

October 27,2008

RECEIVED

DEC 22 2008

HOBBSOCD

1

AMARILLU 52, North Bivins Amarille, Texas 79,07 Phane 206,467 ri667 Fax 806,467 ri662

AUSTIN 3CH3 Tom Gary Cove Built ins C-100 Round Brick, Texe , 78664 Phone 5 2,985,3429 Fibrie 5 2,989,3429 Fibrie 5 2,989 346 /

M DLAND #9 Cost Industrial Loop Mict and Teper 78701 Phone 432,522 2003 Fex 432 522,200

NFW BRAUN-ELS 707 N Wabrut Are Sulto 200 New Braun fols Texas 79 30 Phonio 2 0,579 0235 Fax 210,568,219;

TULSA 9506 East 43st Surco Stol 6 Tulsa, 0K 74146 Phone 910 742 0271 For 915.742,0876

HDBBS 312 East Taylor Street Hobbs, New Moxico 2224 Phone 505,393,4261 Far pD5 303,4254 Paul Kautz New Mexico Oil Conservation Division District 1 office 1625 French Dr. Hobbs, New Mexico 88240

١,

RE: Request for closure of the Paloma 28 State Com #2 pit.

In September of 2008, Talon/LPE was contracted by the Mewbourne Oil Company to perform the pit closure activities at the Paloma 28 State Com #2, API# 30-025-38908, Unit M Sec 28-T20S-R36E, in Lea county New Mexico. The C-144 for this pit closure was submitted to Paul Kautz and approved on September 15, 2008.

Talon/LPE mixed all drill cuttings from the reserve pit at a ratio not more than 3:1 to stabilize the soil in preparation for trench burial. The drill cuttings were mixed on the west side of the pit. Up-on completion of mixing the drill cuttings, Eb Taylor with Talon/LPE called Paul Kautz to notify him of the planed sampling of the east pit floor and drill cuttings. On September 27, 2008 Talon/LPE collected two five point composite samples of the pit floor and one five point composite sample from the drill cuttings. The samples were sent to Trace Analysis and analyzed in compliance with 19.15.17.13NMAC for official analytical results. When analytical results were reviewed, it was determined that the drill cuttings could be buried on site (see attached analytical). Talon/LPE excavated a burial cell in the east side of the reserve pit approximately 150°x40°x20°, and lined it with a 20 mil liner. Once the drill cuttings were placed in the burial cell, a 20 mil cap was placed on top to seal the burial cell. On October 9, 2008 Eb Taylor with Talon/LPE collected two five point composite samples from the west pit floor and sent them to Trace Analysis to be analyzed in compliance with 19.15.17.13 NMAC for official analytical (see attached analytical). The area was backfilled and contoured to the surrounding area. The area was seeded with Homesteaders Choice seed mix.

No deed amendment is required for this closure due to the fact the this is state land, Mewbourne Oil Company will place the burial marker at 32° 32.308 N 103° 21.984 W.

After review of attached documents and analysis by the NMOCD, Talon/LPE, and Mewbourne Oil Company we are requesting that this pit be considered properly closed.

ENV.RONMENTAL CONSULTING ENG.NCERING DB:LLING CONSTRUCTION EMERGENCY RESPONSE

Toll Free: 866.742.0742 www.tatonlpe.com Sincerely, Eb Taylor New Mexico Division Manager Talon/LPE

· · ·		
District I 1625 N French Dr., Hobbs, NM 88240 District III 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S St. Francis Dr., Santa Fe, NM 87505	State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505	Form C-144 July 21, 2008 For temporary pits, closed-loop systems, and below-grade tanks, submit to the appropriate NMOCD District Office. For permanent pits and exceptions submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.
Pit,	Closed-Loop System, Below-Grade 7	lan <u>k, or</u>
	Iternative Method Permit or Closure P	
Clo Mo	mit of a pit, closed-loop system, below-grade tank, o sure of a pit, closed-loop system, below-grade tank, o dification to an existing permit sure plan only submitted for an existing permitted or posed alternative method	or proposed alternative method
	ication (Form C-144) per individual pit, closed-loop syste	em, below-grade tank or alternative request
Please be advised that approval of this request does environment. Nor does approval relieve the operat	s not relieve the operator of liability should operations result in or of its responsibility to comply with any other applicable go	n pollution of surface water, ground water or the
1. Operator: MEWBOURNE OIL COMPAN	Y OGRID #:	14744
	1EXICO 88241	
, <u> </u>	E COM #2:	1
API Number: 30-025-38908	OCD Permit Number:	P1-00231
U/L or Qtr/QtrM Section		_County:LEA
	2' 19" LongitudeW103' 21' 55"	
Surface Owner: 🔲 Federal 🖾 State 🗌 Privat	e 🗍 Tribal Trust or Indian Allotment	
 ² Pit: Subsection F or G of 19.15.17.11 Ni Temporary: Drilling Workover Permanent Emergency Cavitation [Lined Unlined Liner type: Thicknes String-Reinforced Liner Seams: Welded Factory Oth] P&A s \$?_}∂_ mit ⊠ LLDPE [] HDPE [] PVC [] Otl	her Dimensions: L_120_ x W_100_ x D_8
3.		
Closed-loop System: Subsection H of 19		
Type of Operation: P&A Drilling a new intent)	w well [] Workover or Drilling (Applies to activities which	ch require prior approval of a permit or notice of
Drying Pad D Above Ground Steel Tank	s 🔲 Haul-off Bins 🗌 Other	
Lined Unlined Liner type: Thickness	mil 🛄 LLDPE 🗋 HDPE 🔲 PVC 🛄	Other
Liner Seams: Welded Factory Oth	er	SECEMED
4.		
Below-grade tank: Subsection 1 of 19.15		CED 1 5 2000
	f fluid:	SEP 1 5 2008
Tank Construction material:		INRRS (MCN)
	Visible sidewalls, liner, 6-inch lift and automaticable	
	ewalls only Other	
Liner type: Thicknessr	nil 🗌 HDPE 🗌 PVC 🔲 Other	
5.	· · · · · · · · · · · · · · · · · · ·	
Alternative Method:	Eventions must be submitted to the Courter De Der 1	
submittal of an exception request is required.	Exceptions must be submitted to the Santa Fe Environmen	nai Bureau office for consideration of approval.

•

2 6

.

ŗ

Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)

Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church)

X Four foot height, four strands of barbed wire evenly spaced between one and four feet

Alternate. Please specify_

Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks)

Screen INetting Other_

8

☐ Monthly inspections (If netting or screening is not physically feasible)

Signs: Subsection C of 19.15.17.11 NMAC

X-12"* 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.3.103 NMAC

Administrative Approvals and Exceptions:

Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.

Please check a box if one or more of the following is requested, if not leave blank:

Administrative approval(s):	Requests must	be submitted to	the appropriate	division district or	the Santa Fe	Environmental	Bureau of	fice for
consideration of approval.								

Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.

Siting Criteria (regarding permitting): 19 15.17.10 NMAC

Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acce	ptable source
material are provided below. Requests regarding changes to certain siting criteria may require administrative approval from the appro	priate district
office or may be considered an exception which must be submitted to the Santa Fe Environmental Bureau office for consideration of a	ipproval.
Applicant must attach justification for request. Please refer to 19.15.17.10 NMAC for guidance. Siting criteria does not apply to dry	ing pads or
above-grade tanks associated with a closed-loop system.	
Ground water is less than 50 feet below the bottom of the temporary pit, permanent pit, or below-grade tank.	Yes No

- NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	·
 Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site 	Yes No
 Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to temporary, emergency, or cavitation pits and below-grade tanks) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No ☐ NA
 Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. (Applies to permanent pits) Visual inspection (certification) of the proposed site; Aerial photo; Satellite image 	☐ Yes ☐ No ☐ NA
 Within 500 horizontal feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, or within 1000 horizontal feet of any other fresh water well or spring, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site 	🗌 Yes 🗌 No
 Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; Written approval obtained from the municipality 	🗌 Yes 🗌 No
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	🗌 Yes 🗌 No
 Within the area overlying a subsurface mine. Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division 	🗌 Yes 🗌 No
 Within an unstable area. Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map 	🗌 Yes 🗌 No
Within a 100-year floodplain. - FEMA map	🗌 Yes 🗌 No

Temporary Pits, Emergency	Pits, and Below-grade Tanks Permit Applie	cation Attachment Checklis	st: Subsection B of 19.15.17.9 NMAC
	lowing items must be attached to the applicat	ion. Please indicate, by a ch	eck mark in the box, that the documents are
attached.	Below-grade Tanks) - based upon the requiren	nants of Poregraph (A) of Sub	vection B of 19 15 17 9 NMAC
Hydrogeologic Report (mporary and Emergency Pits) - based upon the requirements	e requirements of Paragraph	(2) of Subsection B of 19.15.17.9 NMAC
Hydrogeologic Data (10	ance Demonstrations - based upon the appropria	ate requirements of 19 15 17.	10 NMAC
Design Plan - based upo	n the appropriate requirements of 19.15.17.11	NMAC	
Operating and Maintena	nce Plan - based upon the appropriate requirer	ments of 19.15.17.12 NMAC	
Closure Plan (Please co	nplete Boxes 14 through 18, if applicable) - ba	ased upon the appropriate req	uirements of Subsection C of 19.15.17.9 NM
and 19.15.17.13 NMAC			
Descuencies Approved Des	ign (attach copy of design) API Number:	Ó	or Permit Number:
Previously Approved Des	ign (attach copy of design) - Att Humber.	······································	
12.			
Closed-loop Systems Permit	Application Attachment Checklist: Subsec	ction B of 19.15.17.9 NMAC	back mark in the box that the documents are
	lowing items must be attached to the applicat	tion. Please indicate, by a ch	ieck mark in the box, that the abcuments are
attached.	ologic Data (only for on-site closure) - based u	non the requirements of Para	aronh (3) of Subsection B of 1915179
Geologic and Hydroge	nce Demonstrations (only for on-site closure) - based u	bosed upon the appropriate	requirements of 19 15 17 10 NMAC
Siting Criteria Complia	on the appropriate requirements of 19.15.17	- Dased upon the appropriate	requirements of 19:19:11:10 tennee
Design Plan - based up	ance Plan - based upon the appropriate require	ements of 19.15.17.12 NMAC	
Closure Plan (Please co	omplete Boxes 14 through 18, if applicable) - b	pased upon the appropriate re	quirements of Subsection C of 19.15.17.9 N
and 19.15.17.13 NMAC	inchere Bones I anough ro, a approximation		
	(-(
	5		
	erating and Maintenance Plan API Number:		_ (Applies only to closed-loop system that use
above ground steel tanks or h	aul-off bins and propose to implement waste r	emoval for closure)	
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering	- based upon the requirements of Paragraph (1 ance Demonstrations - based upon the appropri Assessment Design Plans - based upon the appropriate requ) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM	7.10 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Strean Monitoring and Inspece	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate require ping Prevention Plan - based upon the appropriate s Odors, including H ₂ S, Prevention Plan Plan a Characterization	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19.1 ements of 19.15.17.12 NMAC	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate require ping Prevention Plan - based upon the appropriate s Odors, including H ₂ S, Prevention Plan Plan a Characterization	<i>tion. Please indicate, by a cl</i>) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 1 ements of 19.15.17.12 NMAC riate requirements of 19.15.1	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate require oping Prevention Plan - based upon the appropriate s Odors, including H_2S , Prevention Plan - 1 Characterization tion Plan	<i>tion. Please indicate, by a cl</i>) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 1 ements of 19.15.17.12 NMAC riate requirements of 19.15.1	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtog Nuisance or Hazardou: Emergency Response I Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriat Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan hance Plan - based upon the appropriate require oping Prevention Plan - based upon the appropriate odors, including H ₂ S, Prevention Plan h Characterization tion Plan	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an	7.9 NMAC 7.10 NMAC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC 19.15.17.13 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtog Nuisance or Hazardou: Emergency Response I Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plar nance Plan - based upon the appropriate require ping Prevention Plan - based upon the appropriate codors, including H ₂ S, Prevention Plan h Characterization tion Plan	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an	7.9 NMAC 7.10 NMAC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC 19.15.17.13 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardoux Emergency Response Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plar ance Plan - based upon the appropriate require oping Prevention Plan - based upon the appropriate o Odors, including H_2S , Prevention Plan Plan a Characterization tion Plan pon the appropriate requirements of Subsection 	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. mements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.17 Instructions: Please comple Type: Drilling X Work	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate require uctural Integrity Design - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate require oping Prevention Plan - based upon the appropriate s Odors, including H ₂ S, Prevention Plan Plan a Characterization tion Plan pon the appropriate requirements of Subsection 	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. mements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.17 Instructions: Please comple Type: Drilling X Work Alternative Proposed Closure Method:	 based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate sessment Design Plans - based upon the appropriate requirements of lange of the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of a construction and Installation Plan and Plan - based upon the appropriate requirements of solors, including H₂S, Prevention Plan - based upon the appropriate requirements of Subsection Characterization tion Plan pon the appropriate requirements of Subsection Cavitation Plan, applicable boxes, Boxes 14 through 18, over Emergency Cavitation P&A Waste Excavation and Removal 	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19.15 mements of 19.15.17.12 NMAC riate requirements of 19.15.1	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspece Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.15 Instructions: Please complee Type: Drilling X Work Proposed Closure Method: []	 based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate sessment Design Plans - based upon the appropriate requirements of la compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of Assurance Construction and Installation Planance Plan - based upon the appropriate requirements of Subsection Plan Odors, including H₂S, Prevention Plan Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over Emergency Cavitation P&A Waste Excavation and Removal 	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. appropriate requirements of 19.15.17 ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an 	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC closure plan. ow-grade Tank [] Closed-loop System
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspece Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.15 Instructions: Please complee Type: Drilling X Work Proposed Closure Method: []	 based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate sessment Design Plans - based upon the appropriate requirements of la Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of Assert - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of Subsection Plan - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Assert - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the appropriate requirements of Subsection Compatibility Assessment - based upon the ap	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an , in regards to the proposed of Permanent Pit Belo	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC closure plan. ow-grade Tank [] Closed-loop System
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspece Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.15 Instructions: Please complee Type: Drilling X Work Proposed Closure Method: []	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent requirectural Integrity Design - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the y y Assurance Construction and Installation Plan iance Plan - based upon the appropriate required ping Prevention Plan - based upon the appropriate o Odors, including H ₂ S, Prevention Plan Plan n Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over □ Emergency □ Cavitation □ P&A □ Waste Excavation and Removal □ Waste Removal (Closed-loop systems only ③ On-site Closure Method (Only for temporan □ In-place Burial 🔯 On-site Tr	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an 	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC closure plan. pw-grade Tank [] Closed-loop System
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspece Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.15 Instructions: Please complee Type: Drilling X Work Proposed Closure Method: []	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent requirectural Integrity Design - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the y y Assurance Construction and Installation Plan iance Plan - based upon the appropriate required ping Prevention Plan - based upon the appropriate o Odors, including H ₂ S, Prevention Plan Plan n Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over □ Emergency □ Cavitation □ P&A □ Waste Excavation and Removal □ Waste Removal (Closed-loop systems only ③ On-site Closure Method (Only for temporan □ In-place Burial 🔯 On-site Tr	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an 	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC closure plan. ow-grade Tank [] Closed-loop System
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering I Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: Type: Drilling X Work Alternative Proposed Closure Method: [] 15.	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirements of d Compatibility Assessment - based upon the appro- - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate requirements of a compatibility Assessment - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate - based upon the appropriate requirements of Plan - based upon the appropriate requirements of Subsection - Characterization tion Plan pon the appropriate requirements of Subsection 13 NMAC te the applicable boxes, Boxes 14 through 18, over □ Emergency □ Cavitation □ P&A □ Waste Excavation and Removal □ Maste Removal (Closed-loop systems only □ On-site Closure Method (Only for temporate □ In-place Burial ⊠ On-site Tr □ Alternative Closure Method (Exceptions m	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an , in regards to the proposed of Permanent Pit Belo	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank [] Closed-loop System ms) 1 Fe Environmental Bureau for consideration)
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualitit Operating and Mainter Freeboard and Overtog Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.17 Instructions: Please comple Type: Drilling X Work Alternative Proposed Closure Method: [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] </td <td>- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate - based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate required ping Prevention Plan - based upon the appropriate o Odors, including H₂S, Prevention Plan Plan n Characterization tion Plan pon the appropriate requirements of Subsection </td> <td>tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an proposed to the proposed of Permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa</td> <td>7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank [] Closed-loop System ms) 1 Fe Environmental Bureau for consideration)</td>	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate - based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate required ping Prevention Plan - based upon the appropriate o Odors, including H ₂ S, Prevention Plan Plan n Characterization tion Plan pon the appropriate requirements of Subsection 	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an proposed to the proposed of Permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank [] Closed-loop System ms) 1 Fe Environmental Bureau for consideration)
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualitit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: Type: Drilling X Work Alternative Proposed Closure Method: Is Waste Excavation and Rem closure plan. Please indicate	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate - based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate required ping Prevention Plan - based upon the appropriate o Odors, including H ₂ S, Prevention Plan Plan n Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over Emergency Cavitation P&A Waste Excavation and Removal Waste Removal (Closed-loop systems only On-site Closure Method (Only for temporan Enplace Burial On-site Tr Alternative Closure Method (Exceptions min- oval Closure Plan Checklist: (19.15.17.13 N p, by a check mark in the box, that the docum	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an proposed of 19.15.17.9 NMAC an pregards to the proposed of permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank [] Closed-loop System ms) 1 Fe Environmental Bureau for consideration)
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualiti Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Stream Monitoring and Inspect Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.17 Instructions: Please comple Type: Drilling Waste Excavation and Rem closure plan. Please indicate Protocols and Procedu	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate - based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate required ping Prevention Plan - based upon the appropriate o Odors, including H ₂ S, Prevention Plan Plan n Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over Emergency Cavitation P&A Waste Excavation and Removal Waste Removal (Closed-loop systems only On-site Closure Method (Only for temporan Enplace Burial On-site Tr Alternative Closure Method (Exceptions m oval Closure Plan Checklist: (19.15.17.13 N p, by a check mark in the box, that the docum res - based upon the appropriate requirements	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an proposed to the proposed of Permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa NMAC) Instructions: Each of the state attached. of 19.15.17.13 NMAC	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank Closed-loop System ms) 1 Fe Environmental Bureau for consideration) of the following items must be attached to the
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response I Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.17 Instructions: Please comple Type: Drilling Waste Excavation and Rem closure plan. Please indicate Protocols and Procedu Confirmation Samplin	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent ructural Integrity Design - based upon the appro- - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate pance Plan - based upon the appropriate require ping Prevention Plan - based upon the appropriate o dors, including H ₂ S, Prevention Plan Plan h Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over □ Emergency □ Cavitation □ P&A] Waste Excavation and Removal] Waste Removal (Closed-loop systems only] On-site Closure Method (Only for temporan □ In-place Burial ⊠ On-site Tr] Alternative Closure Method (Exceptions m oval Closure Plan Checklist: (19.15.17.13 N b, by a check mark in the box, that the docum res - based upon the appropriate requirements of plan (if applicable) - based upon the appropri- provention the appropriate requirements of plan (if applicable) - based upon the appropri- based upon the appropriate requirements of plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropriate requirements of Plan (if applicable) - based upon the appropriate require	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an proposed to the proposed of Permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa NMAC) Instructions: Each of the state attached. of 19.15.17.13 NMAC	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank Closed-loop System ms) 1 Fe Environmental Bureau for consideration) of the following items must be attached to the
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtop Nuisance or Hazardou: Emergency Response Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u It. Proposed Closure: 19.15.17 Instructions: Please complet Type: Drilling Waste Excavation and Rem closure plan. Please indicate Protocols and Procedu Confirmation Samplin Disposal Facility Nam	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirements of dompatibility Assessment - based upon the appro- based upon the appropriate requirements of d Compatibility Assessment - based upon the y Assurance Construction and Installation Plan ance Plan - based upon the appropriate require oping Prevention Plan - based upon the appropriate o Odors, including H ₂ S, Prevention Plan lan o Characterization tion Plan pon the appropriate requirements of Subsection tion Plan pon the appropriate requirements of Subsection compared the applicable boxes, Boxes 14 through 18, over Emergency Cavitation P&A Waste Excavation and Removal Waste Removal (Closed-loop systems only On-site Closure Method (Only for temporan Lin-place Burial On-site Tr Alternative Closure Method (Exceptions m coval Closure Plan Checklist: (19.15.17.13 N p, by a check mark in the box, that the docum res - based upon the appropriate requirements of Plan (if applicable) - based upon the appropri- and Permit Number (for liquids, drilling fluid	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an proposed to the proposed of Permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa NMAC) Instructions: Each of the state attached. of 19.15.17.13 NMAC riate requirements of Subsect ds and drill cuttings)	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC C 7.11 NMAC dd 19.15.17.13 NMAC closure plan. pw-grade Tank C Closed-loop System ms) 1 Fe Environmental Bureau for consideration) of the following items must be attached to th ion F of 19.15.17.13 NMAC
attached. Hydrogeologic Report Siting Criteria Complia Climatological Factors Certified Engineering Dike Protection and St Leak Detection Design Liner Specifications ar Quality Control/Qualit Operating and Mainter Freeboard and Overtor Nuisance or Hazardou: Emergency Response Oil Field Waste Strean Monitoring and Inspec Erosion Control Plan Closure Plan - based u 14. Proposed Closure: 19.15.17 Instructions: Please comple Type: Drilling X Work Alternative Proposed Closure Method: Freposed Closure Method: Proposed Closure Method: Freposed Closure Method: Freposed Closure Method: Disposal Facility Nam Soil Backfill and Cove	- based upon the requirements of Paragraph (1 unce Demonstrations - based upon the appropriate Assessment Design Plans - based upon the appropriate requirent ructural Integrity Design - based upon the appro- - based upon the appropriate requirements of d Compatibility Assessment - based upon the appropriate pance Plan - based upon the appropriate require ping Prevention Plan - based upon the appropriate o dors, including H ₂ S, Prevention Plan Plan h Characterization tion Plan pon the appropriate requirements of Subsection .13 NMAC te the applicable boxes, Boxes 14 through 18, over □ Emergency □ Cavitation □ P&A] Waste Excavation and Removal] Waste Removal (Closed-loop systems only] On-site Closure Method (Only for temporan □ In-place Burial ⊠ On-site Tr] Alternative Closure Method (Exceptions m oval Closure Plan Checklist: (19.15.17.13 N b, by a check mark in the box, that the docum res - based upon the appropriate requirements of plan (if applicable) - based upon the appropri- provention the appropriate requirements of plan (if applicable) - based upon the appropri- based upon the appropriate requirements of plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropri- propriate requirements of Plan (if applicable) - based upon the appropriate requirements of Plan (if applicable) - based upon the appropriate require	tion. Please indicate, by a cl) of Subsection B of 19.15.17 iate requirements of 19.15.17 uirements of 19.15.17.11 NM ropriate requirements of 19.1 19.15.17.11 NMAC appropriate requirements of 19. ements of 19.15.17.12 NMAC riate requirements of 19.15.1 on C of 19.15.17.9 NMAC an permanent Pit Belo (y) ry pits and closed-loop systemench Burial ust be submitted to the Santa MAC) Instructions: Each a tents are attached. of 19.15.17.13 NMAC riate requirements of Subsect ds and drill cuttings) opriate requirements of Subsect	7.9 NMAC 7.10 NMAC 1AC 5.17.11 NMAC 19.15.17.11 NMAC 7.11 NMAC ad 19.15.17.13 NMAC closure plan. pw-grade Tank Closed-loop System ms) 1 Fe Environmental Bureau for consideration) of the following items must be attached to th ion F of 19.15.17.13 NMAC ection H of 19.15.17.13 NMAC

٠

^{16.} Waste Removal Closure For Closed-loop Systems That Utilize Above Ground Instructions: Please indentify the facility or facilities for the disposal of liquids	d Steel Tanks or Haul-off Bins Only: (19.15.17.13. , drilling fluids and drill cuttings. Use attachment if n) NMAC) nore than two
facilities are required. Disposal Facility Name:	Disposal Facility Pcrmit Number:	
Disposal Facility Name:	Disposal Facility Permit Number:	
Will any of the proposed closed-loop system operations and associated activities of		
Yes (If ycs, please provide the information below) No		
Required for impacted areas which will not be used for future service and operating Soil Backfill and Cover Design Specifications based upon the appropriate Re-vegetation Plan - based upon the appropriate requirements of Subsection Site Reclamation Plan - based upon the appropriate requirements of Subsection	te requirements of Subsection H of 19.15.17.13 NMA(n I of 19.15.17.13 NMAC	c
^{17.} Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in th provided below. Requests regarding changes to certain siting criteria may requ considered an exception which must be submitted to the Santa Fe Environment demonstrations of equivalency are required. Please refer to 19.15.17.10 NMAC	ire administrative approval from the appropriate dist al Bureau office for consideration of approval. Justi	rict office or may be
Ground water is less than 50 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Database search; USG		□ Yes ⊠ No □ NA
Ground water is between 50 and 100 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Da	ata obtained from nearby wells	□ Yes ⊠ No □ NA
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Database search; US	ata obtained from nearby wells	Yes 🗌 No
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other s lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	ignificant watercourse or lakebed, sinkhole, or playa	🗌 Yes 🛛 No
Within 300 feet from a permanent residence, school, hospital, institution, or church - Visual inspection (certification) of the proposed site; Aerial photo; Satell	ch in existence at the time of initial application. ite image	🗌 Yes 🛛 No
Within 500 horizontal feet of a private, domestic fresh water well or spring that le watering purposes, or within 1000 horizontal feet of any other fresh water well or - NM Office of the State Engineer - iWATERS database; Visual inspection	spring, in existence at the time of initial application.	🔲 Yes 🛛 No
 Within incorporated municipal boundaries or within a defined municipal fresh wa adopted pursuant to NMSA 1978, Section 3-27-3, as amended. Written confirmation or verification from the municipality; Written approximation or verification from the municipality. 		🗌 Yes 🛛 No
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Vis	ual inspection (certification) of the proposed site	🗌 Yes 🛛 No
Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Mini-	ng and Mineral Division	🗌 Yes 🛛 No
Within an unstable area. - Engineering measures incorporated into the design; NM Bureau of Geolo Society; Topographic map	gy & Mineral Resources; USGS; NM Geological	🗌 Yes 🖾 No
Within a 100-year floodplain. - FEMA map		🗌 Yes 🖾 No
 Is. On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements Proof of Surface Owner Notice - based upon the appropriate requirements Construction/Design Plan of Burial Trench (if applicable) based upon the Construction/Design Plan of Temporary Pit (for in-place burial of a drying Protocols and Procedures - based upon the appropriate requirements of 19. Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Disposal Facility Name and Permit Number (for liquids, drilling fluids and Soil Cover Design - based upon the appropriate requirements of Subsection Re-vegetation Plan - based upon the appropriate requirements of Subsection 	equirements of 19.15.17.10 NMAC of Subsection F of 19.15.17.13 NMAC appropriate requirements of 19.15.17.11 NMAC pad) - based upon the appropriate requirements of 19. 15.17.13 NMAC equirements of Subsection F of 19.15.17.13 NMAC of Subsection F of 19.15.17.13 NMAC I drill cuttings or in case on-site closure standards cann n H of 19.15.17.13 NMAC	15.17.11 NMAC

Site Reclamation Plan - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection G of 19.15.17.13 NMAC

, •

.

	on Certification: the information submitted with this applic	ation is true, accurate and complete to the best of my knowledge and belief.
		Title:Engineer
		Date:9/15/2008
Signature:	raly L. Mato	Date:9/15/2008
c-mail address:	cmartin@mewbourne.com	Telephone:(575) 393-5905
		an) 🛛 Closure Plan (only) 🗌 OCD Conditions (see attachment)
OCD Representativ	ve Signature:	Approval Date:
Title:	Geologiat	OCD Permit Number: <u>P1-00231</u>
Instructions: Opera The closure report i section of the form	itors are required to obtain an approved c is required to be submitted to the division i	tion): Subsection K of 19.15.17.13 NMAC closure plan prior to implementing any closure activities and submitting the closure is within 60 days of the completion of the closure activities. Please do not complete this obtained and the closure activities have been completed. Closure Completion Date: 10129/08
22. Closure Method: Waste Excavation If different from	on and Removal 🔀 On-Site Closure Me approved plan, please explain.	ethod Alternative Closure Method Waste Removal (Closed-loop systems of
Instructions: Pleas two facilities were u	e indentify the facility or facilities for who ttilized.	osed-loop Systems That Utilize Above Ground Steel Tanks or Haul-off Bins Only: ere the liquids, drilling fluids and drill cuttings were disposed. Use attachment if mo
Disposal Facility 1	Name:	
Disposal Facility I	Name:	Disposal Facility Permit Number:
Disposal Facility I Were the closed-loo Yes (If yes, p	Name:p system operations and associated activiti lease demonstrate compliance to the items	Disposal Facility Permit Number:
Disposal Facility I Were the closed-loo Yes (If yes, p Required for impact Site Reclama Soil Backfilli	Name: p system operations and associated activiti	ies performed on or in areas that <i>will not</i> be used for future service and operations? below) D No service and operations:
Disposal Facility I Were the closed-loo Yes (If yes, p Required for impact Site Reclama Soil Backfilli Re-vegetation 24. Closure Report At mark in the box, the Proof of Clos Proof of Dece Proof of Dece Plot Plan (for Confirmation Waste Materi Disposal Fac Soil Backfilli Re-vegetation Site Reclama On-site Closure	Name:	Disposal Facility Permit Number:
Disposal Facility I Were the closed-loo Yes (If yes, p Required for impact Site Reclama Soil Backfilli Re-vegetation 24. Closure Report At mark in the box, the Proof of Clos Proof of Deee Proof of Deee Plot Plan (for Confirmation Waste Materi Disposal Fac Soil Backfilli Re-vegetation Site Reclama On-site Closure I hereby certify that	Name:	Disposal Facility Permit Number:
Disposal Facility I Were the closed-loo Yes (If yes, p Required for impact Site Reclama Soil Backfilli Re-vegetation 24. Closure Report At mark in the box, the Proof of Clos Proof of Deee Proof of Deee Plot Plan (for Confirmation Waste Materi Disposal Fac Soil Backfilli Re-vegetation Site Reclama On-site Closure I hereby certify that belief. I also certify	Name:	Disposal Facility Permit Number:

September 15, 2008

NMOCD District 2 Office 1301 W. Grand Artesia, New Mexico 88210

RE: Paloma 28 State Com #2 – Temporary Pit Closure Request API: 30-025-38908 Unit M Sec 28–T20S-R36E

Site Ranking Score: 0	Surface Owner: State of New Mexico
Depth to Ground Water: 150'	Analytical Testing: Chlorides, BTEX, TPH, GRO, DRO
100 Year Flood Plain: No	Primary Land Use: Ranching and Oil & Gas Production
Potash Area: No per R-111P	

Pursuant to Rule 19.15.17.10 NMAC (a/k/a Pit Rule 17) of the New Mexico Oil Conservation District of the State of New Mexico regulatory requirement for temporary pit closure, please accept the following documentation for request of final closure of the temporary pit for the aforementioned location.

Talon/LPE (Talon) has been contracted by Mewbourne Oil Company (Mewbourne) to perform pit closure activities on the aforementioned location. Talon/LPE and Mewbourne wishes to purpose the following hybrid closure procedure for the aforementioned temporary pit.

- **Burial Trench:** In compliance with 19.15.17.13 NMAC, Talon will stiffen the "reef" area to a 3:1 ratio and place in a lined 20mil In-situ burial cell with approximate dimensions of 150x40x20. A 20mil "lid" will be placed on top of the burial cell to seal in the impacted material. Upon excavation of the "reef" all applicable soil testing will be performed pursuant to Pit Rule 17 to verify the limits, which have been set by the NMOCD, have been obtained. A copy of the analytical data will be attached to the Final Report. (Note: If the burial contents from the reef area are not at or below the required Chloride and TPH levels, this area will then be transported to Lea Land Disposal Facility, Permit No. WM-1-035.)
- Sampling Plan: In compliance with Subsection F of 19.15.17.13 NMAC a five point composite sample will be taken from the floor of the excavation and the burial contents. The samples will be sent Trace Analysis for official analytical results.
- Soil Cover Design: In compliance with Subsection H of 19.15.17.13 NMAC three foot of native material will be placed over the burial cell with one foot of top soil to ensure revegetation. The excavated pit area will be backfilled with native material and one foot of topsoil.
- Re-vegetation Plan: In compliance with Subsection 1 of 19.15.17.13 NMAC the area will be researed to re-establish native vegetation. Will be researed with "Home steaders" (hora" see muchan per surface owner request.
- Site Reclamation Plan: In compliance with Subsection 1 of 19.15.17.13 NMAC the impacted and disturbed area will be re-contoured to surrounding terrain.
- Marker: A marker will be placed per NMOCD guidelines with all required information permanently listed on it.
- **Deed:** In compliance with 19.15.17.13 NMAC a deed will be filed with the county clerk and an approved copy will be attached to the final report.

Mewbourne Oil Company – Paloma 28 State Com #2

Page 1 of 2

A copy of the Surface Owners Notification has been attached for documentation of compliance with Subsection F of 19.15.17.13 NMAC. A Topographical map and Satellite photo has been attached to verify that this location is not within any watercourse or wetlands area. Pursuant to Order R-111P, this area has also been cleared from the subsurface mining area. A copy of a Hydrological map has been attached as documentation for water depth and domestic/stock watering purposes. A copy of the FEMA 100-year Flood Plain map was not available for this area. Verbal verification has been obtained to verify this area is not within any municipal fresh water field.

Please review the attached documentation and you may contact Charles Martin of Mewbourne Oil Company at 575-441-2081 or Shelly J. Tucker of Talon/LPE at 575-706-7234 with any questions or concerns.

Sincerely,

Shung Juch

Shelly J. Tucker Project Manager Talon/LPE

Attachments:

- 1. Surface Owner Notification letter
- 2. Diagram of burial cell
- 3. Diagram of temporary pit
- 4. Hydrogeologic Data (Water Map)
- 5. Topographical Map
- 6. Satellite Image

/sjt

. .

Image courtesy of the U.S. Geological Survey © 2004 Microsoft Corporation. **Terms of Use Privacy Statement**

http://terraserver-usa.com/printimage.aspx?T=1&S=14&X=204&Y=1125&Z=13&P=28+k... 9/15/2008

* * *

Product Catalog | Map Search | Quick Order | Digital Post Onice | Help Home > Product Catalog > FEMA Issued Flood Maps

FEMA Issued Flood Maps

State : NEW MEXICO

· • · · · ·

County : LEA COUNTY

Community : LEA CO*

Sorry there are no items to display for this State, County and Community.

* designates unincorporated areas

FEMA.gov | Accessibility | Privacy Policy | FAQ | Site Help | Site Index | Contact Us

FEMA Map Service Center, P.O. Box 1038 Jessup, Maryland 20794-1038 Phone: (800) 358-9616 Adobe Acrobat Reader required to view certain documents. Click here to download.

http://msc.fema.gov/webapp/wcs/stores/servlet/CategoryDisplay?storeId=10001&catalogI... 7/11/2008

ł

.

ł

Unined Flare Pit

Temporary Pit Design and Construction

Pit Dimensions:

- Peak Width: 100'. Floor Width: 76'
- Peak Length: 120' Floor Length: 96'
- Floor is 6' below GL.
- Center Berm is 6' above pit floor (peak is at ground level).
- All walls are built with 2:1 slope.
- Pit is fenced on 3 sides with barbed wire.
- Pit is lined with 20 mil string reinforced LLDPE. Installed with 18" anchor trench.
- Approximate volume including 2' freeboard: 14,400 bbl.

MEWBOURNE OIL COMPANY 701 S. CECIL PO BOX 5270 HOBBS, NM 88240 (575) 393-5905 (575) 397-6252 FAX

July 30, 2008

Commissioner Patrick H. Lyons 310 Old Santa Fe Trail Santa Fe, NM 87504

Dear Mr. Lyons:

This letter is to inform the surface owner that the wells listed below will require a temporary pit to be constructed & closed, as required by the NMOCD, adjacent to the well site location.

Penlon Ranch 24 State #2 Unit Letter E Sec 24, T20S, R27E Eddy Co., NM Paloma 28 State #2 Unit Letter M Sec 28, T20S, R36E Lea Co., NM

Thank you,

anha h marts Charles Martin

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailplece, or on the front if space permits. 	A. Signature
1. Article Addressed to:	D. Is delivery address different from from 1? Yes If YES, enter relivery address below: No
State of New Mexico P.O. Box 1148	6 4 6
Santa Fe, NM 87504-1148	3. Service Type
Commission Patrice H. Lyons	Certified Mail Express Mail Registered Kurkefum Receipt for Merchandise Insured Mail C.O.D.
	4. Restricted Delivery? (Extra Fee)
2. Article Number (Transfer from service label) 7007 256	0 0003 0324 9048

On the $\frac{8}{28}$ day of $\frac{M_{ary}}{M_{ary}}$, $\frac{2008}{2008}$ Mewbourne Oil Co. visually inspected the <u>Palama 28 SF Com⁴ 2</u> location in Unit Letter <u>M</u> of Sec<u>28</u>, T<u>20</u> S, R<u>36</u> E, of Lea County, NM with the API # 30 - 025 - 38908.

This is to certify that upon visual inspection of the above mentioned location there are no permanent residences, schools, hospitals, institutions or churches within 300 feet. The location is not within 500 feet of a private, domestic fresh water well or spring that less than five households use for domestic or stock watering purposes, nor within 1000 horizontal feet of any other fresh water well or spring, nor within 500 feet of a wetland, nor within 300 feet of a continuously flowing water course, nor within 200 feet of any other significant watercourse or lakebed, sinkhole or playa lake (measured from the ordinary high-water mark).

Signature: Charles I. united

Date: 9-15-08

Report Date: October 3, 2008

the second second

Work Order: 8092924 Paloma 28 St. Com. #2

Summary Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date: October 3, 2008

Work Order: 8092924

Project Location: Lea County, NM Project Name: Paloma 28 St. Com. #2

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
174935	BH-1	soil	2008-09-26	09:40	2008-09-29
174936	BH-2	soil	2008-09-26	09:50	2008-09-29
174937	Drill Cuttings	soil	2008-09-26	10:15	2008-09-29

		BTEX				TPH 418.1	TPH DRO	TPH GRO
	Benzene Toluene Ethylbenzene Xylene			MTBE	TRPHC	DRO	GRO	
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
174935 - BH-1	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<10.0	<50.0	<1.00
174936 - BH-2	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<10.0	$<\!50.0$	<1.00
174937 - Drill Cuttings						<10.0		

Sample: 174935 - BH-1

Param	Flag	Result	Units	RL
Chloride		<32.5	mg/Kg	3.25

Sample: 174936 - BH-2

Param	Flag	Result	Units	RL
Chloride		<32.5	mg/Kg	3.25

Sample: 174937 - Drill Cuttings

Param	Flag	Result	Units	RL
SPLP Silver		< 0.00300	mg/L	0.00300
SPLP Arsenic		< 0.0100	mg/L	0.0100

continued ...

Report Date: October 3, 2008	Work Order: 8092924	Page Number: 2 of 3
	Paloma 28 St. Com. $#2$	Lea County, NM

sample 174937 continued ...

, N

Param	Flag	Result	Units	RL
SPLP Barium		0.330	m mg/L	0.100
SPLP Cadmium		< 0.00500	m mg/L	0.00500
SPLP Chloride		21.2	mg/L	0.500
SPLP Cyanide		$<\!2.00$	mg/Kg	2.00
SPLP Fluoride		<1.00	mg/L	0.200
SPLP Mercury		< 0.000200	mg/L	0.000200
Nitrate-N		<1.00	mg/L	0.200
Naphthalene		< 0.000200	mg/L	0.000200
Acenaphthylene		< 0.000200	mg/L	0.000200
Acenaphthene		< 0.000200	mg/L	0.000200
Dibenzofuran		< 0.000200	mg/L	0.000200
Fluorene		< 0.000200	mg/L	0.000200
Anthracene		< 0.000200	mg/L	0.000200
Phenanthrene		<0.000200	mg/L	0.000200
Fluoranthene		<0.000200	mg/L	0.000200
Pyrene		<0.000200	mg/L	0.000200
Benzo(a)anthracene		<0.000200	mg/L	0.000200
		<0.000200	mg/L	0.000200
Chrysene Benzo(b)fluoranthene		<0.000200	mg/L	0.000200
Benzo(k)fluoranthene		<0.000200		0.000200
	c.		mg/L	0.000200
Benzo(a)pyrene		<0.000200	mg/L	
Indeno(1,2,3-cd)pyrene		<0.000200	mg/L	0.000200
Dibenzo(a,h)anthracene		< 0.000200	mg/L	0.000200
Benzo(g,h,i)perylene		< 0.000200	mg/L	0.000200
SPLP Lead		< 0.0100	mg/L	0.0100
Total PCB		< 0.000500	mg/L	0.000500
Aroclor 1016 (PCB-1016)		< 0.000500	$\mathrm{mg/L}$	0.000500
Aroclor 1221 (PCB-1221)		< 0.000500	m mg/L	0.000500
Aroclor 1232 (PCB-1232)		< 0.000500	m mg/L	0.000500
Aroclor 1242 (PCB-1242)		< 0.000500	m mg/L	0.000500
Aroclor 1248 (PCB-1248)		< 0.000500	m mg/L	0.000500
Aroclor 1254 (PCB-1254)		< 0.000500	m mg/L	0.000500
Aroclor 1260 (PCB-1260)		< 0.000500	m mg/L	0.000500
Aroclor 1268 (PCB-1268)		< 0.000500	m mg/L	0.000500
SPLP Selenium		< 0.0500	$\mathrm{mg/L}$	0.0500
SPLP U		< 0.0500	m mg/L	0.0500
Vinyl Chloride		<1.00	$\mu { m g}/{ m L}$	1.00
1,1-Dichloroethene		<1.00	$\mu { m g}/{ m L}$	1.00
Methylene chloride		5.23	$\mu { m g}/{ m L}$	5.00
1,1-Dichloroethane		<1.00	$\mu g/L$	1.00
1,2-Dichloroethane (EDC)		<1.00	$\mu g/L$	1.00
Chloroform		<1.00	$\mu g/L$	1.00
1,1,1-Trichloroethane		<1.00	$\mu g/L$	1.00
Benzene		<1.00	$\mu g/L$	1.00
Carbon Tetrachloride		<1.00	$\mu g/L$	1.00
Trichloroethene (TCE)		<1.00	$\mu g/L$	1.00
Toluene		<1.00	$\mu g/L \ \mu g/L$	1.00
	<u></u>	\1.00	με/ μ	

continued ...

Report Date: October 3, 2008		ork Order: 8092924 oma 28 St. Com. #2	0	Number: 3 of 3 a County, NM				
sample 174937 continued								
Param	Flag	Result	Units	RL				
1,1,2-Trichloroethane		<1.00	$\mu g/L$	1.00				
1,2-Dibromoethane (EDB)		< 1.00	$\mu g/L$	1.00				
Tetrachloroethene (PCE)		<1.00	$\mu g/L$	1.00				
Ethylbenzene		<1.00	$\mu g/L$	1.00				
m,p-Xylene		<1.00	$\mu g/L$	1.00				
o-Xylene		<1.00	$\mu g/L$	1.00				
1,1,2,2-Tetrachloroethane		<1.00	$\mu g/L$	1.00				

.

ه در مو و

Summary Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date: September 29, 2008

Work Order: 8092924

Project Location:Lea County, NMProject Name:Paloma 28 St. Com #2

			Date	Time	Date
Sample	Description	Matrix	\mathbf{Taken}	Taken	Received
174935	BH-1	soil	2008-09-26	09:40	2008-09-29
174936	BH-2	soil	2008-09-26	09:50	2008-09-29

Sample: 174935 - BH-1

Param	Flag	Result	Units	\mathbf{RL}
Chloride		<32.5	mg/Kg	3.25

Sample: 174936 - BH-2

Param	Flag	\mathbf{Result}	\mathbf{Units}	\mathbf{RL}
Chloride		<32.5	mg/Kg	3.25

EZETADET SUBARTA VILLATION TRACEAVAILYSIS. INC. 2011. 10.1000 (1.1000) EZETADET SUBARTA VILLATION AVOID IN SUITER UNDER THE SUBARTINE S

E-Mail ab@stail.enails.s.com

WBENC: 237019

HUB:1752439743100-86536NCTRCAWFWB38444Y0909

Certifications

DBE: VN 20657

NELAP Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317 El Paso: T104704221-08-TX LELAP-02002 Midland: T104704392-08-TX

Analytical and Quality Control Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240 Report Date: October 3, 2008

Work Order: 8092924

Project Location:Lea County, NMProject Name:Paloma 28 St. Com. #2Project Number:Paloma 28 St. Com. #2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

,			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
174935	BH-1	soil	2008-09-26	09:40	2008-09-29
174936	BH-2	soil	2008-09-26	09:50	2008-09-29
174937	Drill Cuttings	soil	2008-09-26	10:15	2008-09-29

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 44 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Michael abel

Dr. Blair Leftwich, Director

Standard Flags

,

 ${\bf B}$ - The sample contains less than ten times the concentration found in the method blank.

,

Case Narrative

Samples for project Paloma 28 St. Com. #2 were received by TraceAnalysis, Inc. on 2008-09-29 and assigned to work order 8092924. Samples for work order 8092924 were received intact at a temperature of 3.9 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (Titration)	SM 4500-Cl B
SPLP Ag	S 6010B
SPLP As	S 6010B
SPLP Ba	S 6010B
SPLP Cd	S 6010B
SPLP Cl	E 300.0
SPLP Cyanide	SM 4500-CN C,E
SPLP Fluoride	E 300.0
SPLP Hg	S 7470A
SPLP NO3 (IC)	E 300.0
SPLP PAH	S 8270C
SPLP Pb	S 6010B
SPLP PCB	S 8082
SPLP Se	S 6010B
SPLP U	S 6010B
SPLP Volatiles	S 8260B
TPH 418.1	E 418.1
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8092924 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: October 3, 2008	Work Order: 8092924	Page Number: 4 of 44
Paloma 28 St. Com. #2	Paloma 28 St. Com. #2	Lea County, NM

Analytical Report

Sample: 174935 - BH-1

т т т т т

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 52815 45262			Analytical Date Analy Sample Pro	zed:	S 8021B 2008-09-29 2008-09-29		Prep Me Analyzed Prepared	l By:	S 5035 ER ER
				RI	,					
Parameter		Flag		Result	5	Units		Dilution		\mathbf{RL}
Benzene				< 0.0100)	mg/Kg		1		0.0100
Toluene				< 0.0100)	mg/Kg		1		0.0100
Ethylbenzene				< 0.0100)	mg/Kg		1		0.0100
Xylene				< 0.0100)	mg/Kg		1		0.0100
							Spike	Percent	\mathbf{Re}	covery
Surrogate			Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	L	imits
Trifluorotolue	ene (TFT)			1.26	mg/Kg	1	1.00	126	59	- 136.1
	obenzene (4-B	FB)		1.29	mg/Kg	1	1.00	129	54.4	- 176.2

Sample: 174935 - BH-1

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titration) 52819 45264	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2008-09-29 2008-09-29	Prep Method: Analyzed By: Prepared By:	•
		RL	-		
Parameter	Flag	Result	Units	Dilution	\mathbf{RL}
Chloride	·····	<32.5	mg/Kg	10	3.25

Sample: 174935 - BH-1

Laboratory: Analysis: QC Batch: Prep Batch:	TPH 418.1 52850	Analytical Method: Date Analyzed: Sample Preparation:	E 418.1 2008-09-30 2008-09-30	Prep Method: Analyzed By: Prepared By:	•
		RL			
$\operatorname{Parameter}$	Flag	Result	Units	Dilution	RL
TRPHC		<10.0	mg/Kg	1	10.0

Report Date: October 3, 2008	Work Order: 8092924	Page Number: 5 of 44
Paloma 28 St. Com. #2	Paloma 28 St. Com. #2	Lea County, NM

Sample: 174935 - BH-1

n-Triacontane		110	mg/Kg	1	100	110	57.5 - 139
Surrogate	Flag	Result	Units	Dilution	${ m Spike} { m Amount}$	Percent Recovery	Recovery Limits
DRO			<50.0	mg/I	ζg	1	50.0
Parameter	\mathbf{Fl}	ag	RL Result	Un	its	Dilution	RL
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 52840 45282		Analytical M Date Analyze Sample Prepa	ed: 2008-0	9-29	Analyz	Method: N/A zed By: MN red By: MN

Sample: 174935 - BH-1

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 52816 45262		Analytica Date Ana Sample P		S 8015B 2008-09-29 2008-09-29		Prep Me Analyzee Preparee	d By: ER
			\mathbf{RL}					
Parameter	Flag		\mathbf{Result}		Units		Dilution	RL
GRO			<1.00		mg/Kg		1	1.00
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	$egin{array}{c} { m Recovery} \\ { m Limits} \end{array}$
Trifluorotolue	ene (TFT)		1.51	mg/Kg	1	1.00	151	55.3 - 161.9
	obenzene (4-BFB)		1.57	mg/Kg	1	1.00	157	45.6 - 214.7

Sample: 174936 - BH-2

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 52815 45262		Analytical Method: Date Analyzed: Sample Preparation:	S 8021B 2008-09-29 2008-09-29	Prep Method: Analyzed By: Prepared By:	S 5035 ER ER
:			RL			
Parameter		Flag	\mathbf{Result}	Units	Dilution	RL
Benzene			< 0.0100	mg/Kg	1	0.0100
Toluene			< 0.0100	mg/Kg	1	0.0100
Ethylbenzene	9		< 0.0100	mg/Kg	1	0.0100
Xylene			< 0.0100	mg/Kg	1	0.0100

	Report Date: October 3, 2008 Paloma 28 St. Com. #2			Work Order: 8092924 Paloma 28 St. Com. #2				Page Number: 6 of 44 Lea County, NM	
Surrogate		Flag	Result	Units	Dilution		Percent Recovery	Reco Lin	nits
Trifluorotolue 4-Bromofluor	ene (TFT) obenzene (4-BFB)		1.44 1.39	mg/Kg mg/Kg	1	$\begin{array}{c} 1.00\\ 1.00\end{array}$	144 139	59 - 54.4 -	$136.1 \\ 176.2$
Sample: 17	4936 - BH-2							,	
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titration 52819 45264)	Date	ytical Metho Analyzed: le Preparat	2008-		Analy	Method: zed By: red By:	N/A RD RD
			\mathbf{RL}						
Parameter	Flag		Result <32.5		Units mg/Kg		Dilution 10		$\frac{\text{RL}}{3.25}$
Chloride					0/0				
Sample: 17	4936 - BH-2								
Laboratory:	Lubbock		Amolytic	al Mathadu	E 418.1		Prop	Method:	N/A
Analysis: QC Batch:	TPH 418.1 52850		Date Ar	cal Method:	2008-09-	.30		zed By:	CM
Prep Batch:	45291			Preparation			•	red By:	СМ
			RL		.				DI
Parameter	Flag		Result		Units		Dilution		$\frac{\text{RL}}{10.0}$
TRPHC			<10.0		mg/Kg		1		10.0
Sample: 17	4936 - BH-2								
Laboratory:	Lubbock								NT / A
Analysis:	TPH DRO			al Method:	Mod. 801 2008-09-2			Method: zed By:	N/A MN
QC Batch: Prep Batch:	52840 45282		Date Ana Sample H	Preparation:				red By:	MN
TTOP Daten.	10202		-				JP 0		
Description	Flow		RL Result		Units		Dilution		RL
Parameter DRO	Flag		<50.0		mg/Kg		1		50.0
						/s			
~		D	.		•	Spike	Percent		covery
Surrogate	Flag	Result	Units		lution	Amount 100	Recovery 105		mits 5 - 139
n-Triacontan	e	105	mg/K	g	1	100	100	01.6	- 139

¹High surrogate recovery. Sample non-detect, result bias high.

а ^у с **у**

-

Report Date: Cotober 0, 2000		Work Order aloma 28 St			Page Number: 7 of 44 Lea County, NM		
Sample: 174936 - BH-2							
Laboratory: Lubbock Analysis: TPH GRO QC Batch: 52816 Prep Batch: 45262		Analytical Date Anal Sample Pr		S 8015B 2008-09-29 2008-09-29		Prep Me Analyzeo Prepareo	d By: ER
		RL					
Parameter Flag		Result		Units		Dilution	RL
GRO		<1.00		mg/Kg	· · · · ·	1	1.00
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)	2	1.75	mg/Kg	1	1.00	175	55.3 - 161.9
4-Bromofluorobenzene (4-BFB)		1.70	mg/Kg	1	1.00	170	45.6 - 214.7

.

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP Ag 52885 45312		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-10-01 2008-09-30 2008-10-01	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			\mathbf{RL}			
Parameter		\mathbf{Flag}	\mathbf{Result}	Units	Dilution	RL
SPLP Silver			< 0.00300	m mg/L	1	0.00300

.

•

Sample: 174937 - Drill Cuttings

SPLP Arseni	c		< 0.0100	mg/L	1	0.0100
Parameter		Flag	RL Result	Units	Dilution	RL
Analysis: QC Batch: Prep Batch:	SPLP As 52885 45312		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-10-01 2008-09-30 2008-10-01	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
Laboratory:	Lubbock					

²High surrogate recovery. Sample non-detect, result bias high.

.

Report Date: October 3, 20 Paloma 28 St. Com. #2			ler: 8092924 St. Com. #2	Page Number: 8 of 4 Lea County, N		
Sample: 174937 - Drill C	Cuttings					
Laboratory: Lubbock		An alastical Mathada	S 6010B	Prep Method:	SPLP 1312	
Analysis: SPLP Ba QC Batch: 52885		Analytical Method: Date Analyzed:	2008-10-01	Analyzed By:	RR ISIZ	
QC Batch: 52885 Prep Batch: 45312		SPLP Extraction:	2008-09-30	Prepared By:	KV	
r lep Datch. 45512		Sample Preparation:	2008-10-01	Prepared By:	KV	
		RL				
Parameter	Flag	Result	Units	Dilution	RL	
SPLP Barium		0.330	mg/L	1	0.100	
		· ·				
Sample: 174937 - Drill C	Cuttings					
Laboratory: Lubbock					ODI D 1916	
Analysis: SPLP Cd		Analytical Method:	S 6010B	Prep Method:	SPLP 1312	
QC Batch: 52885		Date Analyzed:	2008-10-01 2008-09-30	Analyzed By: Prepared By:	RR KV	
Prep Batch: 45312		SPLP Extraction: Sample Preparation:	2008-09-30 2008-10-01	Prepared By: Prepared By:	KV	
		Sample Preparation:	2008-10-01	T Tepared Dy.	IX V	
	T2)	RL Result	Units	Dilution	RI	
Parameter SPLP Cadmium	Flag	<0.00500	mg/L	1	0.00500	
Sample: 174937 - Drill C	Cuttings					
Laboratory: Lubbock						
Analysis: SPLP Cl		Analytical Method:	E 300.0	Prep Method:	SPLP 1312	
QC Batch: 52903		Date Analyzed:	2008-10-01	Analyzed By:	$\mathbf{R}\mathbf{D}$	
Prep Batch: 45327		SPLP Extraction:	2008-09-30	Prepared By:	RD	
		Sample Preparation:	2008-10-01	Prepared By:	RD	
Parameter	Flag	RL Result	Units	Dilution	RÍ	
SPLP Chloride	ridg	21.2	mg/L	5	0.500	
		<i>4</i> 1. <i>4</i>	····6/ ··	0	0.000	

• • •

.

.

Laboratory: Lubbock Prep Method: SPLP 1312 SM 4500-CN C,E Analytical Method: SPLP Cyanide Analysis: Analyzed By: SS 52953Date Analyzed: 2008 - 10 - 02QC Batch: 2008-10-01 Prepared By: SS Prep Batch: 45368 SPLP Extraction: Sample Preparation: 2008-10-02 Prepared By: SS

Report Date: October 3, 2008 Paloma 28 St. Com. #2		Work Order Paloma 28 St		Page Number: 9 of 44 Lea County, NM		
Parameter	Flag	RL Result	Units	Dilution	RL	
SPLP Cyanic	le	<2.00	mg/Kg	1	2.00	
Sample: 17	4937 - Drill Cuttings					
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP Fluoride 52903 45327	Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	E 300.0 2008-10-01 2008-09-30 2008-10-01	Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 RD RD RD	
Parameter	Flag	RL Result	Units	Dilution	RL	
SPLP Fluorio	de	<1.00	mg/L	5	0.200	
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP Hg 52897 45323	Analytical Method: Date Analyzed: Sample Preparation:	S 7470A 2008-10-01 2008-10-01	Prep Me Analyze Prepare	d By: TP	
		RL				
Parameter	Flag	Result	Units	Dilution 1	RL 0.000200	
SPLP Mercu Sample: 17	4937 - Drill Cuttings	<0.000200	mg/L	L	0.000200	
Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP NO3 (IC) 52903 45327	Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	E 300.0 2008-10-01 2008-09-30 2008-10-01	Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 RD RD RD	
		RL				

• . •

Parameter Nitrate-N Flag \mathbf{Result} Units Dilution <1.00 mg/L 5

0.200

Report Date: October 3, 2008	Work Order: 8092924	Page Number: 10 of 44
Paloma 28 St. Com. $#2$	Paloma 28 St. Com. $#2$	Lea County, NM

۰. ۲

Laboratory:	Lubbock				
Analysis:	SPLP PAH	Analytical Method:	S 8270C	Prep Method:	SPLP 1312
QC Batch:	52958	Date Analyzed:	2008-10-02	Analyzed By:	DS .
Prep Batch:	45372	SPLP Extraction:	2008-10-01	Prepared By:	DS
I		Sample Preparation:	2008-10-02	Prepared By:	\mathbf{DS}

		I	RL			
Parameter	Flag	Rest	ult	Units	Dilution	\mathbf{RL}
Naphthalene		< 0.0002	00	mg/L	1	0.000200
Acenaphthylene		< 0.0002	:00	$\mathrm{mg/L}$	1	0.000200
Acenaphthene		< 0.0002	:00	$\mathrm{mg/L}$	1	0.000200
Dibenzofuran		< 0.0002	:00	mg/L	1	0.000200
Fluorene		< 0.0002	:00	m mg/L	1	0.000200
Anthracene		< 0.0002	:00	m mg/L	1	0.000200
Phenanthrene		< 0.0002	:00	m mg/L	1	0.000200
Fluoranthene		< 0.0002	200	m mg/L	1	0.000200
Pyrene		< 0.0002	200	m mg/L	1	0.000200
Benzo(a)anthracene	• •	< 0.0002	200	$\mathrm{mg/L}$	1	0.000200
Chrysene		< 0.0002	200	$\mathrm{mg/L}$	1	0.000200
Benzo(b)fluoranthene		< 0.0002	200	$\mathrm{mg/L}$	1	0.000200
Benzo(k)fluoranthene		< 0.0002	200	m mg/L	1	0.000200
Benzo(a)pyrene		< 0.0002	200	m mg/L	1	0.000200
Indeno(1,2,3-cd)pyrene		< 0.0002	200	$\mathrm{mg/L}$	1	0.000200
Dibenzo(a,h)anthracene		< 0.0002	200	mg/L	1	0.000200
Benzo(g,h,i)perylene		< 0.0002	200	m mg/L	1	0.000200
				Spike	Percent	Recovery
Surrogate Fl	ag Result	Units	Dilution	Amount	Recovery	Limits
2-Fluorobiphenyl	0.0486	mg/L	1	0.0800	61	37.4 - 123
Nitrobenzene-d5	0.0438	mg/L	1	0.0800	55	34.3 - 130
Terphenyl-d14	0.0665	mg/L	1	0.0800	83	10 - 252

Sample: 174937 - Drill Cuttings

Laboratory:	Lubbock				
Analysis:	SPLP Pb	Analytical Method:	S 6010B	Prep Method:	SPLP 1312
QC Batch:	52885	Date Analyzed:	2008-10-01	Analyzed By:	\mathbf{RR}
Prep Batch:	45312	SPLP Extraction:	2008-09-30	Prepared By:	KV
1		Sample Preparation:	2008-10-01	Prepared By:	KV
		RL			
Parameter	Flag	Result	Units	Dilution	RL
SPLP Lead		< 0.0100	m mg/L	1	0.0100

Laboratory: Analysis: QC Batch: Prep Batch:	SPLP PCB 52959	Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 8082 2008-10-02 2008-10-01 2008-10-02	Prep Method: Analyzed By: Prepared By: Prepared By:	DS DS
--	-------------------	---	--	--	----------

			RL				
Parameter		Flag	Result		Units	Dilution	\mathbf{RL}
Total PCB			< 0.000500		mg/L	1	0.000500
Aroclor 1016 (PCB-1016)			< 0.000500		$\mathrm{mg/L}$	1	0.000500
Aroclor 1221 (PCB-1221)			< 0.000500		$\mathrm{mg/L}$	1	0.000500
Aroclor 1232 (PCB-1232)			< 0.000500		mg/L	1	0.000500
Aroclor 1242 (PCB-1242)			< 0.000500		mg/L	1	0.000500
Aroclor 1248 (PCB-1248)			< 0.000500		mg/L	1	0.000500
Aroclor 1254 (PCB-1254)			< 0.000500		mg/L	1	0.000500
Aroclor 1260 (PCB-1260)			< 0.000500		mg/L	1	0.000500
Aroclor 1268 (PCB-1268)			< 0.000500		mg/L	1	0.000500
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Deca chlorobiphenyl		0.000514	mg/L	1	0.000500	103	10 - 128

Sample: 174937 - Drill Cuttings

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock SPLP Se 52885 45312		Analytical Method: Date Analyzed: SPLP Extraction: Sample Preparation:	S 6010B 2008-10-01 2008-09-30 2008-10-01	Prep Method: Analyzed By: Prepared By: Prepared By:	RR KV
			RL			
Parameter		\mathbf{Flag}	Result	Units	Dilution	RL
SPLP Seleniu	ım		< 0.0500	mg/L	1	0.0500

Sample: 174937 - Drill Cuttings

Laboratory:		Analytical Method:	S 6010B	Prep Method:	SPLP 1319
Analysis:	SPLP U	v		-	
QC Batch:	52885	Date Analyzed:	2008-10-01	Analyzed By:	RR
Prep Batch:	45312	SPLP Extraction:	2008-09-30	Prepared By:	KV
		Sample Preparation:	2008-10-01	Prepared By:	KV

Report Date: Oct Paloma 28 St. Co	·	Work Order: 8092924 Paloma 28 St. Com. #2		0	umber: 12 of 44 ea County, NM
Parameter	Flag	RL Result	Units	Dilution	RL
SPLP U	<u> </u>	< 0.0500	mg/L	1	0.0500

Laboratory: Lubbock Analysis: SPLP Volatiles QC Batch: 52938 Prep Batch: 45355		Analytica Date Ana SPLP Ext Sample P	lyzed:	S 8260B 2008-10-01 2008-09-30 2008-10-01		Prep Method: Analyzed By: Prepared By: Prepared By:	SPLP 1312 KB KB KB
			RL				
Parameter	Flag		Result	Unit	s	Dilution	\mathbf{RL}
Vinyl Chloride			<1.00	μ g/l		1	1.00
1,1-Dichloroethene			< 1.00	$\mu g/I$		1	1.00
Methylene chloride			5.23	$\mu g/I$		1	5.00
1,1-Dichloroethane			< 1.00	$\mu g/l$		1	1.00
1,2-Dichloroethane (EDC)			< 1.00	$\mu { m g}/{ m l}$	- -	1	1.00
Chloroform			< 1.00	$\mu g/I$	- -	1	1.00
1,1,1-Trichloroethane			< 1.00	$\mu g/I$		1	1.00
Benzene			< 1.00	$\mu g/I$		1	1.00
Carbon Tetrachloride			< 1.00	$\mu \mathrm{g}/\mathrm{I}$	- -	1	1.00
Trichloroethene (TCE)			< 1.00	$\mu { m g}/{ m I}$	- -	1	1.00
Toluene			< 1.00	$\mu { m g}/{ m I}$	- -4	1	1.00
1,1,2-Trichloroethane			< 1.00	$\mu { m g}/{ m l}$		1	1.00
1,2-Dibromoethane (EDB)			< 1.00	$\mu { m g}/{ m I}$		1	1.00
Tetrachloroethene (PCE)			< 1.00	$\mu \mathrm{g}/\mathrm{I}$		1	1.00
Ethylbenzene			< 1.00	$\mu \mathrm{g/I}$		1	1.00
m,p-Xylene			< 1.00	$\mu \mathrm{g}/\mathrm{I}$		1	1.00
o-Xylene			< 1.00	$\mu \mathrm{g}/\mathrm{I}$		1	1.00
1, 1, 2, 2-Tetrachloroethane			<1.00	$\mu g/I$		1	1.00
					\mathbf{Spike}	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		57.5	$\mu { m g/L}$	1	50.0	115	70 - 130
Toluene-d8		51.4	$\mu { m g/L}$	1	50.0	103	70 - 130
4-Bromofluorobenzene (4-BFB)		45.0	$\mu \mathrm{g/L}$	1	50.0	90	70 - 130

Sample: 174937 - Drill Cuttings

Laboratory:	Lubbock				
Analysis:	TPH 418.1	Analytical Method:	E 418.1	Prep Method:	N/A
QC Batch:	52850	Date Analyzed:	2008-09-30	Analyzed By:	СM
Prep Batch:	45291	Sample Preparation:	2008-09-30	Prepared By:	CM

Report Date: October 3, 2008 Paloma 28 St. Com. #2		Work Order: 8092924 Paloma 28 St. Com. #2				Page Number: 13 of 44 Lea County, NM		
		RL						
Parameter	Flag	Result		Units		Dilution	RL	
TRPHC		<10.0		mg/Kg		1	10.0	
Method Blank (1)	QC Batch: 52815							
QC Batch: 52815 Prep Batch: 45262		Date An QC Prep	-	2008-09-29 2008-09-29			yzed By: ER ared By: ER	
Parameter	Flag			IDL sult	Un	its	RL	
Benzene	1 105		<0.00		mg		0.01	
Toluene			< 0.00		mg/		0.01	
Ethylbenzene			< 0.00	607	mg/		0.01	
Xylene			< 0.00	724	mg/Kg		0.01	
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)	Tag	0.864	mg/Kg	1	1.00	<u>86</u>	<u>69.3 - 110.2</u>	
4-Bromofluorobenzene (4	1-BFB)	0.631	mg/Kg	1	1.00	63	24.4 - 114.6	
Method Blank (1) QC Batch: 52816	QC Batch: 52816	Date An	olwodi (2008-09-29		, Anal	yzed By: ER	
Prep Batch: 45262			•	2008-09-29 2008-09-29			ared By: ER	
2	51		MD		T 7 .		DI	
Parameter	Flag		Resul		Uni		RL	
GRO			< 0.14	4	mg/	ng	1	
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene (TFT)		1.02	mg/Kg	1	1.00	102	83.3 - 108.5	
4-Bromofluorobenzene (4	I-BFB)	0.783	mg/Kg	1	1.00	78	34.5 - 105.8	

Method Blank (1) QC Batch: 52819

QC Batch:	52819	Date Analyzed:	2008-09-29	Analyzed By:	RD
Prep Batch:	45264	QC Preparation:	2008-09-29	Prepared By:	RD

Paloma 28 St. Com.	er 3, 2008 #2		der: 8092924 St. Com. #2			umber: 1 Lea Coun	
Parameter	Flag	MDL Result <1.80			nits		RL
Chloride				mg/Kg			3.25
Method Blank (1)	QC Batch: 52840						
QC Batch: 52840 Prep Batch: 45282		Date Analyzed: QC Preparation:	2008-09-29 2008-09-29			yzed By: ared By:	MN MN
Parameter	Flag	Res			Jnits		RL
DRO		<1	4.5	m	g/Kg		50
Surrogate	Flag Result		Dilution	Spike Amount	Percent Recovery	${ m Li}$	overy mits
n-Triacontane	94.4	mg/Kg 1		100	<u>100</u> <u>94</u> <u>72</u> .		- 150
QC Batch: 52850 Prep Batch: 45291		Date Analyzed: QC Preparation:	2008-09-30 2008-09-30			yzed By: ared By:	CM CM
Parameter	Flag	$egin{array}{c} \mathrm{MDL} \ \mathrm{Result} \end{array}$		τ	Jnits		RL
ТПРНС			.06		g/Kg		10
Method Blank (1)	QC Batch: 52885						
			0000 10 01		A		
QC Batch: 52885 Prep Batch: 45312		Date Analyzed: QC Preparation:	2008-10-01 2008-10-01			yzed By: ared By:	RR KV
Prep Batch: 45312 Parameter	Flag	QC Preparation:	2008-10-01 MDL Result		Prep Units		KV RL
Prep Batch: 45312	Flag	QC Preparation:	2008-10-01 MDL		Prep		KV
Prep Batch: 45312 Parameter	Flag QC Batch: 52885	QC Preparation:	2008-10-01 MDL Result		Prep Units		KV RL

.

· · · ·
Report Date: October Paloma 28 St. Com. #		Work Orde Paloma 28 S	er: 8092924 5t. Com. #2	I	Page Number: 15 Lea Count	
Parameter	Flag	Re	IDL sult	Units		RL
SPLP Lead		<0.00	0320	m mg/L		0.01
Method Blank (1)	QC Batch: 52885					
QC Batch: 52885 Prep Batch: 45312		•	2008-10-01 2008-10-01		Analyzed By: Prepared By:	RR KV
Parameter	Flag	F	MDL Result 0.0131	Units mg/L		RL 0.05
SPLP Selenium						0.00
Method Blank (1)	QC Batch: 52885					
QC Batch: 52885 Prep Batch: 45312			2008-10-01 2008-10-01		Analyzed By: Prepared By:	RR KV
Parameter	Flag	F	MDL Result	Units		RL
SPLP Arsenic		<0.0	00430	mg/L		0.01
Method Blank (1)	QC Batch: 52885					
QC Batch: 52885 Prep Batch: 45312		Date Analyzed: QC Preparation:	2008-10-01 2008-10-01		Analyzed By: Prepared By:	RR KV
Parameter	Flag		MDL Result	Units		RL
SPLP Barium		<0.	.00170	mg/L		0.1
Method Blank (1)	QC Batch: 52885					
QC Batch: 52885 Prep Batch: 45312		Date Analyzed: QC Preparation:	2008-10-01 2008-10-01		Analyzed By: Prepared By:	RR KV
Parameter	Flag		4DL esult	Units		\mathbf{RL}
SPLP Silver		< 0.00		mg/L		0.003

· · · ·

QC Batch: Prep Batch:	$52885 \\ 45312$		Date Analyzed: QC Preparation:			Analyzed By: Prepared By:	
			Ν	1DL			
Parameter		Flag	Re	esult	Units		\mathbf{RL}
SPLP U			<0.0	0105	$\rm mg/L$		0.05

Page Number: 16 of 44

Lea County, NM

Method Blank (1)	QC Batch: 52897
------------------	-----------------

· • • •

QC Batch: 52897 Prep Batch: 45323		Date Analyzed: QC Preparation:	2008-10-01 2008-10-01		Analyzed By: Prepared By:	
			MDL			
Parameter	Flag		Result	Units		\mathbf{RL}
SPLP Mercury		< 0.0	000251	mg/L	0	.0002

Method Blank (1)	QC Batch: 52903
------------------	-----------------

QC Batch: Prep Batch:	52903 45327		Date Analyzed: 2 QC Preparation: 2	2008-10-01 2008-10-01		Analyzed By: Prepared By:	
			MI	DL			
Parameter		Flag	Res	ult	Units		\mathbf{RL}
Nitrate-N			< 0.07	'00	mg/L		0.2

Method Blank (1) QC Batch: 52903

QC Batch: Prep Batch:	$52903 \\ 45327$		Date Analyzed: QC Preparation:	2008-10-01 2008-10-01		Analyzed By: Prepared By:	
				MDL			
Parameter		Flag		Result	Units		RL
SPLP Chlorid	de		<	<0.137	m mg/L		0.5

Method Blank (1) QC Batch: 52903

QC Batch:	52903	Date Analyzed:	2008-10-01	Analyzed By:	RD
Prep Batch:	45327	QC Preparation:	2008-10-01	Prepared By:	RD

Report Date: October 3, 2008 Paloma 28 St. Com. #2		Work Order: 8092924 Paloma 28 St. Com. #2		umber: 17 of 44 ea County, NM
Parameter SPLP Fluoride	Flag	MDL Result <0.0889	Units mg/L	RL 0.2

Method Blank (1) QC Batch: 52938

· · ·

QC Batch: 52938	Date Analyzed: QC Preparation:	2008-10-01 2008-10-01	Analyzed B Prepared B	
Prep Batch: 45355	QC r reparation.	2000-10-01	1 Toparoa 2	5
		MDL		
Parameter	Flag	Result	Units	RL
Bromochloromethane		< 0.177	$\mu { m g}/{ m L}$	1
Dichlorodifluoromethane		< 0.208	$\mu{ m g}/{ m L}$	1
Chloromethane (methyl chloride)		< 0.134	$\mu { m g}/{ m L}$	1
Vinyl Chloride		< 0.135	$\mu { m g}/{ m L}$	1
Bromomethane (methyl bromide)		<1.23	$\mu { m g}/{ m L}$	5
Chloroethane		< 0.182	$\mu { m g}/{ m L}$	1
Trichlorofluoromethane		< 0.0610	$\mu { m g}/{ m L}$	1
Acetone		<5.50	$\mu { m g}/{ m L}$	10
Iodomethane (methyl iodide)		< 0.107	$\mu { m g/L}$	5
Carbon Disulfide		< 0.0360	$\mu { m g}/{ m L}$	1
Acrylonitrile		< 0.0970	$\mu { m g/L}$	1
2-Butanone (MEK)		< 0.531	$\mu { m g} / { m L}$	5
4-Methyl-2-pentanone (MIBK)		< 0.421	$\mu{ m g}/{ m L}$	5
2-Hexanone		< 0.168	$\mu { m g}/{ m L}$	5
trans 1,4-Dichloro-2-butene		< 0.517	$\mu { m g/L}$	10
1,1-Dichloroethene		< 0.136	$\mu { m g}/{ m L}$	1
Methylene chloride		< 0.649	$\mu { m g} / { m L}$	5
MTBE		< 0.123	$\mu { m g}/{ m L}$	1
trans-1,2-Dichloroethene		< 0.126	$\mu { m g}/{ m L}$	1
1,1-Dichloroethane		< 0.0600	$\mu \mathrm{g/L}$	1
cis-1,2-Dichloroethene		< 0.151	$\mu { m g}/{ m L}$	1
2,2-Dichloropropane		< 0.180	$\mu { m g}/{ m L}$	1
1,2-Dichloroethane (EDC)		< 0.113	$\mu g/L$	1
Chloroform		< 0.141	$\mu { m g}/{ m L}$	1
1,1,1-Trichloroethane		< 0.116	$\mu { m g}/{ m L}$	1
1,1-Dichloropropene		< 0.0540	$\mu{ m g}/{ m L}$	1
Benzene		< 0.146	$\mu{ m g}/{ m L}$	1
Carbon Tetrachloride		< 0.0790	$\mu { m g}/{ m L}$	1
1,2-Dichloropropane		< 0.111	$\mu { m g}/{ m L}$	1
Trichloroethene (TCE)		< 0.117	$\mu { m g}/{ m L}$	1
Dibromomethane (methylene bromide)		< 0.140	$\mu { m g}/{ m L}$	1
Bromodichloromethane		< 0.161	$\mu { m g}/{ m L}$	1
2-Chloroethyl vinyl ether		< 0.388	$\mu \mathrm{g}/\mathrm{L}$	5
cis-1,3-Dichloropropene		< 0.0890	$\mu { m g}/{ m L}$	1
trans-1,3-Dichloropropene		< 0.0760	$\mu g/L$	1

Report Date: October 3, 2008 Paloma 28 St. Com. #2			ork Order: oma 28 St.			~	ber: 18 of 44 County, NM
method blank continued			ĩ,				
				MDL			
Parameter		Fl	ag	Result		Units	\mathbf{RL}
Toluene				< 0.0600)	$\mu g/L$	1
1,1,2-Trichloroethane				< 0.135	5	$\mu { m g/L}$	1
1,3-Dichloropropane				< 0.0990)	$\mu { m g/L}$	1
Dibromochloromethane				< 0.0900)	$\mu { m g/L}$	1
1,2-Dibromoethane (EDB)				< 0.0700)	$\mu { m g/L}^{-1}$	1
Tetrachloroethene (PCE)				< 0.270)	$\mu { m g}/{ m L}$	1
Chlorobenzene				< 0.0540)	$\mu { m g}/{ m L}$	1
1,1,1,2-Tetrachloroethane				< 0.0990)	$\mu { m g}/{ m L}$	1
Ethylbenzene				< 0.0360)	$\mu { m g}/{ m L}$	1
m,p-Xylene				< 0.0940)	$\mu { m g}/{ m L}$	1
Bromoform				< 0.0570		$\mu g/L$	1
Styrene				< 0.0910		$\mu g/L$	1
o-Xylene				< 0.0960		$\mu g/L$	1
1,1,2,2-Tetrachloroethane				< 0.125		$\mu g/L$	1
2-Chlorotoluene				< 0.0570		$\mu g/L$	1
1,2,3-Trichloropropane				< 0.458		$\mu g/L$	1
Isopropylbenzene				< 0.0850		$\mu g/L$	1
Bromobenzene				< 0.106		$\mu g/L$	1
n-Propylbenzene				< 0.0590		$\mu g/L$	- 1
1,3,5-Trimethylbenzene				< 0.0250		$\mu g/L$	1
tert-Butylbenzene				< 0.107		$\mu g/L$	1
1,2,4-Trimethylbenzene				< 0.0990		$\mu g/L$	1
1,4-Dichlorobenzene (para)				<0.0330		$\mu g/L$	1
sec-Butylbenzene				<0.0430		$\mu g/L$	1
				<0.0450			1
1,3-Dichlorobenzene (meta)						$\mu g/L$	1
p-Isopropyltoluene				<0.106		$\mu g/L$	
4-Chlorotoluene				< 0.0940		$\mu g/L$	1
1,2-Dichlorobenzene (ortho)				< 0.100		$\mu g/L$	1
n-Butylbenzene				< 0.0850		$\mu g/L$	1
1,2-Dibromo-3-chloropropane				< 0.690		$\mu g/L$	5
1,2,3-Trichlorobenzene				< 0.135		$\mu g/L$	5
1,2,4-Trichlorobenzene				< 0.155		$\mu g/L$	5
Naphthalene				< 0.594		$\mu g/L$	5
Hexachlorobutadiene				< 0.248	3	μ g/L	5
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		52.0	$\mu g/L$	1	50.0	104	70 - 130
Toluene-d8		50.1	$\mu { m g/L}$	1	50.0	100	70 - 130
4-Bromofluorobenzene (4-BFB)		45.6	$\mu { m g/L}$	1	50.0	91	70 - 130

.

، ب

,

•

Report Date: October Paloma 28 St. Com. #	,	Work Order: 8092924 Paloma 28 St. Com. #2	Page Numb Lea (er: 19 of 44 County, NM
Method Blank (1)	QC Batch: 52953			
QC Batch: 52953		Date Analyzed: 2008-10-02	Analyze	d By: SS
Prep Batch: 45368		QC Preparation: 2008-10-02	Prepare	d By: SS
		MDL		
Parameter	Flag	Result	\mathbf{Units}	\mathbf{RL}
SPLP Cyanide		<1.94	mg/Kg	2

4

Method Blank (1) QC Batch: 52958

QC Batch: 52958			te Analyzed:	2008-10-02			Analyzed By: DS
Prep Batch: 45372		QC	Preparation:	2008-10-02		F	Prepared By: DS
				MDL			
Parameter		Flag		Result		Units	RL
Naphthalene				< 0.0000853		mg/L	0.0002
Acenaphthylene				< 0.0000768		mg/L	0.0002
Acenaphthene				< 0.000103		mg/L	0.0002
Dibenzofuran				< 0.000200		mg/L	0.0002
Fluorene				< 0.0000861		$\mathrm{mg/L}$	0.0002
Anthracene				< 0.000170		m mg/L	0.0002
Phenanthrene				< 0.0000884		m mg/L	0.0002
Fluoranthene		,		< 0.0000969		m mg/L	0.0002
Pyrene				< 0.0000855		$\mathrm{mg/L}$	0.0002
Benzo(a)anthracene				< 0.0000703		$\mathrm{mg/L}$	0.0002
Chrysene				< 0.000113		m mg/L	0.0002
Benzo(b)fluoranthene				< 0.000134		m mg/L	0.0002
Benzo(k)fluoranthene				< 0.000227		m mg/L	0.0002
Benzo(a)pyrene				< 0.000200		m mg/L	0.0002
Indeno(1,2,3-cd)pyrene				< 0.000253		$\mathrm{mg/L}$	0.0002
${ m Dibenzo}({ m a,h}) { m anthracene}$				< 0.000180		m mg/L	0.0002
Benzo(g,h,i)perylene				< 0.000158		mg/L	0.0002
					Spike	Percen	t Recovery
Surrogate	Flag R	lesult	Units	Dilution	Amount	Recover	ry Limits
2-Fluorobiphenyl		.0450	mg/L	1	0.0800	56	10 - 146
Nitrobenzene-d5	0.	.0523	mg/L	1	0.0800	65	10 - 141
Terphenyl-d14	0.	.0635	mg/L	1	0.0800	79	10 - 266

Method Blank (1) QC Batch: 52959

QC Batch:	52959	Date Analyzed:	2008-10-02	Analyzed By:	DS
Prep Batch:	45374	QC Preparation:	2008-10-02	Prepared By:	DS

Report Date: October 3, 2008 Paloma 28 St. Com. #2				Work Ore aloma 28					Page Nu: Le	mber: 2 ea Coun	
					М	IDL					
Parameter		Flag	g		Re	sult		Units			RL_
Total PCB					< 0.000	125		mg/L			0.0005
Aroclor 1016 (PCB-10	016)				< 0.000	122		$\mathrm{mg/L}$			0.0005
Aroclor 1221 (PCB-12					< 0.000	118		$\mathrm{mg/L}$			0.0005
Aroclor 1222 (PCB-12					< 0.0000)459	•	$\mathrm{mg/L}$			0.0005
Aroclor 1242 (PCB-12					< 0.000	125		mg/L			0.0005
Aroclor 1248 (PCB-12					< 0.0000)546		mg/L			0.0005
Aroclor 1254 (PCB-1)					< 0.0000)569		mg/L			0.0005
Aroclor 1260 (PCB-1)					< 0.0000)331		mg/L			0.0005
Aroclor 1268 (PCB-1)					< 0.0000)282		mg/L			
		<u> </u>					a .:			D	
							Spike		ercent		ecovery
Surrogate	Flag	Result		Units	Dilut		Amount	Re	ecovery		Limits
Deca chlorobiphenyl		0.000432	2	mg/L	1		0.000500		86) - 128
Laboratory Contro QC Batch: 52815 Prep Batch: 45262	ol Spike (LC			nalyzed: eparation	2008-0 : 2008-0					yzed By ared By	
		LCS				Spike	Ma	trix		F	Rec.
Param		Result	t I	Jnits	Dil.	Amount	Res	sult	Rec.	\mathbf{L}	imit
Benzene		0.831		g/Kg	1	1.00	<0.0	0347	83	80.5	- 115.5
Toluene		0.849		g/Kg	1	1.00	< 0.0	0525	85	80 -	114.7
Ethylbenzene		0.815		g/Kg	1	1.00	< 0.0	0607	82	77.1	- 114.2
		2.52		g/Kg	1	3.00	< 0.0	0724	84	77.6	- 114.5
Xylene Percent recovery is b.						e and snik	e dunlicat	e result			
Percent recovery is b	ased on the s	spike result.	11 1/ 18	based on	one spin	c and spin	o aupricui				
		LCSD			Spike	Matrix			lec. ^a		RPD
Param		Result	Units	Dil.	Amount	Result			imit	RPD	Limit
Benzene		0.875	mg/Kg	1	1.00	< 0.0034	47 88	80.5	- 115.5	5	20
			mg/Kg	1	1.00	$< 0.005^{\circ}$	25 86	80 -	114.7	2	20

4

.

Toluene

Ethylbenzene

4

mg/Kg 2.58Xylene Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

mg/Kg mg/Kg

0.864

0.835

Surrogate	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	LCS Rec.	LCSD Rec.	Rec.
Trifluorotoluene (TFT)	0.830	0.833	mg/Kg	1	1.00	83	83 80	74.2 - 114.7 69.7 - 118.7
4-Bromofluorobenzene (4-BFB)	0.774	0.804	mg/Kg	I	1.00	11	80	09.7 - 110.7

1.00

1.00

3.00

1

1

1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

86

84

86

 $<\!0.00525$

< 0.00607

< 0.00724

80 - 114.7

77.1 - 114.2

77.6 - 114.5

20

20

20

Report Date: October 3, 2008 Paloma 28 St. Com. #2				order: 809 28 St. Cor					Page Nu L	ea Cour	
Laboratory Control Spike (L	CS-1)										
QC Batch: 52816		Date 1	Analyzed							yzed By	
Prep Batch: 45262		QC P	reparatio	n: 2008-0)9-29				Prepa	ared By	: ER
	LCS					pike		trix	Ð		Rec.
Param	Resul		Units	Dil.		nount		sult	Rec.		imit
GRO	9.62		mg/Kg	1		10.0		.144	96	73.1	- 114.7
Percent recovery is based on the	spike result.	RPD i	s based o	n the spik	e and	spike d	uplicat	e resul	lt.		
	LCSD			Spike		latrix	_		Rec.		RPD
Param	Result	Units		Amoun		lesult	Rec.		.imit	RPD	Limit
GRO		mg/K		10.0		0.144	89		- 114.7	8	20
Percent recovery is based on the	spike result.	RPD i	s based c	n the spik	and and	spike d	uplicat	e resu	lt.		
	LCS	\mathbf{L}	CSD			\mathbf{Spi}	ke	LCS	LCSD]	Rec.
Surrogate	Resul		esult	Units	Dil.	Amo	unt	Rec.	Rec.		limit
Trifluorotoluene (TFT)	0.961	0).903	mg/Kg	1	1.0	0	96	90		- 111.4
4-Bromofluorobenzene (4-BFB)	0.956	0).945	mg/Kg	1	1.0	0	96	94	70.3	- 116.
Laboratory Control Spike (L QC Batch: 52819 Prep Batch: 45264	,		Analyzed reparatio							yzed By ared By	
	LCS					Spike		atrix			Rec.
Param	Resu		Units	Dil.	A	mount		sult_	Rec.		Limit
Chloride	99.0		mg/Kg	1		100		1.80	99	96.5	5 - 104.4
Percent recovery is based on the	spike result.	RPD	is based o	on the spil	ke and	spike d	uplicat	e resu	lt.		
	LCSD			Spike		latrix			Rec.		RPI
Param	Result	Unit	s Dil.	Amour		Result	Rec.		Limit	RPD	Limi
Chloride	97.5	mg/K	Kg 1	100	•	<1.80	98	96.5	5 - 104.4	2	20
Percent recovery is based on the Laboratory Control Spike (L QC Batch: 52840 Prep Batch: 45282		Date	is based o Analyzed reparatio	: 2008-	09-29	l spike d	luplica	te resu	Anal	yzed By ared By	
	\mathbf{LC}	s				Spike		¶atrix }esult	Rec		Rec. Limit

. . .

Param

DRO

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Result

293

Units

mg/Kg

Dil.

1

Amount -

250

Rec.

117

 Result

 $<\!14.5$

Limit

73.4 - 123

Report Date: October 3, Paloma 28 St. Com. #2	2008				der: 809292 St. Com.					22 of 44 inty, NM
Param		LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
DRO		281	mg/Kg		250	<14.5	112	73.4 - 123	4	20
Percent recovery is based	on the sp	ike result.	RPD is	based on	the spike a	nd spike du	plicate 1	result.		
	LCS	LCSD				Spike	LCS	5 LCSD		Rec.
Surrogate	Result	Result	U	Jnits	Dil.	Amount	Rec			Limit
n-Triacontane	102	99.4		g/Kg	1	100	102		5	7.5 - 139
QC Batch: 52850 Prep Batch: 45291			Date Ar QC Pre	nalyzed: paration:	2008-09-3 2008-09-3				yzed B ared B	
		LC				Spike	Mat	-		Rec.
Param		Resu		Units	Dil.	Amount	Res			Limit
TRPHC		231		mg/Kg	1	250	<1			5.5 - 136
Percent recovery is based	l on the sp	ike result.	RPD is	based on	the spike a	and spike du	iplicate	result.		
		LCSD			Spike	Matrix		Rec.		RPE
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limi
TRPHC		240	mg/Kg	1	250	<1.06	96	75.5 - 136	4	20
Percent recovery is based Laboratory Control S QC Batch: 52885 Prep Batch: 45312			Date A:	nalyzed:	2008-10-	01	Ipricate	Ana	lyzed B pared B	
							Ma	ıtrix		ъ
D		LC		Unite	Dil	Spike Amount			èc	Rec.
Param		Rest	ult	Units	Dil.	Amount	Re	sult Re		Limit
SPLP Cadmium			ult71	m mg/L	1	Amount 0.250	Re <0.0	sult Re 00140 10	ec.)8	
Param SPLP Cadmium Percent recovery is based	l on the sp		ult71	m mg/L	1	Amount 0.250	Re <0.0	sultRe0014010result.		Limit 85 - 11
SPLP Cadmium	l on the sp	Rest 0.22 Dike result. LCSD	ult 71 RPD is	mg/L based on	1 the spike a Spike	Amount 0.250 and spike d Matrix	Re <0.0	sult Re 00140 10 result. Rec.)8	Limit 85 - 11 RPI
SPLP Cadmium	l on the sp	Rest 0.27 Dike result.	ult71	m mg/L	1 the spike a	Amount 0.250 and spike d	Re <0.0 uplicate Rec.	sultRe0014010result.		Limit

Laboratory Control Spike (LCS-1)

ĺ

QC Batch:	52885	Date Analyzed:	2008-10-01	Analyzed By:	RR
Prep Batch:		QC Preparation:	2008-10-01	Prepared By:	$\mathbf{K}\mathbf{V}$

Paloma 28 St. Com. #2		I		der: 80929 St. Com.		Page	Number: Lea Cou	23 of 44 inty, NM	
Param	LC Res		Units	Dil.	Spike Amount	Matı Resu		Rec.	Rec. Limit
SPLP Lead	0.5		mg/L	1	0.500	< 0.00	320	101	85 - 115
Percent recovery is based on the s	pike result.	RPD is	based on	the spike a	and spike dup	olicate re	esult.		
•					Matrix		Rec.		RPD
	$\begin{array}{c} \mathrm{LCSD} \\ \mathrm{Result} \end{array}$	Units	Dil.	Spike Amount	Result	Rec.	Limit	RPD	Limit
Param SPLP Lead	0.489	mg/L	1	0.500	<0.00320	98	85 - 115	3	20
Percent recovery is based on the s			based on	the spike a	and spike dup	olicate re	esult.		
Laboratory Control Spike (LC	CS-1)								
QC Batch: 52885			nalyzed:	2008-10-				nalyzed B	
Prep Batch: 45312		QC Pr	eparation:	2008-10-	01		Pr	epared B	y: KV
	LC	CS			Spike	Mat	rix		Rec.
Param	Res	sult	Units	Dil.	Amount	Res		Rec.	Limit
SPLP Selenium	0.4	160	$\mathrm{mg/L}$	1	0.500	< 0.0	131	92	85 - 115
Percent recovery is based on the s	spike result.	RPD is	based on	the spike	and spike du	olicate r	esult.		
	LCSD			Spike	Matrix	P	Rec.	מממ	RPD
Param	Result	Units		Amount	Result <0.0131	Rec. 92	Limit 85 - 115	$\frac{\text{RPD}}{0}$	Limit 20
SPLP Selenium Percent recovery is based on the s	0.459	mg/L		0.500				0	20
ercent recovery is based on the s	spine result.				1				
QC Batch: 52885	CS-1)		Analyzed: reparation:	2008-10 2008-10				nalyzed E repared B	-
QC Batch: 52885	CS-1)							•	y: KV
QC Batch: 52885	L	QC Pr CS		2008-10	-01 Spike	Mat	P	repared B	y: KV Rec.
QC Batch: 52885 Prep Batch: 45312 Param	L0 Res	QC Pr CS sult	eparation: Units	2008-10 Dil.	-01 Spike Amount	Res	Pi rix ult	repared B	y: KV Rec. Limit
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic	LC Res 0.5	QC Pr CS sult 512	Units mg/L	2008-10 Dil.	-01 Spike Amount 0.500	Res <0.00	Pi rix ult 0430	repared B	y: KV Rec. Limit
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic	LC Res 0.5	QC Pr CS sult 512	Units mg/L	2008-10 Dil.	-01 Spike Amount 0.500	Res <0.00	Pi rix ult 0430	repared B	y: KV Rec. Limit 85 - 115
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic	LC Res 0.5 spike result. LCSD	QC Pr CS sult 12 . RPD is	$\frac{\text{Units}}{\text{mg/L}}$	2008-10 Dil. 1 the spike Spike	-01 Spike Amount 0.500 and spike du Matrix	Res <0.00 plicate r	Prixult 0430 esult. Rec.	Rec.	y: KV Rec. Limit 85 - 115 RPD
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic Percent recovery is based on the s Param	LC Res 0.5 spike result. LCSD Result	QC Pr CS sult 12 . RPD is Units	Units mg/L s based on Dil.	2008-10 Dil. 1 the spike Spike Amount	-01 Spike Amount 0.500 and spike du Matrix Result	Res <0.00 plicate r Rec.	P: ult)430 esult. Rec. Limit	Rec. 102 RPD	y: KV Rec. Limit 85 - 115 RPD Limit
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic Percent recovery is based on the s Param SPLP Arsenic	LC Res 0.5 spike result LCSD Result 0.509	QC Pr CS sult 12 . RPD is Units mg/L	Units mg/L s based on Dil.	2008-10 Dil. 1 the spike Spike Amount 0.500	-01 Spike Amount 0.500 and spike du Matrix Result <0.00430	Res <0.00 plicate r <u>Rec.</u> 102	Pr nix ult)430 esult. Rec. Limit 85 - 115	Rec. 102 RPD	y: KV Rec. Limit 85 - 115
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic Percent recovery is based on the s Param SPLP Arsenic Percent recovery is based on the s	LC Res o.5 spike result LCSD Result 0.509 spike result	QC Pr CS sult 12 . RPD is Units mg/L	Units mg/L s based on Dil.	2008-10 Dil. 1 the spike Spike Amount 0.500	-01 Spike Amount 0.500 and spike du Matrix Result <0.00430	Res <0.00 plicate r <u>Rec.</u> 102	Pr nix ult)430 esult. Rec. Limit 85 - 115	Rec. 102 RPD	y: KV Rec. Limit 85 - 115 RPD Limit
QC Batch: 52885 Prep Batch: 45312 Param SPLP Arsenic Percent recovery is based on the s Param SPLP Arsenic Percent recovery is based on the s Laboratory Control Spike (Laboratory Control Spike (Labora	LC Res o.5 spike result LCSD Result 0.509 spike result	QC Pr CS sult 12 . RPD is <u>Units</u> <u>mg/L</u> . RPD is	Units mg/L s based on Dil. s based on	2008-10 Dil. 1 the spike Spike Amount 0.500 the spike	-01 Spike Amount 0.500 and spike du Matrix Result <0.00430 and spike du	Res <0.00 plicate r <u>Rec.</u> 102	P: nix ult)430 esult. Rec. Limit 85 - 115 esult.	Rec. 102 RPD	y: KV Rec. Limit 85 - 115 RPD Limit 20
•	LC Res o.5 spike result LCSD Result 0.509 spike result	QC Pr CS sult 12 . RPD is <u>mg/L</u> . RPD is Date A	Units mg/L s based on Dil.	2008-10 Dil. 1 the spike Spike Amount 0.500 the spike 2008-10	-01 Spike Amount 0.500 and spike du Matrix Result <0.00430 and spike du	Res <0.00 plicate r <u>Rec.</u> 102	Pr rix ult)430 esult. Rec. Limit 85 - 115 esult.	Rec. 102 RPD	y: KV Rec. Limit 85 - 115 RPD Limit 20 By: RR

Paloma 28 St. Com. #2				der: 80929 3 St. Com.		Page	Page Number Lea Co		
Param PLP Barium	LC Res 1.0	ult	Units mg/L	Dil.	Spike Amount 1.00	Mat Res <0.00	ult F	Rec.	Rec. Limit 85 - 115
Percent recovery is based on									
ereent recovery to saved on	-		, sabea on			piloute 1			
, ,	LCSD	TT	וית	Spike	Matrix	Daa	Rec. Limit	חחח	RPD
Param PLP Barium	Result 1.07	Units mg/L		Amount 1.00	Result <0.00170	Rec. 107	85 - 115	$\frac{\text{RPD}}{0}$	
Percent recovery is based on	······				······				
aboratory Control Spike	e (LCS-1)								
QC Batch: 52885		Data A	analyzed:	2008-10-	-01		Δn	alyzed E	v: RR
Prep Batch: 52885			reparation:					epared B	-
			opur utitoin	2000 10	01			oparoa 2	<i>j</i> . <i>1</i> .
	LC	S			Spike	Mat	rix		Rec.
aram	Res		Units	Dil.	Amount	Rest		lec.	Limit
PLP Silver	0.1	29	mg/L	1	0.125	< 0.00	0210 1	103	85 - 11
ercent recovery is based on	the spike result.	RPD is	s based on	the spike	and spike du	plicate r	esult.		
	LCSD			Spike	Matrix		Rec.	-	RPD
aram	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limi
PLP Silver	0.126	$\mathrm{mg/L}$	1	0.125	< 0.00210	101	85 - 115	2	20
ercent recovery is based on		IULD IS	b baseu on	the spike	and spike duj	Jucate 1	esuit.		
	-								
aboratory Control Spike	-	Date A	nalvzed:	2008-10	-01		An	alvzed P	w BR
aboratory Control Spike C Batch: 52885	-		analyzed:	2008-10- 2008-10-				alyzed E	
aboratory Control Spike	-		analyzed: eparation:					alyzed E epared B	•
aboratory Control Spike	-	QC Pr				Mat	Pro	•	•
aboratory Control Spike C Batch: 52885 rep Batch: 45312	e (LCS-1)	QC Pr			-01		Pro	•	y: KV
aboratory Control Spike C Batch: 52885 rep Batch: 45312 aram	e (LCS-1) LC	QC Pr CS ult	eparation:	2008-10-	-01 Spike	Mat	Pro rix ult F	epared B	y: KV Rec. Limit
aboratory Control Spike OC Batch: 52885 Tep Batch: 45312 Garam PLP U	e (LCS-1) LC Res 0.5	QC Pr CS ult 05	eparation: Units mg/L	2008-10- Dil. 1	Spike Amount 0.500	Mat Res <0.0	Pro rix ult F 105 1	epared B tec.	y: KV Rec. Limit
aboratory Control Spike OC Batch: 52885 Tep Batch: 45312 Garam PLP U	e (LCS-1) LC Res 0.5	QC Pr CS ult 05	eparation: Units mg/L	2008-10- Dil. 1	Spike Amount 0.500	Mat Res <0.0	Pro rix ult F 105 1	epared B tec.	y: KV Rec. Limit 90 - 110
aboratory Control Spike C Batch: 52885 rep Batch: 45312 aram PLP U ercent recovery is based on aram	e (LCS-1) LC Res 0.5 the spike result. LCSD Result	QC Pr CS ult 05	Units mg/L based on	2008-10- Dil. 1 the spike	O1 Spike Amount 0.500 and spike dup Matrix Result	Mat Res <0.0	Pro rix ult F 105 1 esult. Rec. Limit	epared B tec.	y: KV Rec.
aboratory Control Spike C Batch: 52885 rep Batch: 45312 aram PLP U ercent recovery is based on aram	e (LCS-1) LC Res 0.5 the spike result. LCSD	QC Pr CS ult 05 RPD is	eparation: Units mg/L based on Dil.	2008-10- Dil. 1 the spike Spike	O1 Spike Amount 0.500 and spike dup Matrix	Mat Res <0.0 plicate re	Pro rix ult F 105 1 esult. Rec.	epared B tec. 01	y: KV Rec. Limit 90 - 11 RPI
aboratory Control Spike OC Batch: 52885 Prep Batch: 45312 Param PLP U Percent recovery is based on PLP U	e (LCS-1) LC Res 0.5 the spike result. LCSD Result 0.523	QC Pr 2S ult 05 RPD is Units mg/L	eparation: Units mg/L based on Dil. 1	2008-10- Dil. 1 the spike Spike Amount 0.500	01 Spike Amount 0.500 and spike duy Matrix Result <0.0105	Mat Res <0.0 plicate r Rec. 105	Pro trix ult Fr 105 1 esult. Rec. Limit 90 - 110	epared B tec. 01 RPD	y: KV Rec. Limit 90 - 11 RPI
Aboratory Control Spike OC Batch: 52885 Prep Batch: 45312 Param PLP U Percent recovery is based on PARA PLP U Percent recovery is based on	e (LCS-1) LC Res 0.5 the spike result. LCSD Result 0.523 the spike result.	QC Pr 2S ult 05 RPD is Units mg/L	eparation: Units mg/L based on Dil. 1	2008-10- Dil. 1 the spike Spike Amount 0.500	01 Spike Amount 0.500 and spike duy Matrix Result <0.0105	Mat Res <0.0 plicate r Rec. 105	Pro trix ult Fr 105 1 esult. Rec. Limit 90 - 110	epared B tec. 01 RPD	y: KV Rec. Limit 90 - 110 RPL
Aboratory Control Spike OC Batch: 52885 Prep Batch: 45312 Param PLP U Percent recovery is based on PLP U Percent recovery is based on PLP U Percent recovery is based on PLP U Param	e (LCS-1) LC Res 0.5 the spike result. LCSD Result 0.523 the spike result.	QC Pr 2S ult 05 RPD is mg/L RPD is	Units mg/L s based on Dil. 1 based on	2008-10- Dil. 1 the spike Spike Amount 0.500 the spike	501 Spike Amount 0.500 and spike duy Matrix Result <0.0105 and spike duy	Mat Res <0.0 plicate r Rec. 105	Pro rix ult F 105 1 esult. Rec. Limit 90 - 110 esult.	epared B Rec. 01 RPD 4	y: KV Rec. Limit 90 - 11 RPI Limi
aboratory Control Spike	e (LCS-1) LC Res 0.5 the spike result. LCSD Result 0.523 the spike result.	QC Pr 2S ult 05 RPD is mg/L RPD is Date A	eparation: Units mg/L based on Dil. 1	2008-10 Dil. 1 the spike Spike Amount 0.500 the spike 2008-10	-01 Spike Amount 0.500 and spike dup Matrix Result <0.0105 and spike dup	Mat Res <0.0 plicate r Rec. 105	Pro rix ult Fr 105 1 esult. Rec. Limit 90 - 110 esult.	epared B tec. 01 RPD	y: KV Rec. Limit 90 - 110 RPE Limi

.

· · · ·

Ŋ

Report Date: October 3, 2008 Paloma 28 St. Com. #2				der: 80929 St. Com.					r: 25 of 44 ounty, NM
Param	LCS Result	τ	Jnits	Dil.	Spike Amount	Matri Resul		Rec.	Rec. Limit
SPLP Mercury	0.00100) n	ng/L	1	0.00100	< 0.0000)251	100	85 - 115
Percent recovery is based on the	spike result. R	PD is l	based on	the spike	and spike dup	olicate re	sult.		
									- RPD
_	LCSD	TT	D'1	Spike	${f Matrix} {f Result}$	Rec.	Rec. Limit	RPI	
Param	Result 0.000962	Units mg/L		Amount 0.00100	<0.0000251		85 - 11		20
SPLP Mercury								<u> </u>	
Percent recovery is based on the	spike result. R	PD is t	based on	the spike	and spike dup	oncate re	suit.		
Laboratory Control Spike (L	(CS-1)								
QC Batch: 52903	Г)ate An	alyzed:	2008-10	-01		А	nalyzed	By: RD
Prep Batch: 45327			paration					v	By: RD
		• •							
	T CO				Spike	Matr	iv		Rec.
D	LCS Resul		Units	Dil.	Amount	Resu		Rec.	Limit
Param Nitrate-N	2.38		$\frac{\rm mg/L}{\rm mg/L}$	<u></u> 1	2.50	<0.07		95	90 - 110
Percent recovery is based on the	spike result. R	.PD is i	based on	the spike	and spike du	plicate le	suit.		
	LCSD			Spike	Matrix		Rec.		RPD
				ro r	1010001001				
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPI) Limit
Nitrate-N	Result 2.34	mg/L	1	Amount 2.50	Result <0.0700	94	Limit 90 - 110		
Nitrate-N	Result 2.34	mg/L	1	Amount 2.50	Result <0.0700	94	Limit 90 - 110) Limit
Nitrate-N Percent recovery is based on the	Result 2.34 spike result. R	mg/L	1	Amount 2.50	Result <0.0700	94	Limit 90 - 110) Limit
Nitrate-N Percent recovery is based on the	Result 2.34 spike result. R	mg/L	1	Amount 2.50	Result <0.0700	94	Limit 90 - 110) Limit
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I	Result 2.34 spike result. R CS-1)	mg/L PD is 1	1 based on	Amount 2.50 the spike	Result <0.0700 and spike dup	94	Limit 90 - 110 esult.	2	D Limit 20
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903	Result 2.34 spike result. R CS-1)	mg/L PD is Date Ar	1 based on nalyzed:	Amount 2.50 the spike 2008-10	Result <0.0700 and spike dup	94	Limit 90 - 110 sult.	nalyzed) Limit
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903	Result 2.34 spike result. R CS-1)	mg/L PD is Date Ar	1 based on	Amount 2.50 the spike 2008-10	Result <0.0700 and spike dup	94	Limit 90 - 110 sult.	nalyzed	D Limit 20 By: RD
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903	Result 2.34 spike result. R .CS-1)	mg/L PD is Date Ar QC Pre	1 based on nalyzed:	Amount 2.50 the spike 2008-10	Result <0.0700 and spike dup 0-01 0-01	94 plicate re	Limit 90 - 110 sult. A P	nalyzed	D Limit 20 By: RD By: RD By: RD
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327	Result 2.34 spike result. R .CS-1) I (CS-1)	mg/L PD is Date Ar QC Pre	1 based on nalyzed: paration	Amount 2.50 the spike 2008-10 : 2008-10	Result <0.0700 and spike dup 0-01 0-01 Spike	94 plicate re Mat	Limit 90 - 110 sult. A P rix	nalyzed repared	D Limit 20 By: RD By: RD By: RD Rec.
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param	Result 2.34 spike result. R .CS-1) I CS-1 Result	mg/L PD is 1 Date Ar QC Pre	1 based on nalyzed: paration Units	Amount 2.50 the spike 2008-10 : 2008-10 Dil.	Result <0.0700 and spike dup)-01)-01 Spike Amount	94 plicate re Mat Res	Limit 90 - 110 sult. A P rix ult	nalyzed	D Limit 20 By: RD By: RD Rec. Limit
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride	Result 2.34 spike result. R .CS-1) I C LCS Resul 12.7	mg/L PD is 1 Date Ar QC Pre	1 based on nalyzed: paration Units mg/L	Amount 2.50 the spike 2008-10 : 2008-10 Dil. 1	Result <0.0700 and spike dup 0-01 0-01 Spike Amount 12.5	94 plicate re Mat Res <0.1	Limit 90 - 110 sult. A P rix ult 137	nalyzed repared Rec.	D Limit 20 By: RD By: RD By: RD Rec.
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride	Result 2.34 spike result. R CS-1) I LCS Resul 12.7 spike result. R	mg/L PD is 1 Date Ar QC Pre	1 based on nalyzed: paration Units mg/L	Amount 2.50 the spike 2008-10 : 2008-10 : 2008-10 Dil. 1 1 the spike	Result <0.0700 and spike dup 0-01 0-01 Spike Amount 12.5 and spike dup	94 plicate re Mat Res <0.1	Limit 90 - 110 sult. A P rix ult 137 sult.	nalyzed repared Rec.	D Limit 20 By: RD By: RD Rec. Limit 90 - 110
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride Percent recovery is based on the	Result 2.34 spike result. R CS-1) I CS-1) LCS Resul 12.7 spike result. R LCSD	mg/L PD is 1 Date Ar QC Pre It RPD is 1	1 based on nalyzed: paration Units mg/L based or	Amount 2.50 the spike 2008-10 : 2008-10 : 2008-10 : 2008-10 : 1 the spike	Result <0.0700 and spike dup 0-01 0-01 Spike Amount 12.5 and spike dup Matrix	94 plicate re Mat Res <0.1 plicate re	Limit 90 - 110 sult. A P rix ult 137 esult. Rec.	nalyzed repared Rec. 102	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride Percent recovery is based on the Param	Result 2.34 spike result. R CS-1) I C LCS Result 12.7 spike result. R LCSD Result	mg/L PD is 1 Date Ar QC Pre It RPD is 1	1 based on nalyzed: paration Units mg/L based or Dil.	Amount 2.50 the spike 2008-10 : 2008-10 : 2008-10 Dil. 1 the spike Amount	Result <0.0700 and spike dup 0-01 0-01 Spike Amount 12.5 and spike dup Matrix t Result	94 plicate re Mat Res <0.1 plicate re Rec.	Limit 90 - 110 sult. A P rix ult 137 esult. Rec. Limit	nalyzed repared Rec. 102 RPI	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD D Limit
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride Percent recovery is based on the Param SPLP Chloride	Result 2.34 spike result. R JCS-1) I LCS Result 12.7 spike result. R LCSD Result 12.7	mg/L PD is 1 Date Ar QC Pre t RPD is mg/L	1 based on nalyzed: paration <u>Units</u> mg/L based or Dil. 1	Amount 2.50 the spike 2008-10 2008-10 2008-10 Dil. 1 the spike Spike Amount 12.5	Result <0.0700 and spike dup 0-01 0-01 -01 Spike Amount 12.5 and spike dup Matrix t Result <0.137	94 plicate re Mat Res <0.1 plicate re Rec. 102	Limit 90 - 110 sult. A P rix ult 137 esult. Rec. Limit 90 - 110	nalyzed repared Rec. 102 RPI	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride Percent recovery is based on the Param SPLP Chloride	Result 2.34 spike result. R JCS-1) I LCS Result 12.7 spike result. R LCSD Result 12.7	mg/L PD is 1 Date Ar QC Pre t RPD is mg/L	1 based on nalyzed: paration <u>Units</u> mg/L based or Dil. 1	Amount 2.50 the spike 2008-10 2008-10 2008-10 Dil. 1 the spike Spike Amount 12.5	Result <0.0700 and spike dup 0-01 0-01 -01 Spike Amount 12.5 and spike dup Matrix t Result <0.137	94 plicate re Mat Res <0.1 plicate re Rec. 102	Limit 90 - 110 sult. A P rix ult 137 esult. Rec. Limit 90 - 110	nalyzed repared Rec. 102 RPI	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD D Limit
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride Percent recovery is based on the Param SPLP Chloride	Result 2.34 spike result. R JCS-1) I LCS Result 12.7 spike result. R LCSD Result 12.7	mg/L PD is 1 Date Ar QC Pre t RPD is mg/L	1 based on nalyzed: paration <u>Units</u> mg/L based or <u>Dil.</u> 1	Amount 2.50 the spike 2008-10 2008-10 2008-10 Dil. 1 the spike Spike Amount 12.5	Result <0.0700 and spike dup 0-01 0-01 -01 Spike Amount 12.5 and spike dup Matrix t Result <0.137	94 plicate re Mat Res <0.1 plicate re Rec. 102	Limit 90 - 110 sult. A P rix ult 137 esult. Rec. Limit 90 - 110	nalyzed repared Rec. 102 RPI	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD D Limit
Prep Batch: 45327 Param	Result 2.34 spike result. R JCS-1) I LCS Result 12.7 spike result. R LCSD Result 12.7 spike result. R	mg/L PD is 1 Date Ar QC Pre t RPD is mg/L	1 based on nalyzed: paration <u>Units</u> mg/L based or <u>Dil.</u> 1	Amount 2.50 the spike 2008-10 2008-10 2008-10 Dil. 1 the spike Spike Amount 12.5	Result <0.0700 and spike dup 0-01 0-01 -01 Spike Amount 12.5 and spike dup Matrix t Result <0.137	94 plicate re Mat Res <0.1 plicate re Rec. 102	Limit 90 - 110 sult. A P rix ult 137 esult. Rec. Limit 90 - 110	nalyzed repared Rec. 102 RPI	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD D Limit
Nitrate-N Percent recovery is based on the Laboratory Control Spike (I QC Batch: 52903 Prep Batch: 45327 Param SPLP Chloride Percent recovery is based on the Param SPLP Chloride Percent recovery is based on the	Result 2.34 spike result. R JCS-1) I LCS Result 12.7 spike result. R LCSD Result 12.7 spike result. F	mg/L PD is 1 Date Ar QC Pre- lt RPD is 1 mg/L RPD is 1 RPD is 1	1 based on nalyzed: paration <u>Units</u> mg/L based or <u>Dil.</u> 1	Amount 2.50 the spike 2008-10 2008-10 2008-10 Dil. 1 the spike Spike Amount 12.5	Result <0.0700 and spike dup 0-01 0-01 Spike Amount 12.5 and spike dup Matrix t Result <0.137 and spike dup	94 plicate re Mat Res <0.1 plicate re Rec. 102	Limit 90 - 110 sult. A P rix ult 137 esult. Rec. Limit 90 - 110 esult.	nalyzed repared Rec. 102 RPI	D Limit 20 By: RD By: RD Rec. Limit 90 - 110 RPD D Limit 20

Report Date: October 3, 2008 Paloma 28 St. Com. #2	Work Order: 8092924 Paloma 28 St. Com. #2					Page Number: 26 of 44 Lea County, NM				
Param	LC Res 2.4	ult	Units mg/L	Dil.	Spike Amount 2.50	$\frac{Mat}{Res}$	ult l	Rec.	Rec. Limit 90 - 110	
SPLP Fluoride Percent recovery is based on the sp				n the spike a						
	LCSD			Spike	Matrix		Rec.		RPD	
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit	
SPLP Fluoride	2.46	mg/L	1	2.50	< 0.0889	98	90 - 110	0	20	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:	Analyzed By: Prepared By:	
-			

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
1.1-Dichloroethene	42.2	$\mu g/L$	1	50.0	< 0.136	84	70 - 130
Benzene	53.3	$\mu { m g}/{ m L}$	1	50.0	< 0.146	107	70 - 130
Trichloroethene (TCE)	47.0	$\mu { m g}/{ m L}$	1	50.0	< 0.117	94	70 - 130
Toluene	53.7	$\mu g/L$	1	50.0	< 0.0600	107	70 - 130
Chlorobenzene	51.5	$\mu g/L$	1	50.0	$<\!0.0540$	103	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
1,1-Dichloroethene	40.2	$\mu g/L$	1	50.0	< 0.136	80	70 - 130	5	
Benzene	54.5	$\mu { m g}/{ m L}$	1	50.0	< 0.146	109	70 - 130	2	
Trichloroethene (TCE)	48.6	$\mu { m g}/{ m L}$	1	50.0	< 0.117	97	70 - 130	3	
Toluene	54.5	$\mu { m g}/{ m L}$	1	50.0	< 0.0600	109	70 - 130	2	
Chlorobenzene	52.1	$\mu { m g}/{ m L}$	1	50.0	< 0.0540	104	70 - 130	1	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Dibromofluoromethane	47.1	46.2	$\mu g/L$	1	50.0	94	92	70 - 130
Toluene-d8	48.9	48.7	$\mu { m g}/{ m L}$	1	50.0	98	97	70 - 130
4-Bromofluorobenzene (4-BFB)	51.7	50.8	$\mu { m g/L}$	1	50.0	103	102	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch:	52953	Date Analyzed:	2008-10-02	Analyzed By:	\mathbf{SS}
Prep Batch:		QC Preparation:	2008-10-02	Prepared By:	SS

Report Date: October 3, 2008 Paloma 28 St. Com. #2			ork Ord oma 28		Page Number: 27 of 44 Lea County, NM				
Param	LCS Resul		Units	Dil.	${ m Spike} \ { m Amount}$		atrix sult	Rec.	Rec. Limit
SPLP Cyanide	11.5	n	1g/Kg	1	12.0	<1	1.94	96	-
Percent recovery is based on the s	spike result. R LCSD	PD is ba	sed on t	he spike and Spike	l spike dupl Matrix	icate res	sult. Rec.		RPD
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit

Param \mathbf{Result} Units Dil. Amount Result Rec. Limit RPD SPLP Cyanide 11.3 12.0<1.94 2 mg/Kg 94 1 _

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	52958	Date Analyzed:	2008-10-02	,	Analyzed By:	DS
Prep Batch:	45372	QC Preparation:	2008-10-02		Prepared By:	DS

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Naphthalene	0.0505	mg/L	1	0.0800	< 0.0000853	63	10 - 141
Acenaphthylene	0.0620	$\mathrm{mg/L}$	1	0.0800	< 0.0000768	78	10 - 152
Acenaphthene	0.0597	$\mathrm{mg/L}$	1	0.0800	< 0.000103	75	10 - 151
Dibenzofuran	0.0595	mg/L	1	0.0800	< 0.000200	74	10 - 148
Fluorene	0.0694	mg/L	1	0.0800	< 0.0000861	87	10 - 172
Anthracene	0.0630	mg/L	1	0.0800	< 0.000170	79	19.6 - 172
Phenanthrene	0.0608	mg/L	1	0.0800	< 0.0000884	76	22.5 - 172
Fluoranthene	0.0672	mg/L	1	0.0800	< 0.0000969	84	17.3 - 187
Pyrene	0.0670	$\mathrm{mg/L}$	1	0.0800	< 0.0000855	84	14.9 - 199
Benzo(a)anthracene	0.0647	mg/L	1	0.0800	< 0.0000703	81	19.4 - 185
Chrysene	0.0671	mg/L	1	0.0800	< 0.000113	84	18.4 - 188
Benzo(b)fluoranthene	0.0629	mg/L	1	0.0800	< 0.000134	79	10 - 193
Benzo(k)fluoranthene	0.0670	mg/L	1	0.0800	< 0.000227	84	27.8 - 196
Benzo(a)pyrene	0.0725	mg/L	1	0.0800	< 0.000200	91	12.4 - 205
Indeno(1,2,3-cd)pyrene	0.0759	mg/L	1	0.0800	< 0.000253	95	10 - 198
Dibenzo(a,h)anthracene	0.0758	mg/L	1	0.0800	< 0.000180	95	10 - 172
Benzo(g,h,i)perylene	0.0752	mg/L	1	0.0800	< 0.000158	94	10 - 186

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit	RPD	Limit
Naphthalene	0.0482	mg/L	1	0.0800	< 0.0000853	60	10 - 141	5	20
Acenaphthylene	0.0601	mg/L	1	0.0800	< 0.0000768	75	10 - 152	3	20
Acenaphthene	0.0572	$\mathrm{mg/L}$	1	0.0800	< 0.000103	72	10 - 151	4	20
Dibenzofuran	0.0575	mg/L	1	0.0800	< 0.000200	72	10 - 148	3	20
Fluorene	0.0659	mg/L	1	0.0800	< 0.0000861	82	10 - 172	5	20
Anthracene	0.0604	mg/L	1	0.0800	< 0.000170	76	19.6 - 172	4	20
Phenanthrene	0.0589	mg/L	1	0.0800	< 0.0000884	74	22.5 - 172	3	20

continued ...

Report Date: October 3, 2 Paloma 28 St. Com. #2	008		Page Number: 28 of 44 Lea County, NM						
control spikes continued	- 001	,		0.11			D		DDD
-	LCSI		D.1	Spike	Matrix	D	Rec.	DDD	RPD
Param	Resul		Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Fluoranthene	0.064	01	1	0.0800	<0.0000969		17.3 - 187	4	20
Pyrene	0.063	0/	1	0.0800	< 0.0000855		14.9 - 199	5	20
Benzo(a)anthracene	0.061	0,	1	0.0800	< 0.0000703		19.4 - 185	6	20
Chrysene	0.063	0/	1	0.0800	< 0.000113		18.4 - 188	5	20
Benzo(b)fluoranthene	0.062	0,	1	0.0800	< 0.000134	78	10 - 193	1	20
Benzo(k)fluoranthene	0.065	07	1	0.0800	< 0.000227		27.8 - 196	2	20
Benzo(a)pyrene	0.071	0,	1	0.0800	< 0.000200		12.4 - 205	2	20
Indeno(1,2,3-cd)pyrene	0.075	01	1	0.0800	< 0.000253	94	10 - 198	0	20
Dibenzo(a,h)anthracene	0.074	<i>O</i> ,	1	0.0800	< 0.000180	93	10 - 172	2	20
Benzo(g,h,i)perylene	0.074	0 mg/L	1	0.0800	< 0.000158	92	10 - 186	2	20
Percent recovery is based or	n the spike res	ult. RPD i	s based o	n the spike	e and spike du	plicate res	ult.		
	LCS	LCSD			Spike	LCS	LCSI	С	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.		Limit
2-Fluorobiphenyl	$0.05\overline{69}$	0.0551	mg/L	1	0.0800	$\tilde{71}$	69		10 - 165
Nitrobenzene-d5	0.0590	0.0565	mg/L	1	0.0800	74	71		10 - 157
Terphenyl-d14	0.0717	0.0691	mg/L	1	0.0800	90	86		10 - 220
Laboratory Control Spil QC Batch: 52959 Prep Batch: 45374	ke (LCS-1)		Analyzed reparatio					lyzed I bared I	v
		LCS			Spike	Matriz	r		Rec.
Param		Result	Units	Dil.	Amount	Result		۰C	Limit
Aroclor 1260 (PCB-1260)		.00276	mg/L	1	0.00200	<0.0000			10 - 128
Percent recovery is based or									10 120
Ū	LCS			Spike	Matrix		Rec.		RPD
Param	Resu		Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Aroclor 1260 (PCB-1260)	$\frac{1000}{4}$			0.00200	<0.0000331	137	10 - 128	1	20
Percent recovery is based or								1	20
	-								D.
a ,	LCS	LCSD			Spike				Rec.
Surrogate	Result	Result		$\frac{\text{nits}}{\sqrt{1-\frac{1}{2}}}$					Limit
Deca chlorobiphenyl	0.000416	0.00041	<u>5 m</u>	g/L 1	0.00050	0 83	8 83		10 - 128

 3 Aroclor 1260 (PCB-1260) above control chart limits for LCS/LCSD. Entire QC batch non-detect, bias high. • 4 Aroclor 1260 (PCB-1260) above control chart limits for LCS/LCSD. Entire QC batch non-detect, bias high. •

Matrix Spike (MS-1) Spiked Sample: 174928

· .

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:	Analyzed By: Prepared By:	

	MS			Spike	Matrix		$\operatorname{Rec.}$
Param	\mathbf{Result}	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	0.740	mg/Kg	1	1.00	< 0.00347	74	42.9 - 130.7
Toluene	0.772	mg/Kg	1	1.00	< 0.00525	77	46.9 - 135.4
Ethylbenzene	0.802	mg/Kg	1	1.00	< 0.00607	80	48.3 - 149.3
Xylene	2.44	mg/Kg	1	3.00	< 0.00724	81	48.8 - 150.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.854	mg/Kg	1	1.00	< 0.00347	85	42.9 - 130.7	14	20
Toluene	0.897	mg/Kg	1	1.00	< 0.00525	90	46.9 - 135.4	15	20
Ethylbenzene	0.929	mg/Kg	1	1.00	< 0.00607	93	48.3 - 149.3	15	20
Xylene	2.82	mg/Kg	1	3.00	< 0.00724	94	48.8 - 150.9	14	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.882	0.997	mg/Kg	1	1	88	100	63.2 - 128.3
4-Bromofluorobenzene (4-BFB)	0.946	1.05	mg/Kg	1	1	95	105	61.5 - 161.2

Matrix Spike (MS-1) Spiked Sample: 174933

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:	Analyzed By: Prepared By:	
op	 • •		

	MS			Spike	Matrix		Rec.
Param	Result	\mathbf{Units}	Dil.	Amount	\mathbf{Result}	Rec.	Limit
GRO	12.9	mg/Kg	1	10.0	< 0.144	129	48.9 - 155.8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	12.6	m mg/Kg	1	10.0	< 0.144	126	48.9 - 155.8	2	20
							-		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

<i>.</i>	MS	MSD	TT •4	D:1	Spike	MS	MSD Baa	$\operatorname{Rec.}$ Limit
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	
Trifluorotoluene (TFT)	1.32	1.20	mg/Kg	1	1	132	120	41.8 - 145.4
4-Bromofluorobenzene (4-BFB)	1.60	1.48	mg/Kg	1	1	160	148	50.3 - 197.8

Report Date: October 3, Paloma 28 St. Com. #2	2008				der: 809292 St. Com.				-	Number: Lea Cou	
Matrix Spike (MS-1)	Spiked Sam	ple:									
QC Batch: 52819		Da	te Anal	yzed:	2008-09-2	29				alyzed B	-
Prep Batch: 45264		QC	C Prepa	ration:	2008-09-2	29			Pre	pared B	y: RD
		MS				Spike	Ma	atrix			Rec.
Param		Result	Un		Dil.	Amount		esult	Rec.		Limit
Chloride		788	mg/	Kg	10	500	24	3.24	109	74.'	7 - 123.2
Percent recovery is based	on the spike r	esult. RP	D is ba	sed on	the spike a	nd spike d	luplica	te res	ult.		
	MS	SD			Spike	Matrix			Rec.		RPD
Param	Res	-	nits	Dil.	Amount	Result	Rec.		Limit	RPD	Limit
Chloride	79	92 mg	g/Kg	10	500	243.24	110	74.	7 - 123.2	0	20
QC Batch: 52840	Spiked Sam	Da	70 ite Anal C Prepa	•	2008-09-2 2008-09-2					lyzed By pared By	
	Spiked Sam	Da QC MS	te Anal C Prepa	ration:	2008-09-2	29 Spike		Mat	Prej	pared By	y: MN Rec.
QC Batch: 52840 Prep Batch: 45282 Param	Spiked Sam;	Da QC MS Result	te Anal C Prepa U	ration: Inits	2008-09-2 Dil.	29 Spike Amour		Res	Prej rix ult I	pared By Rec.	y: MN Rec. Limit
QC Batch: 52840 Prep Batch: 45282 Param DRO		Da QC MS <u>Result</u> 99.2	te Anal C Prepa U m	ration: Units g/Kg	2008-09-5 Dil.	29 Spike Amour 250	nt	Rest 64.	Prep rix ult I 1	pared By	y: MN Rec. Limit
QC Batch: 52840 Prep Batch: 45282 Param DRO		Da QC MS <u>Result</u> 99.2	te Anal C Prepa U m	ration: Units g/Kg	2008-09-5 Dil.	29 Spike Amour 250	nt	Rest 64.	Prep rix ult I 1	pared By Rec.	y: MN Rec. Limit 0 - 19
QC Batch: 52840 Prep Batch: 45282 Param DRO	on the spike r	Da QC MS Result 99.2 result. RF 4SD	te Anal C Prepar U <u>m</u> PD is ba	Inits g/Kgsed on	2008-09-5 Dil. 1 the spike a Spike	29 Spike Amoun 250 and spike o Matri	nt Iuplica x	Rest 64. te res	Prep rix ult I 1 ult. Rec.	pared By Rec. 14	y: MN Rec. Limit 0 - 19 RPI
QC Batch: 52840 Prep Batch: 45282 Param DRO Percent recovery is based Param	on the spike r M Re	Da QC MS Result 99.2 result. RF ISD esult	te Anal C Prepaz U m PD is ba Units	ration: Units g/Kg sed on Dil.	2008-09-3 Dil. 1 the spike a Spike Amount	29 Spike Amoun 250 and spike o Matri t Resul	nt luplica x t R	Rest 64. te res ec.	Prey rix ult I 1 ult. Rec. Limit	pared By Rec. 14 RPD	y: MN Rec. Limit 0 - 19' RPD Limi
QC Batch: 52840 Prep Batch: 45282 Param DRO Percent recovery is based Param DRO	on the spike r M Re 5 1	Da QC MS Result 99.2 result. RF 4SD esult 131 n	te Anal C Prepa U m PD is ba Units ng/Kg	Tation: Units g/Kg sed on Dil. 1	2008-09-5 Dil. 1 the spike a Spike Amount 250	29 Spike Amoun 250 and spike of Matri t Resul 64.1	nt luplica x t R	Rest 64. te res ec. 27	Prep rix ult I ult. Rec. Limit 0 - 197	pared By Rec. 14	y: MN Rec. Limit 0 - 19' RPL
QC Batch: 52840 Prep Batch: 45282 Param DRO Percent recovery is based Param DRO	on the spike r M Re 5 1	Da QC MS Result 99.2 result. RF 4SD esult 131 n	te Anal C Prepa U m PD is ba Units ng/Kg	Tation: Units g/Kg sed on Dil. 1	2008-09-5 Dil. 1 the spike a Spike Amount 250	29 Spike Amoun 250 and spike of Matri t Resul 64.1 and spike of	nt luplica x t R	Rest 64. te res ec. 27 te res	Prej rix ult I ult. Rec. Limit 0 - 197 ult.	Rec. 14 RPD 28	v: MN Rec. Limit 0 - 19 RPI Limi 20
QC Batch: 52840 Prep Batch: 45282 Param DRO Percent recovery is based Param DRO Percent recovery is based	on the spike r M Re 5 1 on the spike r MS	Da QC MS Result 99.2 result. RF 4SD esult 131 n result. RF MSD	te Anal C Prepa Units ng/Kg D is ba	ration: <u>units</u> <u>g/Kg</u> sed on <u>Dil.</u> <u>1</u> sed on	2008-09-5 Dil. 1 the spike a Spike Amount 250 the spike a	29 Spike Amoun 250 and spike of Matri t Resul 64.1 and spike of Spike	luplica x t R luplica	Rest 64. te res ec. 27 te res MS	Prej rix ult H 1 ult. <u>Rec.</u> Limit 0 - 197 ult. MSI	Rec. 14 RPD 28	7: MN Rec. Limit 0 - 197 RPE Limi 20 Rec.
QC Batch: 52840 Prep Batch: 45282 Param DRO Percent recovery is based Param DRO Percent recovery is based Surrogate	on the spike r M Re 5 1 on the spike r MS Result	Da QC MS Result 99.2 result. RF 4SD esult 131 m result. RF MSD Result	te Anal C Prepa Units ng/Kg D is ba Units units	ration: <u>Juits</u> <u>g/Kg</u> sed on <u>Dil.</u> <u>1</u> sed on nits	2008-09-5 Dil. 1 the spike a Spike Amount 250 the spike a Dil.	29 Spike Amoun 250 and spike of Matri t Resul 64.1 and spike of Spike Amoun	luplica x t R luplica	Rest 64. te res ec. 27 te res	Prey rix ult I ult. Rec. Limit 0 - 197 ult. MSI Rec	Pared By Rec. 14 RPD 28	r: MN Rec. Limit 0 - 19 RPE Limi 20 Rec. Limit
QC Batch: 52840 Prep Batch: 45282 Param DRO Percent recovery is based Param DRO Percent recovery is based Surrogate	on the spike r M Re 5 1 on the spike r MS	Da QC MS Result 99.2 result. RF 4SD result. RF MSD Result 372	te Anal C Prepa Units ng/Kg D is ba Units units	ration: <u>units</u> <u>g/Kg</u> sed on <u>Dil.</u> <u>1</u> sed on	2008-09-5 Dil. 1 the spike a Spike Amount 250 the spike a	29 Spike Amoun 250 and spike of Matri t Resul 64.1 and spike of Spike	luplica x t R luplica	Rest 64. te res ec. 27 te res MS Rec.	Prej rix ult H 1 ult. <u>Rec.</u> Limit 0 - 197 ult. MSI	Pared By Rec. 14 RPD 28	7: MN Rec. Limit 0 - 19 RPE Limi 20 Rec.

• • • •

⁵MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control.
 ⁶Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.
 ⁷Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control.

Report Date: October 3, 2 Paloma 28 St. Com. #2	008		der: 809292 St. Com.					31 of 44 inty, NM
Param	MS Result	Units	Dil.	Spike Amount	Mat Res	ult R	ec.	Rec. Limit
TRPHC	116	mg/Kg	1	250	<1.		6	10 - 354
Percent recovery is based of	n the spike result. RPD	is based on	the spike a	nd spike dup	olicate re	esult.		
Param	MSD Result Uni	ts Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
TRPHC	124 mg/1		250	<1.06	50	10 - 354	7	20
Percent recovery is based o Matrix Spike (MS-1)	n the spike result. RPD Spiked Sample: 174937	is based on	the spike a	nd spike dup	olicate re	esult.		
QC Batch: 52885	Date	Analyzed:	2008-10-0)1		Ana	alyzed B	y: RR
Prep Batch: 45312		reparation:	2008-10-0)1		Pre	pared B	y: KV
Param	MS Result	Units	Dil.	Spike Amount	Matu Resu	ılt R	ec. 06 -	Rec. Limit 75 - 125
SPLP Cadmium	0.264	mg/L					00 .	10 - 120
Percent recovery is based o	n the spike result. RPD	is based on	the spike a	nd spike du	plicate re	esult.		
	MSD		Spike	Matrix		Rec.		RPD
Param	Result Unit	s Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Cadmium	0.264 mg/l	L 1	0.250	< 0.00140	106	75 - 125	. 0	20
Percent recovery is based o Matrix Spike (MS-1)	n the spike result. RPD Spiked Sample: 174937	is based on	the spike a	nd spike du	plicate re	esult.		
QC Batch: 52885	Date	Analyzed:	2008-10-0	01		An	alyzed E	y: RR
Prep Batch: 45312	QC F	Preparation:	2008-10-0	01		\Pr	epared B	y: KV
	MS			Spike	Mati	rix		Rec.
Param	Result	Units	Dil.	Amount	Resu		lec.	Limit
SPLP Lead	0.497	$\mathrm{mg/L}$	1 ·	0.500	< 0.00		99	75 - 125
Percent recovery is based o	n the spike result. RPD	is based on	the spike a	nd spike du	plicate r	esult.		
	MSD		Spike	Matrix		Rec.		RPD
Param	Result Unit	s Dil.	Amount	Result	Rec.	Limit	RPD	Limit
SPLP Lead	0.517 mg/	L 1	0.500	< 0.00320	103	75 - 125	4	20
Percent recovery is based of	n the spike result. RPD	is based on	the spike a	und spike du	plicate r	esult.		
Matrix Spike (MS-1)	Spiked Sample: 174937							
QC Batch: 52885		Analyzed:	2008-10-0				alyzed E	-
Prep Batch: 45312	QC I	Preparation	: 2008-10-0	01		Pre	epared E	Sy: KV

MSD Result 0.450	ult 51 RPD is <u>Units</u> mg/L RPD is 74937 Date A QC Pro	Dil.	Spike Amount 0.500 the spike a 2008-10-0		Rec. 90	It R 131 9 esult. Rec. Limit 75 - 125 esult. An	ec. 20 RPD 0 alyzed B epared B	-
oike result. MSD Result 0.450 oike result. Sample: 1' Ma Res	RPD is Units mg/L RPD is 74937 Date A QC Pro	based on Dil. 1 based on analyzed:	the spike a Spike Amount 0.500 the spike a 2008-10-0	Matrix Result <0.0131 and spike dup	olicate re Rec. 90	esult. Rec. Limit 75 - 125 esult. An	RPD 0 alyzed B	RPD Limit 20 y: RR
MSD Result 0.450 Dike result. Sample: 1' Ma Res	Units mg/L RPD is 74937 Date A QC Pro	Dil. 1 based on analyzed:	Spike Amount 0.500 the spike a 2008-10-0	Matrix Result <0.0131 and spike dup	Rec. 90	Rec. Limit 75 - 125 esult. An	0 , alyzed B	Limit 20 y: RR
MSD Result 0.450 Dike result. Sample: 1' Ma Res	Units mg/L RPD is 74937 Date A QC Pro	Dil. 1 based on analyzed:	Spike Amount 0.500 the spike a 2008-10-0	Matrix Result <0.0131 and spike dup	Rec. 90	Rec. Limit 75 - 125 esult. An	0 , alyzed B	Limit 20 y: RR
Result 0.450 Dike result. Sample: 1' Ma Res	mg/L RPD is 74937 Date A QC Pro	1 based on analyzed:	Amount 0.500 the spike a 2008-10-0	Result <0.0131 and spike dup	90	Limit 75 - 125 esult. An	0 , alyzed B	Limit 20 y: RR
0.450 pike result. Sample: 1' Ma Res	mg/L RPD is 74937 Date A QC Pro	1 based on analyzed:	0.500 the spike a 2008-10-0	<0.0131 and spike dup	90	75 - 125 esult. An	0 , alyzed B	20 y: RR
pike result. Sample: 1' M Res	RPD is 74937 Date A QC Pro	based on	the spike a 2008-10-	und spike duj 01		esult. An		-
Sample: 1' M Res	74937 Date A QC Pro	nalyzed:	2008-10-0	01		An		-
M Res	Date A QC Pro	•						-
M Res	Date A QC Pro	•						-
Res	QC Pro	•						-
Res	QC Pro	•						-
Res	s	1						<i>y</i>
Res								
Res				0.1	Ман			Rec.
		TT T	D'1	Spike	Matu		200	Limit
		Units		Amount	Resu <0.00		tec. 101	75 - 125
		$\rm mg/L$	1	0.500			101	10 - 120
pike result.	RPD is	s based or	n the spike a	and spike du	plicate re	esult.		
MSD			Spike	Matrix		Rec.		RPD
Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
0.498	mg/L	1	0.500	<0.00430	100	75 - 125	1	20
pike result.	RPD 18	s based or	i the spike a	and spike du	pheate n	esuit.		
Sample: 1	74937							
	Data	nolyrodi	2008-10-	.01		Ar	alvzed F	By: RR
		-						
	QUII	eparation	1. 2000-10-	-01			opurou 2	J
		,						_
Ν	1S			Spike				Rec.
		Units	Dil.	Amount			-	Limit
1.	.41	mg/L	1	1.00	0.	33	108	75 - 125
pike result.	RPD is	s based or	n the spike a	and spike du	plicate r	esult.		
								RPD
	TT:+-	וים	-		Rec		RPD	Limit
								20
pike result.	. RPD is	s based o	n the spike	and spike du	plicate r	esult.		
						1		
l Sample: 1	74937							
	M Re 1. pike result MSD Result 1.42 pike result	QC Pr MS Result 1.41 pike result. RPD is MSD Result Units 1.42 mg/J	Date Analyzed: QC Preparation MS Result Units 1.41 mg/L pike result. RPD is based of MSD Result Units Dil. 1.42 mg/L 1 pike result. RPD is based of	Date Analyzed: QC Preparation:2008-10- 2008-10-MS ResultUnitsDil. 1.41 mg/L1pike result.RPD is based on the spikeMSD ResultSpike ResultSpike I. 1.42 mg/L1 1.42 mg/L1 1.00 pike result.RPD is based on the spikeAmount1.42 1.42 mg/L 1.43 mg/L1 1.00 pike result.RPD is based on the spikeA Sample:174937	Date Analyzed: $2008-10-01$ QC Preparation: $2008-10-01$ MSSpike ResultUnitsDil.Amount 1.41 mg/L1 1.00 pike result.RPD is based on the spike and spike du MSDSpike Matrix ResultMatrix Result 1.42 mg/L1 1.00 0.33pike result.RPD is based on the spike and spike du1.42mg/L1 1.00 0.33pike result.RPD is based on the spike and spike du1.42mg/L11.42mg/L11.43mg/L11.44mg/L11.45mg/L11.46mg/L11.47mg/L1.48mg/L1.4937	Date Analyzed: $2008-10-01$ QC Preparation: $2008-10-01$ MSSpikeMa ResultI.41mg/L1 1.00 0.pike result. RPD is based on the spike and spike duplicate rMSDSpikeMatrix ResultMSDSpikeMatrixResultRec.1.42mg/L1 1.00 0.33 109 pike result. RPD is based on the spike and spike duplicate r	Date Analyzed: QC Preparation: $2008-10-01$ Ar PrMS ResultSpike UnitsMatrix Dil.Amount ResultF1.41mg/L11.000.33pike result.RPD is based on the spike and spike duplicate result.MSD ResultSpike UnitsMatrix Dil.Rec. LimitMSD 1.42Spike Mg/LMatrix 1.00Rec. LimitLimit1.42mg/L11.000.33109pike result.RPD is based on the spike and spike duplicate result.MSD ResultSpike Matrix Matrix Rec.Limit Limit1.42mg/L11.000.33109pike result.RPD is based on the spike and spike duplicate result.H Sample:174937	Date Analyzed: QC Preparation: $2008-10-01$ Analyzed B Prepared BMS ResultSpike UnitsMatrix ResultRec.1.41mg/L1 1.00 0.33 108 pike result.RPD is based on the spike and spike duplicate result.MSD ResultSpike UnitsMatrix Rec. LimitRec.MSD 1.42Spike MatrixMatrix Rec.Rec. LimitRPD1.42mg/L1 1.00 0.33 109 75 - 1251pike result.RPD is based on the spike and spike duplicate result.MSD 1.42mg/L1 1.00 0.33 109 75 - 12511.00 0.33 109 $75 - 125$ 1 pike result.RPD is based on the spike and spike duplicate result.Asample:174937 174937 174937

· · · ·

QC Batch:52885Date Analyzed:2008-Prep Batch:45312QC Preparation:2008-		
---	--	--

Paloma 28 St. Com	ber 3, 2008 . #2]		der: 80929 3 St. Com.			Pa	ge Numbe Lea Co	r: 33 of 4 ounty, N
Param		MS Resu		Units	Dil.	Spike Amount	Mat Rest		Rec.	Rec. Limit
SPLP Silver		0.12		mg/L	1	0.125	< 0.00		101	75 - 12
Percent recovery is b	pased on the spil	ke result.			the spike	and spike du	plicate r	esult.		
		MSD			Spike	Matrix		Rec.		RPI
Param		Result	Units	Dil.	Amount	Result	Rec.	Limi		
SPLP Silver		0.129	mg/L	1	0.125	< 0.00210	103	75 - 12	25 2	20
Percent recovery is b	based on the spil	ke result.	RPD is	based on	the spike	and spike du	plicate r	esult.		
Matrix Spike (MS	S-1) Spiked S	Sample: 17	4937							
QC Batch: 52885			Date A	nalyzed:	2008-10-	-01			Analyzed 1	By: RF
Prep Batch: 45312				eparation:					Prepared I	
~		MS		** •	D:1	Spike	Mat		D	Rec.
Param SPLP U		Resu 0.53		Units	Dil.	Amount	Res		Rec.	Limit
		· ·		mg/L		0.500	<0.0		107	90 - 11
Percent recovery is b	based on the spil	ke result.	RPD 1s	based on	the spike	and spike du	plicate re	esult.		
		MSD			Spike	Matrix		Rec.		RP
		111010			opine	WIGUIA		IUCC.		101.
		Result	Units	Dil.	Amount	Result	Rec.	Limit		
SPLP U	pased on the spik	Result 0.537	mg/L	1	Amount 0.500	Result <0.0105	107	Limit 90 - 11		
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897		Result 0.537 ke result. Cample: 17	mg/L RPD is 4937 Date A	1	Amount 0.500 the spike 2008-10	Result <0.0105 and spike dup	107	Limit 90 - 11 esult.		Lim
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897		Result 0.537 ke result. Sample: 17	mg/L RPD is 4937 Date A QC Pre	1 based on nalyzed:	Amount 0.500 the spike 2008-10	Result <0.0105 and spike dup -01 -01	107 plicate re	Limit 90 - 11 esult.	l0 1 Analyzed	By: TI By: TI By: TI
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897 Prep Batch: 45323		Result 0.537 ke result. Cample: 17 MS	mg/L RPD is 4937 Date A QC Pre	1 based on nalyzed: eparation:	Amount 0.500 the spike s 2008-10- 2008-10-	Result <0.0105 and spike dup -01 -01 Spike	107 plicate re Mat	Limit 90 - 11 esult.	0 1 Analyzed Prepared	By: TH By: TH By: TH Rec.
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897 Prep Batch: 45323 Param		Result 0.537 ke result. Cample: 17 MS Resu	mg/L RPD is 4937 Date A QC Pre S Ilt	1 based on nalyzed: eparation: Units	Amount 0.500 the spike s 2008-10- 2008-10- Dil.	Result <0.0105 and spike dup -01 -01 Spike Amount	107 plicate re Mat Res	Limit 90 - 11 esult. rix ult	10 1 Analyzed Prepared Rec.	By: TI By: TI By: TI Rec. Limit
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897 Prep Batch: 45323 Param SPLP Mercury	S-1) Spiked S	Result 0.537 ke result. Sample: 17 MS Resu 0.001	mg/L RPD is 4937 Date A QC Pre ilt 19	1 based on nalyzed: eparation: Units mg/L	Amount 0.500 the spike 2008-10- 2008-10- Dil. 1	Result <0.0105 and spike dup -01 -01 Spike Amount 0.00100	107 plicate re Mat Res 0.000	Limit 90 - 11 esult. rix ult 1186	0 1 Analyzed Prepared	By: TH By: TH
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897 Prep Batch: 45323 Param SPLP Mercury	S-1) Spiked S	Result 0.537 ke result. Sample: 17 MS Resu 0.001	mg/L RPD is 4937 Date A QC Pre ilt 19	1 based on nalyzed: eparation: Units mg/L	Amount 0.500 the spike a 2008-10- 2008-10- Dil. 1 the spike a	Result <0.0105 and spike dup -01 -01 Spike Amount 0.00100	107 plicate re Mat Res 0.000	Limit 90 - 11 esult. rix ult 1186	Analyzed Prepared Rec. 100	By: TI By: TI By: TI Rec. Limit 85 - 11
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897 Prep Batch: 45323 Param SPLP Mercury Percent recovery is b Param	S-1) Spiked S	Result 0.537 ke result. ample: 17 MS Resu 0.001 ke result.	mg/L RPD is 4937 Date A QC Pre ilt 19	1 based on nalyzed: eparation: Units mg/L based on	Amount 0.500 the spike 2008-10- 2008-10- Dil. 1	Result <0.0105 and spike dup -01 -01 -01 Spike Amount 0.00100 and spike dup	107 plicate re Mat Res 0.000	Limit 90 - 11 esult. rix ult 1186 esult.	Analyzed Prepared Rec. 100	By: TI By: TI By: TH Rec. Limit 85 - 11 RP1
v	5-1) Spiked S	Result 0.537 ke result. ample: 17 MS Resu 0.001 ke result. MSD	mg/L RPD is 4937 Date A QC Pre tilt 19 RPD is	1 based on nalyzed: eparation: Units mg/L based on Dil.	Amount 0.500 the spike a 2008-10- 2008-10- Dil. 1 the spike a Spike	Result <0.0105 and spike dup -01 -01 -01 -01 -01 -01 -01 -01 -01 -01	107 plicate re Mat Res 0.000 plicate re	Limit 90 - 11 esult. rix ult 1186 esult. Rec.	Analyzed Prepared Rec. 100 t RPE	By: Tl By: Tl By: Tl Rec. Limit 85 - 1 RP. Lim
SPLP U Percent recovery is b Matrix Spike (MS QC Batch: 52897 Prep Batch: 45323 Param SPLP Mercury Percent recovery is b Param	S-1) Spiked S pased on the spik	Result 0.537 ke result. Cample: 17 Sample: 17 MSD Result 0.00118	mg/L RPD is 4937 Date A QC Pre ilt 19 RPD is mg/L RPD is	1 based on nalyzed: eparation: <u>Units</u> mg/L based on <u>Dil.</u> 1	Amount 0.500 the spike s 2008-10- 2008-10- 2008-10- Dil. 1 the spike s Amount 0.00100	Result <0.0105 and spike dup -01 -01 -01 Spike Amount 0.00100 and spike dup Matrix Result 0.000186	107 plicate re Mat Res 0.000 plicate re Rec. 99	Limit 90 - 11 esult. rix ult 1186 esult. Rec. Limit 85 - 1	Analyzed Prepared Rec. 100 t RPE	Lim By: TI By: TF Rec. Limit 85 - 11 RP1

Paloma 28 St. Com. #2	08		der: 80929 8 St. Com.			Pa		umber: Jea Cour	
	MS			Spike	Ma	trix			Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	Res		Rec.		Limit
Nitrate-N	12.3	mg/L	5	12.5	<0.	350	98	73	.6 - 122
Percent recovery is based on	the spike result. RPD	is based on	the spike	and spike d	uplicate	result.			
	MSD		Spike	Matrix		Rec.	,		RPE
Param	Result Unit		Amount	Result	Rec.	Limit		RPD	Limi
Nitrate-N	· 12.2 mg/l	5	12.5	< 0.350	98	73.6 - 1	.22	1	20
Percent recovery is based on	-	is based on	the spike	and spike d	uplicate	result.			
- 、 , ,	Spiked Sample: 174937		2002 10						
QC Batch: 52903		Analyzed:	2008-10-					yzed By	
Prep Batch: 45327	QC P	reparation	2008-10-	-01			Prep	ared By	: RD
	MS			Spike	Mat	rix			Rec.
Param	Result	Units	Dil.	Amount	Res	ult	Rec.		Limit
PLP Chloride	79.0	mg/L	5	62.5	21.1	911	92	49	.8 - 14
Percent recovery is based on	the spike result. RPD	is based on	the spike	and spike d	uplicate	result.			,
	MSD		Spike	Matrix		Rec.			RPI
Param	Result Units	B Dil.	Amount	Result	Rec.	Limit	t	RPD	Limi
SPLP Chloride	80.0 mg/I	5	62.5	21.1911	94	49.8 - 1	49	1	20
Percent recovery is based on	the spike result. RPD	is based on	the spike	and spike d	uplicate	result.			
Matrix Spike (MS-1) S QC Batch: 52903	piked Sample: 174937 Date	s based on Analyzed: reparation:	2008-10-	-01	uplicate	result.		yzed By ared By	
Matrix Spike (MS-1) S QC Batch: 52903	piked Sample: 174937 Date	Analyzed:	2008-10-	-01 -01	uplicate			ared By	
Matrix Spike (MS-1) S QC Batch: 52903 Prep Batch: 45327	piked Sample: 174937 Date QC P	Analyzed:	2008-10-	-01		trix		ared By	: RD
Matrix Spike (MS-1) S QC Batch: 52903 Prep Batch: 45327 Param	piked Sample: 174937 Date QC P MS	Analyzed: reparation:	2008-10- 2008-10-	-01 -01 Spike	Ma	trix	Prep	ared By	: RD Rec. Limit
Matrix Spike (MS-1) S QC Batch: 52903 Prep Batch: 45327 Param SPLP Fluoride	piked Sample: 174937 Date QC P MS Result 12.0	Analyzed: reparation: Units mg/L	2008-10- 2008-10- Dil. 5	-01 -01 Spike Amount 12.5	Ma Res <0.	trix sult 444	Preparent Prepar	ared By	: RD Rec. Limit
QC Batch: 52903 Prep Batch: 45327 Param SPLP Fluoride Percent recovery is based on	Spiked Sample: 174937 Date QC P MS Result 12.0 the spike result. RPD i MSD	Analyzed: reparation: Units mg/L is based on	2008-10- 2008-10- Dil. 5 the spike Spike	01 01 Spike Amount 12.5 and spike d Matrix	Ma Res <0. uplicate	trix sult 444 result. Rec.	Preparent Prepar	ared By	: RD Rec. Limit .5 - 12 RPI
Matrix Spike (MS-1) S QC Batch: 52903 Prep Batch: 45327 Param PLP Fluoride Percent recovery is based on Param	Spiked Sample: 174937 Date QC P MS Result 12.0 the spike result. RPD i MSD Result Unit:	Analyzed: reparation: Units mg/L is based on s Dil.	2008-10- 2008-10- Dil. 5 the spike Amount	01 01 Spike Amount 12.5 and spike d Matrix Result	Ma Res <0. uplicate Rec.	trix sult 444 result. Rec. Limit	Preparent Prepar	ared By 63 RPD	: RD Rec. Limit .5 - 12 RPI Limi
Matrix Spike (MS-1) S QC Batch: 52903 Prep Batch: 45327 Param SPLP Fluoride	piked Sample: 174937 Date QC P MS Result 12.0 the spike result. RPD i MSD Result Unit: 11.2 mg/I	Analyzed: reparation: Units mg/L s based on s Dil. L 5	2008-10- 2008-10- Dil. 5 the spike Amount 12.5	01 01 Spike Amount 12.5 and spike d Matrix Result <0.444	Mar Res <0. uplicate Rec. 90	trix sult 444 result. Rec. Limit 63.5 - 1	Preparent Prepar	ared By	: RD Rec.

Report Date: Oc Paloma 28 St. C		08	Work Order: 8092924 Paloma 28 St. Com. #2						Page Number: 35 of 4 Lea County, NM				
			MS		D .1	Spike		trix	Dec	Rec Limi			
Param				Units	Dil.	Amount		sult	Rec. 103				
SPLP Cyanide				ng/Kg	1	12.0		.94	103	-			
Percent recovery	is based on	the spike result	. RPD is ba	used on t	he spike an	id spike dupl	icate res	ult.					
		MSD			Spike	Matrix		Rec.		RPI			
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Lim			
SPLP Cyanide		11.6	mg/Kg	1	12.0	<1.94	97	-	7				
Percent recovery	is based on			sed on t		nd spike dupl	icate res	ult.					
Standard (ICV QC Batch: 5283			Date Ana	lvzed:	2008-09-29			At	nalyzed B	v: El			
QC Datch: 526	IJ		Date mit	J						,			
			ICVs		[CVs	ICVs		Percent		_			
			True		ound	Percent		ecovery		Date			
Param	Flag	Units	Conc.		Conc.	Recovery		Limits		nalyze			
Benzene		mg/Kg	0.100		.0908	91		85 - 115		08-09-			
Toluene		m mg/Kg	0.100		.0890	89		5 - 115		08-09-			
Ethylbenzene		m mg/Kg	0.100		.0860	86		5 - 115		08-09-			
Xylene		mg/Kg	0.300		0.268	89		35 - 115	20	08-09-			
Standard (CC) QC Batch: 528	-		Date Ana	alyzed:	2008-09-29			А	nalyzed B	y: E			
			CCVs	(CCVs	CCVs		Percent					
			True		Found	Percent	F	Recovery		Date			
Param	Flag	Units	Conc.		Conc.	Recovery		Limits		nalyze			
Benzene		mg/Kg	0.100).0889	89		35 - 115	20	08-09-			
Toluene		mg/Kg	0.100).0891	89	8	85 - 115		08-09-			
Ethylbenzene		mg/Kg	0.100	(0.0887	89	ł	35 - 115		08-09-			
•			0.300		0.268	89	ł	85 - 115	20	08-09-			
Xylene		mg/Kg			0.268	89		85 - 115	20	08-0			
Standard (ICV QC Batch: 528	ŗ			-	2008-09-29 Vs		F		nalyzed B	By: E			
	ŗ		ICVs	IC	Vs	ICVs		ercent	nalyzed E	By: E Date			
QC Batch: 528	ŗ	Units		-	Vs Ind		R		·	•			

· · · ,

	te: October 3 St. Com. #2			Vork Order: 809 loma 28 St. Co		Page Number: 36 of 4 Lea County, NM							
Standard	(CCV-1)												
QC Batch:	52816		Date Ana	alyzed: 2008-0	9-29	Anal	lyzed By: ER						
			CCVs	CCVs	CCVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
GRO		mg/Kg	1.00	0.970	97	85 - 115	2008-09-29						
Standard	(ICV-1)												
QC Batch:	52819		Date Ana	alyzed: 2008-09	9-29	Anal	yzed By: RD						
			ICVs	ICVs	ICVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
Chloride	<u>v</u>	mg/Kg	100	99.6	100	85 - 115	2008-09-29						
Param Chloride Standard QC Batch:	. ,	Units mg/Kg	CCVs True Conc. 100 Date Ana	CCVs Found Conc. 100	CCVs Percent Recovery 100	Percent Recovery Limits 85 - 115 Analy	Date Analyzed 2008-09-29 yzed By: MN						
			ICVs	ICVs	ICVs	Percent							
			True	Found	Percent	Recovery	Date						
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed						
DRO Standard ((CCV-1)	mg/Kg	250	272	109	85 - 115	2008-09-29						
QC Batch:	```		Date Ana	lyzed: 2008-09	9-29	Anal	yzed By: MN						
			CCVa	CCVs	CCVs	Dencert							
			CCVs	Found		Percent	Data						
Donom	Flag	Units	True		Percent	Recovery Limits	Date Analyzed						
Param	riag					85 - 115 2008-09-29							
DRO			UnitsConc.Conc.Recoveryng/Kg250279112										

.

· • • • •

•				rk Order: 8092 na 28 St. Com			mber: 37 of 44 ea County, NM					
Standard (C	CCV-1)											
QC Batch:	52850		Date Analy	zed: 2008-09-3	30	Analy	zed By: CM					
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed					
TRPHC		mg/Kg	100	91.4	91	80 - 120	2008-09-30					
Standard (C	CCV-2)											
QC Batch:	52850		Date Analy	zed: 2008-09-	30	Analy	zed By: CM					
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed					
TRPHC	1 1005	mg/Kg	100	95.2	95	80 - 120	2008-09-30					
Param		Flag Ur	ICVs True nits Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed					
SPLP Cadmi	um	mg	g/L 1.00	1.07	107	90 - 110	2008-10-01					
			Date Analy	vzed: 2008-10-	-01	Anal	yzed By: RR					
Danam	Flor	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed					
Param SPLP Lead	Image: FlagIClard (CCV-2)atch:52850Image: FlagIClard (ICV-1)atch:52885Image: FlagImage: Cadmiumlard (ICV-1)atch:52885Image: FlagImage: FlagImage: Cadmiumlard (ICV-1)atch:52885Image: FlagImage: Cadmiumlard (ICV-1)atch:52885Image: Cadmiumlard (ICV-1)lard (ICV-1)	mg/L	1.00	1.05	105	90 - 110	2008-10-0					
``	,		Date Analy	yzed: 2008-10-	-01	Anal	yzed By: RR					
	Batch: 52850 m Flag HC dard (CCV-2) Batch: 52850 m Flag HC ndard (ICV-1) Batch: 52885 m P Cadmium ndard (ICV-1) Batch: 52885 am Flag P Lead ndard (ICV-1) Batch: 52885		ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date					
Param	I	Flag Un mg		Conc.	Recovery 107	Limits 90 - 110	Analyzed 2008-10-0					

Report Date: Octob Paloma 28 St. Com)8		rk Order: 8092 ma 28 St. Com			umber: 38 of 44 ea County, NM
Standard (ICV-1)							
QC Batch: 52885			Date Analy	zed: 2008-10-	01	Anal	yzed By: RR
Param	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Arsenic		mg/L	1.00	1.07	107	90 - 110	2008-10-01
Standard (ICV-1)						~	
QC Batch: 52885			Date Analy	zed: 2008-10-	01	Anal	yzed By: RR
_			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param SPLP Barium	Flag	Units mg/L	<u>Conc.</u> 1.00	<u>Conc.</u> 1.04	Recovery 104	Limits 90 - 110	Analyzed 2008-10-01
QC Batch: 52885 Param SPLP Silver	Flag	Units mg/L	Date Analy ICVs True Conc. 0.125	zed: 2008-10- ICVs Found Conc. 0.130	01 ICVs Percent Recovery 104	Anal Percent Recovery Limits 90 - 110	Date Analyzed 2008-10-01
Standard (ICV-1) QC Batch: 52885			Date Analy				yzed By: RR
Param Fla SPLP U	g	Units mg/L	ICVs True Conc. 1.00	ICVs Found Conc. 0.994	ICVs Percent Recovery 99	Percent Recovery Limits 90 - 110	Date Analyzed 2008-10-01
Standard (CCV-1))						
QC Batch: 52885			Date Analy	zed: 2008-10-	01	Anal	yzed By: RR
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Cadmium		mg/L	1.00	1.03	103	90 - 110	2008-10-01

Report Date: Octo Paloma 28 St. Cor				k Order: 80929 na 28 St. Com.			umber: 39 of 44 ea County, NM
Standard (CCV-	1)						
QC Batch: 52885			Date Analyz	zed: 2008-10-0	01	Anal	yzed By: RR
aram Flag PLP Lead		Units mg/L	CCVs True Conc. 1.00	CCVs Found Conc. 1.01	CCVs Percent Recovery 101	Percent Recovery Limits 90 - 110	Date Analyzed 2008-10-01
Standard (CCV-	-1)						
QC Batch: 52885			Date Analy	zed: 2008-10-	01	Anal	yzed By: RR
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
SPLP Selenium	1 100	mg/L	1.00	1.04	104	90 - 110	2008-10-01
QC Batch: 52885	Flag	Units mg/L	Date Analy CCVs True Conc. 1.00	zed: 2008-10- CCVs Found Conc. 1.03	CCVs Percent Recovery 103	Percent Recovery Limits 90 - 110	yzed By: RR Date Analyzed 2008-10-01
SPLP Arsenic	1)	ing/L	1.00	1.03	105		2000 20 00
Standard (CCV- QC Batch: 52885			Date Analy	zed: 2008-10-	-01	Anal	yzed By: RR
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	${f Date} {f Analyzed}$
SPLP Barium		$\mathrm{mg/L}$	1.00	1.07	107	90 - 110	2008-10-01
Standard (CCV	-1)						
QC Batch: 52885	5		Date Analy	zed: 2008-10-	-01	Ana	lyzed By: RR
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery Limits	Date Analyzed
Param	Flag	\mathbf{Units}	Conc.	Conc.	Recovery	Linnes	Anaryzeu

•

· · , ,

Report Date: October Paloma 28 St. Com. #			Vork Order: 8092 loma 28 St. Com			amber: 40 of 44 ea County, NM
Standard (CCV-1)						
QC Batch: 52885		Date An	alyzed: 2008-10-	-01	Anal	yzed By: RR
		CCVs	CCVs	CCVs	Percent	_
		True	Found	Percent	Recovery	Date
Param Flag	Units		Conc.	Recovery	Limits	Analyzed
SPLP U	mg/L	1.00	1.03	103	90 - 110	2008-10-01
Standard (ICV-1)						
QC Batch: 52897		Date An	alyzed: 2008-10	-01	Anal	yzed By: TP
		ICVs	ICVs	ICVs	Percent	
		True	Found	Percent	Recovery	Date
Param	Flag U	Jnits Conc.	Conc.	Recovery	Limits	Analyzed
SPLP Mercury		ng/L 0.00100	0.00102	102	90 - 110	2008-10-01
QC Batch: 52897 Param SPLP Mercury Standard (ICV-1)	0	Date An CCVs True Units Conc. ng/L 0.00100	CCVs Found Conc.	CCVs Percent Recovery 99	Percent Recovery Limits 80 - 120	Date Analyzed 2008-10-0
QC Batch: 52903		Date An	alyzed: 2008-10	-01	Anal	yzed By: RD
		ICVs	ICVs	ICVs	Percent	
		True	Found	Percent	Recovery	Date
Param Flag	Uni		Conc.	Recovery	Limits	Analyzed
Nitrate-N	mg/		2.39	96	90 - 110	2008-10-02
Standard (ICV-1) QC Batch: 52903		Date Ar	alyzed: 2008-10	-01	Anal	lyzed By: RD
		ICVs	s ICVs	ICVs	Percent	
		True		· Percent	Recovery	Date
Danam	Flog	Units Conc		Recovery	Limits	Analyzed
Param	Flag	$\frac{\text{Units}}{\text{mg/L}}$ $\frac{\text{Conc}}{12.5}$		102	90 - 110	2008-10-0
SPLP Chloride						

Report Date: Octobe Paloma 28 St. Com.		<u></u>		Order: 80929 28 St. Com.			mber: 41 of 44 ea County, NM
Standard (ICV-1)							
QC Batch: 52903			Date Analyze	d: 2008-10-0	1	Analy	zed By: RD
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery Limits	Date Analyzed
Param	Flag	Units	Conc. 2.50	Conc. 2.37	Recovery 95	<u>90 - 110</u>	2008-10-01
SPLP Fluoride		mg/L	2.30	2.31		50 - 110	2000 10 01
Standard (CCV-1)							
QC Batch: 52903			Date Analyze	d: 2008-10-0)1	Analy	vzed By: RD
	_	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Param Fla Nitrate-N	ig	mg/L	2.50	2.38	95	90 - 110	2008-10-01
QC Batch: 52903 Param SPLP Chloride	Flag	Units mg/L	Date Analyze CCVs True Conc. 12.5	d: 2008-10-0 CCVs Found Conc. 12.7	CCVs Percent Recovery 102	Percent Recovery Limits 90 - 110	Date Analyzed 2008-10-01
Standard (CCV-1) QC Batch: 52903			Date Analyze	ed: 2008-10-0)1	Anal	yzed By: RD
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	<u>Conc.</u> 2.48	Recovery 99	Limits 90 - 110	Analyzed 2008-10-01
SPLP Fluoride Standard (CCV-1)		mg/L	2.50	2.40		30 - 110	2000 10 01
QC Batch: 52938			Date Analyze	ed: 2008-10-0	01	Anal	yzed By: KB
		T T * 1.	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Param	Fla	g Units	Conc.		0		
Param Vinyl Chloride 1,1-Dichloroethene	Fla	$\frac{g \qquad 0 \text{ mits}}{\mu \text{g/L}} \\ \frac{\mu \text{g/L}}{\mu \text{g/L}}$	50.0 50.0	52.6 43.0	105 86	80 - 120 80 - 120	2008-10-01 2008-10-01

Report Date: Octobe Paloma 28 St. Com.			Work O Paloma 2		Page Number: 42 of 44 Lea County, NM							
standard continued												
			CCVs	CCVs	CCVs	Percent						
			True	Found	Percent	Recovery	Date					
Param	Flag	g Units	Conc.	Conc.	Recovery	Limits	Analyzed					
Chloroform		$\mu g/L$	50.0	53.0	106	80 - 120	2008-10-01					
1,2-Dichloropropane		$\mu { m g}/{ m L}$	50.0	55.6	111	80 - 120	2008-10-01					
Toluene		$\mu{ m g}/{ m L}$	50.0	55.2	110	80 - 120	2008-10-01					
Chlorobenzene		$\mu { m g/L}$	50.0	52.2	104	80 - 120	2008-10-01					
Ethylbenzene	···.	$\mu g/L$	50.0	49.5	99	80 - 120	2008-10-01					
Standard (ICV-1)												
QC Batch: 52953			Date Analyzed:	2008-10-02		Anal	lyzed By: SS					
			ICVs	ICVs	ICVs	Percent						
			True	Found	Percent	Recovery	Date					
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed					
SPLP Cyanide	0	mg/Kg	0.120	<1.94	0	-	2008-10-02					
Standard (CCV-1) QC Batch: 52953			Date Analyzed:				lyzed By: SS					
	Flag	Units	Date Analyzed: CCVs True Conc.	2008-10-02 CCVs Found Conc.	CCVs Percent Recovery	Anal Percent Recovery Limits	lyzed By: SS Date Analyzed					
QC Batch: 52953 Param		Units mg/Kg	CCVs True	CCVs Found	Percent	Percent Recovery	Date					
QC Batch: 52953	Flag		CCVs True Conc. 0.120 Date Analyzed:	CCVs Found Conc. <1.94 2008-10-02	Percent Recovery 0	Percent Recovery Limits	Date Analyzed					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1)	Flag		CCVs True Conc. 0.120 Date Analyzed: CCVs	CCVs Found Conc. <1.94 2008-10-02 CCVs	Percent Recovery 0 CCVs	Percent Recovery Limits - Anal Percent	Date Analyzed 2008-10-02 yzed By: DS					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958	Flag	mg/Kg	CCVs True Conc. 0.120 Date Analyzed: CCVs True	CCVs Found Conc. <1.94 2008-10-02 CCVs Found	Percent Recovery 0 CCVs Percent	Percent Recovery Limits - Anal Percent Recovery	Date Analyzed 2008-10-02 yzed By: DS Date					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param	Flag	mg/Kg `lag Unit	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc.	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc.	Percent Recovery 0 CCVs Percent Recovery	Percent Recovery Limits - Anal Percent Recovery Limits	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene	Flag	mg/Kg ⁻ lag Unit mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc. 56.0	Percent Recovery 0 CCVs Percent Recovery 93	Percent Recovery Limits - Anal Percent Recovery Limits 80 - 120	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene	Flag	mg/Kg Ylag Unit mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc. 56.0 59.4	Percent Recovery 0 CCVs Percent Recovery 93 99	Percent Recovery Limits - Analy Percent Recovery Limits 80 - 120 80 - 120	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthene	Flag	mg/Kg Ylag Unit mg/ mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0 L 60.0	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc. 56.0 59.4 59.1	Percent Recovery 0 CCVs Percent Recovery 93 99 98	Percent Recovery Limits - Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthene Dibenzofuran	Flag	mg/Kg ^C lag Unit mg/ mg/ mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0 L 60.0 L 60.0	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc. 56.0 59.4 59.1 61.6	Percent Recovery 0 CCVs Percent Recovery 93 99 98 103	Percent Recovery Limits - Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene	Flag	mg/Kg ^C lag Unit mg/ mg/ mg/ mg/ mg/	$\begin{array}{c} \text{CCVs} \\ \text{True} \\ \text{Conc.} \\ \hline 0.120 \\ \end{array}$	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc. 56.0 59.4 59.1 61.6 67.4	Percent Recovery 0 CCVs Percent Recovery 93 99 98 103 112	Percent Recovery Limits - Anal Percent Recovery Limits 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120 80 - 120	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Anthracene	Flag	mg/Kg ^T lag Unit mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0	CCVs Found Conc. <1.94 2008-10-02 CCVs Found Conc. 56.0 59.4 59.1 61.6 67.4 59.5	Percent Recovery 0 CCVs Percent Recovery 93 99 98 103 112 99	Percent Recovery Limits - Anal Percent Recovery Limits 80 - 120 80 - 120	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Anthracene Phenanthrene	Flag	mg/Kg ^T lag Unit mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0 L 60.0	CCVs Found Conc. <1.94 2008-10-02 2008-10-02 CCVs Found Conc. 56.0 59.4 59.1 61.6 67.4 59.5 56.8	Percent Recovery 0 CCVs Percent Recovery 93 99 98 103 112 99 95	Percent Recovery Limits - - - - - - - - - - - - - - - - - - -	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthylene Dibenzofuran Fluorene Anthracene Phenanthrene Fluoranthene Fluoranthene	Flag	mg/Kg Tag Unit mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0	$\begin{array}{c} {\rm CCVs} \\ {\rm Found} \\ {\rm Conc.} \\ \hline <1.94 \\ \\ \hline \\ 2008-10-02 \\ \\ {\rm CCVs} \\ {\rm Found} \\ {\rm Conc.} \\ \hline \\ 56.0 \\ 59.4 \\ 59.1 \\ 61.6 \\ 67.4 \\ 59.5 \\ 56.8 \\ 59.8 \\ \\ \hline \end{array}$	Percent Recovery 0 CCVs Percent Recovery 93 99 98 103 112 99 95 100	Percent Recovery Limits 	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02					
QC Batch: 52953 Param SPLP Cyanide Standard (CCV-1) QC Batch: 52958 Param Naphthalene Acenaphthylene Acenaphthene Dibenzofuran Fluorene Anthracene Phenanthrene	Flag	mg/Kg ^T lag Unit mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	CCVs True Conc. 0.120 Date Analyzed: CCVs True s Conc. L 60.0 L 60.0	CCVs Found Conc. <1.94 2008-10-02 2008-10-02 CCVs Found Conc. 56.0 59.4 59.1 61.6 67.4 59.5 56.8	Percent Recovery 0 CCVs Percent Recovery 93 99 98 103 112 99 95	Percent Recovery Limits - - - - - - - - - - - - - - - - - - -	Date Analyzed 2008-10-02 yzed By: DS Date Analyzed 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02 2008-10-02					

continued ...

1

Report Date: October 3 Paloma 28 St. Com. #				rder: 8092924 28 St. Com. #	Page Number: 43 of 44 Lea County, NM						
standard continued											
			CCVs	CCVs	CCVs	Percent					
			True	Found	Percent	Recovery	Date				
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed				
Chrysene		mg/L	60.0	57.6	96	80 - 120	2008-10-02				
Benzo(b)fluoranthene		mg/L	60.0	61.4	102	80 - 120	2008-10-02				
Benzo(k)fluoranthene		mg/L	60.0	60.9	102	80 - 120	2008-10-02				
Benzo(a)pyrene		mg/L	60.0	64.0	107	80 - 120	2008-10-02				
Indeno(1,2,3-cd)pyrene		mg/L	60.0	67.7	113	80 - 120	2008-10-02				
Dibenzo(a,h)anthracene		mg/L	60.0	67.7	113	80 - 120	2008-10-02				
Benzo(g,h,i)perylene		mg/L	60.0	66.1	110	80 - 120	2008-10-02				
					Spike	Percent	Recovery				
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limit				
2-Fluorobiphenyl	<u></u>	56.0	mg/L	1	60.0	93	80 - 120				
Nitrobenzene-d5		60.0	mg/L	1	60.0	100	80 - 120				
Terphenyl-d14		57.7	mg/L	1	60.0	96	80 - 120				

Standard (ICV-1)

QC Batch: 52959		Date	e Analyzed:	2008-10-02		Analy	zed By: DS
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Aroclor 1242 (PCB-1242)	8	mg/L	0.400	0.546	136	85 - 115	2008-10-02
Aroclor 1254 (PCB-1254)		mg/L	0.400	0.360	90	85 - 115	2008-10-02
Aroclor 1260 (PCB-1260)		mg/L	0.400	0.413	103	85 - 115	2008-10-02
					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limit
Deca chlorobiphenyl		0.114	mg/L	1	0.100	114	85 - 115

Standard (CCV-1)

QC Batch: 52959		Date	Analyzed:	2008-10-02		Ana	lyzed By: DS
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recoverv	Percent Recovery Limits	Date Analyzed
	9				J		
Aroclor 1242 (PCB-1242)	Ū.	m mg/L	0.400	0.504	126	85 - 115	2008-10-02
Aroclor 1254 (PCB-1254)		mg/L	0.400	0.358	90	85 - 115	2008-10-02
							continued

.

continued ...

.

⁸Aroclor 1242 (PCB-1242) outside of control limits on CCV(ICV). CCV(ICV) component average is 111% which is within acceptable range. This is acceptable by Method 8000. ⁹Aroclor 1242 (PCB-1242) outside of control limits on CCV(ICV). CCV(ICV) component average is 110% which is within acceptable range.

This is acceptable by Method 8000.

(

Report Date: October 3, Paloma 28 St. Com. #2				der: 8092924 8 St. Com. #2	} 	Page Number: 44 of 44 Lea County, NM					
standard continued			aat		aau	D					
			CCVs CCVs CCVs Percent								
			True	Found	Percent	Recovery Date					
Param	\mathbf{Flag}	Units	Conc.	Conc.	Recovery	Limits	Analyzed				
Aroclor 1260 (PCB-1260)		mg/L	0.400	0.456	114	85 - 115	2008-10-02				
					Spike	Percent	Recovery				
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	\mathbf{Limit}				
Deca chlorobiphenyl		0.110	mg/L	1	0.100	110	85 - 115				

											LA	AB C	Drder	ID #	80	29	<u>' 2</u>	9	2,	ł			~~					Pa	age	;			of				
	TraceAnal email: lab@tracea	-			IC	9			670	Lubl Te Fa	bock, 17806 x (806	Tex : 5) 79 6; 79	enue, as 794 4-1296 8-1296	6 8	5002 Ba Midla Tel Fax	nd	Street Texas () 689 2) 689	\$ 793	783		200 E	l Pa Tel Fax	Sun so, (915 (915 888)	Texa) 589 () 58	is 79 5-34 5-49	9 922 43 344	еE	88	108 (Carr Fi	ip Bi t. Wr Tel Fax	owie orth (81 (81) Bivo r, Tex 7) 20 17, 56	d We (as 76)1-526 50-43:	st Si 3116 30 36	iuit e 1	180
Company N TA Address:	(Street City Zin)		_,		6	13	2	21 #:		-4	38	8				-				(C	irc	;le							JES)d	N	o.)				
3/8 Contact Per	E TAYIO HOBBS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	8	82	40	E-n		···•									(2)		0B/200.7	19															standard	
Invoice to: (If different Project #:	from above) MED Barre					10	Pro	ject	Nan	1e:				#sn		0B / 624	8 / 624	05 Ext(C	2	Se Hg 601	Cr Pb Se Hg		The second se			625					200	Q				t from sta	
	ation (including state):		Î A	(d)	14		Sar	nple	<u>>7</u> r Sig	nati	C ure:	<u> </u>	'sr	<u>1 " </u>		8260B	8260B	X I		PP 0	8	ļ	1		4	8270C / 625	1				S	Ľ				eren	
LE	A COUNTY NM	T				2	·la	2								602 /	18	25	2)	8	Ba		, 	1	1 62	3270	1	608		I	2	ч				diff	1
		tERS	nount		MA	TRI	(PR		THO		'E 	SAM	PLING	8021B / 60	BVI 602 /	TX100	1 625	g As Ba	s Ag As Ba (les	Volatile		8260B	Semi Vol	2	3081A/	Нd	ontent	E.T.	1312				I Time I	
LAB # (LAB USE) ONLY	FIELD CODE	# CONTAINERS	Volume / Amount	WATER	SOIL	AIR	SLUUGE	HCI	HNO,	H-SO4	NaOH	ICE	NONE	DATE	TIME	MTBE 80	le l	1PH 418.7	PAH 8270C / 625	Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7	TCLP Metals	TCLP Volatiles	TCLP Destindes	RCI	GC/MS Vol. 8260B / 62	GC/MS Ser	PCB s 8082 / 608	Pesticides 8081A / 608	BOD TSS	Moisture Content	CHINCIPES	554				Turn Around Time if different from	Hold
174935	BH-7	1			x			1	1			X	+	9/21	9:40	1	X	x)	ĸ					1	\uparrow	1	<u> </u>				Ĭ	-+	+	+	1	X	-
936	<u> </u>	1			X			+				X			a:50	+		XX		$\frac{1}{1}$		-		1	\uparrow	1	-				4					x	†
937	BH-I BH-I Prill CUTTINKS	2			ک							Ŷ		9/24	1 .		X	XI				+					 					X				X	
							_	-									6	\$								·							+				
																		_				_				-					-+		+				
																										- 											
																		_														 					
								+				1		1			+								-		+		+	•	+						+
Relinquish	ed by: Company: Date:	Tin	ne:	Re	ceiv	ed b	y:	C	omp	any	<u> </u> ':	Da	ite:	Time	: Te	mp°	- c:	1	 AI O	3 U NL			R	EM SI		ks:	A7		 7сл 1 С		 5 77	 	Site X	E.	7	L	
Relinquish	ed by: Company: Date:	Tin	ne:	Re	ceiv	ed b	y:	C	omp	bany	':	Da	ite:	Time	: Te	mp°			() Ispac			NA			D	ny V∖	/eigł	nt Ba		Req	urec	-	A	tS;	AF)	
Relinquish	ed by: Company: Date: Tiple THUN 9/29/	Tin 18 9	ne: 7,32	Re	eeji L	ed b	¥/ (Ň	owt	bany			ite:	Time Of C		mp' ركى	- I'	Log-	in-Re	view_	1	3	-		; c	hecl	k If S	Speci		epo	orting	J					
Submittal of	samples constitutes agreement to Te	rms and	d Conc	lition	is lis	ted o	on rev	verse	e sid	le of							amer	#	\underline{C}	\sim	r'	2	~~~~														

· · ...

Summary Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

Report Date: October 24, 2008

Work Order: 8101303

Project Location:Lea County, NMProject Name:Paloma 28 St. Com. #2

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
176227	BH-3	soil	2008-10-09	16:05	2008-10-10
176228	BH-4	soil	2008-10-09	16:20	2008-10-10

]	BTEX		MTBE	TPH 418.1	TPH DRO	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	TRPHC	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
176227 - BH-3	< 0.0100	< 0.0100	< 0.0100	< 0.0100		<10.0	< 50.0	<1.00
176228 - BH-4	< 0.0100	< 0.0100	< 0.0100	<0.0100		<10.0	< 50.0	<1.00

Sample: 176227 - BH-3

Param	Flag	Result	Units	\mathbf{RL}
Chloride		113	mg/Kg	3.25

Sample: 176228 - BH-4

Param	Flag	\mathbf{Result}	Units	\mathbf{RL}
Chloride		111	mg/Kg	3.25

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

6701 Atestopen Avon III, Suite 9 200 Faul Sunset Rhad, Cuite B 5007 Sesin Sheet, Silve At 19 EC16 Hears Tarkway Schell H. Fr. Wurth Texas 76132

blocs leads Foso, Texas 7992 Man J, Texas 73792 328+359+3473 E-Mail, ub@tiandahaiyeks.chm

SIS+794+1295 915+685+3443 432+689+6301 \$17+201+5260

FAX 206•754•127 FAX 915+E-5+2944

WBENC: 237019

1752439743100-86536 HUB: NCTRCA WFWB38444Y0909

DBE: VN 20657

NELAP Certifications

Certifications

Lubbock: T104704219-08-TX LELAP-02003 Kansas E-10317

T104704221-08-TX El Paso: LELAP-02002

Midland: T104704392-08-TX

Analytical and Quality Control Report

Eb Taylor Talon LPE-Hobbs 318 E Taylor Hobbs, NM, 88240

7

Report Date: October 24, 2008

Work Order: 8101303

Project Location: Lea County, NM Project Name: Paloma 28 St. Com. #2Project Number: Paloma 28 St. Com. #2

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
176227	BH-3	soil	2008-10-09	16:05	2008-10-10
176228	BH-4	soil	2008-10-09	16:20	2008-10-10

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 15 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Lefturch

Dr. Blair Leftwich, Director

Standard Flags

.

 ${\bf B}\,$ - The sample contains less than ten times the concentration found in the method blank.

Case Narrative

Samples for project Paloma 28 St. Com. #2 were received by TraceAnalysis, Inc. on 2008-10-10 and assigned to work order 8101303. Samples for work order 8101303 were received intact at a temperature of 3.9 deg. C.

Samples were analyzed for the following tests using their respective methods.

Test	Method
BTEX	S 8021B
Chloride (Titration)	SM 4500-Cl B
TPH 418.1	E 418.1
TPH DRO	Mod. 8015B
TPH GRO	S 8015B

د .

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 8101303 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

т 1 г

ء ب

Analytical Report

Sample: 176227 - BH-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 53228 45592			Analytical Date Anal Sample Pr	yzed:	S 8021B 2008-10-13 2008-10-13		Prep Me Analyzec Preparec	d By: MT
				RI	J				
Parameter		Flag		Resul	t	Units	1	Dilution	\mathbf{RL}
Benzene				< 0.0100)	mg/Kg		1	0.0100
Toluene				< 0.0100)	mg/Kg		1	0.0100
Ethylbenzene	<u>)</u>			< 0.0100)	m mg/Kg		1	0.0100
Xylene				< 0.0100)	mg/Kg		1	0.0100
							Spike	Percent	Recovery
Surrogate			Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
Trifluorotolue	ene (TFT)			1.23	mg/Kg	1	1.00	123	59 - 136.1
4-Bromofluor	obenzene (4-B	FB)		1.21	mg/Kg	1	1.00	121	54.4 - 176.2

Sample: 176227 - BH-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (Titration) 53610 45900	Analytical Method: Date Analyzed: Sample Preparation:	SM 4500-Cl B 2008-10-24 2008-10-23	Prep Method: Analyzed By: Prepared By:	$\mathbf{R}\mathbf{G}$
		\mathbf{RL}			
Parameter	Flag	Result	Units	Dilution	RL
Chloride		113	mg/Kg	10	3.25

Sample: 176227 - BH-3

Laboratory:	Lubbock				
Analysis:	TPH 418.1	Analytical Method:	E 418.1	Prep Method:	N/A
QC Batch:	53555	Date Analyzed:	2008-10-23	Analyzed By:	CM
Prep Batch:	45864	Sample Preparation:		Prepared By:	$\mathbf{C}\mathbf{M}$
		RL			
Parameter	\mathbf{Flag}	Result	Units	Dilution	\mathbf{RL}
TRPHC		<10.0	mg/Kg	1	10.0

Report Date: October 24, 2008	Work Order: 8101303	Page Number: 5 of 15
Paloma 28 St. Com. $#2$	Paloma 28 St. Com. $#2$	Lea County, NM

Sample: 176227 - BH-3

, , ,

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH DRO 53239 45606		Analytical Me Date Analyze Sample Prepa	d: 2008-1	0-13	Prep M Analyz Prepar	0
			RL	TT	•	Dilution	RL
Parameter	Flag	5	Result	Un		Dilution	
DRO			<50.0	mg/l	Kg	1	50.0
					Spike	Percent	Recovery
Surrogate	Flag	\mathbf{Result}	Units	Dilution	Amount	Recovery	Limits
n-Triacontan	e	123	mg/Kg	1	100	123	49.5 - 185

Sample: 176227 - BH-3

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH GRO 53229 45592		Date Ana	l Method: lyzed: reparation:	S 8015B 2008-10-13 2008-10-13		Prep Me Analyzee Preparec	l By: MT
			RL					
Parameter	Flag		\mathbf{Result}		Units		Dilution	RL
GRO			<1.00		mg/Kg		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		1.35	mg/Kg	1	1.00	135	55.3 - 161.9
	robenzene (4-BFB)	<u></u>	1.38	mg/Kg	1	1.00	138	45.6 - 214.7

Sample: 176228 - BH-4

.

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock BTEX 53228 45592		Analytical Method: Date Analyzed: Sample Preparation:	S 8021B 2008-10-13 2008-10-13	Prep Method: Analyzed By: Prepared By:	S 5035 MT MT
			\mathbf{RL}			
Parameter		Flag	Result	Units	Dilution	RL
Benzene			<0.0100	mg/Kg	1	0.0100
Toluene			< 0.0100	mg/Kg	1	0.0100
Ethylbenzene	e		< 0.0100	mg/Kg	1	0.0100
Xylene			< 0.0100	mg/Kg	1	0.0100

ı

	e: October 24, 2008 St. Com. #2	8		Work Orde aloma 28 S		6 of 15 ty, NM			
Surrogate		Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Reco Lin	overy
Trifluorotolu	ene (TFT)		1.30	mg/Kg	1	1.00	130		136.1
	robenzene (4-BFB))	1.32	mg/Kg	1	1.00	132		176.2
<u> </u>	(0, 0					
Sample: 17	6228 - BH-4							ī	
Laboratory:	Lubbock	、						<i></i> .	
Analysis:	Chloride (Titrati	on)		tical Metho				Method:	N/A
QC Batch:	53610			Analyzed:	2008-10			zed By:	RG
Prep Batch:	45900		Samp	le Preparati	ion: 2008-10	-23	Prepa	red By:	RG
_			RL						
Parameter	Flag		Result		Units		Dilution		RL
Chloride			111		mg/Kg		10		3.25
- Laboratory: Analysis:	6228 - BH-4 Lubbock TPH 418.1			al Method:	E 418.1		-	Method:	N/A
Caboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock		Date An Sample I RL Result		2008-10-23 : · Units	1	Analyz Prepar Dilution	Method: zed By: red By:	CM CM RL
Laboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock TPH 418.1 53555 45864		Date An Sample I RL	alyzed:	2008-10-23 :	3	Analyz Prepar	zed By:	CM CM
Laboratory: Analysis: QC Batch: Prep Batch: Parameter TRPHC	Lubbock TPH 418.1 53555 45864		Date An Sample I RL Result <10.0 Analytica Date Ana	alyzed: Preparation: 	2008-10-23 : · Units		Analyz Prepar Dilution 1 Prep M Analyz	zed By:	CM CM RL 10.0
Caboratory: Analysis: QC Batch: Prep Batch: Parameter IRPHC Sample: 17 Caboratory: Analysis: QC Batch: Prep Batch:	Lubbock TPH 418.1 53555 45864 6228 - BH-4 Lubbock TPH DRO 53239 45606		Date An Sample I RL Result <10.0 Analytica Date Ana Sample P RL	alyzed: Preparation: 	2008-10-23 Units mg/Kg Mod. 80151 2008-10-13 2008-10-13		Analyz Prepar Dilution 1 Prep M Analyz Prepar	Zed By: red By: Method: zed By:	CM CM 10.0 N/A MN MN
Caboratory: Analysis: QC Batch: Prep Batch: Parameter CRPHC Gample: 17 Cample: 17 Caboratory: Analysis: QC Batch: Prep Batch: Parameter	Lubbock TPH 418.1 53555 45864 6228 - BH-4 Lubbock TPH DRO 53239		Date An Sample I RL Result < <10.0 Analytica Date Ana Sample P RL Result	alyzed: Preparation: 	2008-10-23 Units mg/Kg Mod. 80151 2008-10-13 2008-10-13 Units		Analyz Prepar Dilution 1 Prep M Analyz Prepar Dilution	Zed By: red By: Method: zed By:	CM CM Illoo N/A MN MN RL
Laboratory: Analysis: QC Batch: Prep Batch: Parameter TRPHC Sample: 17 Laboratory: Analysis: QC Batch:	Lubbock TPH 418.1 53555 45864 6228 - BH-4 Lubbock TPH DRO 53239 45606		Date An Sample I RL Result <10.0 Analytica Date Ana Sample P RL	alyzed: Preparation: l Method: lyzed: reparation:	2008-10-23 Units mg/Kg Mod. 80151 2008-10-13 2008-10-13 Units mg/Kg		Analyz Prepar Dilution 1 Prep M Analyz Prepar	Method: zed By: red By: red By: red By: Rec	CM CM 10.0 N/A MN MN

Report Date: October 2 Paloma 28 St. Com. #2			Work Order aloma 28 St	r: 8101303 t. Com. #2			umber: 7 of 15 ea County, NM
Sample: 176228 - BH	[-4						
Laboratory: Lubbock Analysis: TPH GRC QC Batch: 53229 Prep Batch: 45592	Date Ana	l Method: lyzed: reparation:	S 8015B 2008-10-13 2008-10-13		Prep Me Analyzec Preparec	l By: MT	
		RL					
Parameter	Flag	Result		Units		Dilution	RL
GRO		<1.00		mg/Kg		1	1.00
Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)		1.46	mg/Kg	1	1.00	146	55.3 - 161.9
4-Bromofluorobenzene (4	4-BFB)	1.63	mg/Kg	1	1.00	163	45.6 - 214.7
QC Batch: 53228	QC Batch: 53228	Date An QC Prep	J	008-10-13 008-10-13			zed By: MT red By: MT
Prep Batch: 45592		Date An	paration: 2 MI	008-10-13 DL	IJr	Prepa	red By: MT
QC Batch: 53228 Prep Batch: 45592 Parameter	QC Batch: 53228 Flag	Date An	paration: 2 MI Res	008-10-13 DL ult		Prepa	red By: MT RL
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene		Date An	paration: 2 MI	008-10-13 DL ult 447	mg	Prepa	red By: MT
QC Batch: 53228 Prep Batch: 45592 Parameter		Date An	MI Res <0.003	008-10-13 DL ult 947 925	mg, mg, mg,	Prepa hits /Kg /Kg	red By: MT <u> RL 0.01 0.01 0.01 0.01 0.01 </u>
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene		Date An	MI Res <0.003 <0.005	008-10-13 DL ult 525 507	mg, mg, mg,	Prepa hits /Kg /Kg	red By: MT <u> RL 0.01 0.01 0.01 0.01 0.01 </u>
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene Xylene	Flag	Date An. QC Prep	MI Res <0.003 <0.005 <0.006 <0.007	008-10-13 DL ult 525 507 724	mg, mg, mg, mg,	Prepa nits /Kg /Kg /Kg /Kg Percent	red By: MT RL 0.01 0.02 0.02 0.02 0.02 Recovery
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate		Date An. QC Prep		008-10-13 DL ult 525 507 724 Dilution	mg, mg, mg, Spike Amount	Prepa nits /Kg /Kg /Kg /Kg	red By: MT RL 0.01 0.
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotoluene (TFT)	Flag Flag	Date An. QC Prep	MI Res <0.003 <0.005 <0.006 <0.007 Units mg/Kg	008-10-13 DL ult 525 507 724	mg, mg, mg, mg,	Prepa nits /Kg /Kg /Kg /Kg Percent Recovery	red By: MT RI 0.0 0.0 0.0 0.0 0.0 Recovery Limits 69.3 - 110.
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Method Blank (1) QC Batch: 53229	Flag Flag	Date An. QC Prep Result 0.941 0.708	aration: 2 MI Res <0.003 <0.005 <0.006 <0.007 Units mg/Kg mg/Kg mg/Kg	008-10-13 DL ult 147 525 507 724 Dilution 1 1 008-10-13	mg, mg, mg Spike Amount 1.00	Prepa hits /Kg /Kg /Kg /Kg Percent Recovery 94 71 Analy	red By: MT RI 0.0 0.0 0.0 0.0 0.0 0.0 Recovery Limits 69.3 - 110. 24.4 - 114.
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Method Blank (1)	Flag Flag 4-BFB)	Date An. QC Prep Result 0.941 0.708	paration: 2 MI Res <0.003 <0.005 <0.006 <0.007 Units mg/Kg mg/Kg mg/Kg alyzed: 2 paration: 2	008-10-13 DL ult 147 525 507 724 Dilution 1 1 008-10-13 008-10-13	mg, mg, mg Spike Amount 1.00	Prepa hits /Kg /Kg /Kg /Kg Percent Recovery 94 71 Analy	red By: MT RL 0.01 0.02 0.
QC Batch: 53228 Prep Batch: 45592 Parameter Benzene Toluene Ethylbenzene Xylene Surrogate Trifluorotoluene (TFT) 4-Bromofluorobenzene (Method Blank (1) QC Batch: 53229	Flag Flag 4-BFB)	Date An. QC Prep Result 0.941 0.708	aration: 2 MI Res <0.003 <0.005 <0.006 <0.007 Units mg/Kg mg/Kg mg/Kg	008-10-13 DL ult 447 525 507 724 Dilution 1 1 008-10-13 008-10-13 008-10-13	mg, mg, mg Spike Amount 1.00	Prepa hits /Kg /Kg /Kg /Kg Percent Recovery 94 71 Analy Prepa	red By: MT RL 0.01 0.

Units

mg/Kg

Flag

Result 1.02 Dilution

1

ء ب س

> Surrogate Trifluorotoluene (TFT)

Spike Amount

1.00

Percent Recovery 102

Report Date: October 24, 200 Paloma 28 St. Com. #2	18		Order: 810 28 St. Con				Number: 8 Jea Count	
method blank continued		Popult Units Dilution		Spike Amount	Percent	Reco		
Surrogate 4-Bromofluorobenzene (4-BFE	Flag	ResultUnitsDilution0.813mg/Kg1		Amount 1.00	Recovery 81	34.5 -		
4-Bromonuorobenzene (4-Br E	/ <u></u>	0.010						
Method Blank (1) QC	Batch: 53239							
QC Batch: 53239		Date Analyzed	: 2008-10)-13			yzed By:	MN
Prep Batch: 45606		QC Preparatio	n: 2008-10)-13	,	Prepa	ared By:	MN
			MDL					
Parameter	Flag]	Result			Inits		RI
DRO			<6.77		m	g/Kg		50
					Spike	Percent	rcent Ree	
					-		т.	· · _ ·
Surrogate Flag	Result	Units	Dilution		Amount	Recovery		mits
	Result 137	Units mg/Kg	Dilution 1		Amount 100	Recovery 137		
n-Triacontane Method Blank (1) QC QC Batch: 53555 Prep Batch: 45864	137 Batch: 53555	mg/Kg Date Analyzed QC Preparatio	1 : 2008-10 n: 2008-10 MDL		100	137 Anal Prep		см СМ
n-Triacontane Method Blank (1) QC QC Batch: 53555 Prep Batch: 45864 Parameter	137	mg/Kg Date Analyzed QC Preparatio	1 : 2008-10 n: 2008-10		100 L	137 Anal	49.5 yzed By:	CM CM CM RI 10
n-Triacontane Method Blank (1) QC QC Batch: 53555 Prep Batch: 45864 Parameter TRPHC	137 Batch: 53555	mg/Kg Date Analyzed QC Preparatio	1 : 2008-10 n: 2008-10 MDL Result <1.06 1: 2008-10	0-23	100 L	137 Anal Prep Jnits g/Kg Ana	49.5 yzed By:	CM CM CM RI 10 RG
n-Triacontane Method Blank (1) QC QC Batch: 53555 Prep Batch: 45864 Parameter TRPHC Method Blank (1) QC QC Batch: 53610	137 Batch: 53555 Flag	mg/Kg Date Analyzed QC Preparatio Date Analyzed QC Preparatio	1 : 2008-10 m: 2008-10 MDL Result <1.06 d: 2008-10 m: 2008-10	0-23	100 [137 Anal Prep Jnits g/Kg Ana	49.5 yzed By: ared By: lyzed By:	CM CM RI 10 RG

QC Batch:	53228	Date Analyzed:	2008-10-13	Analyzed By:	MT
Prep Batch:		QC Preparation:	2008-10-13	Prepared By:	\mathbf{MT}

• • • •

Report Date: October 24, 2008 Paloma 28 St. Com. #2		Work Paloma	Page Number: 9 of 15 Lea County, NM				
Param	$\begin{array}{c} \mathrm{LCS} \\ \mathrm{Result} \end{array}$	Units	Dil.	${ m Spike} { m Amount}$	${f Matrix} {f Result}$	Rec.	Rec. Limit
Benzene	0.899	mg/Kg	1	1.00	< 0.00347	90	80.5 - 115.5
Toluene	0.897	mg/Kg	1	1.00	< 0.00525	90	80 - 114.7
Ethylbenzene	0.914	mg/Kg	1	1.00	< 0.00607	91	77.1 - 114.2
Xylene	2.67 mg/Kg 1 3.00 <0.00724					89	77.6 - 114.5

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	0.923	mg/Kg	1	1.00	< 0.00347	92	80.5 - 115.5	3	20
Toluene	0.903	mg/Kg	1	1.00	< 0.00525	90	80 - 114.7	1	20
Ethylbenzene	0.932	mg/Kg	1	1.00	< 0.00607	93	77.1 - 114.2	2	20
Xylene	2.72	mg/Kg	1	3.00	< 0.00724	91	77.6 - 114.5	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	0.883	0.871	mg/Kg	1	1.00	88	87	74.2 - 114.7
4-Bromofluorobenzene (4-BFB)	0.819	0.866	mg/Kg	1	1.00	82	87	69.7 - 118.7

Laboratory Control Spike (LCS-1)

י י י י

QC Batch:	53229	Date Analyzed:	2008-10-13	Analyzed By:	\mathbf{MT}
Prep Batch:	45592	QC Preparation:	2008-10-13	Prepared By:	MT

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO	8.98	mg/Kg	1	10.0	< 0.144	90	73.1 - 114.7

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	9.78	mg/Kg	1	10.0	< 0.144	98	73.1 - 114.7	8	20
			_						

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	\mathbf{Limit}
Trifluorotoluene (TFT)	0.921	0.975	mg/Kg	1	1.00	92	98	77.4 - 111.4
4-Bromofluorobenzene (4-BFB)	0.966	0.989	mg/Kg	1	1.00	97	99	70.3 - 116.1

Laboratory Control Spike (LCS-1)

QC Batch:	53239	Date Analyzed:	2008-10-13	Analyzed By:	MN
Prep Batch:	45606	QC Preparation:	2008-10-13	Prepared By:	MN

Report Date: October 2 Paloma 28 St. Com. #3				der: 81013 8 St. Com.			-	umber: Lea Cou	
		LCS			Spike	Matr	ix		Rec.
Param		Result	Units	Dil.	Amount	Resu			Limit
DRO		283	mg/Kg	1	250	<6.7	7 113	73	.9 - 138
Percent recovery is base	d on the spike res	ult. RPD	is based on	the spike a	and spike du	iplicate re	esult.		
	LCS	D		Spike	Matrix		Rec.		RPD
Param	Resu	lt Un	its Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	293	mg/	'Kg 1	250	<6.77	117	73.9 - 138	3	20
Percent recovery is base	d on the spike res	ult. RPD	is based on	the spike a	and spike du	iplicate re	esult.		
	LCS L	CSD			Spike	LCS	LCSD		Rec.
Surrogate		esult	Units	Dil.	Amount	Rec.	Rec.		Limit
n-Triacontane		113	mg/Kg	1	100	111	113		.5 - 185
Param		\mathcal{LCS} Result	Units	Dil.	Spike Amount	Matr Resu			Rec. Limit
TRPHC		235	mg/Kg	1	250	<1.0			.5 - 136
Percent recovery is base	d on the spike res								.0 100
·	LCS			Spike	Matrix	-	Rec.		RPD
Param	· Resu		its Dil.	Amount	Result	Rec.	Limit	RPD	Limit
TRPHC	238			250	<1.06		75.5 - 136	1	20
Percent recovery is based	l on the spike res	ult. RPD	is based on	the spike a	and spike du	iplicate re	esult.		
Laboratory Control S	pike (LCS-1)	Date	Applyzad	2008 10	94		Anal	and De	. DC
Laboratory Control S QC Batch: 53610 Prep Batch: 45900	pike (LCS-1)		e Analyzed: Preparation:	2008-10-: 2008-10-:				yzed By ared By	
QC Batch: 53610 Prep Batch: 45900		QC I	Preparation:	2008-10-3		Matrix	Prep	ared By	: RG Rec.
QC Batch: 53610 Prep Batch: 45900 Param		QC I LCS Result	Preparation: Units		23 Spike Amount	Result	Prep Rec.	ared By	: RG Rec. imit
QC Batch: 53610 Prep Batch: 45900 Param Chloride	I	QC LCS Result 99.4	Preparation: Units mg/Kg	2008-10-3 Dil. 1	23 Spike Amount 100	Result <1.80	Prep Rec. 99	ared By	: RG · Rec. imit
QC Batch: 53610 Prep Batch: 45900 Param Chloride	I d on the spike res	QC I LCS Result 99.4 ult. RPD	Preparation: Units mg/Kg	2008-10-3 Dil. 1 the spike a	23 Spike Amount 100	Result <1.80	Prep Rec. 99	ared By	: RG Rec. imit - 104.4
QC Batch: 53610 Prep Batch: 45900 Param Chloride Percent recovery is based	I d on the spike res LCS	QC I LCS Result 99.4 ult. RPD	Preparation: Units mg/Kg is based on	2008-10-3 Dil. 1 the spike a Spike	23 Spike Amount 100 and spike du Matrix	Result <1.80 aplicate re	Prep Rec. 99 ssult. Rec.	ared By] 96.5	: RG Rec. imit - 104.4 RPD
QC Batch: 53610 Prep Batch: 45900 Param Chloride	I d on the spike res	QC I LCS Result 99.4 ult. RPD	Preparation: Units mg/Kg is based on ts Dil.	2008-10-3 Dil. 1 the spike a	23 Spike Amount 100 and spike du Matrix	Result <1.80 plicate re Rec.	Prep Rec. 99 sult.	ared By	: RG Rec. imit - 104.4

.

9 7 8 9 59

Report	Date:	Octobe	er 24,	2008
Paloma	28 St.	Com.	#2	

Work Order: 8101303 Paloma 28 St. Com. #2

Page Number: 11 of 15 Lea County, NM

Matrix Spike (MS-1) Spiked Sample: 176227

QC Batch:	53228	Date Analyzed:	2008-10-13	Analyzed By:	\mathbf{MT}
Prep Batch:		QC Preparation:	2008-10-13	Prepared By:	MT

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene	1.02	mg/Kg	1	1.00	< 0.00347	102	42.9 - 130.7
Toluene	1.07	$\mathrm{mg/Kg}$	1	1.00	< 0.00525	107	46.9 - 135.4
Ethylbenzene	1.17	mg/Kg	1	1.00	< 0.00607	117	48.3 - 149.3
Xylene	3.46	mg/Kg	1	3.00	< 0.00724	115	48.8 - 150.9

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene	1.14	mg/Kg	1	1.00	< 0.00347	114	42.9 - 130.7	11	20
Toluene	1.21	mg/Kg	1	1.00	< 0.00525	121	46.9 - 135.4	12	20
Ethylbenzene	1.32	mg/Kg	1	1.00	< 0.00607	132	48.3 - 149.3	12	20
Xylene	3.92	mg/Kg	1	3.00	< 0.00724	131	48.8 - 150.9	12	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	\mathbf{Result}	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.07	1.21	mg/Kg	1	1	107	121	63.2 - 128.3
4-Bromofluorobenzene (4-BFB)	1.11	1.25	mg/Kg	1	1	111	125	61.5 - 161.2

Matrix Spike (MS-1) Spiked Sample: 176228

QC Batch:	53229	Date Analyzed:	2008-10-13	Analyzed By:	\mathbf{MT}
Prep Batch:	45592	QC Preparation:	2008-10-13	Prepared By:	MT

	MS			Spike	Matrix		Rec.
Param	\mathbf{Result}	Units	Dil.	Amount	\mathbf{Result}	Rec.	Limit
GRO	12.5	mg/Kg	1	10.0	< 0.144	125	48.9 - 155.8

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			\mathbf{Spike}	Ma	trix		\mathbf{R}	ec.		RPD
Param	Result	Units	Dil.	Amount	Res	sult	Rec.	Li	mit	RPD	Limit
GRO	13.0	mg/Kg	1	10.0	<0.	144	130	48.9 -	155.8	4	20
Percent recovery is based on the sp	oike result.	RPD is b	ased c	on the spike	e and s	pike du	plicat	e result	•		
	MS	MS	D			\mathbf{Spi}	ke	MS	MSD		Rec.
Surrogate	Resul	t Res	ult	Units	Dil.	Amo	unt	Rec.	Rec.	I	Limit
Trifluorotoluene (TFT)	1.17	1.1	4	mg/Kg	1	1		117	114	41.8	- 145.4
4-Bromofluorobenzene (4-BFB)	1.50	1.4	4	mg/Kg .	1	1		150	144	50.3	- 197.8

Report Date: October 2 Paloma 28 St. Com. #2	<u> </u>		I		der: 81013 St. Com.				<u> </u>	umber: Lea Cou	12 of 15 nty, NM
Matrix Spike (MS-1)	Spiked S	Sample: 170	6227								
QC Batch: 53239 Prep Batch: 45606				nalyzed: paration:	2008-10-1 2008-10-1					yzed By ared By	
Demons		MS	4	Units	D:1	Spike	Mat		Rec.		Rec. Limit
Param DRO		Resul 267		ng/Kg	Dil. 1	Amount 250			107		$\frac{1.11111}{0.7 - 1.34}$
Percent recovery is based	on the spi						······································				101
rercent recovery is based	t on the spi	ke result. I	11 D 15	Daseu On	the spike a	nu spike uu	ipiicate i	esuit.			
Param		MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	${ m Re}$		RPD	RPD Limit
DRO		285	mg/Kg	1	250	<6.77	114	$50.7 \cdot$	- 134	6	20
Percent recovery is based	l on the spi	ke result. I	RPD is	based on t	the spike a	nd spike du	plicate r	result.			
	MS	MSD				Spike	MS	3	MSD		Rec.
C		Result	τ	Units	Dil.	Amount	Rec		Rec.		Limit
Surrogate	nesuu										
n-Triacontane Matrix Spike (MS-1)	Result 133 Spiked S	136 Sample: 176	m 5227	ng/Kg nalyzed:	1 2008-10-2	100	133	3	136	49 yzed By	
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555	133	136 Sample: 176	m 5227 Date Ar	ng/Kg		23	135	3	136 Anal		7: CM
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555	133	136 Sample: 176	m 5227 Date Ar QC Pre	ng/Kg nalyzed: paration:	2008-10-2 2008-10-2	23 23 Spike		3	136 Anal Prep	yzed By ared By	r: CM :: CM Rec.
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param	133	136 Sample: 176 MS Resu	m 5227 Date Ar QC Pre	ng/Kg nalyzed: paration: Units	2008-10-2 2008-10-2 Dil.	23 23 Spike Amount	Ma Re	atrix esult	136 Anal Prep. Rec	yzed By ared By c.	7: CM 7: CM Rec. Limit
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC	133 Spiked S	136 Sample: 176 MS Resu 268	m 5227 Date Ar QC Pre	ng/Kg nalyzed: paration: Units mg/Kg	2008-10-2 2008-10-2 Dil. 1	23 23 Spike Amount 250	Ma Re	atrix esult 1.06	136 Anal Prep	yzed By ared By c.	7: CM 7: CM Rec. Limit
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC	133 Spiked S	136 Sample: 176 MS Resu 268	m 5227 Date Ar QC Pre	ng/Kg nalyzed: paration: Units mg/Kg	2008-10-2 2008-10-2 Dil. 1	23 23 Spike Amount 250	Ma Re	atrix esult 1.06	136 Anal Prep. Rec	yzed By ared By c.	7: CM 7: CM Rec. Limit
•	133 Spiked S	136 Sample: 176 MS Resu 268	m 5227 Date Ar QC Pre	ng/Kg nalyzed: paration: Units mg/Kg	2008-10-2 2008-10-2 Dil. 1	23 23 Spike Amount 250	Ma Re	atrix esult 1.06 result.	136 Anal Prep. Rec	yzed By ared By c.	7: CM 7: CM Rec. Limit
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param	133 Spiked S	136 Sample: 176 MS Resu 268 ke result. 1 MSD Result	m 5227 Date Ar QC Pres It RPD is Units	ng/Kg nalyzed: paration: Units mg/Kg based on t Dil.	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount	23 23 Amount 250 nd spike du Matrix Result	Ma Re <1 plicate r Rec.	atrix sult 1.06 cesult. R Lin	136 Anal Prep Rec 10' ec. mit	yzed By ared By c. 7 RPD	r: CM :: CM Limit 10 - 354 RPD Limit
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param TRPHC	133 Spiked S	136 Sample: 176 MS Resu 268 ke result. 1 MSD Result 273	m 5227 Date Ar QC Pre It RPD is Units mg/Kg	ng/Kg nalyzed: paration: Units mg/Kg based on t Dil. 5 1	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount 250	23 Spike Amount 250 nd spike du Matrix Result <1.06	Ma Re <1 plicate r Rec. 109	atrix esult 1.06 result. R Lin 10 -	136 Anal Prep. Rec 10	yzed By ared By c. 7	7: CM :: CM Rec. Limit 10 - 354 RPD
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param TRPHC Percent recovery is based	133 Spiked S I on the spil	136 Sample: 176 MS Resu 268 ke result. 1 MSD Result 273	m 5227 Date Ar QC Pres lt RPD is <u>Units</u> mg/Kg RPD is	ng/Kg nalyzed: paration: Units mg/Kg based on t Dil. 5 1	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount 250	23 Spike Amount 250 nd spike du Matrix Result <1.06	Ma Re <1 plicate r Rec. 109	atrix esult 1.06 result. R Lin 10 -	136 Anal Prep Rec 10' ec. mit	yzed By ared By c. 7 RPD	r: CM :: CM Limit 10 - 354 RPD Limit
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param IRPHC Percent recovery is based Matrix Spike (MS-1) QC Batch: 53610	133 Spiked S I on the spil	136 Sample: 176 MS Resu 268 ke result. I MSD Result 273 ke result. I Sample: 177	m 5227 Date Ar QC Pres It RPD is <u>Units</u> mg/Kg RPD is 7123 Date Ar	nalyzed: paration: Units mg/Kg based on t Dil. 1 based on t nalyzed:	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount 250 the spike a 2008-10-2	23 Spike Amount 250 nd spike du Matrix Result <1.06 nd spike du	Ma Re <1 plicate r Rec. 109	atrix esult 1.06 result. R Lin 10 -	136 Anal Prep Rec 10' ec. mit 354	yzed By ared By c. 7 RPD 2	r: CM : CM Rec. Limit 10 - 354 RPD Limit 20 y: RG
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param TRPHC Percent recovery is based Matrix Spike (MS-1) QC Batch: 53610	133 Spiked S I on the spil	136 Sample: 176 MS Resu 268 ke result. I MSD Result 273 ke result. I Sample: 177	m 5227 Date Ar QC Pres It RPD is <u>Units</u> mg/Kg RPD is 7123 Date Ar	nalyzed: paration: Units mg/Kg based on t Dil. 5 1 based on t	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount 250 the spike a	23 Spike Amount 250 nd spike du Matrix Result <1.06 nd spike du	Ma Re <1 plicate r Rec. 109	atrix esult 1.06 result. R Lin 10 -	136 Anal Prep Rec 10' ec. mit 354	yzed By ared By c. 7 <u>RPD</u> 2	r: CM r: CM Rec. Limit 10 - 354 RPD Limit 20
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param TRPHC Percent recovery is based Matrix Spike (MS-1) QC Batch: 53610	133 Spiked S I on the spil	136 Sample: 176 MS Resu 268 ke result. I MSD Result 273 ke result. I Sample: 177	m 5227 Date Ar QC Pres It RPD is <u>Units</u> mg/Kg RPD is 7123 Date Ar	nalyzed: paration: Units mg/Kg based on t Dil. 1 based on t nalyzed:	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount 250 the spike a 2008-10-2	23 Spike Amount 250 nd spike du Matrix Result <1.06 nd spike du	Ma Re <1 plicate r Rec. 109	atrix esult 1.06 result. R. Lin 10 - result.	136 Anal Prep Rec 10' ec. mit 354	yzed By ared By c. 7 RPD 2 yzed By bared By	r: CM :: CM Rec. Limit 10 - 354 RPD Limit 20 y: RG
n-Triacontane Matrix Spike (MS-1) QC Batch: 53555 Prep Batch: 45864 Param TRPHC Percent recovery is based Param TRPHC Percent recovery is based Matrix Spike (MS-1) QC Batch: 53610	133 Spiked S I on the spil	136 Sample: 176 MS Resu 268 ke result. I MSD Result 273 ke result. I Sample: 177	m 5227 Date Ar QC Pre lt RPD is mg/Kg RPD is 7123 Date Ar QC Pre	nalyzed: paration: Units mg/Kg based on t Dil. 1 based on t nalyzed:	2008-10-2 2008-10-2 Dil. 1 the spike a Spike Amount 250 the spike a 2008-10-2 2008-10-2	23 Spike Amount 250 nd spike du Matrix Result <1.06 nd spike du	Ma Re 21 plicate 1 Rec. 109 plicate 1	atrix esult 1.06 result. R. Lin 10 - result.	136 Anal Prep Rec 10' ec. mit 354	yzed By ared By c. 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	r: CM Rec. Limit 10 - 354 RPD Limit 20 y: RG 7: RG

.

4) ! 3 8 & 8 - 4

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: October 24, 2008 Paloma 28 St. Com. #2			Work (aloma			13 of 15 nty, NM			
Param	$egin{array}{c} \mathrm{MSD} \ \mathrm{Result} \end{array}$	Units	Dil.	${ m Spike} \ { m Amount}$	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Chloride	562	mg/Kg	10	500	42.07	104	74.7 - 123.2	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (ICV-1)

QC Batch: 532	28		Date Analyzed:	2008-10-13		Analyzed By: MT		
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Benzene		mg/Kg	0.100	0.0918	92	85 - 115	2008-10-13	
Toluene		mg/Kg	0.100	0.0955	96	85 - 115	2008-10-13	
Ethylbenzene		mg/Kg	0.100	0.0976	98	85 - 115	2008 - 10 - 13	
Xylene		mg/Kg	0.300	0.287	96	85 - 115	2008-10-13	

Standard (CCV-1)

QC Batch: 532	28		Date Analyzed:	2008-10-13		Analyzed By: MT		
			CCVs	CCVs	CCVs	Percent	5	
			True	Found	$\operatorname{Percent}$	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
Benzene		mg/Kg	0.100	0.0978	98	85 - 115	2008-10-13	
Toluene		mg/Kg	0.100	0.0955	96	85 - 115	2008 - 10 - 13	
Ethylbenzene		mg/Kg	0.100	0.0951	95	85 - 115	2008 - 10 - 13	
Xylene		mg/Kg	0.300	0.278	93	85 - 115	2008-10-13	

Standard (ICV-1)

QC Batch:	53229		Date Ana	lyzed: 2008-10	0-13	Analyzed By: MT		
			ICVs	ICVs	ICVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
GRO		mg/Kg	1.00	0.898	90	85 - 115	2008-10-13	

Standard (CCV-1)

QC Batch: 53229

Date Analyzed: 2008-10-13

Analyzed By: MT

.

Report Date: October 24, 2008 Paloma 28 St. Com. #2				Vork Order: 810 loma 28 St. Co		umber: 14 of 15 Lea County, NM	
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/Kg	1.00	0.874	87	85 - 115	2008-10-13
Standard	(ICV-1)						
QC Batch:	53239		Date Ana	lyzed: 2008-10)-13	Analy	yzed By: MN
			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO	¥	m mg/Kg	250	264	106	85 - 115	2008-10-13
Standard QC Batch:			Date Ana	lyzed: 2008-10)-13	Anal	yzed By: MN
			CCVs	$\rm CCVs$	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO	1 146	mg/Kg	250	278	111	85 - 115	2008-10-13
Standard QC Batch:	. ,		Date Ana	lyzed: 2008-10)-23	Anal	yzed By: CM
			ICIV		ICVs	Percent	
			ICVs True	ICVs Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
TRPHC TRPHC	I lag	mg/Kg	100	85.4	85	80 - 120	2008-10-23
Standard			Date Ana	lyzed: 2008-10	D-23	Anal	yzed By: CM
QC Batch:			COL	acti	COV	Deverset	
QC Batch:			CCVs	CCVs	CCVs	Percent	D
QC Batch:				Eerre J	Dorocat		
QC Batch: Param	Flag	Units	True Conc.	Found Conc.	Percent Recovery	Recovery Limits	Date Analyzed

QC Batch: 53610

و و م ا مرجع

Date Analyzed: 2008-10-24

Analyzed By: RG

Report Date: October 24, 2008 Paloma 28 St. Com. #2				Vork Order: 810 loma 28 St. Co		0	Page Number: 15 of 15 Lea County, NM	
Param Chloride	Flag	Units	ICVs True Conc.	ICVs Found Conc.	ICVs Percent Recovery 102	Percent Recovery Limits 85 - 115	Date Analyzed 2008-10-24	
		mg/Kg	100	102	102	83 - 113	2008-10-24	
Standard (QC Batch:	CCV-1) 53610		Date Ana	lyzed: 2008-10)-24	Anal	yzed By: RG	

3 H 2 D 4 D 4 D

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		mg/Kg	100	98.3	98	85 - 115	2008-10-24