olicate re	esult.		
Laboratory Control Spike (LC	S-1)								
QC Batch: 52144		Date A	analyzed:	2008-09-	-08		An	alyzed B	v: RR
Prep Batch: 44655			eparation:					epared B	-
1		•						-	v
	LC				Cuilto	Matı			Rec.
Param	Res		Units	Dil.	Spike Amount	Resu		Rec.	Limit
SPLP Silver	0.12		mg/L	1	0.125	<0.00		<u>160.</u> 98	85 - 115
Percent recovery is based on the sp									
ercent recovery is based on the sp	ike result.	1(1 D 15	based on	one spike	and spike dup	meate re	Jouro.		
	LCSD			Spike	Matrix		Rec.		RPD
			D:1	Amount	Result	Rec.	Limit	RPD	Limit
	Result	Units	Dil.						
	Result 0.119	Units mg/L	<u> </u>	0.125	<0.00210	95	85 - 115	2	20
Param SPLP Silver Percent recovery is based on the sp	0.119	mg/L	1	0.125	<0.00210	95			
SPLP Silver Percent recovery is based on the sp	0.119 ike result.	mg/L	1	0.125	<0.00210	95			
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS	0.119 ike result.	mg/L RPD is	1 based on	0.125 the spike	<0.00210 and spike dup	95	esult.	2	20
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS QC Batch: 52144	0.119 ike result.	mg/L RPD is Date A	1 s based on analyzed:	0.125 the spike 2008-09-	<0.00210 and spike dup -08	95	esult. An	2 alyzed B	20 Ey: RR
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS QC Batch: 52144	0.119 ike result.	mg/L RPD is Date A	1 based on	0.125 the spike 2008-09-	<0.00210 and spike dup -08	95	esult. An	2	20 2y: RR
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LC: QC Batch: 52144 Prep Batch: 44655	0.119 ike result. 5-1) LC	mg/L RPD is Date A QC Pro	1 s based on analyzed: eparation:	0.125 the spike 2008-09- 2008-09-	<0.00210 and spike dup -08 -05 Spike	95 olicate re Mat:	esult. An Pro	2 alyzed B epared B	20 Sy: RR y: KV Rec.
PLP Silver Percent recovery is based on the sp Laboratory Control Spike (LC: QC Batch: 52144 Prep Batch: 44655 Param	0.119 ike result. S-1) LC Res	mg/L RPD is Date A QC Pro	1 s based on analyzed: eparation: Units	0.125 the spike 2008-09- 2008-09- Dil.	<0.00210 and spike dup -08 -05 Spike Amount	95 olicate re Mat Resu	esult. An Pro rix alt F	2 alyzed B epared B Rec.	20 Sy: RR y: KV Rec. Limit
PLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS PC Batch: 52144 Prep Batch: 44655 Param PLP U	0.119 ike result. 5-1) LC Res 0.5	mg/L RPD is Date A QC Pro 2S ult 31	1 s based on analyzed: eparation: Units mg/L	0.125 the spike 2008-09- 2008-09- Dil. 1	<0.00210 and spike dup -08 -05 Spike Amount 0.500	95 plicate re Mat: Rest <0.0	esult. An Pro rix alt Fi 105 1	2 alyzed B epared B	20 Sy: RR y: KV Rec.
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS QC Batch: 52144 Prep Batch: 44655 Param SPLP U	0.119 ike result. 5-1) LC Res 0.5	mg/L RPD is Date A QC Pro 2S ult 31	1 s based on analyzed: eparation: Units mg/L	0.125 the spike 2008-09- 2008-09- Dil. 1	<0.00210 and spike dup -08 -05 Spike Amount 0.500	95 plicate re Mat: Rest <0.0	esult. An Pro rix alt Fi 105 1	2 alyzed B epared B Rec.	20 Sy: RR y: KV Rec. Limit
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS QC Batch: 52144 Prep Batch: 44655 Param SPLP U	0.119 ike result. 5-1) LC Res 0.5 ike result.	mg/L RPD is Date A QC Pro 2S ult 31	1 s based on analyzed: eparation: Units mg/L	0.125 the spike 2008-09- 2008-09- Dil. 1 the spike	<0.00210 and spike dup -08 -05 Spike Amount 0.500 and spike dup	95 plicate re Mat: Rest <0.0	An Pro rix alt F 105 1 esult.	2 alyzed B epared B Rec.	20 Ey: RR y: KV Rec. Limit 90 - 110
SPLP Silver Percent recovery is based on the sp Laboratory Control Spike (LCS QC Batch: 52144	0.119 ike result. 5-1) LC Res 0.5	mg/L RPD is Date A QC Pro 2S ult 31	1 based on analyzed: eparation: Units mg/L based on	0.125 the spike 2008-09- 2008-09- Dil. 1	<0.00210 and spike dup -08 -05 Spike Amount 0.500	95 plicate re Mat: Rest <0.0	esult. An Pro rix alt Fi 105 1	2 alyzed B epared B Rec.	20 Sy: RR y: KV Rec. Limit

• •

.

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: September 12, 2008 MEWBOU030PIT				Order: 8082 O 9 State			Pa	age Numb	er: 29 c
Laboratory Control Spike (LO	CS-1)								
QC Batch: 52176		Date A	nalyzed:	2008-09-	09			Analyzed	By: I
Prep Batch: 44735		QC Pr	eparation:	2008-09-	08			Prepared	By:
	LC	S			Spike	Ma	trix		Re
Param	Resi		Units	Dil.	Amount	Res		Rec.	Lin
Nitrate-N	2.5		mg/L	1	2.50	<0.0		101	90 -
Percent recovery is based on the s	pike result.	RPD is	based on	the spike a	and spike du	plicate r	esult.		
	LCSD			Spike	Matrix		Rec	с.	R
Param	Result	Units		Amount	Result	Rec.	Lim		D L
Nitrate-N	2.27	mg/L	1	2.50	< 0.0700	91	90 - 1	110 10	
Prep Batch: 44735			eparation:	2008-09-			, .	Prepared	Ū
Param	LC Rest	Sult	Units	2008-09-	Spike Amount	Res	trix sult	Prepared Rec.	Re Lir
Param SPLP Chloride	LC Rest 12.	S ult 3	Units mg/L	Dil.	Spike Amount 12.5	Res <0.	sult .137	-	Re Lin
Param	LC Rest 12.	S ult 3	Units mg/L	Dil.	Spike Amount 12.5	Res <0.	sult .137	Rec.	Re Lir
Param SPLP Chloride	LC Rest 12.	S ult 3	Units mg/L	Dil.	Spike Amount 12.5	Res <0.	sult .137	Rec98	Re Lir 90 -
Param SPLP Chloride Percent recovery is based on the s Param	LC Resu 12. pike result. LCSD Result	S ult 3 RPD is Units	Units mg/L based on Dil.	Dil. 1 the spike a Spike Amount	Spike Amount 12.5 and spike du Matrix Result	Res <0. plicate r Rec.	sult 137 esult. Rec Limi	Rec. 98	Re Lin 90 - R D Li
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride	LC Rest 12. pike result. LCSD Result 12.0	S ult 3 RPD is Units mg/L	Units mg/L based on Dil.	Dil. 1 the spike a Spike Amount 12.5	Spike Amount 12.5 and spike du Matrix Result <0.137	Res <0. plicate r <u>Rec.</u> 96	sult 137 result. Rec Limi 90 - 1	Rec. 98	Re Lir 90 - FR D L
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s	LC Resr 12. pike result. LCSD Result 12.0 pike result.	S ult 3 RPD is Units mg/L	Units mg/L based on Dil.	Dil. 1 the spike a Spike Amount 12.5	Spike Amount 12.5 and spike du Matrix Result <0.137	Res <0. plicate r <u>Rec.</u> 96	sult 137 result. Rec Limi 90 - 1	Rec. 98	Re Lir 90 - R D L
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC	LC Resr 12. pike result. LCSD Result 12.0 pike result. CS-1)	S ult 3 RPD is <u>Units</u> mg/L RPD is	Units mg/L based on Dil. 1 based on	Dil. 1 the spike a Spike Amount 12.5 the spike a	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du	Res <0. plicate r <u>Rec.</u> 96	sult 137 result. Rec Limi 90 - 1	Rec. 98 it RP1 10 2	Re Lir 90 - R D Li
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s	LC Resr 12. pike result. LCSD Result 12.0 pike result. CS-1)	S ult 3 RPD is Units mg/L RPD is Date A	Units mg/L based on Dil.	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du	Res <0. plicate r <u>Rec.</u> 96	sult 137 result. Rec Limi 90 - 1	Rec. 98	Re Lin 90 - R D Li
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC QC Batch: 52176	LC Resu 12. pike result. LCSD Result 12.0 pike result. CS-1)	S ult 3 RPD is <u>Units</u> mg/L RPD is Date A QC Pro	Units mg/L based on Dil. 1 based on nalyzed:	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du	Rec. 96 plicate r	sult 137 esult. Rec Limi 90 - 1 esult.	Rec. 98 it RP1 10 2 Analyzed	Re Lin 90 - R D Li By: 1 By: 1
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC QC Batch: 52176	LC Resu 12. pike result. LCSD Result 12.0 pike result. CS-1)	S ult 3 RPD is <u>Units</u> <u>mg/L</u> RPD is Date A QC Pro	Units mg/L based on Dil. 1 based on nalyzed: eparation:	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0 2008-09-0	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du 09 08 Spike	Rec. 96 plicate r Mat	sult 137 esult. Rec Limi 90 - 1 esult.	Rec. 98 it RP1 10 2 Analyzed Prepared	Re Lin 90 - R D Li By: I By: I By: I
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC QC Batch: 52176 Prep Batch: 44735	LC Resu 12. pike result. LCSD Result 12.0 pike result. CS-1)	S ult 3 RPD is <u>Units</u> <u>mg/L</u> RPD is Date A QC Pro	Units mg/L based on Dil. 1 based on nalyzed:	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du	Rec. 96 plicate r	sult 137 esult. Rec Limi 90 - 1 esult.	Rec. 98 it RP1 10 2 Analyzed	Re Lir 90 - By: By: Re Lir
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC QC Batch: 52176 Prep Batch: 44735 Param	LC Result pike result. LCSD Result 12.0 pike result. CS-1) LCC Resu	S ult 3 RPD is Units mg/L RPD is Date A QC Pro S ult 9	Units mg/L based on Dil. 1 based on nalyzed: eparation: Units mg/L	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0 2008-09-0 Dil. 1	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du 09 08 Spike Amount 2.50	Rec. 96 plicate r 96 plicate r Mat Res <0.0	sult 137 esult. Rec Limi 90 - 1 result. trix ult 1889	Rec. 98 it RP1 10 2 Analyzed Prepared Rec.	Re Lir 90 - R D L By: 1 By: 1 Re Lin
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC QC Batch: 52176 Prep Batch: 44735 Param SPLP Fluoride	LC Result pike result. LCSD Result 12.0 pike result. CS-1) LCC Resu	S ult 3 RPD is Units mg/L RPD is Date A QC Pro S ult 9	Units mg/L based on Dil. 1 based on nalyzed: eparation: Units mg/L	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0 2008-09-0 Dil. 1	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du 09 08 Spike Amount 2.50	Rec. 96 plicate r 96 plicate r Mat Res <0.0	sult 137 esult. Rec Limi 90 - 1 result. trix ult 1889	Rec. 98 it RPI 10 2 Analyzed Prepared Rec. 100	Re Lin 90 - R D Li
Param SPLP Chloride Percent recovery is based on the s Param SPLP Chloride Percent recovery is based on the s Laboratory Control Spike (LC QC Batch: 52176 Prep Batch: 44735 Param SPLP Fluoride	LC Resu 12. pike result. LCSD Result 12.0 pike result. CS-1) LCS Resu 2.49 pike result.	S ult 3 RPD is Units mg/L RPD is Date A QC Pro S ult 9	Units mg/L based on Dil. 1 based on nalyzed: eparation: Units mg/L	Dil. 1 the spike a Spike Amount 12.5 the spike a 2008-09-0 2008-09-0 Dil. 1 the spike a	Spike Amount 12.5 and spike du Matrix Result <0.137 and spike du 09 08 Spike Amount 2.50 and spike du	Rec. 96 plicate r 96 plicate r Mat Res <0.0	sult 137 esult. Rec Limi 90 - 1 esult. trix ult 1889 esult.	Rec. 98 it RP 10 2 Analyzed Prepared Rec. 100	Re Lin 90 - R D Li By: 1 By: 1 Re Lin 90 -

• • •

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

• •

,

Laboratory Control Spike (LCS-1)

QC Batch: 52180 Prep Batch: 44744		e Analyzed: Preparation:	2008-09 2008-09	••			lyzed By pared By	
-		-						
	LCS			Spike	Matr	ix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	Resu	lt Rec.	Ι	Limit
Chloride	100	mg/Kg	1	100	<1.8	0 100	96.5	- 104.4
Percent recovery is based on	the spike result. RPI) is based on	the spike	and spike o	luplicate	result.		
	LCSD		Spike	Matrix		Rec.		RPD
Param	Result Un	its Dil.	Amount	\mathbf{Result}	Rec.	\mathbf{Limit}	RPD	Limit
Chloride	99.6 mg/	Kg 1	100	<1.80	100	96.5 - 104.4	1	20
Laboratory Control Spike QC Batch: 52233	. ,	e Analyzed:	2008-09	-09		Ana	lvzed By	r: KB
Prep Batch: 44786		Preparation:					pared By	
	LCS			Spike	Ma	trix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	Res	sult Re	ec.	Limit
1,1-Dichloroethene	49.7	$\mu g/L$	1	50.0	<0.	136 9	9 '	70 - 130
Benzene	49.3	$\mu { m g}/{ m L}$	1	50.0	<0.	146 99	9 '	70 - 130
Trichloroethene (TCE)	50.3	$\mu { m g/L}$	1	50.0	<0.	117 10)1 '	70 - 130
Toluene	51.5	$\mu { m g/L}$	1	50.0	<0.0	0600 10)3 '	70 - 130
Chlorobenzene	50.5	$\mu { m g/L}$	1	50.0	< 0.0	0540 10)1′	70 - 130
Percent recovery is based on	the spike result. RPL		the spike	and spike d	luplicate 1	result.		÷.

	LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	\mathbf{Units}	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
1,1-Dichloroethene	52.0	$\mu g/L$	1	50.0	< 0.136	104	70 - 130	4	
Benzene	50.7	$\mu \mathrm{g/L}$	1	50.0	< 0.146	101	70 - 130	3	
Trichloroethene (TCE)	51.4	$\mu { m g/L}$	1	50.0	< 0.117	103	70 - 130	2	
Toluene	53.2	$\mu { m g/L}$	1	50.0	< 0.0600	106	70 - 130	3	
Chlorobenzene	51.7	$\mu { m g}/{ m L}$	1	50.0	< 0.0540	103	70 - 130	2	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	52.3	51.1	$\mu g/L$	1	50.0	105	102	70 - 130
Toluene-d8	52.2	52.1	$\mu \mathrm{g/L}$	1	50.0	104	104	70 - 130
4-Bromofluorobenzene (4-BFB)	50.7	50.9	$\mu { m g}/{ m L}$	1	50.0	101	102	70 - 130

• :

Page Number: 31 of 46

Matrix Spike (MS-1) Spiked Sample: 172380

QC Batch: Prep Batch:	51953 44548		te Analyzed: Preparation:	2008-09-0 2008-09-0			v	By: CM By: CM
Param		${ m MS} { m Result}$	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit
TRPHC		202	mg/Kg	1	250	<1.06	81	10 - 354

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	214	mg/Kg	1	250	<1.06	86	10 - 354	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 172379

QC Batch:	51972	Date Analyzed:	2008-09-02	Analyzed By:	\mathbf{ER}
Prep Batch:	44568	QC Preparation:	2008-09-02	Prepared By:	\mathbf{ER}

	MS			Spike	Matrix		$\operatorname{Rec.}$
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	\mathbf{Limit}
Benzene	1.11	mg/Kg	1	1.00	< 0.00347	111	42.9 - 130.7
Toluene	1.18	m mg/Kg	1	1.00	< 0.00525	118	46.9 - 135.4
Ethylbenzene	1.32	m mg/Kg	1	1.00	< 0.00607	132	48.3 - 149.3
Xylene	3.95	mg/Kg	1	3.00	< 0.00724	132	48.8 - 150.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Benzene	0.979	mg/Kg	1	1.00	<0.00347	98	42.9 - 130.7	12	20
Toluene	1.04	mg/Kg	1	1.00	< 0.00525	104	46.9 - 135.4	13	20
Ethylbenzene	1.14	mg/Kg	1	1.00	< 0.00607	114	48.3 - 149.3	15	20
Xylene	3.39	mg/Kg	1	3.00	< 0.00724	113	48.8 - 150.9	15	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.22	1.09	mg/Kg	1	1	122	109	63.2 - 128.3
4-Bromofluorobenzene (4-BFB)	1.23	1.10	mg/Kg	1	1	123	110	61.5 - 161.2

Matrix Spike (MS-1) Spiked Sample: 172376

QC Batch:	51974	Date Analyzed:	2008-09-02	Analyzed By:	\mathbf{ER}
Prep Batch:	44568	QC Preparation:	2008-09-02	Prepared By:	\mathbf{ER}

Report Date: September 12, 2008 MEWBOU030PIT			Order: 808 DO 9 State			Page N	lumber:	32 of 46
	MS			Spike	Matr	ix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	Resu	lt Rec.	Ι	Limit
GRO	14.3	mg/Kg	1	10.0	< 0.1	44 143	48.9	- 155.8
Percent recovery is based on the sp	oike result. RP	'D is based o	n the spike	and spike d	uplicate	result.		
	MSD		Spike	Matrix		Rec.		RPD
Param	Result U	nits Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	14.6 mg	g/Kg 1	10.0	< 0.144	146	48.9 - 155.8	2	20
Percent recovery is based on the sp	oike result. RP	D is based o	n the spike	and spike d	uplicate	result.		
	MS	MSD		· Sp	ike	MS MSD	•	Rec.
Surrogate	\mathbf{Result}	\mathbf{Result}	Units	Dil. Ame	ount 1	Rec. Rec.		Jimit
Trifluorotoluene (TFT)	1.36	1.34	mg/Kg	1		136 134		- 145.4
4-Bromofluorobenzene (4-BFB)	1.83	1.84	m mg/Kg	1 :	l	183 184	50.3	- 197.8
Param	MS Result	Units	Dil.	Spike Amount	Mar Res			Rec. Limit
	⁵ 1120	mg/Kg	1	250	75			.7 - 134
Percent recovery is based on the sp			n the spike Spike	and spike d Matrix				RPD
Param		Jnits Dil.	Amount	Result	Rec.	Limit	RPD	nr D
	itesuit C	-m.s Dn.	rinoune	rtesuit				Limit
	1140 m	$r/K_{\rm ff} = 1$	250	758	153	50.7.134	• • • •	Limit
DRO ⁶		g/Kg 1 'D is based or	250 n the spike	758 and spike d	153 uplicate	50.7 - 134 result.	2	Limit 20
DRO ⁶ Percent recovery is based on the sp	oike result. RP			and spike d	uplicate	result.	2	20
DRO 6 Percent recovery is based on the sp MS	oike result. RP MSD	D is based of	n the spike	and spike d Spike	uplicate M	result. S MSD		20 Rec.
DRO ⁶ Percent recovery is based on the sp	oike result. RP MSD			and spike d	uplicate M	result. S MSD ec. Rec.		20

.

,

•

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ⁶Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ⁷Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ⁸Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

MEWBOU030PIT	2008			Order: 808 DO 9 State			rage	Number	. აა
Param	MS Resul	t	Units	Dil.	Spike Amount	Mat Res		Rec.	R Li
SPLP Mercury	0.0011		mg/L	1	0.00100	0.000		101	80
Percent recovery is based on	the spike result. R	PD is		the spike	and spike dup	licate r	esult.		
	MSD			Spike	Matrix		Rec.		
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD]
SPLP Mercury	0.00127	mg/L	1	0.00100	0.000173	110	80 - 120	7	
Percent recovery is based on Matrix Spike (MS-1) S	piked Sample: 172		based on	the spike	and spike dup	arcate 1	esuit.		
QC Batch: 52116			nalyzed:	2008-09	-05		A	nalyzed 1	Bv:
Prep Batch: 44681			eparation					repared 1	
	MS				Spike		latrix		
Param	Resul		Units	Dil.	Amount		lesult	Rec.]
SPLP Cyanide	10.8		mg/Kg	1	12.0	<	<1.94	90	
Percent recovery is based on	the spike result. R	PD is	based on	the spike	and spike dup	licate r	esult.		٠
D	MSD	TT	D.1	Spike		-	Rec.		
Param SPLP Cyanide	Result 10.9	Units mg/K	g 1	Amoun 12.0	<1.94	Rec. 91	Limit -	RPD 1	
SPLP Cyanide Percent recovery is based on	10.9 the spike result. R	mg/K PD is	g 1	12.0	<1.94	91	_		
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S	10.9 the spike result. R piked Sample: 172:	mg/K PD is 381	g <u>1</u> based on	12.0 the spike	<1.94 and spike dup	91	- esult.	1	
SPLP Cyanide Percent recovery is based on	10.9 the spike result. R piked Sample: 172 D	mg/K PD is 381 Date Ar	g 1	12.0 the spike 2008-09-	<1.94 and spike dup 08	91	- esult. An		
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655	10.9 the spike result. R piked Sample: 172 D Q MS	mg/K PD is 381 Oate Ar 9C Prej	g 1 based on nalyzed: paration:	12.0 the spike 2008-09- 2008-09-	<1.94 and spike dup 08 05 Spike	91 licate r Mat:	- esult. An Pre	1 alyzed B epared B	y: y: R
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655 Param	10.9 the spike result. R piked Sample: 172: D Q MS Result	mg/K PD is 381 9ate Ar 9C Prej	g 1 based on nalyzed: paration: Units	12.0 the spike 2008-09- 2008-09- Dil.	<1.94 and spike dup 08 05 Spike Amount	91 licate re Mat: Rest	- esult. An Pre	1 alyzed B epared B Rec.	y: y: R Li
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655	10.9 the spike result. R piked Sample: 172: C MS Result 0.238	mg/K PD is 381 0ate Ar 9C Prej	g 1 based on nalyzed: paration: Units mg/L	12.0 the spike 2008-09- 2008-09- Dil. 1	<1.94 and spike dup 08 05 Spike Amount 0.250	91 licate r Mat: Rest <0.00	- esult. An Pro- rix alt R 140	1 alyzed B epared B	y: y: R Li
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium	10.9 the spike result. R piked Sample: 172: C MS Result 0.238	mg/K PD is 381 0ate Ar 9C Prej	g 1 based on nalyzed: paration: Units mg/L	12.0 the spike 2008-09- 2008-09- Dil. 1	<1.94 and spike dup 08 05 Spike Amount 0.250	91 licate r Mat: Rest <0.00	- esult. An Pro- rix alt R 140	1 alyzed B epared B Rec.	By: y: R Li 75
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based on Param	10.9 the spike result. R piked Sample: 172: D C MS Result 0.238 the spike result. R MSD Result	mg/K PD is 381 0ate Ar 9C Prej	g 1 based on nalyzed: paration: Units mg/L	12.0 the spike 2008-09- 2008-09- Dil. 1 the spike a	<1.94 and spike dup 08 05 Spike Amount 0.250 and spike dup	91 licate r Mat: Rest <0.00	- esult. An Pre rix nlt R 140 esult.	1 alyzed B epared B Rec.	y: y: R
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) SQC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based on Param SPLP Cadmium Param SPLP Cadmium	10.9 the spike result. R piked Sample: 172: C MS Result 0.238 the spike result. R MSD Result 0.236 r	mg/K; PD is 381 Pate Ar QC Pre; C Pre; I PD is I Jnits mg/L	g 1 based on nalyzed: paration: Units mg/L based on Dil. 1	12.0 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.250	<1.94 and spike dup 08 05 Spike Amount 0.250 and spike dup Matrix Result <0.00140	91 licate re Mat: Rest <0.00 licate re Rec. 94	- esult. An Pre lt R l140 esult. Rec. Limit 75 - 125	1 alyzed B epared B lec. 95	By: y: R Li 75
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based on Param	10.9 the spike result. R piked Sample: 172: C MS Result 0.238 the spike result. R MSD Result 0.236 r	mg/K; PD is 381 Pate Ar QC Pre; C Pre; I PD is I Jnits mg/L	g 1 based on nalyzed: paration: Units mg/L based on Dil. 1	12.0 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.250	<1.94 and spike dup 08 05 Spike Amount 0.250 and spike dup Matrix Result <0.00140	91 licate re Mat: Rest <0.00 licate re Rec. 94	- esult. An Pre lt R l140 esult. Rec. Limit 75 - 125	1 alyzed B epared B Rec. 95 RPD	By: y: R Li 75
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based on Param SPLP Cadmium Percent recovery is based on Param SPLP Cadmium Percent recovery is based on SPLP Cadmium	10.9 the spike result. R piked Sample: 172: C MS Result 0.238 the spike result. R MSD Result 0.236 r	mg/K PD is 381 ate Ar C Prej C Prej D is 1 Jnits ng/L PD is 1	g 1 based on nalyzed: paration: Units mg/L based on Dil. 1	12.0 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.250	<1.94 and spike dup 08 05 Spike Amount 0.250 and spike dup Matrix Result <0.00140	91 licate re Mat: Rest <0.00 licate re Rec. 94	- esult. An Pre lt R l140 esult. Rec. Limit 75 - 125	1 alyzed B epared B Rec. 95 RPD	Sy: y: R Li 75
SPLP Cyanide Percent recovery is based on Matrix Spike (MS-1) S QC Batch: 52144 Prep Batch: 44655 Param SPLP Cadmium Percent recovery is based on Param SPLP Cadmium Percent recovery is based on Param SPLP Cadmium Percent recovery is based on SPLP Cadmium	10.9 the spike result. R piked Sample: 172:	mg/K PD is 381 ate Ar C Prej C Prej D is 1 Jnits ng/L PD is 1 381 ate An	g 1 based on nalyzed: paration: Units mg/L based on Dil. 1	12.0 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.250 the spike a 2008-09-	<1.94 and spike dup 08 05 Spike Amount 0.250 and spike dup Matrix Result <0.00140 and spike dup	91 licate re Mat: Rest <0.00 licate re Rec. 94	- esult. An Pre- rix alt R (140 soult. Rec. Limit 75 - 125 esult. An	1 alyzed B epared B Rec. 95 RPD	Sy: y: R Li 75

.

MEWBOU030PIT	2008			Order: 808 OO 9 State			rage	e Number	: 34
	MS				Spike	Mat	rix		R
Param	Resul		Units	Dil.	Amount	Res		Rec.	Li
SPLP Lead	0.494	1	mg/L	1	0.500	< 0.0	0320	99	75 -
Percent recovery is based on t	he spike result. F	RPD is	s based on	the spike	and spike du	plicate r	result.		
	MSD			Spike	Matrix		Rec.		J
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	1
SPLP Lead	0.490	mg/L	1	0.500	< 0.00320	98	75 - 125	5 1	
Percent recovery is based on t	he spike result. F	RPD is	s based on	the spike	and spike du	plicate r	esult.	•	
Matrix Spike (MS-1) Sp	oiked Sample: 172	2381							
QC Batch: 52144	I	Date A	analyzed:	2008-09	-08		А	nalyzed E	By:
Prep Batch: 44655			eparation:					repared B	
	MS				Spike	Mat	riv		R
Param	Resul	lt	Units	Dil.	Amount	Res		Rec.	Li
SPLP Selenium	0.445		mg/L	1	0.500	< 0.0		89	75
				Spike		_			
Param SPLP Selenium		Units mg/L	Dil.	Amount 0.500	Result <0.0131	Rec. 90	Limit 75 - 125	RPD 1	L
SPLP Selenium Percent recovery is based on t	0.449	$\mathrm{mg/L}$	1	0.500	< 0.0131	90	75 - 125		I
SPLP Selenium Percent recovery is based on t	0.449	mg/L RPD is	1	0.500	< 0.0131	90	75 - 125		I
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144	0.449 he spike result. R viked Sample: 172 I	mg/L RPD is 2381 Date A	1 based on nalyzed:	0.500 the spike 2008-09	<0.0131 and spike dup .08	90	75 - 125 esult. A	1 nalyzed B	By:
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp	0.449 he spike result. R viked Sample: 172 I	mg/L RPD is 2381 Date A	1 based on	0.500 the spike	<0.0131 and spike dup .08	90	75 - 125 esult. A	1	By:
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655	0.449 he spike result. R biked Sample: 172 I C MS	mg/L RPD is 2381 Date A QC Pro	1 based on analyzed: eparation:	0.500 the spike 2008-09- 2008-09-	<0.0131 and spike dup .08 .05 Spike	90	75 - 125 esult. A Pr	1 nalyzed B	By: By:
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param	0.449 he spike result. R biked Sample: 172 I C MS Result	mg/L RPD is 2381 Date A QC Pro t	1 based on nalyzed: eparation: Units	0.500 the spike 2008-09- 2008-09- Dil.	<0.0131 and spike du 08 05 Spike Amount	90 plicate r Mat Res	75 - 125 esult. A Pr rix ult	1 nalyzed E repared B Rec.	By: Fy: R Lin
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic	0.449 he spike result. R biked Sample: 172 I C MS Result 0.496	mg/L RPD is 2381 Date A QC Pre	1 based on nalyzed: eparation: Units mg/L	0.500 the spike 2008-09- 2008-09- Dil. 1	<0.0131 and spike duj -08 -05 Spike <u>Amount</u> 0.500	90 plicate r Mat Res <0.00	75 - 125 esult. A Pu rix ult 9430	1 nalyzed B repared B	By: by: R Li
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param	0.449 he spike result. R biked Sample: 172 I C MS Result 0.496	mg/L RPD is 2381 Date A QC Pre	1 based on nalyzed: eparation: Units mg/L	0.500 the spike 2008-09- 2008-09- Dil. 1 the spike	<0.0131 and spike dup .08 .05 Spike Amount 0.500 and spike dup	90 plicate r Mat Res <0.00	75 - 125 esult. A Pr rix ult 9430 esult.	1 nalyzed E repared B Rec.	3y: y: R Li 75 -
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic	0.449 he spike result. R biked Sample: 172 I C MS Result 0.496 he spike result. R MSD	mg/L RPD is 2381 Date A QC Pre	1 based on nalyzed: eparation: Units mg/L	0.500 the spike 2008-09- 2008-09- Dil. 1	<0.0131 and spike duj -08 -05 Spike <u>Amount</u> 0.500	90 plicate r Mat Res <0.00	75 - 125 esult. A Pu rix ult 1430	1 nalyzed E repared B Rec.	8y: y: R Li 75 -
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on the second sec	0.449 he spike result. R biked Sample: 172 I C MS Result 0.496 he spike result. R MSD Result	mg/L RPD is 2381 Date A QC Pro t RPD is	1 based on nalyzed: eparation: Units mg/L based on	0.500 the spike 2008-09- 2008-09- Dil. 1 the spike Spike	<0.0131 and spike dup 08 05 Spike Amount 0.500 and spike dup Matrix	90 plicate r Mat Rest <0.00 plicate r	75 - 125 esult. Ai Pr rix ult 1/430 esult. Rec.	nalyzed B repared B Rec. 99 RPD	By: y: <u>Li</u> 75 -
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on the statement of t	0.449 he spike result. R biked Sample: 172 I C MS Result 0.496 he spike result. R MSD Result 0.496	mg/L RPD is 2381 Date A QC Pro t RPD is Mg/L	1 based on analyzed: eparation: Units mg/L based on Dil. 1	0.500 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.500	<0.0131 and spike dup 0.08 0.05 Spike Amount 0.500 and spike dup Matrix Result <0.00430	90 plicate r Mat Ress <0.00 plicate r Rec. 99	75 - 125 esult. A Pr rix ult 0430 esult. Rec. Limit 75 - 125	nalyzed B repared B Rec. 99 RPD	By: y: R Li 75 -
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on the second of the s	0.449 he spike result. R biked Sample: 172 I C MS Result 0.496 he spike result. R MSD Result 0.496	mg/L RPD is 2381 Date A QC Pro t t RPD is mg/L RPD is	1 based on analyzed: eparation: Units mg/L based on Dil. 1	0.500 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.500	<0.0131 and spike dup 0.08 0.05 Spike Amount 0.500 and spike dup Matrix Result <0.00430	90 plicate r Mat Ress <0.00 plicate r Rec. 99	75 - 125 esult. A Pr rix ult 0430 esult. Rec. Limit 75 - 125	nalyzed B repared B Rec. 99 RPD	8y: y: R Li 75 -
SPLP Selenium Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655 Param SPLP Arsenic Percent recovery is based on the second of the s	0.449 he spike result. R biked Sample: 172 I MS Result 0.496 he spike result. R MSD Result 0.496 n he spike result. R iked Sample: 172	mg/L RPD is 2381 Date A QC Pro t t RPD is mg/L RPD is 381 Date A	1 based on analyzed: eparation: Units mg/L based on Dil. 1	0.500 the spike 2008-09- 2008-09- Dil. 1 the spike Amount 0.500	<0.0131 and spike dup 0.08 0.05 Spike Amount 0.500 and spike dup Matrix Result <0.00430 and spike dup 0.00430	90 plicate r Mat Ress <0.00 plicate r Rec. 99	75 - 125 esult. A: Pr rix ult : : : : : : : : : : : : : : : : : : :	nalyzed B repared B Rec. 99 RPD	8y: y: 75 - F L

•

Report Date: September 12, 2 MEWBOU030PIT	2008		Order: 808 DO 9 State			Page	Number	: 35 of 40
Param	${ m MS} { m Result}$	Units	Dil.	Spike Amount	Mat Res		lec.	Rec. Limit
SPLP Barium	1.28	mg/L	1	1.00	0.2	51 1	.03	75 - 125
Percent recovery is based on the	he spike result. RP	D is based on	the spike a	and spike du	plicate re	esult.		
·								תתת
Danam	MSD Result U	Inits Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Param SPLP Barium		$\frac{1}{\log/L}$ 1	1.00	0.251	101	75 - 125	$\frac{11D}{2}$	20
Percent recovery is based on th								20
rercent recovery is based on th	le spike result. Iti	D is based on	the spike o	and spike du	pilcate R	-Sult.		
Matrix Spike (MS-1) Sp	iked Sample: 17238	31						
QC Batch: 52144	Da	te Analyzed:	2008-09-	08		An	alyzed B	By: RR
Prep Batch: 44655	QC	C Preparation	: 2008-09-	05		Pr	epared B	y: KV
	MS			Spike	Mati	·ix		Rec.
Param	Result	Units	Dil.	Amount	Rest		Rec.	Limit
SPLP Silver	0.119	mg/L	1	0.125	<0.00		95	75 - 125
Percent recovery is based on th	ne spike result. RP		the spike a	and spike du	plicate re	sult.		
	-		-		T			
	MSD		Spike	Matrix		Rec.		RPD
Param		nits Dil.	Amount	Result	Rec.	Limit	RPD	Limi
PLP Silver	0.118 m	g/L 1	0.125	< 0.00210	94	75 - 125	1	20
Matrix Spike (MS-1) Sp QC Batch: 52144 Prep Batch: 44655		31 te Analyzed: C Preparation:	2008-09- : 2008-09-				alyzed B epared B	
16p Daten. 44000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, reparation.	2000 00	00		11	cparea B	<i>y</i> . n ,
	MS			Spike	Mat	rix		Rec.
Param	Result	Units	Dil.	Amount	Resi		lec.	Limit
PLP U	0.526	m mg/L	1	0.500	< 0.0	105 1	05	90 - 110
ercent recovery is based on th	ie spike result. RP	D is based on	the spike a	and spike du	plicate re	esult.		
	MSD		Spike	Matrix		Rec.		RPD
Param		nits Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP U		g/L 1	0.500	< 0.0105	104	90 - 110	2	
Percent recovery is based on th	ne spike result. RP	D is based on		c				
	iked Sample: 17260							
QC Batch: 52176		te Analyzed:	2008-09-				alyzed B	
Prep Batch: 44735	QC	Preparation:	2008-09-	08		Pro	epared B	y: RD

•

Report Date: September 12, MEWBOU030PIT	2008	Work Order: 8082929 OSUDO 9 State #2					Page	Number:	36 of 4
	MS	5			Spike	Ma	trix		Rec.
Param	Resu		Units	Dil.	Amount	Res			Limit
Nitrate-N	232	0	mg/L	1000	2500	<7	0.0 93	7:	3.6 - 122
Percent recovery is based on t	the spike result.	RPD is	s based on	the spike a	and spike du	iplicate	result.		
	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Nitrate-N	2260	mg/L		2500	<70.0	90	73.6 - 122	3	20
Percent recovery is based on (Matrix Spike (MS-1) Spike (MS-1)	the spike result. Diked Sample: 17		s based on	the spike a	and spike di	iplicate	result.		
QC Batch: 52176		Date A	Analyzed:	2008-09-	09		An	alyzed B	v: RD
Prep Batch: 44735			reparation:					pared By	
	MS	5			Spike	Mat	rix		Rec.
Param	Resu		Units	Dil.	Amount	Res		c.	Limit
SPLP Chloride	⁹ 3290	00	mg/L	1000	12500	2975	55.5 25	49	0.8 - 149
Percent recovery is based on t	he spike result.	RPD is	s based on	the spike a	and spike du	iplicate	result.		
	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Chloride	39300	mg/L	1000	12500	29755.5	76	49.8 - 149	18	20
Percent recovery is based on t Matrix Spike (MS-1) Sp QC Batch: 52176	he spike result. piked Sample: 17	2605	s based on Analyzed:	the spike a 2008-09-		iplicate		alyzed By	v: RD
Prep Batch: 44735			reparation:	2008-09-				pared By	
_	MS			54	Spike	Mat			Rec.
Param	Resu		Units	Dil.	Amount	Res			Limit
SPLP Fluoride	1880		mg/L	1000	2500	<88		03	5 - 127
Percent recovery is based on t	he spike result.	RPD is	s based on	the spike a	and spike du	plicate	result.		
	MOD			Spike	Matrix		Rec.		RPD
	MSD			opire	Mauria		Itee.		
Param SPLP Fluoride	MSD Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

••

⁹Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Report Date MEWBOU0	e: September 1 30PIT	2, 2008			Order: 808 DO 9 State				Page N	umber: 3	87 of 46
Matrix Spi	ke (MS-1)	Spiked Sample: 1	72387								
QC Batch: Prep Batch:	$\begin{array}{c} 52180\\ 44744\end{array}$			Analyzed: reparation	2008-09 1: 2008-09					lyzed By: pared By:	
		MS				Spike		ıtrix			lec.
Param		Resu		Units	Dil.	Amount		sult	Rec.		mit
Chloride		567		mg/Kg	10	500		.57	99	74.7	- 123.2
Percent recov	very is based o	n the spike result.	RPD i	s based or	n the spike	and spike d	luplicat	e result			
		MSD			Spike	Matrix		R	lec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Li	mit	RPD	Limit
Chloride		545	mg/K	g 10	500	71.57	95	74.7	- 123.2	4	20
Percent recov	very is based o	n the spike result.	RPD i	s based or	n the spike	and spike d	luplicat	e result	5.		
Standard (CCV-1)										
QC Batch:	51953		Date A	Analyzed:	2008-09-0	02			Anal	yzed By:	СМ
			CCVs	(CCVs	CCVs		Per	cent		
			True	F	ound	Percent		Reco	overy		Date
Param	Flag	Units	Conc.		Conc.	Recover	y .	Lin			alyzed
TRPHC		mg/Kg	100		104	104		80 -	120	2008	8-09-02
Standard (CCV-2)										
Standard (0012)										
QC Batch:	51953		Date A	Analyzed:	2008-09-0	02			Anal	yzed By:	СМ
			CCVs	(CCVs	CCVs		Per	cent		
			True		ound	Percent			overy	Ι	Date
Param	Flag	Units	Conc.	(Conc.	Recover	y	Lin			alyzed
TRPHC		mg/Kg	100		111	111		80 -	120	2008	8-09-02
Standard (1	ICV-1)										
QC Batch:			Date .	Analyzed:	2008-09-	02			Ana	lyzed By	: ER
			IC	Vs	ICVs	ICVs	;	Ре	cent		
٠			Tr		Found	Percei			overy	Ι	Date
Param	\mathbf{Flag}	Units	Co		Conc.	Recove			nits		alyzed
Benzene		mg/Kg	0.1	00	0.101	101		85	- 115	2008	8-09-02
Toluene		mg/Kg	0.1		0.102	102			- 115		8-09-02
Ethylbenzene	9	mg/Kg	0.1		0.106	106			- 115		8-09-02
Xylene		mg/Kg	0.3	00	0.313	104		85	- 115	2008	8-09-02

•••

43

Report Da MEWBOU	te: September 1 J030PIT	2, 2008		Vork Order: 80 OSUDO 9 Stat	Page N	umber: 38 of 40	
	(CCV-1)						
QC Batch:	51972		Date Analy	yzed: 2008-09-	-02	Anal	yzed By: ER
			CCVs True	CCVs Found	CCVs	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene	1 lag	mg/Kg	0.100	0.0929	93	85 - 115	2008-09-02
Toluene		mg/Kg	0.100	0.0938	94	85 - 115	2008-09-02
Ethylbenze	ne	mg/Kg	0.100	0.0924	92	85 - 115	2008-09-02
Xylene	inc.	mg/Kg	0.300	0.288	96	85 - 115	2008-09-02
Standard	(ICV-1)						
QC Batch:	· · ·		Date Analy	yzed: 2008-09-	-02	Anal	yzed By: ER
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO	r lag	mg/Kg	1.00	0.997		85 - 115	2008-09-02
			Date Analy	yzed: 2008-09-	-02	Anal	yzed By: ER
QC Batch:	51974	¥1	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
QC Batch: Param		Units mg/Kg	CCVs	CCVs	CCVs	Percent	
QC Batch: Param GRO Standard	51974 Flag (CCV-1)		CCVs True Conc. 1.00	CCVs Found Conc.	CCVs Percent Recovery 112	Percent Recovery Limits 85 - 115	Date Analyzed
QC Batch: Param GRO Standard	51974 Flag (CCV-1)		CCVs True Conc. 1.00 Date Analy	CCVs Found Conc. 1.12	CCVs Percent Recovery 112	Percent Recovery Limits 85 - 115	Date Analyzed 2008-09-02
QC Batch: Param GRO Standard	51974 Flag (CCV-1)		CCVs True Conc. 1.00 Date Analy CCVs	CCVs Found Conc. 1.12 vzed: 2008-09-	CCVs Percent Recovery 112	Percent Recovery Limits 85 - 115 Analy	Date Analyzed 2008-09-02
QC Batch: Param GRO Standard QC Batch:	51974 Flag (CCV-1) 51983		CCVs True Conc. 1.00 Date Analy	CCVs Found Conc. 1.12 vzed: 2008-09- CCVs	CCVs Percent Recovery 112 02 CCVs	Percent Recovery Limits 85 - 115 Analy Percent	Date Analyzed 2008-09-02 yzed By: MN
Standard QC Batch: Param GRO Standard QC Batch: Param DRO	51974 Flag (CCV-1)	mg/Kg	CCVs True Conc. 1.00 Date Analy CCVs True	CCVs Found Conc. 1.12 vzed: 2008-09- CCVs Found	CCVs Percent Recovery 112 .02 CCVs Percent	Percent Recovery Limits 85 - 115 Analy Percent Recovery	Date Analyzed 2008-09-02 yzed By: MN Date

Report Da MEWBOU	te: September 030PIT	r 12, 2008		Work Order: 8 OSUDO 9 Sta	Page Number: 39 of 46		
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/Kg	250	258	103	85 - 115	2008-09-02
	· · · ·		Date Ana	lyzed: 2008-09	9-02	Anal	yzed By: MN
	· · · ·		Date Ana CCVs	lyzed: 2008-09 CCVs	9-02 CCVs	Anal Percent	yzed By: MN
	· · · ·			•			yzed By: MN Date
QC Batch:	· · · ·	Units	CCVs	CCVs	CCVs	Percent	
Standard QC Batch: Param DRO	51983	Units mg/Kg	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date

••••

v						200 DJ. DJ
		CCVs	CCVs	CCVs	Percent	
		True	Found	Percent	Recovery	Date
Param	Flag Units	Conc.	Conc.	Recovery	Limits	Analyzed
Naphthalene	mg/L	60.0	57.0	95	80 - 120	2008-09-03
Acenaphthylene	m mg/L	60.0	59.0	98	80 - 120	2008-09-03
Acenaphthene	$\mathrm{mg/L}$	60.0	58.5	98	80 - 120	2008-09-03
Dibenzofuran	$\mathrm{mg/L}$	60.0	62.6	104	80 - 120	2008-09-03
Fluorene	$\mathrm{mg/L}$	60.0	69.1	115	80 - 120	2008-09-03
Anthracene	$\mathrm{mg/L}$	60.0	58.2	97	80 - 120	2008-09-03
Phenanthrene	mg/L	60.0	57.0	95	80 - 120	2008-09-03
Fluoranthene	$\mathrm{mg/L}$	60.0	53.4	89	80 - 120	2008-09-03
Pyrene	mg/L	60.0	61.3	102	80 - 120	2008-09-03
Benzo(a)anthracene	mg/L	60.0	55.5	92	80 - 120	2008-09-03
Chrysene	mg/L	60.0	58.6	98	80 - 120	2008-09-03
Benzo(b)fluoranthene	mg/L	60.0	56.4	94	80 - 120	2008-09-03
Benzo(k)fluoranthene	mg/L	60.0	62.5	104	80 - 120	2008-09-03
Benzo(a)pyrene	mg/L	60.0	59.8	100	80 - 120	2008-09-03
Indeno(1,2,3-cd)pyrene	$\mathrm{mg/L}$	60.0	67.4	112	80 - 120	2008-09-03
${ m Dibenzo}({ m a,h}) { m anthracene}$	$\mathrm{mg/L}$	60.0	67.4	112	80 - 120	2008-09-03
Benzo(g,h,i)perylene	mg/L	60.0	65.9	110	80 - 120	2008-09-03
				Spike	Percent	Recovery
Surrogate Flag	Result	Units	Dilution	Amount	Recovery	Limit
2-Fluorobiphenyl	52.4	mg/L	1	60.0	87	80 - 120
Nitrobenzene-d5	60.1	mg/L	1	60.0	100	80 - 120
Terphenyl-d14	59.3	mg/L	1	60.0	99	80 - 120

Report Date: Septembe MEWBOU030PIT	r 12, 2008			Order: 808292 DO 9 State #2		Page Nu	mber: 40 of 46
Standard (ICV-1)							
QC Batch: 52082		Dat	e Analyzed:	2008-09-04		Analy	zed By: TP
	lag Un	its Co	CVs 'rue onc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Mercury	mg	J/L = 0.0	0100	0.000992	99	90 - 110	2008-09-04
Standard (CCV-1) QC Batch: 52082		Dat	e Analyzed:	2008-09-04		Analy	zed By: TP
·		<i>a</i> .	~	0011	0.011		
Param F	lag Un	Т	CVs rue onc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Mercury	mg	J = 0.0	0100	0.000980	98	80 - 120	2008-09-04
Standard (ICV-1) QC Batch: 52094		Dat	e Analyzed ICVs	: 2008-09-04 ICVs	ICVs	Analy Percent	vzed By: DS
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Aroclor 1242 (PCB-1242		mg/L	0.400	0.393	98	85 - 115	2008-09-04
Aroclor 1254 (PCB-1254	L)	mg/L	0.400	0.366	92	85 - 115	2008-09-04
Aroclor 1260 (PCB-1260))	mg/L	0.400	0.382	96	85 - 115	2008-09-04
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limit
Deca chlorobiphenyl	10	0.122	mg/L	1	0.100	122	85 - 115
Standard (CCV-1) QC Batch: 52094		Dat	e Analyzed:	2008-09-04		Analy	rzed By: DS
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Aroclor 1242 (PCB-1242	2)	mg/L	0.400	0.445	111	85 - 115	2008-09-04
Aroclor 1254 (PCB-1254		mg/L	0.400	0.362	90	85 - 115	2008-09-04
Aroclor 1260 (PCB-1260)	$\rm mg/L$	0.400	0.415	104	85 - 115	2008-09-04

••••

 $^{^{10}}$ Decachlorobipheny outside of control limits on CCV(ICV). CCV(ICV) component average is 102% which is within acceptable range. This is acceptable by Method 8000.

s Dilution 1 2 1 2 2008-09-0 1CVs Found Conc. <1.94 2008-09-0 CCVs Found Conc. <1.94	0.100 05 ICVs Percent Recovery 0	Percent Recovery Limits	Recovery Limit 85 - 115 yzed By: SS Date Analyzed 2008-09-05 yzed By: SS Date Analyzed 2008-09-05
rzed: 2008-09-0 ICVs Found Conc. <1.94 rzed: 2008-09-0 CCVs Found Conc.	05 ICVs Percent Recovery 0 05 05 CCVs Percent Recovery	Anal Percent Recovery Limits - - Anal Percent Recovery Limits	yzed By: SS Date <u>Analyzed</u> 2008-09-05 yzed By: SS Date Analyzed
ICVs Found Conc. <1.94 vzed: 2008-09-0 CCVs Found Conc.	ICVs Percent Recovery 0 05 05 CCVs Percent Recovery	Percent Recovery Limits - Anal Percent Recovery Limits	Date Analyzed 2008-09-05 yzed By: SS Date Analyzed
ICVs Found Conc. <1.94 vzed: 2008-09-0 CCVs Found Conc.	ICVs Percent Recovery 0 05 05 CCVs Percent Recovery	Percent Recovery Limits - Anal Percent Recovery Limits	Date Analyzed 2008-09-05 yzed By: SS Date Analyzed
Found Conc. <1.94 vzed: 2008-09-0 CCVs Found Conc.	Percent Recovery 0 05 CCVs Percent Recovery	Recovery Limits - Anal Percent Recovery Limits	Analyzed 2008-09-05 yzed By: SS Date Analyzed
vzed: 2008-09-0 CCVs Found Conc.	0 05 CCVs Percent Recovery	Anal Percent Recovery Limits	yzed By: SS Date Analyzed
CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Found Conc.	Percent Recovery	Recovery Limits	Analyzed
<1.94	0		2000-03-00
zed: 2008-09-0	08	Analy	vzed By: RR
ICVs Found	ICVs Percent	Percent Recovery	Date
Conc.	Recovery	Limits	Analyzed
1.05	105	90 - 110	2008-09-08
zed: 2008-09-0	08	Analy	yzed By: RR
ICVs Found	ICVs Percent	Percent Recovery	Date
Conc.	Recovery	Limits	Analyzed
1.06	106	90 - 110	2008-09-08
	Found Conc. 1.05 zed: 2008-09- ICVs Found Conc.	Found Conc.Percent Recovery1.05105zed:2008-09-08ICVsICVs Found Percent Conc.Recovery1.061.06106	Found Conc.Percent RecoveryRecovery Limits1.0510590 - 110zed:2008-09-08AnalyICVsICVsPercent Recovery RecoveryLimits

٠

• •

 11 Decachlorobiphenyl outside of control limits on CCV(ICV). CCV(ICV) component average is 107% which is within acceptable range. This is acceptable by Method 8000.

Report Date: Sep MEWBOU030PI		, 2008		Vork Order: 808 OSUDO 9 State		Page N	umber: 42 of 40
Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Selenium	1 lag	mg/L	1.00	1.01	101	90 - 110	2008-09-08
		0,					
Standard (ICV	-1)						
QC Batch: 5214	14		Date Analy	vzed: 2008-09-	08	Anal	yzed By: RR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Arsenic	<u>`</u>	mg/L	1.00	1.02	102	90 - 110	2008-09-08
Standard (ICV	-1)						
QC Batch: 5214	14		Date Analy	/zed: 2008-09-	08	Anal	yzed By: RR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Barium		mg/L	1.00	1.06	106	90 - 110	2008-09-08
Standard (ICV	-1)						
QC Batch: 5214	4		Date Analy	vzed: 2008-09-	-08	Anal	yzed By: RR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Silver		mg/L	0.125	0.126	101	90 - 110	2008-09-08
Standard (ICV	-1)						
QC Batch: 5214	4		Date Analy	zed: 2008-09-	-08	Anal	yzed By: RR
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP U		mg/L	1.00	1.02	102	90 - 110	2008-09-08

QC Batch: 52144

•

Date Analyzed: 2008-09-08

Analyzed By: RR

Report Date: Sep MEWBOU030PI		2008		ork Order: 808 SUDO 9 State		Page Nu	1mber: 43 of 40
Param	Flag	Units	CCVs True Conc. 1.00	CCVs Found Conc.	CCVs Percent Recovery 106	Percent Recovery Limits 90 - 110	Date Analyzed 2008-09-08
SPLP Cadmium		mg/L	1.00	1.00	100	90 - 110	2008-09-08
Standard (CCV	7-1)			-			
QC Batch: 5214	4		Date Analyz	zed: 2008-09-0	08	Anal	yzed By: RR
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Lead	r lag	mg/L	1.00	1.06	106	90 - 110	2008-09-08
Standard (CCV QC Batch: 5214			Date Analyz	zed: 2008-09-0	08	Anal	yzed By: RR
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Selenium		mg/L	1.00	1.08	108	90 - 110	2008-09-08
Standard (CCV	7-1)						
QC Batch: 5214	4		Date Analyz	zed: 2008-09-0	08	Anal	yzed By: RR
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	<u>Conc.</u>	Recovery 107	Limits 90 - 110	Analyzed 2008-09-08
SPLP Arsenic		mg/L	1.00	1.07	107	90 - 110	2008-09-00
Standard (CCV	(-1)						
QC Batch: 5214	4		Date Analyz	zed: 2008-09-0)8	Anal	yzed By: RR
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Barium		mg/L	1.00	1.07	107	90 - 110	2008-09-08

,

QC Batch: 52144

•

Date Analyzed: 2008-09-08

.

Analyzed By: RR

•

Report Date: S MEWBOU0301		, 2008		Vork Order: 80 OSUDO 9 Stat		Page N	umber: 44 of 40
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Silver		m mg/L	0.125	0.129	103	90 - 110	2008-09-08
Standard (CC	CV-1)						
QC Batch: 52	144		Date Analy	yzed: 2008-09	-08	Anal	yzed By: RR
2			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param SPLP U	Flag	Units mg/L	Conc. 1.00	Conc. 1.01	Recovery 101	Limits 90 - 110	Analyzed 2008-09-08
Standard (IC) QC Batch: 521			Date Analy	yzed: 2008-09-	.09	Anal	yzed By: RD
			ICVs	ICVs	ICVs	Percent	<i>j = = j ·</i>
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Nitrate-N		mg/L	2.50	2.53	101	90 - 110	2008-09-09
Standard (IC	V-1)						
QC Batch: 521	176		Date Analy	zed: 2008-09-	.09	Anal	yzed By: RD
			ICVs	ICVs	ICVs	Percent	
Deve	1 71	TT14-	True	Found	Percent	Recovery	Date
Param SPLP Chloride	Flag	Units mg/L	Conc. 12.5	<u>Conc.</u> 12.2	Recovery 98	Limits 90 - 110	Analyzed 2008-09-09
SI LI Chiorde		mg/L	12.0	12.2	90	90 - 110	2008-09-09
Standard (IC)							
QC Batch: 521	176		Date Analy	zed: 2008-09-	09	Anal	yzed By: RD
			ICVs	ICVs	ICVs	Percent	n .
			True Conc.	Found Conc.	Percent Recovery	Recovery Limits	Date Analyzed
Param	Flag	Units		CODE	n ecoverv	LIDITS	Anaivzed

QC Batch: 52176

• • • •

Date Analyzed: 2008-09-09

Analyzed By: RD

				Vork Order: 80 OSUDO 9 Stat	Page Number: 45 of							
Param H	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed					
Nitrate-N		mg/L	2.50	2.53	101	90 - 110	2008-09-09					
					· · · · · · · · · · · · · · · · · · ·							
Standard (CCV-	1)											
QC Batch: 52176			Date Analy	zed: 2008-09-	-09	Anal	yzed By: RD					
Danam	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent	Percent Recovery Limits	Date Analyzed					
Param SPLP Chloride	riag	mg/L	12.5	12.3	Recovery 98	90 - 110	2008-09-09					
QC Batch: 52176			Date Analy				yzed By: RD					
			CCVs	CCVs	CCVs	Percent						
			True	Found	Percent	Recovery	Date					
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed					
SPLP Fluoride		mg/L	2.50	2.59	104	90 - 110	2008-09-09					
Standard (ICV-1)											
QC Batch: 52180			Date Analy	zed: 2008-09-	-09	Anal	yzed By: RG					
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date					
Param Fl	ag	Units	Conc.	Conc.	Recovery	Limits	Analyzed					
Chloride		mg/Kg	100	101	101	85 - 115	2008-09-09					
Standard (CCV-	1)											
QC Batch: 52180			Date Analy	zed: 2008-09-	09	Anal	yzed By: RG					
			CCVs	CCVs	CCVs	Percent						
			True	Found	Percent	Recovery	Date					
Param Fl	ag	Units mg/Kg	Conc. 100	Conc. 99.2	Recovery 99	Limits 85 - 115	Analyzed 2008-09-09					

QC Batch: 52233

,

۰ م ۲ ۲ ۲

Date Analyzed: 2008-09-09

Analyzed By: KB

Report Date: Septembe MEWBOU030PIT	er 12, 2008			Order: 80829 DO 9 State #	Page Nu	umber: 46 of 46	
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Vinyl Chloride		$\mu g/L$	50.0	53.1	106	80 - 120	2008-09-09
1,1-Dichloroethene		$\mu g/L$	50.0	45.1	90	80 - 120	2008-09-09
Chloroform		$\mu g/L$	50.0	54.4	109	80 - 120	2008-09-09
1,2-Dichloropropane		$\mu g/L$	50.0	54.3	109	80 - 120	2008-09-09
Toluene		$\mu g/L$	50.0	53.4	107	80 - 120	2008-09-09
Chlorobenzene		$\mu g/L$	50.0	50.5	101	80 - 120	2008-09-09
Ethylbenzene		$\mu { m g}/{ m L}$	50.0	56.1	112	80 - 120	2008-09-09

·

* r. 5

										LA	ВC	Drder	r ID #	T	0	8	29	29				_					Pa	age	<u></u>			_ 0'	f		- 	
email: lab@tracear	~	-		C	•			6701 I	l uht	nock	Tev:	enue, as 79, 4-129 94-129 3-1296	Suite 9 424 6 98	5Õ02 Ba Midla Tel Fax	ind, (432	Tex 2) 68	et, S as 79 39-63 89-63	0703		E	El Pa Tel Fax	(915 (915 (915 888)	Texa) 585 () 58	s 79 5-34 5-49	9922 43 44		8	308 (Ft	t. W Tel	orth	n, Te: 7) 20	d. We xas 7 01-520 60-43	6116 60	uite 1	80
Company Name: TALON/LPC Address: (Street, City, Zip)					4	Pho 32 Fax	ne #		38	2-1	کہ	88										AN											<u>-</u>			
Address: (Street, City, Zip) 318 & Tonflor HoBBS	NM	89	724	1x		Fax	#:								1	1			1	irc	:ie	01	' S	pe	3C1	ťУ	N.	et	nc.)d	N	0.)	1			ŧ
ER Taylor				<u>v</u>		E-m	ail:							****			(2)		Se Hg 6010B/200 7	Нg															standard	
Invoice to: (If different from above) MEW SAUCH	5 (51													624	4	TX1005 Ext(C35)		g 601	Se															n star	
Project #: MEWBOUOJOPIT				•0		Pro	iect I	Nam	ie:		-	#	5		-	6	05 E	TVHC	Se H	Cr Pb					625					500B					t fron	
Project Location (including state):				22	90	San	npler	Sig	>/ nati	A 7 ure:	<u> </u>	*#	d_		/ 8260B	00	~	2	d Cr Pb	Ba Cd (624	15	1 1	8			2	6.9	and			lifferen	
	ERS	ount	 	MAT	RIX			PR		ERVA THO		Ē	SAM	PLING	1 1 1B / 602	10	TX1005	825 0R	As Ba Cd	g As	S	olatiles les		260B /	Vol. 82		81A / 6(T	tent	2 <i>5</i> 20	2	Cort			līme if c	
LAB # FIELD CODE	# CONTAINERS	Volume / Amount	WATER	SOIL	SLUDGE		HCI	HNO3	H ₂ SO ₄	NaOH	101	NONE	DATE	TIME	MTBE 8021	802		TPH 8015 GRO PAH 8270C / 62	Total Metals Ag As	TCLP Metals	TCLP Volatiles	TCLP Semi volatiles	RCI	GC/MS Vol 8260B / 624	GC/MS Semi	PCB's 8082 / 608	Pesticides 8081A / 608	BOD, TSS, pH		CH WRI D	229.131	SPCP			Turn Around Time if different from	Hold
172385 LUCK POND	1		•	x)	<u> </u>		8/28	12:04	+	X			-											X	1	+				
386 BH-1	I			X			1			Ś	(12:13		X	++				-+-	+	+	1	t				-	X	-+					\square
387 RH-2	1			X		1	1			Ż			8/28	12:18	/	-	X					+-	+		+					X	-+	-+	+			<u> </u>
388 INSETH Cuttings	2			X)				12:40			X		+-					-		-		+	-	-	X	X	+			-
· · · · · · · · · · · · · · · · · · ·				3		-	1						400			-			+			+	-		1	†			+		<u> </u>	+	-+			
																+			+		-										-					<u> </u>
								•••••					-		1	+					+	-	-		+							-				
				+		+									+	-			+				-	1						-+	+	+				-
			-+												1	1			+	┨──┼	-+-	+	+	+					-	+	+	-+				
							1								1	+			-	+		-		-		-			_		+	+	-			-
					-	-					+			-	+	+					-+	+									+	+	+			
Relinquished by: Company: Date:	Tim		Rec	eive	d by		K		any	: 1	Da	ite:	Time	e: Te	mpʻ	°c:	1.1.25	LAI		ISE Y		R	EM.	ARI E	KS:	₽TI	TA	CH	'E4	ـــــ ، د	 ,\Z	ŧE	ET			L
Relinguished by: Company: Date:	<u>164</u> Tim		Rec	eive	d by	• 	Co Co	/// mp	<u>Vo</u> any	<u>1</u> :	Т Да	<u>/29</u> ite:	7 /04 Time	i Te	mpʻ	°c:		(\mathcal{D})		, · · ·																
3 m Buten Talm 8/29	14:		/		-				5						•			U spac	- 01 - -	16	NA					÷		asıs I			Ł					
Pelinguished by: Company: Date:	Tim		Ree	eive	d by		Ca	T		RJ .	Da		Time 61 14	: Te	mp` 	°c: 8°		lin-Re	viêw					С	heck	(If S	Spec	Req ial R eded	Repoi		ļ					
Submittal of samples constitutes agreement to Tel	rms and	Cond	itions	s list	ed o	n (rev	erse		<u>. </u>		. C.		<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	L	/	Carri	er#_			$\hat{\boldsymbol{\rho}}$	N	u	l	j.												
	~~!~!		~~	-						-												-1-								<u> </u>						

.

1 A

 6701 Anerdeen Avenue, Stete S
 Lubbock, Texas 79424

 230 East Sunset Road, Suite E
 El Pase, Texas 79922

 5302 Sasin Street Sinie A1
 Midland Texas 79/03

 6315 Hams Parkway, Suite 11
 Ft, Worth Texas 76/32

Lubbock, Texas 79424 801:+378+1266 El Paso, Téxas 79922 885+088+3443 Midland Texas 79102 Ft, Worth Texas 76132 E-Mail: ab@tracconalysis.com

805+794+1295 885+388+3443 915+585+3443 432+585+6331 817+201+5260

FAX 830°+784+1298 FAX 915+565+4944 FAX 432+589+6313

WBENC: 237019

ی ۲۰ این رو

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Project Location:Lea County, NMProject Name:Osudo 9-2Project Number:Osudo 9-2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
173438	Insitu ocmp. (RM)	soil	2008-09-11	13:00	2008-09-15

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 5 pages and shall not be reproduced except in its entirety, without written approval of

TraceAnalysis, Inc.

1

.

£ /

.

rich Blain Ly U

Dr. Blair Leftwich, Director

Standard Flags

 ${\bf B}\,$ - The sample contains less than ten times the concentration found in the method blank.

....

Page 2 of 5

Case Narrative

Samples for project Osudo 9-2 were received by TraceAnalysis, Inc. on 2008-09-15 and assigned to work order 8091517. Samples for work order 8091517 were received intact at a temperature of 22.0 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
SPLP Cl	E 300.0

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8091517 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

.

Page 3 of 5

Report Date: September 18, 2008 Osudo 9-2

٠

QC Batch:

Prep Batch: 44980

52473

` ,

•

Analyzed By: RD

Prepared By: RD

Analytical Report

Sample: 173438 - Insitu ocmp. (RM)

Laboratory: Lubbock Analysis: SPLP C QC Batch: 52473 Prep Batch: 44980	l An Da SP	alytical Method: te Analyzed: LP Extraction: mple Preparation	E 300.0 2008-09-1 2008-09-1 2008-09-1	16		Prep Met Analyzed Prepared Prepared	By: Rl By: Rl	D
Parameter	Flag	RL Result		nits]	Dilution		RL
SPLP Chloride		187	m	g/L		5		0.500
Method Blank (1) QC Batch: 52473 Prep Batch: 44980	QC Batch: 52473	Date Analyzed: QC Preparation	2008-09-1 : 2008-09-1				nalyzed E epared E	•
-								
			MDL					
Parameter	Flag		Result		**	nits		RL
SPLP Chloride	·····		<0.137		mį	g/L		0.5
Laboratory Control QC Batch: 52473 Prep Batch: 44980	Spike (LCS-1)	Date Analyzed: QC Preparation	2008-09-1 2008-09-1	-			nalyzed E epared E	
	L(2S		Spike	Ma	trix		Rec.
-Param	- Res			Amount	Res		lec.	Limit
SPLP Chloride	12	.0 mg/L	1	12.5	<0.	137	96	90 - 110
Percent recovery is base	ed on the spike result.	RPD is based on	the spike a	nd spike du	plicate r	esult.		
	LCSD		Spike	Matrix		Rec.		RPD
Param	Result	Units Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Chloride	12.9	mg/L 1	12.5	< 0.137	103	90 - 110	7	20
Percent recovery is base Matrix Spike (MS-1)	-		the spike a	nd spike du	plicate r	esult.		

Date Analyzed:

QC Preparation: 2008-09-17

2008-09-18

Osudo 9-2	18, 2008	Work Order: 8091517 Page Osudo 9-2 I													
Param		1S sult	Units	Dil.	Spike Amount	Mat Res		·.	Rec. Limit						
SPLP Chloride			mg/L	50	625	170.	232 86	49	.8 - 149						
Percent recovery is based	on the spike result	. RPD is	based o	on the spike	and spike du	plicate	result.								
	MSD			Spike	Matrix		Rec.		RPD						
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit						
SPLP Chloride	701	mg/L	50	625	170.232	85	49.8 - 149	1	20						
		Date A	nalvzed	: 2008-09-1	8		Ana	alyzed By	7: RD						
		Date An ICVs	s	ICVs	ICVs		Percent	alyzed By							
Standard (ICV-1) QC Batch: 52473	a Unite	ICV: True	s e	ICVs Found	ICVs Percent	-	Percent Recovery		Date						
	g Units mg/L	ICV	s e c.	ICVs	ICVs	7	Percent	Aı							
QC Batch: 52473 Param Fla SPLP Chloride		ICV: True Conc	s e c.	ICVs Found Conc.	ICVs Percent Recovery	r	Percent Recovery Limits	Aı	Date nalyzed						
QC Batch: 52473 Param Fla SPLP Chloride Standard (CCV-1)		ICV: True Conc	s 2.	ICVs Found Conc. 12.2	ICVs Percent Recovery 98	7	Percent Recovery Limits 90 - 110	Aı	Date nalyzed)8-09-18						
QC Batch: 52473 Param Fla SPLP Chloride Standard (CCV-1)		ICV: True Conc 12.5	s e. nalyzed	ICVs Found Conc. 12.2	ICVs Percent Recovery 98	7	Percent Recovery Limits 90 - 110	A1 200	Date nalyzed)8-09-18						
QC Batch: 52473 Param Fla SPLP Chloride Standard (CCV-1)		ICV: True Conc 12.5	s e c. nalyzed	ICVs Found Conc. 12.2 : 2008-09-1	ICVs Percent Recovery 98	,	Percent Recovery Limits 90 - 110	An 200 alyzed By	Date nalyzed 08-09-18						
QC Batch: 52473 Param Fla	mg/L	ICV: True Conc 12.5 Date An CCV	nalyzed	ICVs Found Conc. 12.2 : 2008-09-1 CCVs	ICVs Percent Recovery 98 8 8 CCVs		Percent Recovery Limits 90 - 110 Ana Percent	An 200 alyzed By An	Date nalyzed 08-09-18 7: RD						

де на 19 с

							- - - -					LAB	Oro	der II	D#	<i>St</i>	09	15	515]									Pa	age_			of	f		_ ;	•
		Analy ©@tracear	<i>,</i>			IC.	1	-			Tel (8	306) 7	794-1	ue, St 7942 1296 1298 296	uite 9 4	50C	02 Bas Midlan Tel (4 Fax (d, T (432)	exas 689-6	7970 3 3301	A1	20	EH T Fa		, Tex 15) 5 15) 5	as 7 85-3/ 85-4	944		88	08 C	Ft. V	Wort	th, Tex 17) 20	vd We xas 76 01-526 60-43	6116 50	ute 1	50
Company Na	(Street, City, Zip)	~1Q1	he			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ax #:													(Cii	rcl							JES eth		d٨	vo.))			
Contact Pers	18 E Tayle Shrey Tu	or Hol	20_	<u>r }</u>	<u> </u>	<u> </u>	E	j E-mai	1: 3	e	ee.	Y							351	100		Hu	2													ndard	
(If different I Project #:	from above) MEU	bour	rda	0				Proje		ame:			2					0B / 624	B / 624 005 Ext(C:	VHC	100	Cr Ph Se Hd					625					2				nt from sta	
Project Loca	ation (including state): Lea Olen	ty r	חן	, [,	 T		<u> </u>	Samp	uler S	Signa	4	LA		$\overline{\mathcal{A}}$	2			8021B / 602 / 8260B / 624	602 / 8260B / 1005 / TX1005	DRO / T		Ba Cd Cr Pb Se Hg As Ba Cd Cr Ph		les		1671	8270C / (/ 608		11	c Or				if differer	
	1	U	INERS	Amount		MAT	RIX							┯╉	SAN	MPLIN	NG	021B/(8021B / 60 8 1 / TX10	GRO /	2/625	Ag As B	tiles	II Volati	licides	10300	m. Vol	2/608	8081A	Ha .	Content	1200				d Time	1
LAB # (LAB USE)	FIELD CODE		# CONTAINERS	Volume / Amount	WATER	SOIL	SLUDGE		HCI	HNU3 H SO	NaOH	ICE	NONE		DATE		TIME		BTEX 8021B / 602 / 8260B / 624 TPH 418 1 / TX1005 / TX1005 Fxt(C35)	TPH 8015 GRO / DRO / TVHC	PAH 8270C / 625	lotal Metals Ag As Ba Cd Cr Pb Se Hg 5010B/2007 / Tr1 P Metals An As Ba Cd Cr Ph Se Hn	TCLP Volatiles	TCLP Semi Volatiles	TCLP Pesticides	RCI CCMAS VAL 8760B / 674	GC/MS Semi.	PCB's 8082 /	Pesticides 8081A / 608		Moisture Con	22				Turn Around Time if different from standard	Hold
13438	Insity comp	(Rm)	2			X	· · ·		_						9/1/0	08 13	300															X			-+		
Same and a star							1																										$\left \right $		14	Ł	
					$\left[\right]$		1																													Ź	
																							_													X	5
	k k s.				+-+			$\left - \right $	-+			_	_	+								_											+			~~	Ĺ
													+			_											_				<u> </u>	+					
					$\left \right $				-										_			_						-			+	_	++				
Relinquish	guditalion	Date: 9.1.54 Date: 9.1.5-00	0 [2 Ti	ime: 3/5 ime: 755) ceive	d by: Mh d by:	ip	long	mpai mpa		9	Date	H	Tim E// Tim	12:1.	Ten 5. Ter		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ILÝ NĽ	بر المراجع المراجع المراجع		[Veigt		asis R			<u></u>				L
Relinquish		Date:	Ti	ime:	F	Sie	ed by: ndql	las	1 x	mpa JX UE	2C1 330	ŗ			Tim 8 3	ne: 3!S		ᡢᠥ ᠫᠼ	1	og-jņ	Revi	ew			_	٦		k If S	Speci	Requiral Re eded	eporti						
Submittal_of	f_samples.constitutes_agre	ement_to.Te	rms_an	id_Con	dition	ns_list	ed_on	.reve	irse i	side.	.of.C	0.0	С					Ca	arrier a	#		~	a	NAI	1-	lo	-						-				
.

Summary Report

Shelly Tucker Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date: October 1, 2008

Work Order: 8092923

Project Location: Lea County, NM Project Name: Osudo 9 State #2

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
174933	BH-3	soil	2008-09-26	10:47	2008-09-29
174934	BH-4	soil	2008-09-26	10:59	2008-09-29

		BTEX				TPH 418.1	TPH DRO	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	TRPHC	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
174933 - BH-3	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<10.0	<50.0	<1.00
174934 - BH-4	< 0.0100	< 0.0100	< 0.0100	<0.0100		<10.0	< 50.0	<1.00

Sample: 174933 - BH-3

Param	\mathbf{Flag}	Result	Units	RL
Chloride		<32.5	mg/Kg	3.25

Sample: 174934 - BH-4

.

Param	Flag	\mathbf{Result}	Units	RL
Chloride		108	mg/Kg	3.25

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

B201 Atesticen Avonan, Suite 5 — Lihtbox, Toxis 73424
 C00 Fast Suiset Road, Suite F — Poso, Texos 7992
 K022 Fash Street Silve A — Micrard Texos 76703
 PO 5 Hams Parkesy Silve 4 — R. Martin Dopes 76732
 Construction Avonance 200

LUNDER, Joxas 73424 – 800+378+1291 El Paso, Taxes 76922 – 885+589+3443 Middine Taxes 76702 C. Marth Taxes 76132 El-Monif Jakes 76132 \$35+754+1295 FAX \$36+794+1297 \$15+56++0443 FAX \$15+585+4944 \$32+689+6031 FAX \$15+585+4944 \$32+689+6031 FAX \$32+695+6313

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Shelly Tucker Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date: October 1, 2008

Work Order: 8092923

Project Location:Lea County, NMProject Name:Osudo 9 State #2Project Number:Osudo 9 State #2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
174933	BH-3	soil	2008-09-26	10:47	2008-09-29
174934	BH-4	soil	2008-09-26	10:59	2008-09-29

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 15 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director

Standard Flags

· · ,

•

 $\,B\,$ - $\,$ The sample contains less than ten times the concentration found in the method blank.

Page 2 of 15

. . _

Case Narrative

Samples for project Osudo 9 State #2 were received by TraceAnalysis, Inc. on 2008-09-29 and assigned to work order 8092923. Samples for work order 8092923 were received intact at a temperature of 3.9 deg. C.

Samples were analyzed for the following tests using their respective methods.

Method
S 8021B
SM 4500-Cl B $$
E 418.1
Mod. 8015B
S 8015B

i.

• r

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8092923 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

*

Analytical Report

Sample: 174933 - BH-3

Laboratory:	Lubbock								
Analysis:	BTEX		Analytical	Method:	S 8021B		Prep Me	ethod:	S 5035
QC Batch:	52815		Date Anal	yzed:	2008-09-29		Analyze	d By:	\mathbf{ER}
Prep Batch:	45262		Sample Pr	eparation:	2008-09-29		Prepareo	d By:	\mathbf{ER}
			RI	- -					
Parameter	Flag		Resul	t	Units	Ι	Dilution		\mathbf{RL}
Benzene			< 0.010	0	mg/Kg		1		0.0100
Toluene			< 0.010	0	mg/Kg		1		0.0100
Ethylbenzene	2		< 0.010	0	m mg/Kg		1		0.0100
Xylene			< 0.010	00	mg/Kg		1		0.0100
						Spike	Percent	$\mathbf{R} \mathbf{\epsilon}$	ecovery
Surrogate		Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	I	limits
Trifluorotolue	ene (TFT)		1.10	mg/Kg	1	1.00	110	59	- 136.1
4-Bromofluor	obenzene (4-BFB)		1.23	mg/Kg	1	1.00	123	54.4	- 176.2

Sample: 174933 - BH-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titration) 52819 45264	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2008-09-29 2008-09-29	Prep Method: Analyzed By: Prepared By:	RD
		RL			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		<32.5	mg/Kg	10	3.25

Sample: 174933 - BH-3

	Lubbock TPH 418.1 52850 45291	Analytical Method: Date Analyzed: Sample Preparation:	E 418.1 2008-09-30 2008-09-30	Prep Method: Analyzed By: Prepared By:	С́М
		RL			
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
TRPHC		<10.0	mg/Kg	1	10.0

Report Date: October 1, 2008	Work Order: 8092923	Page Number: 5 of 15
Osudo 9 State #2	Osudo 9 State #2	Lea County, NM

Sample: 174933 - BH-3

۰ ، ۱

•

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 52840 45282		Analytical Me Date Analyze Sample Prepa	d: 2008-	8015B 09-29 09-29	Analyz	fethod: N/A zed By: MN red By: MN
Parameter	Fla	g	RL Result	U	nits	Dilution	RL
DRO			<50.0	mg,	/Kg	1	50.0
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Triacontan	e r	144	mg/Kg	1	100	144	57.5 - 139

Sample: 174933 - BH-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 52816 45262		Date Ana	l Method: lyzed: reparation:	S 8015B 2008-09-29 2008-09-29		Prep Me Analyzee Preparec	d By: ER
			RL					
Parameter	Flag		Result		Units		Dilution	\mathbf{RL}
GRO			<1.00		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)		1.32	mg/Kg	1	1.00	132	55.3 - 161.9
4-Bromofluor	obenzene (4-BFB)		1.52	mg/Kg	1	1.00	152	45.6 - 214.7

Sample: 174934 - BH-4

.

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 52815 45262		Analytical Method: Date Analyzed: Sample Preparation:	S 8021B 2008-09-29 2008-09-29	Prep Method: Analyzed By: Prepared By:	S 5035 ER ER
			\mathbf{RL}			
Parameter		Flag	Result	Units	Dilution	\mathbf{RL}
Benzene			< 0.0100	mg/Kg	1	0.0100
Toluene			< 0.0100	mg/Kg	1	0.0100
Ethylbenzene	9		< 0.0100	mg/Kg	1	0.0100
Xylene			< 0.0100	mg/Kg	1	0.0100

.

¹High surrogate recovery. Sample non-detect, result bias high.

Report Date: October 1, 2008 Osudo 9 State #2			Work Order: 8092923 Osudo 9 State #2				Page Number: 6 of 15 Lea County, NM			
Surrogate		Flag	Result	Units	Dilution	Spike Amount		ecovery Limits		
Trifluorotolu	ene (TFT) robenzene (4-BFB)		1.24 1.23	mg/Kg mg/Kg	1 1	$\begin{array}{c} 1.00\\ 1.00\end{array}$		- 136.1 4 - 176.2		
Sample: 17	4934 - BH-4									
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titration) 52819 45264		Date	vtical Method Analyzed: le Preparatio	2008-09-	29	Prep Methoo Analyzed By Prepared By	RD :		
Parameter Chloride	Flag		RL Result 108		Units mg/Kg		Dilution 10	RL 3.25		
Sample: 17 Laboratory: Analysis: QC Batch: Prep Batch:	4934 - BH-4 Lubbock TPH 418.1 52850 45291		Date An	al Method: alyzed: Preparation:	E 418.1 2008-09-30 2008-09-30		Prep Methoo Analyzed By Prepared By	: CM		

		RL			
Parameter	Flag	\mathbf{Result}	Units	Dilution	RL
TRPHC		<10.0	mg/Kg	1	10.0

Sample: 174934 - BH-4

.

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 52840 45282		Analytical Me Date Analyze Sample Prepa	ed: 2	Mod. 8015B 2008-09-29 2008-09-29		Analyz	Method: zed By: red By:	N/A MN MN
Parameter	Flag		RL Result		Units	л	ilution		\mathbf{RL}
DRO	r laş	>	<50.0		mg/Kg	U	1		50.0
Surrogate	Flag	Result	Units	Diluti		oike ount	Percent Recovery		overy mits
n-Triacontan	е	115	mg/Kg	1	1	00	115	57.5	- 139

Report Date: October 1, 2008	Work Order: 8092923	Page Number: 7 of 15
Osudo 9 State #2	Osudo 9 State #2	Lea County, NM

Sample: 174934 - BH-4

. . .

,

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 52816 45262		Analytical Method: Date Analyzed: Sample Preparation:		S 8015B 2008-09-29 2008-09-29		Prep Me Analyzeo Prepareo	d By: ER
			RL					DI
Parameter	Flag		Result	. .	Units		Dilution	RL
GRO			<1.00		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotolu			1.51	mg/Kg	1	1.00	151	55.3 - 161.9
4-Bromofluor	obenzene (4-BFB)		1.52	mg/Kg	1	1.00	152	45.6 - 214.7
Method Bla	ank (1) QC Bate	ch: 52815						
QC Batch:52815Date Analyzed:2008-09-29Analyzed By:ERPrep Batch:45262QC Preparation:2008-09-29Prepared By:ER								

			ME)L			
Parameter	Flag		Resu	ılt	Un	RL	
Benzene			< 0.003	47	mg	0.01	
Toluene		< 0.00525			mg/	'Kg	0.01
Ethylbenzene		< 0.00607			- mg/	0.01	
Xylene			< 0.00724		mg/Kg		0.01
					Spike	Percent	Recovery
Surrogate	Flag	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)		0.864	mg/Kg	1	1.00	86	69.3 - 110.2
4-Bromofluorobenzene (4-BFB)		0.631	mg/Kg	1	1.00	63	24.4 - 114.6

Method Blank (1) QC Batch: 52816

QC Batch: 52816 Prep Batch: 45262		2				yzed By: ER ared By: ER	
Parameter	Flag		MDL Result		Uni	ts	\mathbf{RL}
GRO			<0.144		mg/	1	
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.02	mg/Kg	1	1.00	102	83.3 - 108.5 continued

.

ŝ

Osudo 9 State #2	per 1, 2008	Work O Osudo		Page Number: 8 of 1 Lea County, Ni		
method blank contin	ued					
a				Spike	Percent	Rec
Surrogate 4-Bromofluorobenzer	Flag	Result Unit		Amount 1.00	Recovery 78	Liı 34.5 -
4-DIOMOIIU0I0Denzei		0.783 mg/F	<u>ig</u>	1.00	10	
Method Blank (1)	QC Batch: 52819					
QC Batch: 52819		Date Analyzed:	2008-09-29		Analy	zed By:
Prep Batch: 45264		QC Preparation:	2008-09-29			ared By:
		М	DL			
Parameter	Flag	Res		Units		
Chloride		<1	.80	mg/	Kg	
Method Blank (1) QC Batch: 52840	QC Batch: 52840	Date Analyzed:	2008-09-29		Analy	zed By:
. ,	QC Batch: 52840	QC Preparation:	2008-09-29			zed By: red By:
QC Batch: 52840 Prep Batch: 45282	·	QC Preparation:	2008-09-29 DL	In	Prepa	
QC Batch: 52840 Prep Batch: 45282 Parameter	QC Batch: 52840 Flag	QC Preparation: M Re	2008-09-29 DL sult	Un me	Prepa	
QC Batch: 52840 Prep Batch: 45282	·	QC Preparation: M Re	2008-09-29 DL	mg	Prepa its /Kg	red By:
QC Batch: 52840 Prep Batch: 45282 Parameter DRO	Flag	QC Preparation: M Re <	2008-09-29 DL sult 4.5	mg/ Spike	Prepa its /Kg Percent	red By:
QC Batch: 52840 Prep Batch: 45282 Parameter	·	QC Preparation: M Re <	2008-09-29 DL sult	mg	Prepa its /Kg	red By:
QC Batch: 52840 Prep Batch: 45282 Parameter DRO Surrogate	Flag Flag Result	QC Preparation: M Re Units	2008-09-29 DL sult 4.5 Dilution	mg/ Spike Amount	Prepa its /Kg Percent Recovery	red By: Rec
QC Batch: 52840 Prep Batch: 45282 Parameter DRO Surrogate	Flag Flag Result 94.4	QC Preparation: M Re Units	2008-09-29 DL sult 4.5 Dilution	mg/ Spike Amount	Prepa its /Kg Percent Recovery	red By: Rec
QC Batch: 52840 Prep Batch: 45282 Parameter DRO Surrogate n-Triacontane	Flag Flag Result 94.4	QC Preparation: M Re Classification N Units	2008-09-29 DL sult 4.5 Dilution	mg/ Spike Amount	Prepa its /Kg Percent Recovery 94	red By: Rec
QC Batch: 52840 Prep Batch: 45282 Parameter DRO Surrogate n-Triacontane Method Blank (1)	Flag Flag Result 94.4	QC Preparation: M Re Units mg/Kg	2008-09-29 DL sult (4.5 Dilution 1	mg/ Spike Amount	Prepa its /Kg Percent Recovery 94 Analy	red By: Rec Li 72.4
QC Batch: 52840 Prep Batch: 45282 Parameter DRO Surrogate n-Triacontane Method Blank (1) QC Batch: 52850	Flag Flag Result 94.4	QC Preparation: M Re C Units mg/Kg Date Analyzed: QC Preparation: M	2008-09-29 DL sult (4.5 Dilution 1 2008-09-30	mg/ Spike Amount	Prepa its /Kg Percent Recovery 94 Analy Prepa	red By: Rec Li 72.4 zed By:

Laboratory Control Spike (LCS-1)

, **x** ,

QC Batch:	52815	Date Analyzed:	2008-09-29	Analyzed By:	\mathbf{ER}
Prep Batch:	45262	QC Preparation:	2008-09-29	Prepared By:	\mathbf{ER}

Report Date: October 1, 2008 Osudo 9 State #2		Work Osuc	Page Number: 9 of 15 Lea County, NM				
Param	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	Matrix Result	Rec.	${ m Rec.}\ { m Limit}$
Benzene	0.831	mg/Kg	1	1.00	< 0.00347	83	80.5 - 115.5
Toluene	0.849	mg/Kg	1	1.00	< 0.00525	85	80 - 114.7
Ethylbenzene	0.815	mg/Kg	1	1.00	< 0.00607	82	77.1 - 114.2
Xylene	2.52	mg/Kg	1	3.00	< 0.00724	84	77.6 - 114.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Benzene	0.875	mg/Kg	1	1.00	< 0.00347	88	80.5 - 115.5	5	20
Toluene	0.864	mg/Kg	1	1.00	< 0.00525	86	80 - 114.7	2	20
Ethylbenzene	0.835	mg/Kg	1	1.00	< 0.00607	84	77.1 - 114.2	2	20
Xylene	2.58	mg/Kg	1	3.00	< 0.00724	86	77.6 - 114.5	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.830	0.833	mg/Kg	1	1.00	83	83	74.2 - 114.7
4-Bromofluorobenzene (4-BFB)	0.774	0.804	mg/Kg	1	1.00	77	80	69.7 - 118.7

Laboratory Control Spike (LCS-1)

• • •

.

QC Batch:	52816	Date Analyzed:	2008-09-29	Analyzed By:	\mathbf{ER}
Prep Batch:	45262	QC Preparation:	2008-09-29	Prepared By:	\mathbf{ER}

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
GRO	9.62	mg/Kg	1	10.0	< 0.144	96	73.1 - 114.7

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	8.91	mg/Kg	1	10.0	< 0.144	89	73.1 - 114.7	8	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	\mathbf{Result}	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
Trifluorotoluene (TFT)	0.961	0.903	mg/Kg	1	1.00	96	90	77.4 - 111.4
4-Bromofluorobenzene (4-BFB)	0.956	0.945	mg/Kg	1	1.00	96	94	70.3 - 116.1

Laboratory Control Spike (LCS-1)

QC Batch:	52819	Date Analyzed:	2008-09-29	Analyzed By:	RD
Prep Batch:	45264	QC Preparation:	2008-09-29	Prepared By:	RD

.

Report Date: October Osudo 9 State #2	· 1, 2008	-1 m =			der: 80929 9 State #2				Number: Lea Cou	
		LCS				Spike	Matı	rix		Re
Param		Resu		Jnits	Dil.	Amount	Resu		I	Lin
Chloride		99.0	m	g/Kg	1	100	<1.8	30 99	96.5	5 -
Percent recovery is bas	sed on the sp	oike result.	RPD is l	pased on	the spike a	and spike d	uplicate	result.		
		LCSD			Spike	Matrix		Rec.		
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	
Chloride			mg/Kg	1	100	<1.80		96.5 - 104.4	2	
Percent recovery is bas	sed on the sp	oike result.	RPD is l	pased on	the spike a	and spike d	uplicate	result.		
LaboratoryControlQC Batch:52840Prep Batch:45282	Spike (LC	-	Date An QC Prep		2008-09- 2008-09-				lyzed By pared By	
-				r	D'1	Spike		trix Dec		R Li
Param DRO		Resu 293		Units ng/Kg	 1	Amount 250		$\frac{\text{sult}}{4.5} \frac{\text{Rec}}{117}$	-	L1 3.4
Param DRO		LCSD Result 281	Units mg/Kg	Dil.	Spike Amount 250	Matrix Result <14.5	Rec.	Rec. Limit 73.4 - 123	RPD 4	
Percent recovery is bas	sed on the sp									
-	LCS	LCSD				Spike	\mathbf{LC}	S LCSD)	R
Surrogate	Result	Result	U	nits	Dil.	Amount	Rec			Li
n-Triacontane	102	99.4		g/Kg	1	100	102			7.5
Laboratory Control QC Batch: 52850 Prep Batch: 45291	Spike (LC		Date An QC Prep		2008-09- 2008-09-				lyzed By pared By	
		LCS			D .1	Spike	Ma			R
-		~		Units	Dil.	Amount		sult Rec .06 92		Li
Param		Resu		the state of the s		950	~ 1			
TRPHC	sed on the sr	231	n	ng/Kg	1	250 and spike d	<1 uplicate		75	J.J
	sed on the sp	231 pike result.	n	ng/Kg	1 the spike a	and spike d		result.		
TRPHC	sed on the sp	231	n	ng/Kg	1				RPD	

· · ·

Report Date: October 1, 2008	Work Order: 8092923	Page Number: 11 of 15
Osudo 9 State #2	Osudo 9 State #2	Lea County, NM

Matrix Spike (MS-1) Spiked Sample: 174928

· · , ,

QC Batch: Prep Batch:	$52815 \\ 45262$		lyzed: 2008-09-29 Analyzed By: aration: 2008-09-29 Prepared By:					
Param		${ m MS} { m Result}$	Units	Dil.	Spike Amount	${f Matrix} {f Result}$	Rec.	${ m Rec.}\ { m Limit}$
Benzene		0.740	mg/Kg	1	1.00	< 0.00347	74	42.9 - 130.7
Toluene		0.772	mg/Kg	1	1.00	< 0.00525	77	46.9 - 135.4
Ethylbenzen	e	0.802	mg/Kg	1	1.00	< 0.00607	80	48.3 - 149.3
Xylène		2.44	mg/Kg	1	3.00	< 0.00724	81	48.8 - 150.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Benzene	0.854	mg/Kg	1	1.00	< 0.00347	85	42.9 - 130.7	14	20
Toluene	0.897	mg/Kg	1	1.00	< 0.00525	90	46.9 - 135.4	15	20
Ethylbenzene	0.929	mg/Kg	1	1.00	< 0.00607	93	48.3 - 149.3	15	20
Xylene	2.82	mg/Kg	1	3.00	< 0.00724	94	48.8 - 150.9	14	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	$\operatorname{Rec.}$
Surrogate	Result	\mathbf{Result}	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.882	0.997	mg/Kg	1	1	88	100	63.2 - 128.3
4-Bromofluorobenzene (4-BFB)	0.946	1.05	mg/Kg	1,	1	95	105	61.5 - 161.2

Matrix Spike (MS-1) Spiked Sample: 174933

QC Batch:	52816	Date Analyzed:	2008-09-29	Analyzed By:	\mathbf{ER}
Prep Batch:	45262	QC Preparation:	2008-09-29	Prepared By:	\mathbf{ER}

	MS			Spike	Matrix		$\operatorname{Rec.}$
Param	\mathbf{Result}	\mathbf{Units}	Dil.	Amount	\mathbf{Result}	Rec.	Limit
GRO	12.9	mg/Kg	1	10.0	< 0.144	129	48.9 - 155.8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Mat	rix	F	lec.		\mathbf{RPD}
Param	Result	Units	Dil.	Amount	Res	ult Re	c. Li	mit	RPD	Limit
GRO	12.6	mg/Kg	1	10.0	<0.	144 12	6 48.9	- 155.8	2	20
Percent recovery is based on the s	pike result. l	RPD is b	ased o	n the spike	and sp	oike dupli	cate result	ī.		
	MS	MS	D			Spike	MS	MSD		Rec.
Surrogate	Result	: Resu	ılt	Units	Dil.	Amount	Rec.	Rec.]	Limit
Trifluorotoluene (TFT)	1.32	1.2	0	mg/Kg	1	1	132	120	41.8	3 - 145.4
4-Bromofluorobenzene (4-BFB)	1.60	1.43	8	mg/Kg	1	1	160	148	50.3	8 - 197.8

Osudo 9 State #2	, 2008		Work Or Osudo	23		-		12 of 15 inty, NM	
Matrix Spike (MS-1)	Spiked Sample:	:							
QC Batch: 52819 Prep Batch: 45264			Analyzed: reparation:	2008-09-2 2008-09-2				lyzed B pared B	-
Param	Re	MS esult	Units	Dil.	Spike Amount	Matrix Result	Rec.]	Rec. Limit
Chloride	7	788	mg/Kg	10	500	243.24	109	74.7	7 - 123.2
Percent recovery is based	on the spike resu	lt. RPD	is based on	the spike a	nd spike du	uplicate res	sult.		
Param	MSD Result	Units	s Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	792	mg/K		500	243.24		.7 - 123.2	0	20
Percent recovery is based	on the spike resu	lt. RPD	is based on	the spike a	nd spike du	uplicate res	sult.	,	
QC Batch: 52840 Prep Batch: 45282			Analyzed: reparation:	2008-09-2 2008-09-2		Mat	Prep	yzed By ared By	
Param	F	Result	Units	Dil.	Amount			ec.	Limit
DRO		99.2	mg/Kg	1	250	64	.1 1	4	0 - 197
	on the spike resu	lt. RPD	is based on	the spike a	nd spike dı	uplicate res	sult.		
Percent recovery is based									
Percent recovery is based Param	MSD Resul		its Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Percent recovery is based Param DRO				-				RPD 28	
Param DRO	Resul 2 131	t Uni mg/	Kg 1	Amount 250	Result 64.1	Rec. 27	Limit 0 - 197		Limit
Param DRO Percent recovery is based	Result 2 131 on the spike resu MS M	t Uni mg/ lt. RPD	Kg 1 is based on	Amount 250 the spike a	Result 64.1 nd spike du Spike	Rec. 27 iplicate res MS	Limit 0 - 197 sult. MSD		Limit 20 Rec.
Param	Resul 2 131 on the spike resu MS M Result R	t Uni mg/ lt. RPD	Kg 1	Amount 250	Result 64.1 nd spike du	Rec. 27 Iplicate res	Limit 0 - 197 sult.	28	Limit 20

۰, ۱ •

.

²MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control.
 ³Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.
 ⁴Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

Report Date: October 1, 2008 Osudo 9 State #2		Work Order: 8092923 Osudo 9 State #2					Page Number: 13 of 15 Lea County, NM		
Param	M Res		Units	Dil.	Spike Amount		atrix sult F	lec.	Rec. Limit
TRPHC	11	16	mg/Kg	1	250	<1	1.06	46	10 - 354
Percent recovery is based on the spectrum Param	pike result. MSD Result	RPD is Units		the spike an Spike Amount	d spike duy Matrix Result	plicate r Rec.	result. Rec. Limit	RPD	RPD Limit
TRPHC	124	mg/K		250	<1.06	50	10 - 354	7	20
Percent recovery is based on the s Standard (ICV-1)	pike result.	RPD is	based on	the spike an	d spike du	plicate r	esult.		
QC Batch: 52815		Date A	.nalyzed:	2008-09-29			Ar	alyzed I	By: ER

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0908	91	85 - 115	2008-09-29
Toluene		mg/Kg	0.100	0.0890	89	85 - 115	2008-09-29
Ethylbenzene		mg/Kg	0.100	0.0860	86	85 - 115	2008-09-29
Xylene		mg/Kg	0.300	0.268	89	85 - 115	2008-09-29

Standard (CCV-1)

• • •

•

QC Batch: 528	315		Date Analyze	ed: 2008-09-2	29	Anal	yzed By: ER
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		mg/Kg	0.100	0.0889	89	85 - 115	2008-09-29
Toluene		mg/Kg	0.100	0.0891	89	85 - 115	2008-09-29
Ethylbenzene		mg/Kg	0.100	0.0887	89	85 - 115	2008-09-29
Xylene		mg/Kg	0.300	0.268	89	85 - 115	2008-09-29

Standard (ICV-1)

QC Batch:	52816		Date Ana	Analyzed By: ER			
			ICVs True	ICVs Found	ICVs Percent	Percent Recoverv	Date
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.916	92	85 - 115	2008-09-29

Report Date: October 1, 2008 Osudo 9 State #2				Vork Order: 809 Osudo 9 State		Page Number: 14 of 15 Lea County, NM		
Standard	(CCV-1)							
QC Batch:	52816		Date Ana	lyzed: 2008-0	Ana	Analyzed By: ER		
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	
GRO		m mg/Kg	1.00	0.970	97	85 - 115	2008-09-29	
Standard	(ICV-1)							
QC Batch:	52819		Date Ana	lyzed: 2008-09	9-29	Anal	yzed By: RD	
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date	
Param Chloride	Flag	Units mg/Kg	Conc. 100	Conc. 99.6	Recovery 100	Limits 85 - 115	Analyzed 2008-09-29	
Standard QC Batch:	,			lyzed: 2008-09			yzed By: RD	
QC Batch: Param	,	Units mg/Kg	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	
QC Batch: Param Chloride	52819 Flag	Units mg/Kg	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date	
QC Batch: Param	52819 Flag (ICV-1)		CCVs True Conc. 100	CCVs Found Conc.	CCVs Percent Recovery 100	Percent Recovery Limits 85 - 115	Date Analyzed	
QC Batch: Param Chloride Standard QC Batch:	52819 Flag (ICV-1) 52840	mg/Kg	CCVs True Conc. 100 Date Anal ICVs True	CCVs Found Conc. 100 lyzed: 2008-09 ICVs Found	CCVs Percent Recovery 100 -29 ICVs Percent	Percent Recovery Limits 85 - 115 Analy Percent Recovery	Date Analyzed 2008-09-29 yzed By: MN Date	
QC Batch: Param	52819		CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyz	
QC Batch: Param Chloride Standard QC Batch: Param	52819 Flag (ICV-1)	mg/Kg Units	CCVs True Conc. 100 Date Ana ICVs True Conc.	CCVs Found Conc. 100 lyzed: 2008-09 ICVs Found Conc.	CCVs Percent Recovery 100 0-29 ICVs Percent Recovery	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits	Date Analyzed 2008-09-2 yzed By: MN Date Analyzed	
QC Batch: Param Chloride Standard QC Batch:	52819 Flag (ICV-1) 52840	mg/Kg	CCVs True Conc. 100 Date Anal ICVs True	CCVs Found Conc. 100 lyzed: 2008-09 ICVs Found	CCVs Percent Recovery 100 -29 ICVs Percent	Percent Recovery Limits 85 - 115 Analy Percent Recovery	Date Analyzec 2008-09-2 yzed By: MN Date Analyzec	
QC Batch: Param Chloride Standard QC Batch: Param	52819 Flag (ICV-1) 52840 Flag	mg/Kg Units	CCVs True Conc. 100 Date Ana ICVs True Conc.	CCVs Found Conc. 100 lyzed: 2008-09 ICVs Found Conc.	CCVs Percent Recovery 100 0-29 ICVs Percent Recovery	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits	Date Analyzed 2008-09-2 yzed By: MN Date Analyzed	
QC Batch: Param Chloride Standard QC Batch: Param DRO	52819 Flag (ICV-1) 52840 Flag (CCV-1)	mg/Kg Units	CCVs True Conc. 100 Date Ana ICVs True Conc.	CCVs Found Conc. 100 lyzed: 2008-09 ICVs Found Conc. 272	CCVs Percent Recovery 100 -29 -29 ICVs Percent Recovery 109	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	Date Analyzed 2008-09-2 yzed By: MN Date Analyzed 2008-09-2	
QC Batch: Param Chloride Standard QC Batch: Param DRO Standard	52819 Flag (ICV-1) 52840 Flag (CCV-1)	mg/Kg Units mg/Kg	CCVs True Conc. 100 Date Anal ICVs True Conc. 250	CCVs Found Conc. 100 lyzed: 2008-09 ICVs Found Conc. 272	CCVs Percent Recovery 100 -29 -29 ICVs Percent Recovery 109	Percent Recovery Limits 85 - 115 Anal Percent Recovery Limits 85 - 115	Date Analyzed 2008-09-29 yzed By: MN	

.

•

Report Date: October 1, 2008 Osudo 9 State #2				ork Order: 809 Osudo 9 State	Page Number: 15 of 15 Lea County, NM			
Standard	(ICV-1)							
QC Batch:	52850		Date Anal	yzed: 2008-09	Anal	Analyzed By: CM		
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
TRPHC		mg/Kg	100	91.3	91	80 - 120	2008-09-30	
Standard	(CCV-1)							
QC Batch:	52850		Date Anal	yzed: 2008-09	9-30	Anal	yzed By: CM	
			CCVs	CCVs	CCVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
TRPHC		mg/Kg	100	91.4	91	80 - 120	2008-09-30	

.

• •, •

		LAB Order IC	» <u># 809</u>	2923	Page of
TraceAnalysis, email: lab@traceanalysis.com	m	6701 Aberdeen Avenue Su Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296	Midland, Tel (432)	treet, Suite A1 200 East Sunset Rd Su exas 79703 El Paso, Texas 7992 689-6301 Tel (915) 585-3443 689-6313 Fax (915) 585-4944 1 /888) 588-3443	22 Ft. Worth, Texas 7611b Tel (817) 201-5260
Company Name: Talun UPE Address: (Street, City, Zip)	Phor (Fax	132-238-6 #	388		REQUEST Sify Method No.)
Address: (Street, City, Zip) 318 E Taylor Hobbs, NM Contact Person: EB Taylor	7 8824 E-ma	J		5)	dard
Invoice to: SAM. (If different from above) Mew Bourne St	+ mew(Sourne Oil	624	/ 624 05 Ext(C35) HC Se Hg 6010B/200 Cr Pb Se Hg	n stan
Project #:	OSu do	Sourne Oil set Name: 9 State #2	8260B76	B / 624 005 Ex b Se Hg Cr Pb	S OD B
Project Location (including state): Lea Cointy, NM	Sam	pler Signature:	2 / 826	005 / TX1005 1005 / TX1005 005 / TVHC 5 8 a Cd Cr Pb Se As Ba Cd Cr F As	differee
	MATRIX	PRESERVATIVE METHOD	SAMPLING 8	802/B/ 602 / 8260B / 624 802/B/ 602 / 8260B / 624 115/GRO CUTTY 1005 / TVHC 270C / 625 Add As Ba Cd Cr Pb Se Hg Metals Ag	10000000000000000000000000000000000000
LAB # FIELD CODE STATUS (LAB USE) (ONLY) # KODE # KODE KODE KODE KODE KODE KODE KODE KODE	WATER SOIL AIR SLUDGE	HCI HNO ₃ NaOH ICE NONE	un la last	PHEX 8021901 602 / 8260B PH 418 7 X1005 / 7X10 TPH 8015 625 Total Metals 7 X1005 / 7X10 Total Metals 7 X1005 / 625 Total Metals 7 X10 Total Metals 7 X 8 Ba Cd Cr TCLP Metals TCLP Metals TCLP Semi Volatiles TCLP Pesticides RCI GC/MS Vol RCI Metals GC/MS Semi Vol 8260B AS Semi Vol 827007 / 4	
174933 134-3 1	X		~ · / ~ /	XXX	XXX
934 BH-4 1	X			X X X	
Relinquished by: Company: Date: Time:	Received by	Company: Date:	Time: Temp°c:	LAB USE REMARKS	
Relinquished by: Company: Date: Time:	Received by:	Company: Date:	Time: Temp°c:		ASAP
			·	Headspace Y/N (NA)	Veight Basis Required
Relinquished by: Company: Date: Time: Day A Tyle THEON 9/29/08 9:32		Company: Date:	Time: Temp [°] c: 205323.9	Check	k If Special Reporting s Are Needed
Submittal of camples constitutes agreement to Terms and Conc	durons listed on reve	rse side of C O. C		ner # Comz	

1-

٠